]> git.proxmox.com Git - mirror_qemu.git/blob - target/hexagon/mmvec/macros.h
target/hexagon: remove unused variable
[mirror_qemu.git] / target / hexagon / mmvec / macros.h
1 /*
2 * Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #ifndef HEXAGON_MMVEC_MACROS_H
19 #define HEXAGON_MMVEC_MACROS_H
20
21 #include "qemu/osdep.h"
22 #include "qemu/host-utils.h"
23 #include "arch.h"
24 #include "mmvec/system_ext_mmvec.h"
25
26 #ifndef QEMU_GENERATE
27 #define VdV (*(MMVector *)(VdV_void))
28 #define VsV (*(MMVector *)(VsV_void))
29 #define VuV (*(MMVector *)(VuV_void))
30 #define VvV (*(MMVector *)(VvV_void))
31 #define VwV (*(MMVector *)(VwV_void))
32 #define VxV (*(MMVector *)(VxV_void))
33 #define VyV (*(MMVector *)(VyV_void))
34
35 #define VddV (*(MMVectorPair *)(VddV_void))
36 #define VuuV (*(MMVectorPair *)(VuuV_void))
37 #define VvvV (*(MMVectorPair *)(VvvV_void))
38 #define VxxV (*(MMVectorPair *)(VxxV_void))
39
40 #define QeV (*(MMQReg *)(QeV_void))
41 #define QdV (*(MMQReg *)(QdV_void))
42 #define QsV (*(MMQReg *)(QsV_void))
43 #define QtV (*(MMQReg *)(QtV_void))
44 #define QuV (*(MMQReg *)(QuV_void))
45 #define QvV (*(MMQReg *)(QvV_void))
46 #define QxV (*(MMQReg *)(QxV_void))
47 #endif
48
49 #define LOG_VTCM_BYTE(VA, MASK, VAL, IDX) \
50 do { \
51 env->vtcm_log.data.ub[IDX] = (VAL); \
52 if (MASK) { \
53 set_bit((IDX), env->vtcm_log.mask); \
54 } else { \
55 clear_bit((IDX), env->vtcm_log.mask); \
56 } \
57 env->vtcm_log.va[IDX] = (VA); \
58 } while (0)
59
60 #define fNOTQ(VAL) \
61 ({ \
62 MMQReg _ret; \
63 int _i_; \
64 for (_i_ = 0; _i_ < fVECSIZE() / 64; _i_++) { \
65 _ret.ud[_i_] = ~VAL.ud[_i_]; \
66 } \
67 _ret;\
68 })
69 #define fGETQBITS(REG, WIDTH, MASK, BITNO) \
70 ((MASK) & (REG.w[(BITNO) >> 5] >> ((BITNO) & 0x1f)))
71 #define fGETQBIT(REG, BITNO) fGETQBITS(REG, 1, 1, BITNO)
72 #define fGENMASKW(QREG, IDX) \
73 (((fGETQBIT(QREG, (IDX * 4 + 0)) ? 0xFF : 0x0) << 0) | \
74 ((fGETQBIT(QREG, (IDX * 4 + 1)) ? 0xFF : 0x0) << 8) | \
75 ((fGETQBIT(QREG, (IDX * 4 + 2)) ? 0xFF : 0x0) << 16) | \
76 ((fGETQBIT(QREG, (IDX * 4 + 3)) ? 0xFF : 0x0) << 24))
77 #define fGETNIBBLE(IDX, SRC) (fSXTN(4, 8, (SRC >> (4 * IDX)) & 0xF))
78 #define fGETCRUMB(IDX, SRC) (fSXTN(2, 8, (SRC >> (2 * IDX)) & 0x3))
79 #define fGETCRUMB_SYMMETRIC(IDX, SRC) \
80 ((fGETCRUMB(IDX, SRC) >= 0 ? (2 - fGETCRUMB(IDX, SRC)) \
81 : fGETCRUMB(IDX, SRC)))
82 #define fGENMASKH(QREG, IDX) \
83 (((fGETQBIT(QREG, (IDX * 2 + 0)) ? 0xFF : 0x0) << 0) | \
84 ((fGETQBIT(QREG, (IDX * 2 + 1)) ? 0xFF : 0x0) << 8))
85 #define fGETMASKW(VREG, QREG, IDX) (VREG.w[IDX] & fGENMASKW((QREG), IDX))
86 #define fGETMASKH(VREG, QREG, IDX) (VREG.h[IDX] & fGENMASKH((QREG), IDX))
87 #define fCONDMASK8(QREG, IDX, YESVAL, NOVAL) \
88 (fGETQBIT(QREG, IDX) ? (YESVAL) : (NOVAL))
89 #define fCONDMASK16(QREG, IDX, YESVAL, NOVAL) \
90 ((fGENMASKH(QREG, IDX) & (YESVAL)) | \
91 (fGENMASKH(fNOTQ(QREG), IDX) & (NOVAL)))
92 #define fCONDMASK32(QREG, IDX, YESVAL, NOVAL) \
93 ((fGENMASKW(QREG, IDX) & (YESVAL)) | \
94 (fGENMASKW(fNOTQ(QREG), IDX) & (NOVAL)))
95 #define fSETQBITS(REG, WIDTH, MASK, BITNO, VAL) \
96 do { \
97 uint32_t __TMP = (VAL); \
98 REG.w[(BITNO) >> 5] &= ~((MASK) << ((BITNO) & 0x1f)); \
99 REG.w[(BITNO) >> 5] |= (((__TMP) & (MASK)) << ((BITNO) & 0x1f)); \
100 } while (0)
101 #define fSETQBIT(REG, BITNO, VAL) fSETQBITS(REG, 1, 1, BITNO, VAL)
102 #define fVBYTES() (fVECSIZE())
103 #define fVALIGN(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR & ~(LOG2_ALIGNMENT - 1))
104 #define fVLASTBYTE(ADDR, LOG2_ALIGNMENT) (ADDR = ADDR | (LOG2_ALIGNMENT - 1))
105 #define fVELEM(WIDTH) ((fVECSIZE() * 8) / WIDTH)
106 #define fVECLOGSIZE() (7)
107 #define fVECSIZE() (1 << fVECLOGSIZE())
108 #define fSWAPB(A, B) do { uint8_t tmp = A; A = B; B = tmp; } while (0)
109 #define fV_AL_CHECK(EA, MASK) \
110 if ((EA) & (MASK)) { \
111 warn("aligning misaligned vector. EA=%08x", (EA)); \
112 }
113 #define fSCATTER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \
114 mem_vector_scatter_init(env)
115 #define fGATHER_INIT(REGION_START, LENGTH, ELEMENT_SIZE) \
116 mem_vector_gather_init(env)
117 #define fSCATTER_FINISH(OP)
118 #define fGATHER_FINISH()
119 #define fLOG_SCATTER_OP(SIZE) \
120 do { \
121 env->vtcm_log.op = true; \
122 env->vtcm_log.op_size = SIZE; \
123 } while (0)
124 #define fVLOG_VTCM_WORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \
125 do { \
126 int log_byte = 0; \
127 target_ulong va = EA; \
128 target_ulong va_high = EA + LEN; \
129 for (int i0 = 0; i0 < 4; i0++) { \
130 log_byte = (va + i0) <= va_high; \
131 LOG_VTCM_BYTE(va + i0, log_byte, INC. ub[4 * IDX + i0], \
132 4 * IDX + i0); \
133 } \
134 } while (0)
135 #define fVLOG_VTCM_HALFWORD_INCREMENT(EA, OFFSET, INC, IDX, ALIGNMENT, LEN) \
136 do { \
137 int log_byte = 0; \
138 target_ulong va = EA; \
139 target_ulong va_high = EA + LEN; \
140 for (int i0 = 0; i0 < 2; i0++) { \
141 log_byte = (va + i0) <= va_high; \
142 LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \
143 2 * IDX + i0); \
144 } \
145 } while (0)
146
147 #define fVLOG_VTCM_HALFWORD_INCREMENT_DV(EA, OFFSET, INC, IDX, IDX2, IDX_H, \
148 ALIGNMENT, LEN) \
149 do { \
150 int log_byte = 0; \
151 target_ulong va = EA; \
152 target_ulong va_high = EA + LEN; \
153 for (int i0 = 0; i0 < 2; i0++) { \
154 log_byte = (va + i0) <= va_high; \
155 LOG_VTCM_BYTE(va + i0, log_byte, INC.ub[2 * IDX + i0], \
156 2 * IDX + i0); \
157 } \
158 } while (0)
159
160 /* NOTE - Will this always be tmp_VRegs[0]; */
161 #define GATHER_FUNCTION(EA, OFFSET, IDX, LEN, ELEMENT_SIZE, BANK_IDX, QVAL) \
162 do { \
163 int i0; \
164 target_ulong va = EA; \
165 target_ulong va_high = EA + LEN; \
166 uintptr_t ra = GETPC(); \
167 int log_byte = 0; \
168 for (i0 = 0; i0 < ELEMENT_SIZE; i0++) { \
169 log_byte = ((va + i0) <= va_high) && QVAL; \
170 uint8_t B; \
171 B = cpu_ldub_data_ra(env, EA + i0, ra); \
172 env->tmp_VRegs[0].ub[ELEMENT_SIZE * IDX + i0] = B; \
173 LOG_VTCM_BYTE(va + i0, log_byte, B, ELEMENT_SIZE * IDX + i0); \
174 } \
175 } while (0)
176 #define fVLOG_VTCM_GATHER_WORD(EA, OFFSET, IDX, LEN) \
177 do { \
178 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1); \
179 } while (0)
180 #define fVLOG_VTCM_GATHER_HALFWORD(EA, OFFSET, IDX, LEN) \
181 do { \
182 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1); \
183 } while (0)
184 #define fVLOG_VTCM_GATHER_HALFWORD_DV(EA, OFFSET, IDX, IDX2, IDX_H, LEN) \
185 do { \
186 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), 1); \
187 } while (0)
188 #define fVLOG_VTCM_GATHER_WORDQ(EA, OFFSET, IDX, Q, LEN) \
189 do { \
190 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \
191 fGETQBIT(QsV, 4 * IDX + i0)); \
192 } while (0)
193 #define fVLOG_VTCM_GATHER_HALFWORDQ(EA, OFFSET, IDX, Q, LEN) \
194 do { \
195 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \
196 fGETQBIT(QsV, 2 * IDX + i0)); \
197 } while (0)
198 #define fVLOG_VTCM_GATHER_HALFWORDQ_DV(EA, OFFSET, IDX, IDX2, IDX_H, Q, LEN) \
199 do { \
200 GATHER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \
201 fGETQBIT(QsV, 2 * IDX + i0)); \
202 } while (0)
203 #define SCATTER_OP_WRITE_TO_MEM(TYPE) \
204 do { \
205 uintptr_t ra = GETPC(); \
206 for (int i = 0; i < sizeof(MMVector); i += sizeof(TYPE)) { \
207 if (test_bit(i, env->vtcm_log.mask)) { \
208 TYPE dst = 0; \
209 TYPE inc = 0; \
210 for (int j = 0; j < sizeof(TYPE); j++) { \
211 uint8_t val; \
212 val = cpu_ldub_data_ra(env, env->vtcm_log.va[i + j], ra); \
213 dst |= val << (8 * j); \
214 inc |= env->vtcm_log.data.ub[j + i] << (8 * j); \
215 clear_bit(j + i, env->vtcm_log.mask); \
216 env->vtcm_log.data.ub[j + i] = 0; \
217 } \
218 dst += inc; \
219 for (int j = 0; j < sizeof(TYPE); j++) { \
220 cpu_stb_data_ra(env, env->vtcm_log.va[i + j], \
221 (dst >> (8 * j)) & 0xFF, ra); \
222 } \
223 } \
224 } \
225 } while (0)
226 #define SCATTER_OP_PROBE_MEM(TYPE, MMU_IDX, RETADDR) \
227 do { \
228 for (int i = 0; i < sizeof(MMVector); i += sizeof(TYPE)) { \
229 if (test_bit(i, env->vtcm_log.mask)) { \
230 for (int j = 0; j < sizeof(TYPE); j++) { \
231 probe_read(env, env->vtcm_log.va[i + j], 1, \
232 MMU_IDX, RETADDR); \
233 probe_write(env, env->vtcm_log.va[i + j], 1, \
234 MMU_IDX, RETADDR); \
235 } \
236 } \
237 } \
238 } while (0)
239 #define SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, ELEM_SIZE, BANK_IDX, QVAL, IN) \
240 do { \
241 int i0; \
242 target_ulong va = EA; \
243 target_ulong va_high = EA + LEN; \
244 int log_byte = 0; \
245 for (i0 = 0; i0 < ELEM_SIZE; i0++) { \
246 log_byte = ((va + i0) <= va_high) && QVAL; \
247 LOG_VTCM_BYTE(va + i0, log_byte, IN.ub[ELEM_SIZE * IDX + i0], \
248 ELEM_SIZE * IDX + i0); \
249 } \
250 } while (0)
251 #define fVLOG_VTCM_HALFWORD(EA, OFFSET, IN, IDX, LEN) \
252 do { \
253 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, 1, IN); \
254 } while (0)
255 #define fVLOG_VTCM_WORD(EA, OFFSET, IN, IDX, LEN) \
256 do { \
257 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, 1, IN); \
258 } while (0)
259 #define fVLOG_VTCM_HALFWORDQ(EA, OFFSET, IN, IDX, Q, LEN) \
260 do { \
261 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, IDX, \
262 fGETQBIT(QsV, 2 * IDX + i0), IN); \
263 } while (0)
264 #define fVLOG_VTCM_WORDQ(EA, OFFSET, IN, IDX, Q, LEN) \
265 do { \
266 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 4, IDX, \
267 fGETQBIT(QsV, 4 * IDX + i0), IN); \
268 } while (0)
269 #define fVLOG_VTCM_HALFWORD_DV(EA, OFFSET, IN, IDX, IDX2, IDX_H, LEN) \
270 do { \
271 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, \
272 (2 * IDX2 + IDX_H), 1, IN); \
273 } while (0)
274 #define fVLOG_VTCM_HALFWORDQ_DV(EA, OFFSET, IN, IDX, Q, IDX2, IDX_H, LEN) \
275 do { \
276 SCATTER_FUNCTION(EA, OFFSET, IDX, LEN, 2, (2 * IDX2 + IDX_H), \
277 fGETQBIT(QsV, 2 * IDX + i0), IN); \
278 } while (0)
279 #define fSTORERELEASE(EA, TYPE) \
280 do { \
281 fV_AL_CHECK(EA, fVECSIZE() - 1); \
282 } while (0)
283 #ifdef QEMU_GENERATE
284 #define fLOADMMV(EA, DST) gen_vreg_load(ctx, DST##_off, EA, true)
285 #endif
286 #ifdef QEMU_GENERATE
287 #define fLOADMMVU(EA, DST) gen_vreg_load(ctx, DST##_off, EA, false)
288 #endif
289 #ifdef QEMU_GENERATE
290 #define fSTOREMMV(EA, SRC) \
291 gen_vreg_store(ctx, insn, pkt, EA, SRC##_off, insn->slot, true)
292 #endif
293 #ifdef QEMU_GENERATE
294 #define fSTOREMMVQ(EA, SRC, MASK) \
295 gen_vreg_masked_store(ctx, EA, SRC##_off, MASK##_off, insn->slot, false)
296 #endif
297 #ifdef QEMU_GENERATE
298 #define fSTOREMMVNQ(EA, SRC, MASK) \
299 gen_vreg_masked_store(ctx, EA, SRC##_off, MASK##_off, insn->slot, true)
300 #endif
301 #ifdef QEMU_GENERATE
302 #define fSTOREMMVU(EA, SRC) \
303 gen_vreg_store(ctx, insn, pkt, EA, SRC##_off, insn->slot, false)
304 #endif
305 #define fVFOREACH(WIDTH, VAR) for (VAR = 0; VAR < fVELEM(WIDTH); VAR++)
306 #define fVARRAY_ELEMENT_ACCESS(ARRAY, TYPE, INDEX) \
307 ARRAY.v[(INDEX) / (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))].TYPE[(INDEX) % \
308 (fVECSIZE() / (sizeof(ARRAY.TYPE[0])))]
309
310 #define fVSATDW(U, V) fVSATW(((((long long)U) << 32) | fZXTN(32, 64, V)))
311 #define fVASL_SATHI(U, V) fVSATW(((U) << 1) | ((V) >> 31))
312 #define fVUADDSAT(WIDTH, U, V) \
313 fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V))
314 #define fVSADDSAT(WIDTH, U, V) \
315 fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V))
316 #define fVUSUBSAT(WIDTH, U, V) \
317 fVSATUN(WIDTH, fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V))
318 #define fVSSUBSAT(WIDTH, U, V) \
319 fVSATN(WIDTH, fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V))
320 #define fVAVGU(WIDTH, U, V) \
321 ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V)) >> 1)
322 #define fVAVGURND(WIDTH, U, V) \
323 ((fZXTN(WIDTH, 2 * WIDTH, U) + fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)
324 #define fVNAVGU(WIDTH, U, V) \
325 ((fZXTN(WIDTH, 2 * WIDTH, U) - fZXTN(WIDTH, 2 * WIDTH, V)) >> 1)
326 #define fVNAVGURNDSAT(WIDTH, U, V) \
327 fVSATUN(WIDTH, ((fZXTN(WIDTH, 2 * WIDTH, U) - \
328 fZXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1))
329 #define fVAVGS(WIDTH, U, V) \
330 ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V)) >> 1)
331 #define fVAVGSRND(WIDTH, U, V) \
332 ((fSXTN(WIDTH, 2 * WIDTH, U) + fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)
333 #define fVNAVGS(WIDTH, U, V) \
334 ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V)) >> 1)
335 #define fVNAVGSRND(WIDTH, U, V) \
336 ((fSXTN(WIDTH, 2 * WIDTH, U) - fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1)
337 #define fVNAVGSRNDSAT(WIDTH, U, V) \
338 fVSATN(WIDTH, ((fSXTN(WIDTH, 2 * WIDTH, U) - \
339 fSXTN(WIDTH, 2 * WIDTH, V) + 1) >> 1))
340 #define fVNOROUND(VAL, SHAMT) VAL
341 #define fVNOSAT(VAL) VAL
342 #define fVROUND(VAL, SHAMT) \
343 ((VAL) + (((SHAMT) > 0) ? (1LL << ((SHAMT) - 1)) : 0))
344 #define fCARRY_FROM_ADD32(A, B, C) \
345 (((fZXTN(32, 64, A) + fZXTN(32, 64, B) + C) >> 32) & 1)
346 #define fUARCH_NOTE_PUMP_4X()
347 #define fUARCH_NOTE_PUMP_2X()
348
349 #define IV1DEAD()
350 #endif