]> git.proxmox.com Git - mirror_qemu.git/blob - target/hppa/cpu.h
target/hppa: Add privilege to MMU index conversion helpers
[mirror_qemu.git] / target / hppa / cpu.h
1 /*
2 * PA-RISC emulation cpu definitions for qemu.
3 *
4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef HPPA_CPU_H
21 #define HPPA_CPU_H
22
23 #include "cpu-qom.h"
24 #include "exec/cpu-defs.h"
25 #include "qemu/cpu-float.h"
26
27 /* PA-RISC 1.x processors have a strong memory model. */
28 /* ??? While we do not yet implement PA-RISC 2.0, those processors have
29 a weak memory model, but with TLB bits that force ordering on a per-page
30 basis. It's probably easier to fall back to a strong memory model. */
31 #define TCG_GUEST_DEFAULT_MO TCG_MO_ALL
32
33 #define MMU_KERNEL_IDX 0
34 #define MMU_PL1_IDX 1
35 #define MMU_PL2_IDX 2
36 #define MMU_USER_IDX 3
37 #define MMU_PHYS_IDX 4
38
39 #define PRIV_TO_MMU_IDX(priv) (priv)
40 #define MMU_IDX_TO_PRIV(mmu_idx) (mmu_idx)
41
42 #define TARGET_INSN_START_EXTRA_WORDS 1
43
44 /* Hardware exceptions, interrupts, faults, and traps. */
45 #define EXCP_HPMC 1 /* high priority machine check */
46 #define EXCP_POWER_FAIL 2
47 #define EXCP_RC 3 /* recovery counter */
48 #define EXCP_EXT_INTERRUPT 4 /* external interrupt */
49 #define EXCP_LPMC 5 /* low priority machine check */
50 #define EXCP_ITLB_MISS 6 /* itlb miss / instruction page fault */
51 #define EXCP_IMP 7 /* instruction memory protection trap */
52 #define EXCP_ILL 8 /* illegal instruction trap */
53 #define EXCP_BREAK 9 /* break instruction */
54 #define EXCP_PRIV_OPR 10 /* privileged operation trap */
55 #define EXCP_PRIV_REG 11 /* privileged register trap */
56 #define EXCP_OVERFLOW 12 /* signed overflow trap */
57 #define EXCP_COND 13 /* trap-on-condition */
58 #define EXCP_ASSIST 14 /* assist exception trap */
59 #define EXCP_DTLB_MISS 15 /* dtlb miss / data page fault */
60 #define EXCP_NA_ITLB_MISS 16 /* non-access itlb miss */
61 #define EXCP_NA_DTLB_MISS 17 /* non-access dtlb miss */
62 #define EXCP_DMP 18 /* data memory protection trap */
63 #define EXCP_DMB 19 /* data memory break trap */
64 #define EXCP_TLB_DIRTY 20 /* tlb dirty bit trap */
65 #define EXCP_PAGE_REF 21 /* page reference trap */
66 #define EXCP_ASSIST_EMU 22 /* assist emulation trap */
67 #define EXCP_HPT 23 /* high-privilege transfer trap */
68 #define EXCP_LPT 24 /* low-privilege transfer trap */
69 #define EXCP_TB 25 /* taken branch trap */
70 #define EXCP_DMAR 26 /* data memory access rights trap */
71 #define EXCP_DMPI 27 /* data memory protection id trap */
72 #define EXCP_UNALIGN 28 /* unaligned data reference trap */
73 #define EXCP_PER_INTERRUPT 29 /* performance monitor interrupt */
74
75 /* Exceptions for linux-user emulation. */
76 #define EXCP_SYSCALL 30
77 #define EXCP_SYSCALL_LWS 31
78
79 /* Emulated hardware TOC button */
80 #define EXCP_TOC 32 /* TOC = Transfer of control (NMI) */
81
82 #define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_3 /* TOC */
83
84 /* Taken from Linux kernel: arch/parisc/include/asm/psw.h */
85 #define PSW_I 0x00000001
86 #define PSW_D 0x00000002
87 #define PSW_P 0x00000004
88 #define PSW_Q 0x00000008
89 #define PSW_R 0x00000010
90 #define PSW_F 0x00000020
91 #define PSW_G 0x00000040 /* PA1.x only */
92 #define PSW_O 0x00000080 /* PA2.0 only */
93 #define PSW_CB 0x0000ff00
94 #define PSW_M 0x00010000
95 #define PSW_V 0x00020000
96 #define PSW_C 0x00040000
97 #define PSW_B 0x00080000
98 #define PSW_X 0x00100000
99 #define PSW_N 0x00200000
100 #define PSW_L 0x00400000
101 #define PSW_H 0x00800000
102 #define PSW_T 0x01000000
103 #define PSW_S 0x02000000
104 #define PSW_E 0x04000000
105 #ifdef TARGET_HPPA64
106 #define PSW_W 0x08000000 /* PA2.0 only */
107 #else
108 #define PSW_W 0
109 #endif
110 #define PSW_Z 0x40000000 /* PA1.x only */
111 #define PSW_Y 0x80000000 /* PA1.x only */
112
113 #define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \
114 | PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I)
115
116 /* ssm/rsm instructions number PSW_W and PSW_E differently */
117 #define PSW_SM_I PSW_I /* Enable External Interrupts */
118 #define PSW_SM_D PSW_D
119 #define PSW_SM_P PSW_P
120 #define PSW_SM_Q PSW_Q /* Enable Interrupt State Collection */
121 #define PSW_SM_R PSW_R /* Enable Recover Counter Trap */
122 #ifdef TARGET_HPPA64
123 #define PSW_SM_E 0x100
124 #define PSW_SM_W 0x200 /* PA2.0 only : Enable Wide Mode */
125 #else
126 #define PSW_SM_E 0
127 #define PSW_SM_W 0
128 #endif
129
130 #define CR_RC 0
131 #define CR_PID1 8
132 #define CR_PID2 9
133 #define CR_PID3 12
134 #define CR_PID4 13
135 #define CR_SCRCCR 10
136 #define CR_SAR 11
137 #define CR_IVA 14
138 #define CR_EIEM 15
139 #define CR_IT 16
140 #define CR_IIASQ 17
141 #define CR_IIAOQ 18
142 #define CR_IIR 19
143 #define CR_ISR 20
144 #define CR_IOR 21
145 #define CR_IPSW 22
146 #define CR_EIRR 23
147
148 #if TARGET_REGISTER_BITS == 32
149 typedef uint32_t target_ureg;
150 typedef int32_t target_sreg;
151 #define TREG_FMT_lx "%08"PRIx32
152 #define TREG_FMT_ld "%"PRId32
153 #else
154 typedef uint64_t target_ureg;
155 typedef int64_t target_sreg;
156 #define TREG_FMT_lx "%016"PRIx64
157 #define TREG_FMT_ld "%"PRId64
158 #endif
159
160 typedef struct {
161 uint64_t va_b;
162 uint64_t va_e;
163 target_ureg pa;
164 unsigned u : 1;
165 unsigned t : 1;
166 unsigned d : 1;
167 unsigned b : 1;
168 unsigned page_size : 4;
169 unsigned ar_type : 3;
170 unsigned ar_pl1 : 2;
171 unsigned ar_pl2 : 2;
172 unsigned entry_valid : 1;
173 unsigned access_id : 16;
174 } hppa_tlb_entry;
175
176 typedef struct CPUArchState {
177 target_ureg iaoq_f; /* front */
178 target_ureg iaoq_b; /* back, aka next instruction */
179
180 target_ureg gr[32];
181 uint64_t fr[32];
182 uint64_t sr[8]; /* stored shifted into place for gva */
183
184 target_ureg psw; /* All psw bits except the following: */
185 target_ureg psw_n; /* boolean */
186 target_sreg psw_v; /* in most significant bit */
187
188 /* Splitting the carry-borrow field into the MSB and "the rest", allows
189 * for "the rest" to be deleted when it is unused, but the MSB is in use.
190 * In addition, it's easier to compute carry-in for bit B+1 than it is to
191 * compute carry-out for bit B (3 vs 4 insns for addition, assuming the
192 * host has the appropriate add-with-carry insn to compute the msb).
193 * Therefore the carry bits are stored as: cb_msb : cb & 0x11111110.
194 */
195 target_ureg psw_cb; /* in least significant bit of next nibble */
196 target_ureg psw_cb_msb; /* boolean */
197
198 uint64_t iasq_f;
199 uint64_t iasq_b;
200
201 uint32_t fr0_shadow; /* flags, c, ca/cq, rm, d, enables */
202 float_status fp_status;
203
204 target_ureg cr[32]; /* control registers */
205 target_ureg cr_back[2]; /* back of cr17/cr18 */
206 target_ureg shadow[7]; /* shadow registers */
207
208 /* ??? The number of entries isn't specified by the architecture. */
209 #define HPPA_TLB_ENTRIES 256
210 #define HPPA_BTLB_ENTRIES 0
211
212 /* ??? Implement a unified itlb/dtlb for the moment. */
213 /* ??? We should use a more intelligent data structure. */
214 hppa_tlb_entry tlb[HPPA_TLB_ENTRIES];
215 uint32_t tlb_last;
216 } CPUHPPAState;
217
218 /**
219 * HPPACPU:
220 * @env: #CPUHPPAState
221 *
222 * An HPPA CPU.
223 */
224 struct ArchCPU {
225 /*< private >*/
226 CPUState parent_obj;
227 /*< public >*/
228
229 CPUNegativeOffsetState neg;
230 CPUHPPAState env;
231 QEMUTimer *alarm_timer;
232 };
233
234 #include "exec/cpu-all.h"
235
236 static inline int cpu_mmu_index(CPUHPPAState *env, bool ifetch)
237 {
238 #ifdef CONFIG_USER_ONLY
239 return MMU_USER_IDX;
240 #else
241 if (env->psw & (ifetch ? PSW_C : PSW_D)) {
242 return PRIV_TO_MMU_IDX(env->iaoq_f & 3);
243 }
244 return MMU_PHYS_IDX; /* mmu disabled */
245 #endif
246 }
247
248 void hppa_translate_init(void);
249
250 #define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
251
252 static inline target_ulong hppa_form_gva_psw(target_ureg psw, uint64_t spc,
253 target_ureg off)
254 {
255 #ifdef CONFIG_USER_ONLY
256 return off;
257 #else
258 off &= (psw & PSW_W ? 0x3fffffffffffffffull : 0xffffffffull);
259 return spc | off;
260 #endif
261 }
262
263 static inline target_ulong hppa_form_gva(CPUHPPAState *env, uint64_t spc,
264 target_ureg off)
265 {
266 return hppa_form_gva_psw(env->psw, spc, off);
267 }
268
269 /*
270 * Since PSW_{I,CB} will never need to be in tb->flags, reuse them.
271 * TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the
272 * same value.
273 */
274 #define TB_FLAG_SR_SAME PSW_I
275 #define TB_FLAG_PRIV_SHIFT 8
276 #define TB_FLAG_UNALIGN 0x400
277
278 static inline void cpu_get_tb_cpu_state(CPUHPPAState *env, vaddr *pc,
279 uint64_t *cs_base, uint32_t *pflags)
280 {
281 uint32_t flags = env->psw_n * PSW_N;
282
283 /* TB lookup assumes that PC contains the complete virtual address.
284 If we leave space+offset separate, we'll get ITLB misses to an
285 incomplete virtual address. This also means that we must separate
286 out current cpu privilege from the low bits of IAOQ_F. */
287 #ifdef CONFIG_USER_ONLY
288 *pc = env->iaoq_f & -4;
289 *cs_base = env->iaoq_b & -4;
290 flags |= TB_FLAG_UNALIGN * !env_cpu(env)->prctl_unalign_sigbus;
291 #else
292 /* ??? E, T, H, L, B, P bits need to be here, when implemented. */
293 flags |= env->psw & (PSW_W | PSW_C | PSW_D);
294 flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT;
295
296 *pc = (env->psw & PSW_C
297 ? hppa_form_gva_psw(env->psw, env->iasq_f, env->iaoq_f & -4)
298 : env->iaoq_f & -4);
299 *cs_base = env->iasq_f;
300
301 /* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero
302 low 32-bits of CS_BASE. This will succeed for all direct branches,
303 which is the primary case we care about -- using goto_tb within a page.
304 Failure is indicated by a zero difference. */
305 if (env->iasq_f == env->iasq_b) {
306 target_sreg diff = env->iaoq_b - env->iaoq_f;
307 if (TARGET_REGISTER_BITS == 32 || diff == (int32_t)diff) {
308 *cs_base |= (uint32_t)diff;
309 }
310 }
311 if ((env->sr[4] == env->sr[5])
312 & (env->sr[4] == env->sr[6])
313 & (env->sr[4] == env->sr[7])) {
314 flags |= TB_FLAG_SR_SAME;
315 }
316 #endif
317
318 *pflags = flags;
319 }
320
321 target_ureg cpu_hppa_get_psw(CPUHPPAState *env);
322 void cpu_hppa_put_psw(CPUHPPAState *env, target_ureg);
323 void cpu_hppa_loaded_fr0(CPUHPPAState *env);
324
325 #ifdef CONFIG_USER_ONLY
326 static inline void cpu_hppa_change_prot_id(CPUHPPAState *env) { }
327 #else
328 void cpu_hppa_change_prot_id(CPUHPPAState *env);
329 #endif
330
331 int hppa_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
332 int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
333 void hppa_cpu_dump_state(CPUState *cs, FILE *f, int);
334 #ifndef CONFIG_USER_ONLY
335 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr);
336 bool hppa_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
337 MMUAccessType access_type, int mmu_idx,
338 bool probe, uintptr_t retaddr);
339 void hppa_cpu_do_interrupt(CPUState *cpu);
340 bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req);
341 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
342 int type, hwaddr *pphys, int *pprot);
343 extern const MemoryRegionOps hppa_io_eir_ops;
344 extern const VMStateDescription vmstate_hppa_cpu;
345 void hppa_cpu_alarm_timer(void *);
346 int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr);
347 #endif
348 G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra);
349
350 #endif /* HPPA_CPU_H */