]> git.proxmox.com Git - mirror_qemu.git/blob - target/hppa/cpu.h
target/hppa: Replace MMU_PHYS_IDX with MMU_ABS_IDX, MMU_ABS_W_IDX
[mirror_qemu.git] / target / hppa / cpu.h
1 /*
2 * PA-RISC emulation cpu definitions for qemu.
3 *
4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef HPPA_CPU_H
21 #define HPPA_CPU_H
22
23 #include "cpu-qom.h"
24 #include "exec/cpu-defs.h"
25 #include "qemu/cpu-float.h"
26 #include "qemu/interval-tree.h"
27
28 /* PA-RISC 1.x processors have a strong memory model. */
29 /* ??? While we do not yet implement PA-RISC 2.0, those processors have
30 a weak memory model, but with TLB bits that force ordering on a per-page
31 basis. It's probably easier to fall back to a strong memory model. */
32 #define TCG_GUEST_DEFAULT_MO TCG_MO_ALL
33
34 #define MMU_ABS_W_IDX 6
35 #define MMU_ABS_IDX 7
36 #define MMU_KERNEL_IDX 8
37 #define MMU_KERNEL_P_IDX 9
38 #define MMU_PL1_IDX 10
39 #define MMU_PL1_P_IDX 11
40 #define MMU_PL2_IDX 12
41 #define MMU_PL2_P_IDX 13
42 #define MMU_USER_IDX 14
43 #define MMU_USER_P_IDX 15
44
45 #define MMU_IDX_MMU_DISABLED(MIDX) ((MIDX) < MMU_KERNEL_IDX)
46 #define MMU_IDX_TO_PRIV(MIDX) (((MIDX) - MMU_KERNEL_IDX) / 2)
47 #define MMU_IDX_TO_P(MIDX) (((MIDX) - MMU_KERNEL_IDX) & 1)
48 #define PRIV_P_TO_MMU_IDX(PRIV, P) ((PRIV) * 2 + !!(P) + MMU_KERNEL_IDX)
49
50 #define TARGET_INSN_START_EXTRA_WORDS 2
51
52 /* No need to flush MMU_ABS*_IDX */
53 #define HPPA_MMU_FLUSH_MASK \
54 (1 << MMU_KERNEL_IDX | 1 << MMU_KERNEL_P_IDX | \
55 1 << MMU_PL1_IDX | 1 << MMU_PL1_P_IDX | \
56 1 << MMU_PL2_IDX | 1 << MMU_PL2_P_IDX | \
57 1 << MMU_USER_IDX | 1 << MMU_USER_P_IDX)
58
59 /* Indicies to flush for access_id changes. */
60 #define HPPA_MMU_FLUSH_P_MASK \
61 (1 << MMU_KERNEL_P_IDX | 1 << MMU_PL1_P_IDX | \
62 1 << MMU_PL2_P_IDX | 1 << MMU_USER_P_IDX)
63
64 /* Hardware exceptions, interrupts, faults, and traps. */
65 #define EXCP_HPMC 1 /* high priority machine check */
66 #define EXCP_POWER_FAIL 2
67 #define EXCP_RC 3 /* recovery counter */
68 #define EXCP_EXT_INTERRUPT 4 /* external interrupt */
69 #define EXCP_LPMC 5 /* low priority machine check */
70 #define EXCP_ITLB_MISS 6 /* itlb miss / instruction page fault */
71 #define EXCP_IMP 7 /* instruction memory protection trap */
72 #define EXCP_ILL 8 /* illegal instruction trap */
73 #define EXCP_BREAK 9 /* break instruction */
74 #define EXCP_PRIV_OPR 10 /* privileged operation trap */
75 #define EXCP_PRIV_REG 11 /* privileged register trap */
76 #define EXCP_OVERFLOW 12 /* signed overflow trap */
77 #define EXCP_COND 13 /* trap-on-condition */
78 #define EXCP_ASSIST 14 /* assist exception trap */
79 #define EXCP_DTLB_MISS 15 /* dtlb miss / data page fault */
80 #define EXCP_NA_ITLB_MISS 16 /* non-access itlb miss */
81 #define EXCP_NA_DTLB_MISS 17 /* non-access dtlb miss */
82 #define EXCP_DMP 18 /* data memory protection trap */
83 #define EXCP_DMB 19 /* data memory break trap */
84 #define EXCP_TLB_DIRTY 20 /* tlb dirty bit trap */
85 #define EXCP_PAGE_REF 21 /* page reference trap */
86 #define EXCP_ASSIST_EMU 22 /* assist emulation trap */
87 #define EXCP_HPT 23 /* high-privilege transfer trap */
88 #define EXCP_LPT 24 /* low-privilege transfer trap */
89 #define EXCP_TB 25 /* taken branch trap */
90 #define EXCP_DMAR 26 /* data memory access rights trap */
91 #define EXCP_DMPI 27 /* data memory protection id trap */
92 #define EXCP_UNALIGN 28 /* unaligned data reference trap */
93 #define EXCP_PER_INTERRUPT 29 /* performance monitor interrupt */
94
95 /* Exceptions for linux-user emulation. */
96 #define EXCP_SYSCALL 30
97 #define EXCP_SYSCALL_LWS 31
98
99 /* Emulated hardware TOC button */
100 #define EXCP_TOC 32 /* TOC = Transfer of control (NMI) */
101
102 #define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_3 /* TOC */
103
104 /* Taken from Linux kernel: arch/parisc/include/asm/psw.h */
105 #define PSW_I 0x00000001
106 #define PSW_D 0x00000002
107 #define PSW_P 0x00000004
108 #define PSW_Q 0x00000008
109 #define PSW_R 0x00000010
110 #define PSW_F 0x00000020
111 #define PSW_G 0x00000040 /* PA1.x only */
112 #define PSW_O 0x00000080 /* PA2.0 only */
113 #define PSW_CB 0x0000ff00
114 #define PSW_M 0x00010000
115 #define PSW_V 0x00020000
116 #define PSW_C 0x00040000
117 #define PSW_B 0x00080000
118 #define PSW_X 0x00100000
119 #define PSW_N 0x00200000
120 #define PSW_L 0x00400000
121 #define PSW_H 0x00800000
122 #define PSW_T 0x01000000
123 #define PSW_S 0x02000000
124 #define PSW_E 0x04000000
125 #define PSW_W 0x08000000 /* PA2.0 only */
126 #define PSW_Z 0x40000000 /* PA1.x only */
127 #define PSW_Y 0x80000000 /* PA1.x only */
128
129 #define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \
130 | PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I)
131
132 /* ssm/rsm instructions number PSW_W and PSW_E differently */
133 #define PSW_SM_I PSW_I /* Enable External Interrupts */
134 #define PSW_SM_D PSW_D
135 #define PSW_SM_P PSW_P
136 #define PSW_SM_Q PSW_Q /* Enable Interrupt State Collection */
137 #define PSW_SM_R PSW_R /* Enable Recover Counter Trap */
138 #define PSW_SM_E 0x100
139 #define PSW_SM_W 0x200 /* PA2.0 only : Enable Wide Mode */
140
141 #define CR_RC 0
142 #define CR_PSW_DEFAULT 6 /* see SeaBIOS PDC_PSW firmware call */
143 #define PDC_PSW_WIDE_BIT 2
144 #define CR_PID1 8
145 #define CR_PID2 9
146 #define CR_PID3 12
147 #define CR_PID4 13
148 #define CR_SCRCCR 10
149 #define CR_SAR 11
150 #define CR_IVA 14
151 #define CR_EIEM 15
152 #define CR_IT 16
153 #define CR_IIASQ 17
154 #define CR_IIAOQ 18
155 #define CR_IIR 19
156 #define CR_ISR 20
157 #define CR_IOR 21
158 #define CR_IPSW 22
159 #define CR_EIRR 23
160
161 typedef struct HPPATLBEntry {
162 union {
163 IntervalTreeNode itree;
164 struct HPPATLBEntry *unused_next;
165 };
166
167 target_ulong pa;
168
169 unsigned entry_valid : 1;
170
171 unsigned u : 1;
172 unsigned t : 1;
173 unsigned d : 1;
174 unsigned b : 1;
175 unsigned ar_type : 3;
176 unsigned ar_pl1 : 2;
177 unsigned ar_pl2 : 2;
178 unsigned access_id : 16;
179 } HPPATLBEntry;
180
181 typedef struct CPUArchState {
182 target_ulong iaoq_f; /* front */
183 target_ulong iaoq_b; /* back, aka next instruction */
184
185 target_ulong gr[32];
186 uint64_t fr[32];
187 uint64_t sr[8]; /* stored shifted into place for gva */
188
189 target_ulong psw; /* All psw bits except the following: */
190 target_ulong psw_n; /* boolean */
191 target_long psw_v; /* in most significant bit */
192
193 /* Splitting the carry-borrow field into the MSB and "the rest", allows
194 * for "the rest" to be deleted when it is unused, but the MSB is in use.
195 * In addition, it's easier to compute carry-in for bit B+1 than it is to
196 * compute carry-out for bit B (3 vs 4 insns for addition, assuming the
197 * host has the appropriate add-with-carry insn to compute the msb).
198 * Therefore the carry bits are stored as: cb_msb : cb & 0x11111110.
199 */
200 target_ulong psw_cb; /* in least significant bit of next nibble */
201 target_ulong psw_cb_msb; /* boolean */
202
203 uint64_t iasq_f;
204 uint64_t iasq_b;
205
206 uint32_t fr0_shadow; /* flags, c, ca/cq, rm, d, enables */
207 float_status fp_status;
208
209 target_ulong cr[32]; /* control registers */
210 target_ulong cr_back[2]; /* back of cr17/cr18 */
211 target_ulong shadow[7]; /* shadow registers */
212
213 /*
214 * During unwind of a memory insn, the base register of the address.
215 * This is used to construct CR_IOR for pa2.0.
216 */
217 uint32_t unwind_breg;
218
219 /*
220 * ??? The number of entries isn't specified by the architecture.
221 * BTLBs are not supported in 64-bit machines.
222 */
223 #define PA10_BTLB_FIXED 16
224 #define PA10_BTLB_VARIABLE 0
225 #define HPPA_TLB_ENTRIES 256
226
227 /* Index for round-robin tlb eviction. */
228 uint32_t tlb_last;
229
230 /*
231 * For pa1.x, the partial initialized, still invalid tlb entry
232 * which has had ITLBA performed, but not yet ITLBP.
233 */
234 HPPATLBEntry *tlb_partial;
235
236 /* Linked list of all invalid (unused) tlb entries. */
237 HPPATLBEntry *tlb_unused;
238
239 /* Root of the search tree for all valid tlb entries. */
240 IntervalTreeRoot tlb_root;
241
242 HPPATLBEntry tlb[HPPA_TLB_ENTRIES];
243 } CPUHPPAState;
244
245 /**
246 * HPPACPU:
247 * @env: #CPUHPPAState
248 *
249 * An HPPA CPU.
250 */
251 struct ArchCPU {
252 CPUState parent_obj;
253
254 CPUHPPAState env;
255 QEMUTimer *alarm_timer;
256 };
257
258 /**
259 * HPPACPUClass:
260 * @parent_realize: The parent class' realize handler.
261 * @parent_reset: The parent class' reset handler.
262 *
263 * An HPPA CPU model.
264 */
265 struct HPPACPUClass {
266 CPUClass parent_class;
267
268 DeviceRealize parent_realize;
269 DeviceReset parent_reset;
270 };
271
272 #include "exec/cpu-all.h"
273
274 static inline bool hppa_is_pa20(CPUHPPAState *env)
275 {
276 return object_dynamic_cast(OBJECT(env_cpu(env)), TYPE_HPPA64_CPU) != NULL;
277 }
278
279 static inline int HPPA_BTLB_ENTRIES(CPUHPPAState *env)
280 {
281 return hppa_is_pa20(env) ? 0 : PA10_BTLB_FIXED + PA10_BTLB_VARIABLE;
282 }
283
284 static inline int cpu_mmu_index(CPUHPPAState *env, bool ifetch)
285 {
286 #ifdef CONFIG_USER_ONLY
287 return MMU_USER_IDX;
288 #else
289 if (env->psw & (ifetch ? PSW_C : PSW_D)) {
290 return PRIV_P_TO_MMU_IDX(env->iaoq_f & 3, env->psw & PSW_P);
291 }
292 /* mmu disabled */
293 return env->psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX;
294 #endif
295 }
296
297 void hppa_translate_init(void);
298
299 #define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
300
301 static inline target_ulong hppa_form_gva_psw(target_ulong psw, uint64_t spc,
302 target_ulong off)
303 {
304 #ifdef CONFIG_USER_ONLY
305 return off;
306 #else
307 off &= psw & PSW_W ? MAKE_64BIT_MASK(0, 62) : MAKE_64BIT_MASK(0, 32);
308 return spc | off;
309 #endif
310 }
311
312 static inline target_ulong hppa_form_gva(CPUHPPAState *env, uint64_t spc,
313 target_ulong off)
314 {
315 return hppa_form_gva_psw(env->psw, spc, off);
316 }
317
318 hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr);
319 hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr);
320
321 /*
322 * Since PSW_{I,CB} will never need to be in tb->flags, reuse them.
323 * TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the
324 * same value.
325 */
326 #define TB_FLAG_SR_SAME PSW_I
327 #define TB_FLAG_PRIV_SHIFT 8
328 #define TB_FLAG_UNALIGN 0x400
329
330 static inline void cpu_get_tb_cpu_state(CPUHPPAState *env, vaddr *pc,
331 uint64_t *cs_base, uint32_t *pflags)
332 {
333 uint32_t flags = env->psw_n * PSW_N;
334
335 /* TB lookup assumes that PC contains the complete virtual address.
336 If we leave space+offset separate, we'll get ITLB misses to an
337 incomplete virtual address. This also means that we must separate
338 out current cpu privilege from the low bits of IAOQ_F. */
339 #ifdef CONFIG_USER_ONLY
340 *pc = env->iaoq_f & -4;
341 *cs_base = env->iaoq_b & -4;
342 flags |= TB_FLAG_UNALIGN * !env_cpu(env)->prctl_unalign_sigbus;
343 #else
344 /* ??? E, T, H, L, B bits need to be here, when implemented. */
345 flags |= env->psw & (PSW_W | PSW_C | PSW_D | PSW_P);
346 flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT;
347
348 *pc = hppa_form_gva_psw(env->psw, (env->psw & PSW_C ? env->iasq_f : 0),
349 env->iaoq_f & -4);
350 *cs_base = env->iasq_f;
351
352 /* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero
353 low 32-bits of CS_BASE. This will succeed for all direct branches,
354 which is the primary case we care about -- using goto_tb within a page.
355 Failure is indicated by a zero difference. */
356 if (env->iasq_f == env->iasq_b) {
357 target_long diff = env->iaoq_b - env->iaoq_f;
358 if (diff == (int32_t)diff) {
359 *cs_base |= (uint32_t)diff;
360 }
361 }
362 if ((env->sr[4] == env->sr[5])
363 & (env->sr[4] == env->sr[6])
364 & (env->sr[4] == env->sr[7])) {
365 flags |= TB_FLAG_SR_SAME;
366 }
367 #endif
368
369 *pflags = flags;
370 }
371
372 target_ulong cpu_hppa_get_psw(CPUHPPAState *env);
373 void cpu_hppa_put_psw(CPUHPPAState *env, target_ulong);
374 void cpu_hppa_loaded_fr0(CPUHPPAState *env);
375
376 #ifdef CONFIG_USER_ONLY
377 static inline void cpu_hppa_change_prot_id(CPUHPPAState *env) { }
378 #else
379 void cpu_hppa_change_prot_id(CPUHPPAState *env);
380 #endif
381
382 int hppa_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
383 int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
384 void hppa_cpu_dump_state(CPUState *cs, FILE *f, int);
385 #ifndef CONFIG_USER_ONLY
386 void hppa_ptlbe(CPUHPPAState *env);
387 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr);
388 bool hppa_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
389 MMUAccessType access_type, int mmu_idx,
390 bool probe, uintptr_t retaddr);
391 void hppa_cpu_do_interrupt(CPUState *cpu);
392 bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req);
393 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
394 int type, hwaddr *pphys, int *pprot,
395 HPPATLBEntry **tlb_entry);
396 extern const MemoryRegionOps hppa_io_eir_ops;
397 extern const VMStateDescription vmstate_hppa_cpu;
398 void hppa_cpu_alarm_timer(void *);
399 int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr);
400 #endif
401 G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra);
402
403 #define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
404
405 #define cpu_list hppa_cpu_list
406 void hppa_cpu_list(void);
407
408 #endif /* HPPA_CPU_H */