]> git.proxmox.com Git - mirror_qemu.git/blob - target/hppa/cpu.h
target/hppa: Introduce TYPE_HPPA64_CPU
[mirror_qemu.git] / target / hppa / cpu.h
1 /*
2 * PA-RISC emulation cpu definitions for qemu.
3 *
4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef HPPA_CPU_H
21 #define HPPA_CPU_H
22
23 #include "cpu-qom.h"
24 #include "exec/cpu-defs.h"
25 #include "qemu/cpu-float.h"
26 #include "qemu/interval-tree.h"
27
28 /* PA-RISC 1.x processors have a strong memory model. */
29 /* ??? While we do not yet implement PA-RISC 2.0, those processors have
30 a weak memory model, but with TLB bits that force ordering on a per-page
31 basis. It's probably easier to fall back to a strong memory model. */
32 #define TCG_GUEST_DEFAULT_MO TCG_MO_ALL
33
34 #define MMU_KERNEL_IDX 7
35 #define MMU_KERNEL_P_IDX 8
36 #define MMU_PL1_IDX 9
37 #define MMU_PL1_P_IDX 10
38 #define MMU_PL2_IDX 11
39 #define MMU_PL2_P_IDX 12
40 #define MMU_USER_IDX 13
41 #define MMU_USER_P_IDX 14
42 #define MMU_PHYS_IDX 15
43
44 #define MMU_IDX_TO_PRIV(MIDX) (((MIDX) - MMU_KERNEL_IDX) / 2)
45 #define MMU_IDX_TO_P(MIDX) (((MIDX) - MMU_KERNEL_IDX) & 1)
46 #define PRIV_P_TO_MMU_IDX(PRIV, P) ((PRIV) * 2 + !!(P) + MMU_KERNEL_IDX)
47
48 #define TARGET_INSN_START_EXTRA_WORDS 1
49
50 /* No need to flush MMU_PHYS_IDX */
51 #define HPPA_MMU_FLUSH_MASK \
52 (1 << MMU_KERNEL_IDX | 1 << MMU_KERNEL_P_IDX | \
53 1 << MMU_PL1_IDX | 1 << MMU_PL1_P_IDX | \
54 1 << MMU_PL2_IDX | 1 << MMU_PL2_P_IDX | \
55 1 << MMU_USER_IDX | 1 << MMU_USER_P_IDX)
56
57 /* Indicies to flush for access_id changes. */
58 #define HPPA_MMU_FLUSH_P_MASK \
59 (1 << MMU_KERNEL_P_IDX | 1 << MMU_PL1_P_IDX | \
60 1 << MMU_PL2_P_IDX | 1 << MMU_USER_P_IDX)
61
62 /* Hardware exceptions, interrupts, faults, and traps. */
63 #define EXCP_HPMC 1 /* high priority machine check */
64 #define EXCP_POWER_FAIL 2
65 #define EXCP_RC 3 /* recovery counter */
66 #define EXCP_EXT_INTERRUPT 4 /* external interrupt */
67 #define EXCP_LPMC 5 /* low priority machine check */
68 #define EXCP_ITLB_MISS 6 /* itlb miss / instruction page fault */
69 #define EXCP_IMP 7 /* instruction memory protection trap */
70 #define EXCP_ILL 8 /* illegal instruction trap */
71 #define EXCP_BREAK 9 /* break instruction */
72 #define EXCP_PRIV_OPR 10 /* privileged operation trap */
73 #define EXCP_PRIV_REG 11 /* privileged register trap */
74 #define EXCP_OVERFLOW 12 /* signed overflow trap */
75 #define EXCP_COND 13 /* trap-on-condition */
76 #define EXCP_ASSIST 14 /* assist exception trap */
77 #define EXCP_DTLB_MISS 15 /* dtlb miss / data page fault */
78 #define EXCP_NA_ITLB_MISS 16 /* non-access itlb miss */
79 #define EXCP_NA_DTLB_MISS 17 /* non-access dtlb miss */
80 #define EXCP_DMP 18 /* data memory protection trap */
81 #define EXCP_DMB 19 /* data memory break trap */
82 #define EXCP_TLB_DIRTY 20 /* tlb dirty bit trap */
83 #define EXCP_PAGE_REF 21 /* page reference trap */
84 #define EXCP_ASSIST_EMU 22 /* assist emulation trap */
85 #define EXCP_HPT 23 /* high-privilege transfer trap */
86 #define EXCP_LPT 24 /* low-privilege transfer trap */
87 #define EXCP_TB 25 /* taken branch trap */
88 #define EXCP_DMAR 26 /* data memory access rights trap */
89 #define EXCP_DMPI 27 /* data memory protection id trap */
90 #define EXCP_UNALIGN 28 /* unaligned data reference trap */
91 #define EXCP_PER_INTERRUPT 29 /* performance monitor interrupt */
92
93 /* Exceptions for linux-user emulation. */
94 #define EXCP_SYSCALL 30
95 #define EXCP_SYSCALL_LWS 31
96
97 /* Emulated hardware TOC button */
98 #define EXCP_TOC 32 /* TOC = Transfer of control (NMI) */
99
100 #define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_3 /* TOC */
101
102 /* Taken from Linux kernel: arch/parisc/include/asm/psw.h */
103 #define PSW_I 0x00000001
104 #define PSW_D 0x00000002
105 #define PSW_P 0x00000004
106 #define PSW_Q 0x00000008
107 #define PSW_R 0x00000010
108 #define PSW_F 0x00000020
109 #define PSW_G 0x00000040 /* PA1.x only */
110 #define PSW_O 0x00000080 /* PA2.0 only */
111 #define PSW_CB 0x0000ff00
112 #define PSW_M 0x00010000
113 #define PSW_V 0x00020000
114 #define PSW_C 0x00040000
115 #define PSW_B 0x00080000
116 #define PSW_X 0x00100000
117 #define PSW_N 0x00200000
118 #define PSW_L 0x00400000
119 #define PSW_H 0x00800000
120 #define PSW_T 0x01000000
121 #define PSW_S 0x02000000
122 #define PSW_E 0x04000000
123 #ifdef TARGET_HPPA64
124 #define PSW_W 0x08000000 /* PA2.0 only */
125 #else
126 #define PSW_W 0
127 #endif
128 #define PSW_Z 0x40000000 /* PA1.x only */
129 #define PSW_Y 0x80000000 /* PA1.x only */
130
131 #define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \
132 | PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I)
133
134 /* ssm/rsm instructions number PSW_W and PSW_E differently */
135 #define PSW_SM_I PSW_I /* Enable External Interrupts */
136 #define PSW_SM_D PSW_D
137 #define PSW_SM_P PSW_P
138 #define PSW_SM_Q PSW_Q /* Enable Interrupt State Collection */
139 #define PSW_SM_R PSW_R /* Enable Recover Counter Trap */
140 #ifdef TARGET_HPPA64
141 #define PSW_SM_E 0x100
142 #define PSW_SM_W 0x200 /* PA2.0 only : Enable Wide Mode */
143 #else
144 #define PSW_SM_E 0
145 #define PSW_SM_W 0
146 #endif
147
148 #define CR_RC 0
149 #define CR_PID1 8
150 #define CR_PID2 9
151 #define CR_PID3 12
152 #define CR_PID4 13
153 #define CR_SCRCCR 10
154 #define CR_SAR 11
155 #define CR_IVA 14
156 #define CR_EIEM 15
157 #define CR_IT 16
158 #define CR_IIASQ 17
159 #define CR_IIAOQ 18
160 #define CR_IIR 19
161 #define CR_ISR 20
162 #define CR_IOR 21
163 #define CR_IPSW 22
164 #define CR_EIRR 23
165
166 #if TARGET_REGISTER_BITS == 32
167 typedef uint32_t target_ureg;
168 typedef int32_t target_sreg;
169 #define TREG_FMT_lx "%08"PRIx32
170 #define TREG_FMT_ld "%"PRId32
171 #else
172 typedef uint64_t target_ureg;
173 typedef int64_t target_sreg;
174 #define TREG_FMT_lx "%016"PRIx64
175 #define TREG_FMT_ld "%"PRId64
176 #endif
177
178 typedef struct HPPATLBEntry {
179 union {
180 IntervalTreeNode itree;
181 struct HPPATLBEntry *unused_next;
182 };
183
184 target_ureg pa;
185
186 unsigned entry_valid : 1;
187
188 unsigned u : 1;
189 unsigned t : 1;
190 unsigned d : 1;
191 unsigned b : 1;
192 unsigned ar_type : 3;
193 unsigned ar_pl1 : 2;
194 unsigned ar_pl2 : 2;
195 unsigned access_id : 16;
196 } HPPATLBEntry;
197
198 typedef struct CPUArchState {
199 target_ureg iaoq_f; /* front */
200 target_ureg iaoq_b; /* back, aka next instruction */
201
202 target_ureg gr[32];
203 uint64_t fr[32];
204 uint64_t sr[8]; /* stored shifted into place for gva */
205
206 target_ureg psw; /* All psw bits except the following: */
207 target_ureg psw_n; /* boolean */
208 target_sreg psw_v; /* in most significant bit */
209
210 /* Splitting the carry-borrow field into the MSB and "the rest", allows
211 * for "the rest" to be deleted when it is unused, but the MSB is in use.
212 * In addition, it's easier to compute carry-in for bit B+1 than it is to
213 * compute carry-out for bit B (3 vs 4 insns for addition, assuming the
214 * host has the appropriate add-with-carry insn to compute the msb).
215 * Therefore the carry bits are stored as: cb_msb : cb & 0x11111110.
216 */
217 target_ureg psw_cb; /* in least significant bit of next nibble */
218 target_ureg psw_cb_msb; /* boolean */
219
220 uint64_t iasq_f;
221 uint64_t iasq_b;
222
223 uint32_t fr0_shadow; /* flags, c, ca/cq, rm, d, enables */
224 float_status fp_status;
225
226 target_ureg cr[32]; /* control registers */
227 target_ureg cr_back[2]; /* back of cr17/cr18 */
228 target_ureg shadow[7]; /* shadow registers */
229
230 /* ??? The number of entries isn't specified by the architecture. */
231 #ifdef TARGET_HPPA64
232 #define HPPA_BTLB_FIXED 0 /* BTLBs are not supported in 64-bit machines */
233 #else
234 #define HPPA_BTLB_FIXED 16
235 #endif
236 #define HPPA_BTLB_VARIABLE 0
237 #define HPPA_TLB_ENTRIES 256
238 #define HPPA_BTLB_ENTRIES (HPPA_BTLB_FIXED + HPPA_BTLB_VARIABLE)
239
240 /* Index for round-robin tlb eviction. */
241 uint32_t tlb_last;
242
243 /*
244 * For pa1.x, the partial initialized, still invalid tlb entry
245 * which has had ITLBA performed, but not yet ITLBP.
246 */
247 HPPATLBEntry *tlb_partial;
248
249 /* Linked list of all invalid (unused) tlb entries. */
250 HPPATLBEntry *tlb_unused;
251
252 /* Root of the search tree for all valid tlb entries. */
253 IntervalTreeRoot tlb_root;
254
255 HPPATLBEntry tlb[HPPA_TLB_ENTRIES];
256 } CPUHPPAState;
257
258 /**
259 * HPPACPU:
260 * @env: #CPUHPPAState
261 *
262 * An HPPA CPU.
263 */
264 struct ArchCPU {
265 /*< private >*/
266 CPUState parent_obj;
267 /*< public >*/
268
269 CPUHPPAState env;
270 QEMUTimer *alarm_timer;
271 };
272
273 #include "exec/cpu-all.h"
274
275 static inline bool hppa_is_pa20(CPUHPPAState *env)
276 {
277 return object_dynamic_cast(OBJECT(env_cpu(env)), TYPE_HPPA64_CPU) != NULL;
278 }
279
280 static inline int cpu_mmu_index(CPUHPPAState *env, bool ifetch)
281 {
282 #ifdef CONFIG_USER_ONLY
283 return MMU_USER_IDX;
284 #else
285 if (env->psw & (ifetch ? PSW_C : PSW_D)) {
286 return PRIV_P_TO_MMU_IDX(env->iaoq_f & 3, env->psw & PSW_P);
287 }
288 return MMU_PHYS_IDX; /* mmu disabled */
289 #endif
290 }
291
292 void hppa_translate_init(void);
293
294 #define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
295
296 static inline target_ulong hppa_form_gva_psw(target_ureg psw, uint64_t spc,
297 target_ureg off)
298 {
299 #ifdef CONFIG_USER_ONLY
300 return off;
301 #else
302 off &= (psw & PSW_W ? 0x3fffffffffffffffull : 0xffffffffull);
303 return spc | off;
304 #endif
305 }
306
307 static inline target_ulong hppa_form_gva(CPUHPPAState *env, uint64_t spc,
308 target_ureg off)
309 {
310 return hppa_form_gva_psw(env->psw, spc, off);
311 }
312
313 /*
314 * Since PSW_{I,CB} will never need to be in tb->flags, reuse them.
315 * TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the
316 * same value.
317 */
318 #define TB_FLAG_SR_SAME PSW_I
319 #define TB_FLAG_PRIV_SHIFT 8
320 #define TB_FLAG_UNALIGN 0x400
321
322 static inline void cpu_get_tb_cpu_state(CPUHPPAState *env, vaddr *pc,
323 uint64_t *cs_base, uint32_t *pflags)
324 {
325 uint32_t flags = env->psw_n * PSW_N;
326
327 /* TB lookup assumes that PC contains the complete virtual address.
328 If we leave space+offset separate, we'll get ITLB misses to an
329 incomplete virtual address. This also means that we must separate
330 out current cpu privilege from the low bits of IAOQ_F. */
331 #ifdef CONFIG_USER_ONLY
332 *pc = env->iaoq_f & -4;
333 *cs_base = env->iaoq_b & -4;
334 flags |= TB_FLAG_UNALIGN * !env_cpu(env)->prctl_unalign_sigbus;
335 #else
336 /* ??? E, T, H, L, B bits need to be here, when implemented. */
337 flags |= env->psw & (PSW_W | PSW_C | PSW_D | PSW_P);
338 flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT;
339
340 *pc = (env->psw & PSW_C
341 ? hppa_form_gva_psw(env->psw, env->iasq_f, env->iaoq_f & -4)
342 : env->iaoq_f & -4);
343 *cs_base = env->iasq_f;
344
345 /* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero
346 low 32-bits of CS_BASE. This will succeed for all direct branches,
347 which is the primary case we care about -- using goto_tb within a page.
348 Failure is indicated by a zero difference. */
349 if (env->iasq_f == env->iasq_b) {
350 target_sreg diff = env->iaoq_b - env->iaoq_f;
351 if (TARGET_REGISTER_BITS == 32 || diff == (int32_t)diff) {
352 *cs_base |= (uint32_t)diff;
353 }
354 }
355 if ((env->sr[4] == env->sr[5])
356 & (env->sr[4] == env->sr[6])
357 & (env->sr[4] == env->sr[7])) {
358 flags |= TB_FLAG_SR_SAME;
359 }
360 #endif
361
362 *pflags = flags;
363 }
364
365 target_ureg cpu_hppa_get_psw(CPUHPPAState *env);
366 void cpu_hppa_put_psw(CPUHPPAState *env, target_ureg);
367 void cpu_hppa_loaded_fr0(CPUHPPAState *env);
368
369 #ifdef CONFIG_USER_ONLY
370 static inline void cpu_hppa_change_prot_id(CPUHPPAState *env) { }
371 #else
372 void cpu_hppa_change_prot_id(CPUHPPAState *env);
373 #endif
374
375 int hppa_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
376 int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
377 void hppa_cpu_dump_state(CPUState *cs, FILE *f, int);
378 #ifndef CONFIG_USER_ONLY
379 void hppa_ptlbe(CPUHPPAState *env);
380 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr);
381 bool hppa_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
382 MMUAccessType access_type, int mmu_idx,
383 bool probe, uintptr_t retaddr);
384 void hppa_cpu_do_interrupt(CPUState *cpu);
385 bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req);
386 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
387 int type, hwaddr *pphys, int *pprot,
388 HPPATLBEntry **tlb_entry);
389 extern const MemoryRegionOps hppa_io_eir_ops;
390 extern const VMStateDescription vmstate_hppa_cpu;
391 void hppa_cpu_alarm_timer(void *);
392 int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr);
393 #endif
394 G_NORETURN void hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra);
395
396 #endif /* HPPA_CPU_H */