]> git.proxmox.com Git - mirror_qemu.git/blob - target/hppa/op_helper.c
Merge remote-tracking branch 'remotes/palmer/tags/riscv-for-master-4.0-sf1' into...
[mirror_qemu.git] / target / hppa / op_helper.c
1 /*
2 * Helpers for HPPA instructions.
3 *
4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "exec/cpu_ldst.h"
25 #include "sysemu/sysemu.h"
26 #include "qemu/timer.h"
27 #include "fpu/softfloat.h"
28
29 void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp)
30 {
31 HPPACPU *cpu = hppa_env_get_cpu(env);
32 CPUState *cs = CPU(cpu);
33
34 cs->exception_index = excp;
35 cpu_loop_exit(cs);
36 }
37
38 void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
39 {
40 HPPACPU *cpu = hppa_env_get_cpu(env);
41 CPUState *cs = CPU(cpu);
42
43 cs->exception_index = excp;
44 cpu_loop_exit_restore(cs, ra);
45 }
46
47 void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
48 {
49 if (unlikely((target_sreg)cond < 0)) {
50 hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
51 }
52 }
53
54 void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
55 {
56 if (unlikely(cond)) {
57 hppa_dynamic_excp(env, EXCP_COND, GETPC());
58 }
59 }
60
61 static void atomic_store_3(CPUHPPAState *env, target_ulong addr, uint32_t val,
62 uint32_t mask, uintptr_t ra)
63 {
64 #ifdef CONFIG_USER_ONLY
65 uint32_t old, new, cmp;
66
67 uint32_t *haddr = g2h(addr - 1);
68 old = *haddr;
69 while (1) {
70 new = (old & ~mask) | (val & mask);
71 cmp = atomic_cmpxchg(haddr, old, new);
72 if (cmp == old) {
73 return;
74 }
75 old = cmp;
76 }
77 #else
78 /* FIXME -- we can do better. */
79 cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
80 #endif
81 }
82
83 static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
84 bool parallel, uintptr_t ra)
85 {
86 switch (addr & 3) {
87 case 3:
88 cpu_stb_data_ra(env, addr, val, ra);
89 break;
90 case 2:
91 cpu_stw_data_ra(env, addr, val, ra);
92 break;
93 case 1:
94 /* The 3 byte store must appear atomic. */
95 if (parallel) {
96 atomic_store_3(env, addr, val, 0x00ffffffu, ra);
97 } else {
98 cpu_stb_data_ra(env, addr, val >> 16, ra);
99 cpu_stw_data_ra(env, addr + 1, val, ra);
100 }
101 break;
102 default:
103 cpu_stl_data_ra(env, addr, val, ra);
104 break;
105 }
106 }
107
108 void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
109 {
110 do_stby_b(env, addr, val, false, GETPC());
111 }
112
113 void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
114 target_ureg val)
115 {
116 do_stby_b(env, addr, val, true, GETPC());
117 }
118
119 static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
120 bool parallel, uintptr_t ra)
121 {
122 switch (addr & 3) {
123 case 3:
124 /* The 3 byte store must appear atomic. */
125 if (parallel) {
126 atomic_store_3(env, addr - 3, val, 0xffffff00u, ra);
127 } else {
128 cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
129 cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
130 }
131 break;
132 case 2:
133 cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
134 break;
135 case 1:
136 cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
137 break;
138 default:
139 /* Nothing is stored, but protection is checked and the
140 cacheline is marked dirty. */
141 #ifndef CONFIG_USER_ONLY
142 probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
143 #endif
144 break;
145 }
146 }
147
148 void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
149 {
150 do_stby_e(env, addr, val, false, GETPC());
151 }
152
153 void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
154 target_ureg val)
155 {
156 do_stby_e(env, addr, val, true, GETPC());
157 }
158
159 target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
160 uint32_t level, uint32_t want)
161 {
162 #ifdef CONFIG_USER_ONLY
163 return page_check_range(addr, 1, want);
164 #else
165 int prot, excp;
166 hwaddr phys;
167
168 /* Fail if the requested privilege level is higher than current. */
169 if (level < (env->iaoq_f & 3)) {
170 return 0;
171 }
172
173 excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot);
174 if (excp >= 0) {
175 if (env->psw & PSW_Q) {
176 /* ??? Needs tweaking for hppa64. */
177 env->cr[CR_IOR] = addr;
178 env->cr[CR_ISR] = addr >> 32;
179 }
180 if (excp == EXCP_DTLB_MISS) {
181 excp = EXCP_NA_DTLB_MISS;
182 }
183 hppa_dynamic_excp(env, excp, GETPC());
184 }
185 return (want & prot) != 0;
186 #endif
187 }
188
189 void HELPER(loaded_fr0)(CPUHPPAState *env)
190 {
191 uint32_t shadow = env->fr[0] >> 32;
192 int rm, d;
193
194 env->fr0_shadow = shadow;
195
196 switch (extract32(shadow, 9, 2)) {
197 default:
198 rm = float_round_nearest_even;
199 break;
200 case 1:
201 rm = float_round_to_zero;
202 break;
203 case 2:
204 rm = float_round_up;
205 break;
206 case 3:
207 rm = float_round_down;
208 break;
209 }
210 set_float_rounding_mode(rm, &env->fp_status);
211
212 d = extract32(shadow, 5, 1);
213 set_flush_to_zero(d, &env->fp_status);
214 set_flush_inputs_to_zero(d, &env->fp_status);
215 }
216
217 void cpu_hppa_loaded_fr0(CPUHPPAState *env)
218 {
219 helper_loaded_fr0(env);
220 }
221
222 #define CONVERT_BIT(X, SRC, DST) \
223 ((SRC) > (DST) \
224 ? (X) / ((SRC) / (DST)) & (DST) \
225 : ((X) & (SRC)) * ((DST) / (SRC)))
226
227 static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
228 {
229 uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
230 uint32_t hard_exp = 0;
231 uint32_t shadow = env->fr0_shadow;
232
233 if (likely(soft_exp == 0)) {
234 env->fr[0] = (uint64_t)shadow << 32;
235 return;
236 }
237 set_float_exception_flags(0, &env->fp_status);
238
239 hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact, 1u << 0);
240 hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
241 hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow, 1u << 2);
242 hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
243 hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid, 1u << 4);
244 shadow |= hard_exp << (32 - 5);
245 env->fr0_shadow = shadow;
246 env->fr[0] = (uint64_t)shadow << 32;
247
248 if (hard_exp & shadow) {
249 hppa_dynamic_excp(env, EXCP_ASSIST, ra);
250 }
251 }
252
253 float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
254 {
255 float32 ret = float32_sqrt(arg, &env->fp_status);
256 update_fr0_op(env, GETPC());
257 return ret;
258 }
259
260 float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
261 {
262 float32 ret = float32_round_to_int(arg, &env->fp_status);
263 update_fr0_op(env, GETPC());
264 return ret;
265 }
266
267 float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
268 {
269 float32 ret = float32_add(a, b, &env->fp_status);
270 update_fr0_op(env, GETPC());
271 return ret;
272 }
273
274 float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
275 {
276 float32 ret = float32_sub(a, b, &env->fp_status);
277 update_fr0_op(env, GETPC());
278 return ret;
279 }
280
281 float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
282 {
283 float32 ret = float32_mul(a, b, &env->fp_status);
284 update_fr0_op(env, GETPC());
285 return ret;
286 }
287
288 float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
289 {
290 float32 ret = float32_div(a, b, &env->fp_status);
291 update_fr0_op(env, GETPC());
292 return ret;
293 }
294
295 float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
296 {
297 float64 ret = float64_sqrt(arg, &env->fp_status);
298 update_fr0_op(env, GETPC());
299 return ret;
300 }
301
302 float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
303 {
304 float64 ret = float64_round_to_int(arg, &env->fp_status);
305 update_fr0_op(env, GETPC());
306 return ret;
307 }
308
309 float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
310 {
311 float64 ret = float64_add(a, b, &env->fp_status);
312 update_fr0_op(env, GETPC());
313 return ret;
314 }
315
316 float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
317 {
318 float64 ret = float64_sub(a, b, &env->fp_status);
319 update_fr0_op(env, GETPC());
320 return ret;
321 }
322
323 float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
324 {
325 float64 ret = float64_mul(a, b, &env->fp_status);
326 update_fr0_op(env, GETPC());
327 return ret;
328 }
329
330 float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
331 {
332 float64 ret = float64_div(a, b, &env->fp_status);
333 update_fr0_op(env, GETPC());
334 return ret;
335 }
336
337 float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
338 {
339 float64 ret = float32_to_float64(arg, &env->fp_status);
340 update_fr0_op(env, GETPC());
341 return ret;
342 }
343
344 float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
345 {
346 float32 ret = float64_to_float32(arg, &env->fp_status);
347 update_fr0_op(env, GETPC());
348 return ret;
349 }
350
351 float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
352 {
353 float32 ret = int32_to_float32(arg, &env->fp_status);
354 update_fr0_op(env, GETPC());
355 return ret;
356 }
357
358 float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
359 {
360 float32 ret = int64_to_float32(arg, &env->fp_status);
361 update_fr0_op(env, GETPC());
362 return ret;
363 }
364
365 float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
366 {
367 float64 ret = int32_to_float64(arg, &env->fp_status);
368 update_fr0_op(env, GETPC());
369 return ret;
370 }
371
372 float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
373 {
374 float64 ret = int64_to_float64(arg, &env->fp_status);
375 update_fr0_op(env, GETPC());
376 return ret;
377 }
378
379 int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
380 {
381 int32_t ret = float32_to_int32(arg, &env->fp_status);
382 update_fr0_op(env, GETPC());
383 return ret;
384 }
385
386 int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
387 {
388 int32_t ret = float64_to_int32(arg, &env->fp_status);
389 update_fr0_op(env, GETPC());
390 return ret;
391 }
392
393 int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
394 {
395 int64_t ret = float32_to_int64(arg, &env->fp_status);
396 update_fr0_op(env, GETPC());
397 return ret;
398 }
399
400 int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
401 {
402 int64_t ret = float64_to_int64(arg, &env->fp_status);
403 update_fr0_op(env, GETPC());
404 return ret;
405 }
406
407 int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
408 {
409 int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
410 update_fr0_op(env, GETPC());
411 return ret;
412 }
413
414 int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
415 {
416 int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
417 update_fr0_op(env, GETPC());
418 return ret;
419 }
420
421 int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
422 {
423 int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
424 update_fr0_op(env, GETPC());
425 return ret;
426 }
427
428 int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
429 {
430 int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
431 update_fr0_op(env, GETPC());
432 return ret;
433 }
434
435 float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
436 {
437 float32 ret = uint32_to_float32(arg, &env->fp_status);
438 update_fr0_op(env, GETPC());
439 return ret;
440 }
441
442 float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
443 {
444 float32 ret = uint64_to_float32(arg, &env->fp_status);
445 update_fr0_op(env, GETPC());
446 return ret;
447 }
448
449 float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
450 {
451 float64 ret = uint32_to_float64(arg, &env->fp_status);
452 update_fr0_op(env, GETPC());
453 return ret;
454 }
455
456 float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
457 {
458 float64 ret = uint64_to_float64(arg, &env->fp_status);
459 update_fr0_op(env, GETPC());
460 return ret;
461 }
462
463 uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
464 {
465 uint32_t ret = float32_to_uint32(arg, &env->fp_status);
466 update_fr0_op(env, GETPC());
467 return ret;
468 }
469
470 uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
471 {
472 uint32_t ret = float64_to_uint32(arg, &env->fp_status);
473 update_fr0_op(env, GETPC());
474 return ret;
475 }
476
477 uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
478 {
479 uint64_t ret = float32_to_uint64(arg, &env->fp_status);
480 update_fr0_op(env, GETPC());
481 return ret;
482 }
483
484 uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
485 {
486 uint64_t ret = float64_to_uint64(arg, &env->fp_status);
487 update_fr0_op(env, GETPC());
488 return ret;
489 }
490
491 uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
492 {
493 uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
494 update_fr0_op(env, GETPC());
495 return ret;
496 }
497
498 uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
499 {
500 uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
501 update_fr0_op(env, GETPC());
502 return ret;
503 }
504
505 uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
506 {
507 uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
508 update_fr0_op(env, GETPC());
509 return ret;
510 }
511
512 uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
513 {
514 uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
515 update_fr0_op(env, GETPC());
516 return ret;
517 }
518
519 static void update_fr0_cmp(CPUHPPAState *env, uint32_t y, uint32_t c, int r)
520 {
521 uint32_t shadow = env->fr0_shadow;
522
523 switch (r) {
524 case float_relation_greater:
525 c = extract32(c, 4, 1);
526 break;
527 case float_relation_less:
528 c = extract32(c, 3, 1);
529 break;
530 case float_relation_equal:
531 c = extract32(c, 2, 1);
532 break;
533 case float_relation_unordered:
534 c = extract32(c, 1, 1);
535 break;
536 default:
537 g_assert_not_reached();
538 }
539
540 if (y) {
541 /* targeted comparison */
542 /* set fpsr[ca[y - 1]] to current compare */
543 shadow = deposit32(shadow, 21 - (y - 1), 1, c);
544 } else {
545 /* queued comparison */
546 /* shift cq right by one place */
547 shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
548 /* move fpsr[c] to fpsr[cq[0]] */
549 shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
550 /* set fpsr[c] to current compare */
551 shadow = deposit32(shadow, 26, 1, c);
552 }
553
554 env->fr0_shadow = shadow;
555 env->fr[0] = (uint64_t)shadow << 32;
556 }
557
558 void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
559 uint32_t y, uint32_t c)
560 {
561 int r;
562 if (c & 1) {
563 r = float32_compare(a, b, &env->fp_status);
564 } else {
565 r = float32_compare_quiet(a, b, &env->fp_status);
566 }
567 update_fr0_op(env, GETPC());
568 update_fr0_cmp(env, y, c, r);
569 }
570
571 void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
572 uint32_t y, uint32_t c)
573 {
574 int r;
575 if (c & 1) {
576 r = float64_compare(a, b, &env->fp_status);
577 } else {
578 r = float64_compare_quiet(a, b, &env->fp_status);
579 }
580 update_fr0_op(env, GETPC());
581 update_fr0_cmp(env, y, c, r);
582 }
583
584 float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
585 {
586 float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
587 update_fr0_op(env, GETPC());
588 return ret;
589 }
590
591 float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
592 {
593 float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
594 &env->fp_status);
595 update_fr0_op(env, GETPC());
596 return ret;
597 }
598
599 float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
600 {
601 float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
602 update_fr0_op(env, GETPC());
603 return ret;
604 }
605
606 float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
607 {
608 float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
609 &env->fp_status);
610 update_fr0_op(env, GETPC());
611 return ret;
612 }
613
614 target_ureg HELPER(read_interval_timer)(void)
615 {
616 #ifdef CONFIG_USER_ONLY
617 /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
618 Just pass through the host cpu clock ticks. */
619 return cpu_get_host_ticks();
620 #else
621 /* In system mode we have access to a decent high-resolution clock.
622 In order to make OS-level time accounting work with the cr16,
623 present it with a well-timed clock fixed at 250MHz. */
624 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
625 #endif
626 }
627
628 #ifndef CONFIG_USER_ONLY
629 void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
630 {
631 HPPACPU *cpu = hppa_env_get_cpu(env);
632 uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
633 uint64_t timeout;
634
635 /* Even in 64-bit mode, the comparator is always 32-bit. But the
636 value we expose to the guest is 1/4 of the speed of the clock,
637 so moosh in 34 bits. */
638 timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
639
640 /* If the mooshing puts the clock in the past, advance to next round. */
641 if (timeout < current + 1000) {
642 timeout += 1ULL << 34;
643 }
644
645 cpu->env.cr[CR_IT] = timeout;
646 timer_mod(cpu->alarm_timer, timeout);
647 }
648
649 void HELPER(halt)(CPUHPPAState *env)
650 {
651 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
652 helper_excp(env, EXCP_HLT);
653 }
654
655 void HELPER(reset)(CPUHPPAState *env)
656 {
657 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
658 helper_excp(env, EXCP_HLT);
659 }
660
661 target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
662 {
663 target_ulong psw = env->psw;
664 /*
665 * Setting the PSW Q bit to 1, if it was not already 1, is an
666 * undefined operation.
667 *
668 * However, HP-UX 10.20 does this with the SSM instruction.
669 * Tested this on HP9000/712 and HP9000/785/C3750 and both
670 * machines set the Q bit from 0 to 1 without an exception,
671 * so let this go without comment.
672 */
673 env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
674 return psw & PSW_SM;
675 }
676
677 void HELPER(rfi)(CPUHPPAState *env)
678 {
679 /* ??? On second reading this condition simply seems
680 to be undefined rather than a diagnosed trap. */
681 if (env->psw & (PSW_I | PSW_R | PSW_Q)) {
682 helper_excp(env, EXCP_ILL);
683 }
684 env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
685 env->iasq_b = (uint64_t)env->cr_back[0] << 32;
686 env->iaoq_f = env->cr[CR_IIAOQ];
687 env->iaoq_b = env->cr_back[1];
688 cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
689 }
690
691 void HELPER(rfi_r)(CPUHPPAState *env)
692 {
693 env->gr[1] = env->shadow[0];
694 env->gr[8] = env->shadow[1];
695 env->gr[9] = env->shadow[2];
696 env->gr[16] = env->shadow[3];
697 env->gr[17] = env->shadow[4];
698 env->gr[24] = env->shadow[5];
699 env->gr[25] = env->shadow[6];
700 helper_rfi(env);
701 }
702 #endif