]> git.proxmox.com Git - mirror_qemu.git/blob - target/hppa/op_helper.c
target/hppa: Implement halt and reset instructions
[mirror_qemu.git] / target / hppa / op_helper.c
1 /*
2 * Helpers for HPPA instructions.
3 *
4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "exec/cpu_ldst.h"
25 #include "sysemu/sysemu.h"
26 #include "qemu/timer.h"
27
28
29 void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp)
30 {
31 HPPACPU *cpu = hppa_env_get_cpu(env);
32 CPUState *cs = CPU(cpu);
33
34 cs->exception_index = excp;
35 cpu_loop_exit(cs);
36 }
37
38 void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
39 {
40 HPPACPU *cpu = hppa_env_get_cpu(env);
41 CPUState *cs = CPU(cpu);
42
43 cs->exception_index = excp;
44 cpu_loop_exit_restore(cs, ra);
45 }
46
47 void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
48 {
49 if (unlikely((target_sreg)cond < 0)) {
50 hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
51 }
52 }
53
54 void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
55 {
56 if (unlikely(cond)) {
57 hppa_dynamic_excp(env, EXCP_COND, GETPC());
58 }
59 }
60
61 static void atomic_store_3(CPUHPPAState *env, target_ulong addr, uint32_t val,
62 uint32_t mask, uintptr_t ra)
63 {
64 #ifdef CONFIG_USER_ONLY
65 uint32_t old, new, cmp;
66
67 uint32_t *haddr = g2h(addr - 1);
68 old = *haddr;
69 while (1) {
70 new = (old & ~mask) | (val & mask);
71 cmp = atomic_cmpxchg(haddr, old, new);
72 if (cmp == old) {
73 return;
74 }
75 old = cmp;
76 }
77 #else
78 /* FIXME -- we can do better. */
79 cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
80 #endif
81 }
82
83 static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
84 bool parallel)
85 {
86 uintptr_t ra = GETPC();
87
88 switch (addr & 3) {
89 case 3:
90 cpu_stb_data_ra(env, addr, val, ra);
91 break;
92 case 2:
93 cpu_stw_data_ra(env, addr, val, ra);
94 break;
95 case 1:
96 /* The 3 byte store must appear atomic. */
97 if (parallel) {
98 atomic_store_3(env, addr, val, 0x00ffffffu, ra);
99 } else {
100 cpu_stb_data_ra(env, addr, val >> 16, ra);
101 cpu_stw_data_ra(env, addr + 1, val, ra);
102 }
103 break;
104 default:
105 cpu_stl_data_ra(env, addr, val, ra);
106 break;
107 }
108 }
109
110 void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
111 {
112 do_stby_b(env, addr, val, false);
113 }
114
115 void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
116 target_ureg val)
117 {
118 do_stby_b(env, addr, val, true);
119 }
120
121 static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
122 bool parallel)
123 {
124 uintptr_t ra = GETPC();
125
126 switch (addr & 3) {
127 case 3:
128 /* The 3 byte store must appear atomic. */
129 if (parallel) {
130 atomic_store_3(env, addr - 3, val, 0xffffff00u, ra);
131 } else {
132 cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
133 cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
134 }
135 break;
136 case 2:
137 cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
138 break;
139 case 1:
140 cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
141 break;
142 default:
143 /* Nothing is stored, but protection is checked and the
144 cacheline is marked dirty. */
145 #ifndef CONFIG_USER_ONLY
146 probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
147 #endif
148 break;
149 }
150 }
151
152 void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
153 {
154 do_stby_e(env, addr, val, false);
155 }
156
157 void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
158 target_ureg val)
159 {
160 do_stby_e(env, addr, val, true);
161 }
162
163 target_ureg HELPER(probe_r)(target_ulong addr)
164 {
165 #ifdef CONFIG_USER_ONLY
166 return page_check_range(addr, 1, PAGE_READ);
167 #else
168 return 1; /* FIXME */
169 #endif
170 }
171
172 target_ureg HELPER(probe_w)(target_ulong addr)
173 {
174 #ifdef CONFIG_USER_ONLY
175 return page_check_range(addr, 1, PAGE_WRITE);
176 #else
177 return 1; /* FIXME */
178 #endif
179 }
180
181 void HELPER(loaded_fr0)(CPUHPPAState *env)
182 {
183 uint32_t shadow = env->fr[0] >> 32;
184 int rm, d;
185
186 env->fr0_shadow = shadow;
187
188 switch (extract32(shadow, 9, 2)) {
189 default:
190 rm = float_round_nearest_even;
191 break;
192 case 1:
193 rm = float_round_to_zero;
194 break;
195 case 2:
196 rm = float_round_up;
197 break;
198 case 3:
199 rm = float_round_down;
200 break;
201 }
202 set_float_rounding_mode(rm, &env->fp_status);
203
204 d = extract32(shadow, 5, 1);
205 set_flush_to_zero(d, &env->fp_status);
206 set_flush_inputs_to_zero(d, &env->fp_status);
207 }
208
209 void cpu_hppa_loaded_fr0(CPUHPPAState *env)
210 {
211 helper_loaded_fr0(env);
212 }
213
214 #define CONVERT_BIT(X, SRC, DST) \
215 ((SRC) > (DST) \
216 ? (X) / ((SRC) / (DST)) & (DST) \
217 : ((X) & (SRC)) * ((DST) / (SRC)))
218
219 static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
220 {
221 uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
222 uint32_t hard_exp = 0;
223 uint32_t shadow = env->fr0_shadow;
224
225 if (likely(soft_exp == 0)) {
226 env->fr[0] = (uint64_t)shadow << 32;
227 return;
228 }
229 set_float_exception_flags(0, &env->fp_status);
230
231 hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact, 1u << 0);
232 hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
233 hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow, 1u << 2);
234 hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
235 hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid, 1u << 4);
236 shadow |= hard_exp << (32 - 5);
237 env->fr0_shadow = shadow;
238 env->fr[0] = (uint64_t)shadow << 32;
239
240 if (hard_exp & shadow) {
241 hppa_dynamic_excp(env, EXCP_ASSIST, ra);
242 }
243 }
244
245 float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
246 {
247 float32 ret = float32_sqrt(arg, &env->fp_status);
248 update_fr0_op(env, GETPC());
249 return ret;
250 }
251
252 float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
253 {
254 float32 ret = float32_round_to_int(arg, &env->fp_status);
255 update_fr0_op(env, GETPC());
256 return ret;
257 }
258
259 float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
260 {
261 float32 ret = float32_add(a, b, &env->fp_status);
262 update_fr0_op(env, GETPC());
263 return ret;
264 }
265
266 float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
267 {
268 float32 ret = float32_sub(a, b, &env->fp_status);
269 update_fr0_op(env, GETPC());
270 return ret;
271 }
272
273 float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
274 {
275 float32 ret = float32_mul(a, b, &env->fp_status);
276 update_fr0_op(env, GETPC());
277 return ret;
278 }
279
280 float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
281 {
282 float32 ret = float32_div(a, b, &env->fp_status);
283 update_fr0_op(env, GETPC());
284 return ret;
285 }
286
287 float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
288 {
289 float64 ret = float64_sqrt(arg, &env->fp_status);
290 update_fr0_op(env, GETPC());
291 return ret;
292 }
293
294 float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
295 {
296 float64 ret = float64_round_to_int(arg, &env->fp_status);
297 update_fr0_op(env, GETPC());
298 return ret;
299 }
300
301 float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
302 {
303 float64 ret = float64_add(a, b, &env->fp_status);
304 update_fr0_op(env, GETPC());
305 return ret;
306 }
307
308 float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
309 {
310 float64 ret = float64_sub(a, b, &env->fp_status);
311 update_fr0_op(env, GETPC());
312 return ret;
313 }
314
315 float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
316 {
317 float64 ret = float64_mul(a, b, &env->fp_status);
318 update_fr0_op(env, GETPC());
319 return ret;
320 }
321
322 float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
323 {
324 float64 ret = float64_div(a, b, &env->fp_status);
325 update_fr0_op(env, GETPC());
326 return ret;
327 }
328
329 float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
330 {
331 float64 ret = float32_to_float64(arg, &env->fp_status);
332 ret = float64_maybe_silence_nan(ret, &env->fp_status);
333 update_fr0_op(env, GETPC());
334 return ret;
335 }
336
337 float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
338 {
339 float32 ret = float64_to_float32(arg, &env->fp_status);
340 ret = float32_maybe_silence_nan(ret, &env->fp_status);
341 update_fr0_op(env, GETPC());
342 return ret;
343 }
344
345 float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
346 {
347 float32 ret = int32_to_float32(arg, &env->fp_status);
348 update_fr0_op(env, GETPC());
349 return ret;
350 }
351
352 float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
353 {
354 float32 ret = int64_to_float32(arg, &env->fp_status);
355 update_fr0_op(env, GETPC());
356 return ret;
357 }
358
359 float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
360 {
361 float64 ret = int32_to_float64(arg, &env->fp_status);
362 update_fr0_op(env, GETPC());
363 return ret;
364 }
365
366 float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
367 {
368 float64 ret = int64_to_float64(arg, &env->fp_status);
369 update_fr0_op(env, GETPC());
370 return ret;
371 }
372
373 int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
374 {
375 int32_t ret = float32_to_int32(arg, &env->fp_status);
376 update_fr0_op(env, GETPC());
377 return ret;
378 }
379
380 int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
381 {
382 int32_t ret = float64_to_int32(arg, &env->fp_status);
383 update_fr0_op(env, GETPC());
384 return ret;
385 }
386
387 int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
388 {
389 int64_t ret = float32_to_int64(arg, &env->fp_status);
390 update_fr0_op(env, GETPC());
391 return ret;
392 }
393
394 int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
395 {
396 int64_t ret = float64_to_int64(arg, &env->fp_status);
397 update_fr0_op(env, GETPC());
398 return ret;
399 }
400
401 int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
402 {
403 int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
404 update_fr0_op(env, GETPC());
405 return ret;
406 }
407
408 int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
409 {
410 int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
411 update_fr0_op(env, GETPC());
412 return ret;
413 }
414
415 int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
416 {
417 int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
418 update_fr0_op(env, GETPC());
419 return ret;
420 }
421
422 int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
423 {
424 int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
425 update_fr0_op(env, GETPC());
426 return ret;
427 }
428
429 float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
430 {
431 float32 ret = uint32_to_float32(arg, &env->fp_status);
432 update_fr0_op(env, GETPC());
433 return ret;
434 }
435
436 float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
437 {
438 float32 ret = uint64_to_float32(arg, &env->fp_status);
439 update_fr0_op(env, GETPC());
440 return ret;
441 }
442
443 float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
444 {
445 float64 ret = uint32_to_float64(arg, &env->fp_status);
446 update_fr0_op(env, GETPC());
447 return ret;
448 }
449
450 float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
451 {
452 float64 ret = uint64_to_float64(arg, &env->fp_status);
453 update_fr0_op(env, GETPC());
454 return ret;
455 }
456
457 uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
458 {
459 uint32_t ret = float32_to_uint32(arg, &env->fp_status);
460 update_fr0_op(env, GETPC());
461 return ret;
462 }
463
464 uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
465 {
466 uint32_t ret = float64_to_uint32(arg, &env->fp_status);
467 update_fr0_op(env, GETPC());
468 return ret;
469 }
470
471 uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
472 {
473 uint64_t ret = float32_to_uint64(arg, &env->fp_status);
474 update_fr0_op(env, GETPC());
475 return ret;
476 }
477
478 uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
479 {
480 uint64_t ret = float64_to_uint64(arg, &env->fp_status);
481 update_fr0_op(env, GETPC());
482 return ret;
483 }
484
485 uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
486 {
487 uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
488 update_fr0_op(env, GETPC());
489 return ret;
490 }
491
492 uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
493 {
494 uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
495 update_fr0_op(env, GETPC());
496 return ret;
497 }
498
499 uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
500 {
501 uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
502 update_fr0_op(env, GETPC());
503 return ret;
504 }
505
506 uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
507 {
508 uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
509 update_fr0_op(env, GETPC());
510 return ret;
511 }
512
513 static void update_fr0_cmp(CPUHPPAState *env, uint32_t y, uint32_t c, int r)
514 {
515 uint32_t shadow = env->fr0_shadow;
516
517 switch (r) {
518 case float_relation_greater:
519 c = extract32(c, 4, 1);
520 break;
521 case float_relation_less:
522 c = extract32(c, 3, 1);
523 break;
524 case float_relation_equal:
525 c = extract32(c, 2, 1);
526 break;
527 case float_relation_unordered:
528 c = extract32(c, 1, 1);
529 break;
530 default:
531 g_assert_not_reached();
532 }
533
534 if (y) {
535 /* targeted comparison */
536 /* set fpsr[ca[y - 1]] to current compare */
537 shadow = deposit32(shadow, 21 - (y - 1), 1, c);
538 } else {
539 /* queued comparison */
540 /* shift cq right by one place */
541 shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
542 /* move fpsr[c] to fpsr[cq[0]] */
543 shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
544 /* set fpsr[c] to current compare */
545 shadow = deposit32(shadow, 26, 1, c);
546 }
547
548 env->fr0_shadow = shadow;
549 env->fr[0] = (uint64_t)shadow << 32;
550 }
551
552 void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
553 uint32_t y, uint32_t c)
554 {
555 int r;
556 if (c & 1) {
557 r = float32_compare(a, b, &env->fp_status);
558 } else {
559 r = float32_compare_quiet(a, b, &env->fp_status);
560 }
561 update_fr0_op(env, GETPC());
562 update_fr0_cmp(env, y, c, r);
563 }
564
565 void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
566 uint32_t y, uint32_t c)
567 {
568 int r;
569 if (c & 1) {
570 r = float64_compare(a, b, &env->fp_status);
571 } else {
572 r = float64_compare_quiet(a, b, &env->fp_status);
573 }
574 update_fr0_op(env, GETPC());
575 update_fr0_cmp(env, y, c, r);
576 }
577
578 float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
579 {
580 float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
581 update_fr0_op(env, GETPC());
582 return ret;
583 }
584
585 float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
586 {
587 float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
588 &env->fp_status);
589 update_fr0_op(env, GETPC());
590 return ret;
591 }
592
593 float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
594 {
595 float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
596 update_fr0_op(env, GETPC());
597 return ret;
598 }
599
600 float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
601 {
602 float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
603 &env->fp_status);
604 update_fr0_op(env, GETPC());
605 return ret;
606 }
607
608 target_ureg HELPER(read_interval_timer)(void)
609 {
610 #ifdef CONFIG_USER_ONLY
611 /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
612 Just pass through the host cpu clock ticks. */
613 return cpu_get_host_ticks();
614 #else
615 /* In system mode we have access to a decent high-resolution clock.
616 In order to make OS-level time accounting work with the cr16,
617 present it with a well-timed clock fixed at 250MHz. */
618 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
619 #endif
620 }
621
622 #ifndef CONFIG_USER_ONLY
623 void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
624 {
625 HPPACPU *cpu = hppa_env_get_cpu(env);
626 uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
627 uint64_t timeout;
628
629 /* Even in 64-bit mode, the comparator is always 32-bit. But the
630 value we expose to the guest is 1/4 of the speed of the clock,
631 so moosh in 34 bits. */
632 timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
633
634 /* If the mooshing puts the clock in the past, advance to next round. */
635 if (timeout < current + 1000) {
636 timeout += 1ULL << 34;
637 }
638
639 cpu->env.cr[CR_IT] = timeout;
640 timer_mod(cpu->alarm_timer, timeout);
641 }
642
643 void HELPER(halt)(CPUHPPAState *env)
644 {
645 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
646 helper_excp(env, EXCP_HLT);
647 }
648
649 void HELPER(reset)(CPUHPPAState *env)
650 {
651 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
652 helper_excp(env, EXCP_HLT);
653 }
654
655 target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
656 {
657 target_ulong psw = env->psw;
658 /* ??? On second reading this condition simply seems
659 to be undefined rather than a diagnosed trap. */
660 if (nsm & ~psw & PSW_Q) {
661 hppa_dynamic_excp(env, EXCP_ILL, GETPC());
662 }
663 env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
664 return psw & PSW_SM;
665 }
666
667 void HELPER(rfi)(CPUHPPAState *env)
668 {
669 /* ??? On second reading this condition simply seems
670 to be undefined rather than a diagnosed trap. */
671 if (env->psw & (PSW_I | PSW_R | PSW_Q)) {
672 helper_excp(env, EXCP_ILL);
673 }
674 env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
675 env->iasq_b = (uint64_t)env->cr_back[0] << 32;
676 env->iaoq_f = env->cr[CR_IIAOQ];
677 env->iaoq_b = env->cr_back[1];
678 cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
679 }
680
681 void HELPER(rfi_r)(CPUHPPAState *env)
682 {
683 env->gr[1] = env->shadow[0];
684 env->gr[8] = env->shadow[1];
685 env->gr[9] = env->shadow[2];
686 env->gr[16] = env->shadow[3];
687 env->gr[17] = env->shadow[4];
688 env->gr[24] = env->shadow[5];
689 env->gr[25] = env->shadow[6];
690 helper_rfi(env);
691 }
692 #endif