]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/cpu.c
target/i386: define a new MSR based feature word - FEAT_CORE_CAPABILITY
[mirror_qemu.git] / target / i386 / cpu.c
1 /*
2 * i386 CPUID helper functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu/cutils.h"
23 #include "qemu/bitops.h"
24 #include "qemu/qemu-print.h"
25
26 #include "cpu.h"
27 #include "exec/exec-all.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/hvf.h"
30 #include "sysemu/cpus.h"
31 #include "kvm_i386.h"
32 #include "sev_i386.h"
33
34 #include "qemu/error-report.h"
35 #include "qemu/module.h"
36 #include "qemu/option.h"
37 #include "qemu/config-file.h"
38 #include "qapi/error.h"
39 #include "qapi/qapi-visit-misc.h"
40 #include "qapi/qapi-visit-run-state.h"
41 #include "qapi/qmp/qdict.h"
42 #include "qapi/qmp/qerror.h"
43 #include "qapi/visitor.h"
44 #include "qom/qom-qobject.h"
45 #include "sysemu/arch_init.h"
46 #include "qapi/qapi-commands-target.h"
47
48 #include "standard-headers/asm-x86/kvm_para.h"
49
50 #include "sysemu/sysemu.h"
51 #include "sysemu/tcg.h"
52 #include "hw/qdev-properties.h"
53 #include "hw/i386/topology.h"
54 #ifndef CONFIG_USER_ONLY
55 #include "exec/address-spaces.h"
56 #include "hw/hw.h"
57 #include "hw/xen/xen.h"
58 #include "hw/i386/apic_internal.h"
59 #endif
60
61 #include "disas/capstone.h"
62
63 /* Helpers for building CPUID[2] descriptors: */
64
65 struct CPUID2CacheDescriptorInfo {
66 enum CacheType type;
67 int level;
68 int size;
69 int line_size;
70 int associativity;
71 };
72
73 /*
74 * Known CPUID 2 cache descriptors.
75 * From Intel SDM Volume 2A, CPUID instruction
76 */
77 struct CPUID2CacheDescriptorInfo cpuid2_cache_descriptors[] = {
78 [0x06] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 8 * KiB,
79 .associativity = 4, .line_size = 32, },
80 [0x08] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 16 * KiB,
81 .associativity = 4, .line_size = 32, },
82 [0x09] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 32 * KiB,
83 .associativity = 4, .line_size = 64, },
84 [0x0A] = { .level = 1, .type = DATA_CACHE, .size = 8 * KiB,
85 .associativity = 2, .line_size = 32, },
86 [0x0C] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB,
87 .associativity = 4, .line_size = 32, },
88 [0x0D] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB,
89 .associativity = 4, .line_size = 64, },
90 [0x0E] = { .level = 1, .type = DATA_CACHE, .size = 24 * KiB,
91 .associativity = 6, .line_size = 64, },
92 [0x1D] = { .level = 2, .type = UNIFIED_CACHE, .size = 128 * KiB,
93 .associativity = 2, .line_size = 64, },
94 [0x21] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB,
95 .associativity = 8, .line_size = 64, },
96 /* lines per sector is not supported cpuid2_cache_descriptor(),
97 * so descriptors 0x22, 0x23 are not included
98 */
99 [0x24] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
100 .associativity = 16, .line_size = 64, },
101 /* lines per sector is not supported cpuid2_cache_descriptor(),
102 * so descriptors 0x25, 0x20 are not included
103 */
104 [0x2C] = { .level = 1, .type = DATA_CACHE, .size = 32 * KiB,
105 .associativity = 8, .line_size = 64, },
106 [0x30] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 32 * KiB,
107 .associativity = 8, .line_size = 64, },
108 [0x41] = { .level = 2, .type = UNIFIED_CACHE, .size = 128 * KiB,
109 .associativity = 4, .line_size = 32, },
110 [0x42] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB,
111 .associativity = 4, .line_size = 32, },
112 [0x43] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
113 .associativity = 4, .line_size = 32, },
114 [0x44] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
115 .associativity = 4, .line_size = 32, },
116 [0x45] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB,
117 .associativity = 4, .line_size = 32, },
118 [0x46] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB,
119 .associativity = 4, .line_size = 64, },
120 [0x47] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB,
121 .associativity = 8, .line_size = 64, },
122 [0x48] = { .level = 2, .type = UNIFIED_CACHE, .size = 3 * MiB,
123 .associativity = 12, .line_size = 64, },
124 /* Descriptor 0x49 depends on CPU family/model, so it is not included */
125 [0x4A] = { .level = 3, .type = UNIFIED_CACHE, .size = 6 * MiB,
126 .associativity = 12, .line_size = 64, },
127 [0x4B] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB,
128 .associativity = 16, .line_size = 64, },
129 [0x4C] = { .level = 3, .type = UNIFIED_CACHE, .size = 12 * MiB,
130 .associativity = 12, .line_size = 64, },
131 [0x4D] = { .level = 3, .type = UNIFIED_CACHE, .size = 16 * MiB,
132 .associativity = 16, .line_size = 64, },
133 [0x4E] = { .level = 2, .type = UNIFIED_CACHE, .size = 6 * MiB,
134 .associativity = 24, .line_size = 64, },
135 [0x60] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB,
136 .associativity = 8, .line_size = 64, },
137 [0x66] = { .level = 1, .type = DATA_CACHE, .size = 8 * KiB,
138 .associativity = 4, .line_size = 64, },
139 [0x67] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB,
140 .associativity = 4, .line_size = 64, },
141 [0x68] = { .level = 1, .type = DATA_CACHE, .size = 32 * KiB,
142 .associativity = 4, .line_size = 64, },
143 [0x78] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
144 .associativity = 4, .line_size = 64, },
145 /* lines per sector is not supported cpuid2_cache_descriptor(),
146 * so descriptors 0x79, 0x7A, 0x7B, 0x7C are not included.
147 */
148 [0x7D] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB,
149 .associativity = 8, .line_size = 64, },
150 [0x7F] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
151 .associativity = 2, .line_size = 64, },
152 [0x80] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
153 .associativity = 8, .line_size = 64, },
154 [0x82] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB,
155 .associativity = 8, .line_size = 32, },
156 [0x83] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
157 .associativity = 8, .line_size = 32, },
158 [0x84] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
159 .associativity = 8, .line_size = 32, },
160 [0x85] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB,
161 .associativity = 8, .line_size = 32, },
162 [0x86] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
163 .associativity = 4, .line_size = 64, },
164 [0x87] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
165 .associativity = 8, .line_size = 64, },
166 [0xD0] = { .level = 3, .type = UNIFIED_CACHE, .size = 512 * KiB,
167 .associativity = 4, .line_size = 64, },
168 [0xD1] = { .level = 3, .type = UNIFIED_CACHE, .size = 1 * MiB,
169 .associativity = 4, .line_size = 64, },
170 [0xD2] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB,
171 .associativity = 4, .line_size = 64, },
172 [0xD6] = { .level = 3, .type = UNIFIED_CACHE, .size = 1 * MiB,
173 .associativity = 8, .line_size = 64, },
174 [0xD7] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB,
175 .associativity = 8, .line_size = 64, },
176 [0xD8] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB,
177 .associativity = 8, .line_size = 64, },
178 [0xDC] = { .level = 3, .type = UNIFIED_CACHE, .size = 1.5 * MiB,
179 .associativity = 12, .line_size = 64, },
180 [0xDD] = { .level = 3, .type = UNIFIED_CACHE, .size = 3 * MiB,
181 .associativity = 12, .line_size = 64, },
182 [0xDE] = { .level = 3, .type = UNIFIED_CACHE, .size = 6 * MiB,
183 .associativity = 12, .line_size = 64, },
184 [0xE2] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB,
185 .associativity = 16, .line_size = 64, },
186 [0xE3] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB,
187 .associativity = 16, .line_size = 64, },
188 [0xE4] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB,
189 .associativity = 16, .line_size = 64, },
190 [0xEA] = { .level = 3, .type = UNIFIED_CACHE, .size = 12 * MiB,
191 .associativity = 24, .line_size = 64, },
192 [0xEB] = { .level = 3, .type = UNIFIED_CACHE, .size = 18 * MiB,
193 .associativity = 24, .line_size = 64, },
194 [0xEC] = { .level = 3, .type = UNIFIED_CACHE, .size = 24 * MiB,
195 .associativity = 24, .line_size = 64, },
196 };
197
198 /*
199 * "CPUID leaf 2 does not report cache descriptor information,
200 * use CPUID leaf 4 to query cache parameters"
201 */
202 #define CACHE_DESCRIPTOR_UNAVAILABLE 0xFF
203
204 /*
205 * Return a CPUID 2 cache descriptor for a given cache.
206 * If no known descriptor is found, return CACHE_DESCRIPTOR_UNAVAILABLE
207 */
208 static uint8_t cpuid2_cache_descriptor(CPUCacheInfo *cache)
209 {
210 int i;
211
212 assert(cache->size > 0);
213 assert(cache->level > 0);
214 assert(cache->line_size > 0);
215 assert(cache->associativity > 0);
216 for (i = 0; i < ARRAY_SIZE(cpuid2_cache_descriptors); i++) {
217 struct CPUID2CacheDescriptorInfo *d = &cpuid2_cache_descriptors[i];
218 if (d->level == cache->level && d->type == cache->type &&
219 d->size == cache->size && d->line_size == cache->line_size &&
220 d->associativity == cache->associativity) {
221 return i;
222 }
223 }
224
225 return CACHE_DESCRIPTOR_UNAVAILABLE;
226 }
227
228 /* CPUID Leaf 4 constants: */
229
230 /* EAX: */
231 #define CACHE_TYPE_D 1
232 #define CACHE_TYPE_I 2
233 #define CACHE_TYPE_UNIFIED 3
234
235 #define CACHE_LEVEL(l) (l << 5)
236
237 #define CACHE_SELF_INIT_LEVEL (1 << 8)
238
239 /* EDX: */
240 #define CACHE_NO_INVD_SHARING (1 << 0)
241 #define CACHE_INCLUSIVE (1 << 1)
242 #define CACHE_COMPLEX_IDX (1 << 2)
243
244 /* Encode CacheType for CPUID[4].EAX */
245 #define CACHE_TYPE(t) (((t) == DATA_CACHE) ? CACHE_TYPE_D : \
246 ((t) == INSTRUCTION_CACHE) ? CACHE_TYPE_I : \
247 ((t) == UNIFIED_CACHE) ? CACHE_TYPE_UNIFIED : \
248 0 /* Invalid value */)
249
250
251 /* Encode cache info for CPUID[4] */
252 static void encode_cache_cpuid4(CPUCacheInfo *cache,
253 int num_apic_ids, int num_cores,
254 uint32_t *eax, uint32_t *ebx,
255 uint32_t *ecx, uint32_t *edx)
256 {
257 assert(cache->size == cache->line_size * cache->associativity *
258 cache->partitions * cache->sets);
259
260 assert(num_apic_ids > 0);
261 *eax = CACHE_TYPE(cache->type) |
262 CACHE_LEVEL(cache->level) |
263 (cache->self_init ? CACHE_SELF_INIT_LEVEL : 0) |
264 ((num_cores - 1) << 26) |
265 ((num_apic_ids - 1) << 14);
266
267 assert(cache->line_size > 0);
268 assert(cache->partitions > 0);
269 assert(cache->associativity > 0);
270 /* We don't implement fully-associative caches */
271 assert(cache->associativity < cache->sets);
272 *ebx = (cache->line_size - 1) |
273 ((cache->partitions - 1) << 12) |
274 ((cache->associativity - 1) << 22);
275
276 assert(cache->sets > 0);
277 *ecx = cache->sets - 1;
278
279 *edx = (cache->no_invd_sharing ? CACHE_NO_INVD_SHARING : 0) |
280 (cache->inclusive ? CACHE_INCLUSIVE : 0) |
281 (cache->complex_indexing ? CACHE_COMPLEX_IDX : 0);
282 }
283
284 /* Encode cache info for CPUID[0x80000005].ECX or CPUID[0x80000005].EDX */
285 static uint32_t encode_cache_cpuid80000005(CPUCacheInfo *cache)
286 {
287 assert(cache->size % 1024 == 0);
288 assert(cache->lines_per_tag > 0);
289 assert(cache->associativity > 0);
290 assert(cache->line_size > 0);
291 return ((cache->size / 1024) << 24) | (cache->associativity << 16) |
292 (cache->lines_per_tag << 8) | (cache->line_size);
293 }
294
295 #define ASSOC_FULL 0xFF
296
297 /* AMD associativity encoding used on CPUID Leaf 0x80000006: */
298 #define AMD_ENC_ASSOC(a) (a <= 1 ? a : \
299 a == 2 ? 0x2 : \
300 a == 4 ? 0x4 : \
301 a == 8 ? 0x6 : \
302 a == 16 ? 0x8 : \
303 a == 32 ? 0xA : \
304 a == 48 ? 0xB : \
305 a == 64 ? 0xC : \
306 a == 96 ? 0xD : \
307 a == 128 ? 0xE : \
308 a == ASSOC_FULL ? 0xF : \
309 0 /* invalid value */)
310
311 /*
312 * Encode cache info for CPUID[0x80000006].ECX and CPUID[0x80000006].EDX
313 * @l3 can be NULL.
314 */
315 static void encode_cache_cpuid80000006(CPUCacheInfo *l2,
316 CPUCacheInfo *l3,
317 uint32_t *ecx, uint32_t *edx)
318 {
319 assert(l2->size % 1024 == 0);
320 assert(l2->associativity > 0);
321 assert(l2->lines_per_tag > 0);
322 assert(l2->line_size > 0);
323 *ecx = ((l2->size / 1024) << 16) |
324 (AMD_ENC_ASSOC(l2->associativity) << 12) |
325 (l2->lines_per_tag << 8) | (l2->line_size);
326
327 if (l3) {
328 assert(l3->size % (512 * 1024) == 0);
329 assert(l3->associativity > 0);
330 assert(l3->lines_per_tag > 0);
331 assert(l3->line_size > 0);
332 *edx = ((l3->size / (512 * 1024)) << 18) |
333 (AMD_ENC_ASSOC(l3->associativity) << 12) |
334 (l3->lines_per_tag << 8) | (l3->line_size);
335 } else {
336 *edx = 0;
337 }
338 }
339
340 /*
341 * Definitions used for building CPUID Leaf 0x8000001D and 0x8000001E
342 * Please refer to the AMD64 Architecture Programmer’s Manual Volume 3.
343 * Define the constants to build the cpu topology. Right now, TOPOEXT
344 * feature is enabled only on EPYC. So, these constants are based on
345 * EPYC supported configurations. We may need to handle the cases if
346 * these values change in future.
347 */
348 /* Maximum core complexes in a node */
349 #define MAX_CCX 2
350 /* Maximum cores in a core complex */
351 #define MAX_CORES_IN_CCX 4
352 /* Maximum cores in a node */
353 #define MAX_CORES_IN_NODE 8
354 /* Maximum nodes in a socket */
355 #define MAX_NODES_PER_SOCKET 4
356
357 /*
358 * Figure out the number of nodes required to build this config.
359 * Max cores in a node is 8
360 */
361 static int nodes_in_socket(int nr_cores)
362 {
363 int nodes;
364
365 nodes = DIV_ROUND_UP(nr_cores, MAX_CORES_IN_NODE);
366
367 /* Hardware does not support config with 3 nodes, return 4 in that case */
368 return (nodes == 3) ? 4 : nodes;
369 }
370
371 /*
372 * Decide the number of cores in a core complex with the given nr_cores using
373 * following set constants MAX_CCX, MAX_CORES_IN_CCX, MAX_CORES_IN_NODE and
374 * MAX_NODES_PER_SOCKET. Maintain symmetry as much as possible
375 * L3 cache is shared across all cores in a core complex. So, this will also
376 * tell us how many cores are sharing the L3 cache.
377 */
378 static int cores_in_core_complex(int nr_cores)
379 {
380 int nodes;
381
382 /* Check if we can fit all the cores in one core complex */
383 if (nr_cores <= MAX_CORES_IN_CCX) {
384 return nr_cores;
385 }
386 /* Get the number of nodes required to build this config */
387 nodes = nodes_in_socket(nr_cores);
388
389 /*
390 * Divide the cores accros all the core complexes
391 * Return rounded up value
392 */
393 return DIV_ROUND_UP(nr_cores, nodes * MAX_CCX);
394 }
395
396 /* Encode cache info for CPUID[8000001D] */
397 static void encode_cache_cpuid8000001d(CPUCacheInfo *cache, CPUState *cs,
398 uint32_t *eax, uint32_t *ebx,
399 uint32_t *ecx, uint32_t *edx)
400 {
401 uint32_t l3_cores;
402 assert(cache->size == cache->line_size * cache->associativity *
403 cache->partitions * cache->sets);
404
405 *eax = CACHE_TYPE(cache->type) | CACHE_LEVEL(cache->level) |
406 (cache->self_init ? CACHE_SELF_INIT_LEVEL : 0);
407
408 /* L3 is shared among multiple cores */
409 if (cache->level == 3) {
410 l3_cores = cores_in_core_complex(cs->nr_cores);
411 *eax |= ((l3_cores * cs->nr_threads) - 1) << 14;
412 } else {
413 *eax |= ((cs->nr_threads - 1) << 14);
414 }
415
416 assert(cache->line_size > 0);
417 assert(cache->partitions > 0);
418 assert(cache->associativity > 0);
419 /* We don't implement fully-associative caches */
420 assert(cache->associativity < cache->sets);
421 *ebx = (cache->line_size - 1) |
422 ((cache->partitions - 1) << 12) |
423 ((cache->associativity - 1) << 22);
424
425 assert(cache->sets > 0);
426 *ecx = cache->sets - 1;
427
428 *edx = (cache->no_invd_sharing ? CACHE_NO_INVD_SHARING : 0) |
429 (cache->inclusive ? CACHE_INCLUSIVE : 0) |
430 (cache->complex_indexing ? CACHE_COMPLEX_IDX : 0);
431 }
432
433 /* Data structure to hold the configuration info for a given core index */
434 struct core_topology {
435 /* core complex id of the current core index */
436 int ccx_id;
437 /*
438 * Adjusted core index for this core in the topology
439 * This can be 0,1,2,3 with max 4 cores in a core complex
440 */
441 int core_id;
442 /* Node id for this core index */
443 int node_id;
444 /* Number of nodes in this config */
445 int num_nodes;
446 };
447
448 /*
449 * Build the configuration closely match the EPYC hardware. Using the EPYC
450 * hardware configuration values (MAX_CCX, MAX_CORES_IN_CCX, MAX_CORES_IN_NODE)
451 * right now. This could change in future.
452 * nr_cores : Total number of cores in the config
453 * core_id : Core index of the current CPU
454 * topo : Data structure to hold all the config info for this core index
455 */
456 static void build_core_topology(int nr_cores, int core_id,
457 struct core_topology *topo)
458 {
459 int nodes, cores_in_ccx;
460
461 /* First get the number of nodes required */
462 nodes = nodes_in_socket(nr_cores);
463
464 cores_in_ccx = cores_in_core_complex(nr_cores);
465
466 topo->node_id = core_id / (cores_in_ccx * MAX_CCX);
467 topo->ccx_id = (core_id % (cores_in_ccx * MAX_CCX)) / cores_in_ccx;
468 topo->core_id = core_id % cores_in_ccx;
469 topo->num_nodes = nodes;
470 }
471
472 /* Encode cache info for CPUID[8000001E] */
473 static void encode_topo_cpuid8000001e(CPUState *cs, X86CPU *cpu,
474 uint32_t *eax, uint32_t *ebx,
475 uint32_t *ecx, uint32_t *edx)
476 {
477 struct core_topology topo = {0};
478 unsigned long nodes;
479 int shift;
480
481 build_core_topology(cs->nr_cores, cpu->core_id, &topo);
482 *eax = cpu->apic_id;
483 /*
484 * CPUID_Fn8000001E_EBX
485 * 31:16 Reserved
486 * 15:8 Threads per core (The number of threads per core is
487 * Threads per core + 1)
488 * 7:0 Core id (see bit decoding below)
489 * SMT:
490 * 4:3 node id
491 * 2 Core complex id
492 * 1:0 Core id
493 * Non SMT:
494 * 5:4 node id
495 * 3 Core complex id
496 * 1:0 Core id
497 */
498 if (cs->nr_threads - 1) {
499 *ebx = ((cs->nr_threads - 1) << 8) | (topo.node_id << 3) |
500 (topo.ccx_id << 2) | topo.core_id;
501 } else {
502 *ebx = (topo.node_id << 4) | (topo.ccx_id << 3) | topo.core_id;
503 }
504 /*
505 * CPUID_Fn8000001E_ECX
506 * 31:11 Reserved
507 * 10:8 Nodes per processor (Nodes per processor is number of nodes + 1)
508 * 7:0 Node id (see bit decoding below)
509 * 2 Socket id
510 * 1:0 Node id
511 */
512 if (topo.num_nodes <= 4) {
513 *ecx = ((topo.num_nodes - 1) << 8) | (cpu->socket_id << 2) |
514 topo.node_id;
515 } else {
516 /*
517 * Node id fix up. Actual hardware supports up to 4 nodes. But with
518 * more than 32 cores, we may end up with more than 4 nodes.
519 * Node id is a combination of socket id and node id. Only requirement
520 * here is that this number should be unique accross the system.
521 * Shift the socket id to accommodate more nodes. We dont expect both
522 * socket id and node id to be big number at the same time. This is not
523 * an ideal config but we need to to support it. Max nodes we can have
524 * is 32 (255/8) with 8 cores per node and 255 max cores. We only need
525 * 5 bits for nodes. Find the left most set bit to represent the total
526 * number of nodes. find_last_bit returns last set bit(0 based). Left
527 * shift(+1) the socket id to represent all the nodes.
528 */
529 nodes = topo.num_nodes - 1;
530 shift = find_last_bit(&nodes, 8);
531 *ecx = ((topo.num_nodes - 1) << 8) | (cpu->socket_id << (shift + 1)) |
532 topo.node_id;
533 }
534 *edx = 0;
535 }
536
537 /*
538 * Definitions of the hardcoded cache entries we expose:
539 * These are legacy cache values. If there is a need to change any
540 * of these values please use builtin_x86_defs
541 */
542
543 /* L1 data cache: */
544 static CPUCacheInfo legacy_l1d_cache = {
545 .type = DATA_CACHE,
546 .level = 1,
547 .size = 32 * KiB,
548 .self_init = 1,
549 .line_size = 64,
550 .associativity = 8,
551 .sets = 64,
552 .partitions = 1,
553 .no_invd_sharing = true,
554 };
555
556 /*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
557 static CPUCacheInfo legacy_l1d_cache_amd = {
558 .type = DATA_CACHE,
559 .level = 1,
560 .size = 64 * KiB,
561 .self_init = 1,
562 .line_size = 64,
563 .associativity = 2,
564 .sets = 512,
565 .partitions = 1,
566 .lines_per_tag = 1,
567 .no_invd_sharing = true,
568 };
569
570 /* L1 instruction cache: */
571 static CPUCacheInfo legacy_l1i_cache = {
572 .type = INSTRUCTION_CACHE,
573 .level = 1,
574 .size = 32 * KiB,
575 .self_init = 1,
576 .line_size = 64,
577 .associativity = 8,
578 .sets = 64,
579 .partitions = 1,
580 .no_invd_sharing = true,
581 };
582
583 /*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
584 static CPUCacheInfo legacy_l1i_cache_amd = {
585 .type = INSTRUCTION_CACHE,
586 .level = 1,
587 .size = 64 * KiB,
588 .self_init = 1,
589 .line_size = 64,
590 .associativity = 2,
591 .sets = 512,
592 .partitions = 1,
593 .lines_per_tag = 1,
594 .no_invd_sharing = true,
595 };
596
597 /* Level 2 unified cache: */
598 static CPUCacheInfo legacy_l2_cache = {
599 .type = UNIFIED_CACHE,
600 .level = 2,
601 .size = 4 * MiB,
602 .self_init = 1,
603 .line_size = 64,
604 .associativity = 16,
605 .sets = 4096,
606 .partitions = 1,
607 .no_invd_sharing = true,
608 };
609
610 /*FIXME: CPUID leaf 2 descriptor is inconsistent with CPUID leaf 4 */
611 static CPUCacheInfo legacy_l2_cache_cpuid2 = {
612 .type = UNIFIED_CACHE,
613 .level = 2,
614 .size = 2 * MiB,
615 .line_size = 64,
616 .associativity = 8,
617 };
618
619
620 /*FIXME: CPUID leaf 0x80000006 is inconsistent with leaves 2 & 4 */
621 static CPUCacheInfo legacy_l2_cache_amd = {
622 .type = UNIFIED_CACHE,
623 .level = 2,
624 .size = 512 * KiB,
625 .line_size = 64,
626 .lines_per_tag = 1,
627 .associativity = 16,
628 .sets = 512,
629 .partitions = 1,
630 };
631
632 /* Level 3 unified cache: */
633 static CPUCacheInfo legacy_l3_cache = {
634 .type = UNIFIED_CACHE,
635 .level = 3,
636 .size = 16 * MiB,
637 .line_size = 64,
638 .associativity = 16,
639 .sets = 16384,
640 .partitions = 1,
641 .lines_per_tag = 1,
642 .self_init = true,
643 .inclusive = true,
644 .complex_indexing = true,
645 };
646
647 /* TLB definitions: */
648
649 #define L1_DTLB_2M_ASSOC 1
650 #define L1_DTLB_2M_ENTRIES 255
651 #define L1_DTLB_4K_ASSOC 1
652 #define L1_DTLB_4K_ENTRIES 255
653
654 #define L1_ITLB_2M_ASSOC 1
655 #define L1_ITLB_2M_ENTRIES 255
656 #define L1_ITLB_4K_ASSOC 1
657 #define L1_ITLB_4K_ENTRIES 255
658
659 #define L2_DTLB_2M_ASSOC 0 /* disabled */
660 #define L2_DTLB_2M_ENTRIES 0 /* disabled */
661 #define L2_DTLB_4K_ASSOC 4
662 #define L2_DTLB_4K_ENTRIES 512
663
664 #define L2_ITLB_2M_ASSOC 0 /* disabled */
665 #define L2_ITLB_2M_ENTRIES 0 /* disabled */
666 #define L2_ITLB_4K_ASSOC 4
667 #define L2_ITLB_4K_ENTRIES 512
668
669 /* CPUID Leaf 0x14 constants: */
670 #define INTEL_PT_MAX_SUBLEAF 0x1
671 /*
672 * bit[00]: IA32_RTIT_CTL.CR3 filter can be set to 1 and IA32_RTIT_CR3_MATCH
673 * MSR can be accessed;
674 * bit[01]: Support Configurable PSB and Cycle-Accurate Mode;
675 * bit[02]: Support IP Filtering, TraceStop filtering, and preservation
676 * of Intel PT MSRs across warm reset;
677 * bit[03]: Support MTC timing packet and suppression of COFI-based packets;
678 */
679 #define INTEL_PT_MINIMAL_EBX 0xf
680 /*
681 * bit[00]: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1 and
682 * IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be
683 * accessed;
684 * bit[01]: ToPA tables can hold any number of output entries, up to the
685 * maximum allowed by the MaskOrTableOffset field of
686 * IA32_RTIT_OUTPUT_MASK_PTRS;
687 * bit[02]: Support Single-Range Output scheme;
688 */
689 #define INTEL_PT_MINIMAL_ECX 0x7
690 /* generated packets which contain IP payloads have LIP values */
691 #define INTEL_PT_IP_LIP (1 << 31)
692 #define INTEL_PT_ADDR_RANGES_NUM 0x2 /* Number of configurable address ranges */
693 #define INTEL_PT_ADDR_RANGES_NUM_MASK 0x3
694 #define INTEL_PT_MTC_BITMAP (0x0249 << 16) /* Support ART(0,3,6,9) */
695 #define INTEL_PT_CYCLE_BITMAP 0x1fff /* Support 0,2^(0~11) */
696 #define INTEL_PT_PSB_BITMAP (0x003f << 16) /* Support 2K,4K,8K,16K,32K,64K */
697
698 static void x86_cpu_vendor_words2str(char *dst, uint32_t vendor1,
699 uint32_t vendor2, uint32_t vendor3)
700 {
701 int i;
702 for (i = 0; i < 4; i++) {
703 dst[i] = vendor1 >> (8 * i);
704 dst[i + 4] = vendor2 >> (8 * i);
705 dst[i + 8] = vendor3 >> (8 * i);
706 }
707 dst[CPUID_VENDOR_SZ] = '\0';
708 }
709
710 #define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE)
711 #define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \
712 CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC)
713 #define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \
714 CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
715 CPUID_PSE36 | CPUID_FXSR)
716 #define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE)
717 #define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \
718 CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \
719 CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \
720 CPUID_PAE | CPUID_SEP | CPUID_APIC)
721
722 #define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \
723 CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \
724 CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
725 CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \
726 CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS | CPUID_DE)
727 /* partly implemented:
728 CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64) */
729 /* missing:
730 CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */
731 #define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | \
732 CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | \
733 CPUID_EXT_SSE41 | CPUID_EXT_SSE42 | CPUID_EXT_POPCNT | \
734 CPUID_EXT_XSAVE | /* CPUID_EXT_OSXSAVE is dynamic */ \
735 CPUID_EXT_MOVBE | CPUID_EXT_AES | CPUID_EXT_HYPERVISOR | \
736 CPUID_EXT_RDRAND)
737 /* missing:
738 CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_SMX,
739 CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_CID, CPUID_EXT_FMA,
740 CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_PCID, CPUID_EXT_DCA,
741 CPUID_EXT_X2APIC, CPUID_EXT_TSC_DEADLINE_TIMER, CPUID_EXT_AVX,
742 CPUID_EXT_F16C */
743
744 #ifdef TARGET_X86_64
745 #define TCG_EXT2_X86_64_FEATURES (CPUID_EXT2_SYSCALL | CPUID_EXT2_LM)
746 #else
747 #define TCG_EXT2_X86_64_FEATURES 0
748 #endif
749
750 #define TCG_EXT2_FEATURES ((TCG_FEATURES & CPUID_EXT2_AMD_ALIASES) | \
751 CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \
752 CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_PDPE1GB | \
753 TCG_EXT2_X86_64_FEATURES)
754 #define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \
755 CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A)
756 #define TCG_EXT4_FEATURES 0
757 #define TCG_SVM_FEATURES CPUID_SVM_NPT
758 #define TCG_KVM_FEATURES 0
759 #define TCG_7_0_EBX_FEATURES (CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_SMAP | \
760 CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ADX | \
761 CPUID_7_0_EBX_PCOMMIT | CPUID_7_0_EBX_CLFLUSHOPT | \
762 CPUID_7_0_EBX_CLWB | CPUID_7_0_EBX_MPX | CPUID_7_0_EBX_FSGSBASE | \
763 CPUID_7_0_EBX_ERMS)
764 /* missing:
765 CPUID_7_0_EBX_HLE, CPUID_7_0_EBX_AVX2,
766 CPUID_7_0_EBX_INVPCID, CPUID_7_0_EBX_RTM,
767 CPUID_7_0_EBX_RDSEED */
768 #define TCG_7_0_ECX_FEATURES (CPUID_7_0_ECX_PKU | \
769 /* CPUID_7_0_ECX_OSPKE is dynamic */ \
770 CPUID_7_0_ECX_LA57)
771 #define TCG_7_0_EDX_FEATURES 0
772 #define TCG_APM_FEATURES 0
773 #define TCG_6_EAX_FEATURES CPUID_6_EAX_ARAT
774 #define TCG_XSAVE_FEATURES (CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XGETBV1)
775 /* missing:
776 CPUID_XSAVE_XSAVEC, CPUID_XSAVE_XSAVES */
777
778 typedef enum FeatureWordType {
779 CPUID_FEATURE_WORD,
780 MSR_FEATURE_WORD,
781 } FeatureWordType;
782
783 typedef struct FeatureWordInfo {
784 FeatureWordType type;
785 /* feature flags names are taken from "Intel Processor Identification and
786 * the CPUID Instruction" and AMD's "CPUID Specification".
787 * In cases of disagreement between feature naming conventions,
788 * aliases may be added.
789 */
790 const char *feat_names[32];
791 union {
792 /* If type==CPUID_FEATURE_WORD */
793 struct {
794 uint32_t eax; /* Input EAX for CPUID */
795 bool needs_ecx; /* CPUID instruction uses ECX as input */
796 uint32_t ecx; /* Input ECX value for CPUID */
797 int reg; /* output register (R_* constant) */
798 } cpuid;
799 /* If type==MSR_FEATURE_WORD */
800 struct {
801 uint32_t index;
802 struct { /*CPUID that enumerate this MSR*/
803 FeatureWord cpuid_class;
804 uint32_t cpuid_flag;
805 } cpuid_dep;
806 } msr;
807 };
808 uint32_t tcg_features; /* Feature flags supported by TCG */
809 uint32_t unmigratable_flags; /* Feature flags known to be unmigratable */
810 uint32_t migratable_flags; /* Feature flags known to be migratable */
811 /* Features that shouldn't be auto-enabled by "-cpu host" */
812 uint32_t no_autoenable_flags;
813 } FeatureWordInfo;
814
815 static FeatureWordInfo feature_word_info[FEATURE_WORDS] = {
816 [FEAT_1_EDX] = {
817 .type = CPUID_FEATURE_WORD,
818 .feat_names = {
819 "fpu", "vme", "de", "pse",
820 "tsc", "msr", "pae", "mce",
821 "cx8", "apic", NULL, "sep",
822 "mtrr", "pge", "mca", "cmov",
823 "pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */,
824 NULL, "ds" /* Intel dts */, "acpi", "mmx",
825 "fxsr", "sse", "sse2", "ss",
826 "ht" /* Intel htt */, "tm", "ia64", "pbe",
827 },
828 .cpuid = {.eax = 1, .reg = R_EDX, },
829 .tcg_features = TCG_FEATURES,
830 },
831 [FEAT_1_ECX] = {
832 .type = CPUID_FEATURE_WORD,
833 .feat_names = {
834 "pni" /* Intel,AMD sse3 */, "pclmulqdq", "dtes64", "monitor",
835 "ds-cpl", "vmx", "smx", "est",
836 "tm2", "ssse3", "cid", NULL,
837 "fma", "cx16", "xtpr", "pdcm",
838 NULL, "pcid", "dca", "sse4.1",
839 "sse4.2", "x2apic", "movbe", "popcnt",
840 "tsc-deadline", "aes", "xsave", NULL /* osxsave */,
841 "avx", "f16c", "rdrand", "hypervisor",
842 },
843 .cpuid = { .eax = 1, .reg = R_ECX, },
844 .tcg_features = TCG_EXT_FEATURES,
845 },
846 /* Feature names that are already defined on feature_name[] but
847 * are set on CPUID[8000_0001].EDX on AMD CPUs don't have their
848 * names on feat_names below. They are copied automatically
849 * to features[FEAT_8000_0001_EDX] if and only if CPU vendor is AMD.
850 */
851 [FEAT_8000_0001_EDX] = {
852 .type = CPUID_FEATURE_WORD,
853 .feat_names = {
854 NULL /* fpu */, NULL /* vme */, NULL /* de */, NULL /* pse */,
855 NULL /* tsc */, NULL /* msr */, NULL /* pae */, NULL /* mce */,
856 NULL /* cx8 */, NULL /* apic */, NULL, "syscall",
857 NULL /* mtrr */, NULL /* pge */, NULL /* mca */, NULL /* cmov */,
858 NULL /* pat */, NULL /* pse36 */, NULL, NULL /* Linux mp */,
859 "nx", NULL, "mmxext", NULL /* mmx */,
860 NULL /* fxsr */, "fxsr-opt", "pdpe1gb", "rdtscp",
861 NULL, "lm", "3dnowext", "3dnow",
862 },
863 .cpuid = { .eax = 0x80000001, .reg = R_EDX, },
864 .tcg_features = TCG_EXT2_FEATURES,
865 },
866 [FEAT_8000_0001_ECX] = {
867 .type = CPUID_FEATURE_WORD,
868 .feat_names = {
869 "lahf-lm", "cmp-legacy", "svm", "extapic",
870 "cr8legacy", "abm", "sse4a", "misalignsse",
871 "3dnowprefetch", "osvw", "ibs", "xop",
872 "skinit", "wdt", NULL, "lwp",
873 "fma4", "tce", NULL, "nodeid-msr",
874 NULL, "tbm", "topoext", "perfctr-core",
875 "perfctr-nb", NULL, NULL, NULL,
876 NULL, NULL, NULL, NULL,
877 },
878 .cpuid = { .eax = 0x80000001, .reg = R_ECX, },
879 .tcg_features = TCG_EXT3_FEATURES,
880 /*
881 * TOPOEXT is always allowed but can't be enabled blindly by
882 * "-cpu host", as it requires consistent cache topology info
883 * to be provided so it doesn't confuse guests.
884 */
885 .no_autoenable_flags = CPUID_EXT3_TOPOEXT,
886 },
887 [FEAT_C000_0001_EDX] = {
888 .type = CPUID_FEATURE_WORD,
889 .feat_names = {
890 NULL, NULL, "xstore", "xstore-en",
891 NULL, NULL, "xcrypt", "xcrypt-en",
892 "ace2", "ace2-en", "phe", "phe-en",
893 "pmm", "pmm-en", NULL, NULL,
894 NULL, NULL, NULL, NULL,
895 NULL, NULL, NULL, NULL,
896 NULL, NULL, NULL, NULL,
897 NULL, NULL, NULL, NULL,
898 },
899 .cpuid = { .eax = 0xC0000001, .reg = R_EDX, },
900 .tcg_features = TCG_EXT4_FEATURES,
901 },
902 [FEAT_KVM] = {
903 .type = CPUID_FEATURE_WORD,
904 .feat_names = {
905 "kvmclock", "kvm-nopiodelay", "kvm-mmu", "kvmclock",
906 "kvm-asyncpf", "kvm-steal-time", "kvm-pv-eoi", "kvm-pv-unhalt",
907 NULL, "kvm-pv-tlb-flush", NULL, "kvm-pv-ipi",
908 NULL, NULL, NULL, NULL,
909 NULL, NULL, NULL, NULL,
910 NULL, NULL, NULL, NULL,
911 "kvmclock-stable-bit", NULL, NULL, NULL,
912 NULL, NULL, NULL, NULL,
913 },
914 .cpuid = { .eax = KVM_CPUID_FEATURES, .reg = R_EAX, },
915 .tcg_features = TCG_KVM_FEATURES,
916 },
917 [FEAT_KVM_HINTS] = {
918 .type = CPUID_FEATURE_WORD,
919 .feat_names = {
920 "kvm-hint-dedicated", NULL, NULL, NULL,
921 NULL, NULL, NULL, NULL,
922 NULL, NULL, NULL, NULL,
923 NULL, NULL, NULL, NULL,
924 NULL, NULL, NULL, NULL,
925 NULL, NULL, NULL, NULL,
926 NULL, NULL, NULL, NULL,
927 NULL, NULL, NULL, NULL,
928 },
929 .cpuid = { .eax = KVM_CPUID_FEATURES, .reg = R_EDX, },
930 .tcg_features = TCG_KVM_FEATURES,
931 /*
932 * KVM hints aren't auto-enabled by -cpu host, they need to be
933 * explicitly enabled in the command-line.
934 */
935 .no_autoenable_flags = ~0U,
936 },
937 /*
938 * .feat_names are commented out for Hyper-V enlightenments because we
939 * don't want to have two different ways for enabling them on QEMU command
940 * line. Some features (e.g. "hyperv_time", "hyperv_vapic", ...) require
941 * enabling several feature bits simultaneously, exposing these bits
942 * individually may just confuse guests.
943 */
944 [FEAT_HYPERV_EAX] = {
945 .type = CPUID_FEATURE_WORD,
946 .feat_names = {
947 NULL /* hv_msr_vp_runtime_access */, NULL /* hv_msr_time_refcount_access */,
948 NULL /* hv_msr_synic_access */, NULL /* hv_msr_stimer_access */,
949 NULL /* hv_msr_apic_access */, NULL /* hv_msr_hypercall_access */,
950 NULL /* hv_vpindex_access */, NULL /* hv_msr_reset_access */,
951 NULL /* hv_msr_stats_access */, NULL /* hv_reftsc_access */,
952 NULL /* hv_msr_idle_access */, NULL /* hv_msr_frequency_access */,
953 NULL /* hv_msr_debug_access */, NULL /* hv_msr_reenlightenment_access */,
954 NULL, NULL,
955 NULL, NULL, NULL, NULL,
956 NULL, NULL, NULL, NULL,
957 NULL, NULL, NULL, NULL,
958 NULL, NULL, NULL, NULL,
959 },
960 .cpuid = { .eax = 0x40000003, .reg = R_EAX, },
961 },
962 [FEAT_HYPERV_EBX] = {
963 .type = CPUID_FEATURE_WORD,
964 .feat_names = {
965 NULL /* hv_create_partitions */, NULL /* hv_access_partition_id */,
966 NULL /* hv_access_memory_pool */, NULL /* hv_adjust_message_buffers */,
967 NULL /* hv_post_messages */, NULL /* hv_signal_events */,
968 NULL /* hv_create_port */, NULL /* hv_connect_port */,
969 NULL /* hv_access_stats */, NULL, NULL, NULL /* hv_debugging */,
970 NULL /* hv_cpu_power_management */, NULL /* hv_configure_profiler */,
971 NULL, NULL,
972 NULL, NULL, NULL, NULL,
973 NULL, NULL, NULL, NULL,
974 NULL, NULL, NULL, NULL,
975 NULL, NULL, NULL, NULL,
976 },
977 .cpuid = { .eax = 0x40000003, .reg = R_EBX, },
978 },
979 [FEAT_HYPERV_EDX] = {
980 .type = CPUID_FEATURE_WORD,
981 .feat_names = {
982 NULL /* hv_mwait */, NULL /* hv_guest_debugging */,
983 NULL /* hv_perf_monitor */, NULL /* hv_cpu_dynamic_part */,
984 NULL /* hv_hypercall_params_xmm */, NULL /* hv_guest_idle_state */,
985 NULL, NULL,
986 NULL, NULL, NULL /* hv_guest_crash_msr */, NULL,
987 NULL, NULL, NULL, NULL,
988 NULL, NULL, NULL, NULL,
989 NULL, NULL, NULL, NULL,
990 NULL, NULL, NULL, NULL,
991 NULL, NULL, NULL, NULL,
992 },
993 .cpuid = { .eax = 0x40000003, .reg = R_EDX, },
994 },
995 [FEAT_HV_RECOMM_EAX] = {
996 .type = CPUID_FEATURE_WORD,
997 .feat_names = {
998 NULL /* hv_recommend_pv_as_switch */,
999 NULL /* hv_recommend_pv_tlbflush_local */,
1000 NULL /* hv_recommend_pv_tlbflush_remote */,
1001 NULL /* hv_recommend_msr_apic_access */,
1002 NULL /* hv_recommend_msr_reset */,
1003 NULL /* hv_recommend_relaxed_timing */,
1004 NULL /* hv_recommend_dma_remapping */,
1005 NULL /* hv_recommend_int_remapping */,
1006 NULL /* hv_recommend_x2apic_msrs */,
1007 NULL /* hv_recommend_autoeoi_deprecation */,
1008 NULL /* hv_recommend_pv_ipi */,
1009 NULL /* hv_recommend_ex_hypercalls */,
1010 NULL /* hv_hypervisor_is_nested */,
1011 NULL /* hv_recommend_int_mbec */,
1012 NULL /* hv_recommend_evmcs */,
1013 NULL,
1014 NULL, NULL, NULL, NULL,
1015 NULL, NULL, NULL, NULL,
1016 NULL, NULL, NULL, NULL,
1017 NULL, NULL, NULL, NULL,
1018 },
1019 .cpuid = { .eax = 0x40000004, .reg = R_EAX, },
1020 },
1021 [FEAT_HV_NESTED_EAX] = {
1022 .type = CPUID_FEATURE_WORD,
1023 .cpuid = { .eax = 0x4000000A, .reg = R_EAX, },
1024 },
1025 [FEAT_SVM] = {
1026 .type = CPUID_FEATURE_WORD,
1027 .feat_names = {
1028 "npt", "lbrv", "svm-lock", "nrip-save",
1029 "tsc-scale", "vmcb-clean", "flushbyasid", "decodeassists",
1030 NULL, NULL, "pause-filter", NULL,
1031 "pfthreshold", NULL, NULL, NULL,
1032 NULL, NULL, NULL, NULL,
1033 NULL, NULL, NULL, NULL,
1034 NULL, NULL, NULL, NULL,
1035 NULL, NULL, NULL, NULL,
1036 },
1037 .cpuid = { .eax = 0x8000000A, .reg = R_EDX, },
1038 .tcg_features = TCG_SVM_FEATURES,
1039 },
1040 [FEAT_7_0_EBX] = {
1041 .type = CPUID_FEATURE_WORD,
1042 .feat_names = {
1043 "fsgsbase", "tsc-adjust", NULL, "bmi1",
1044 "hle", "avx2", NULL, "smep",
1045 "bmi2", "erms", "invpcid", "rtm",
1046 NULL, NULL, "mpx", NULL,
1047 "avx512f", "avx512dq", "rdseed", "adx",
1048 "smap", "avx512ifma", "pcommit", "clflushopt",
1049 "clwb", "intel-pt", "avx512pf", "avx512er",
1050 "avx512cd", "sha-ni", "avx512bw", "avx512vl",
1051 },
1052 .cpuid = {
1053 .eax = 7,
1054 .needs_ecx = true, .ecx = 0,
1055 .reg = R_EBX,
1056 },
1057 .tcg_features = TCG_7_0_EBX_FEATURES,
1058 },
1059 [FEAT_7_0_ECX] = {
1060 .type = CPUID_FEATURE_WORD,
1061 .feat_names = {
1062 NULL, "avx512vbmi", "umip", "pku",
1063 NULL /* ospke */, NULL, "avx512vbmi2", NULL,
1064 "gfni", "vaes", "vpclmulqdq", "avx512vnni",
1065 "avx512bitalg", NULL, "avx512-vpopcntdq", NULL,
1066 "la57", NULL, NULL, NULL,
1067 NULL, NULL, "rdpid", NULL,
1068 NULL, "cldemote", NULL, "movdiri",
1069 "movdir64b", NULL, NULL, NULL,
1070 },
1071 .cpuid = {
1072 .eax = 7,
1073 .needs_ecx = true, .ecx = 0,
1074 .reg = R_ECX,
1075 },
1076 .tcg_features = TCG_7_0_ECX_FEATURES,
1077 },
1078 [FEAT_7_0_EDX] = {
1079 .type = CPUID_FEATURE_WORD,
1080 .feat_names = {
1081 NULL, NULL, "avx512-4vnniw", "avx512-4fmaps",
1082 NULL, NULL, NULL, NULL,
1083 NULL, NULL, "md-clear", NULL,
1084 NULL, NULL, NULL, NULL,
1085 NULL, NULL, NULL, NULL,
1086 NULL, NULL, NULL, NULL,
1087 NULL, NULL, "spec-ctrl", "stibp",
1088 NULL, "arch-capabilities", "core-capability", "ssbd",
1089 },
1090 .cpuid = {
1091 .eax = 7,
1092 .needs_ecx = true, .ecx = 0,
1093 .reg = R_EDX,
1094 },
1095 .tcg_features = TCG_7_0_EDX_FEATURES,
1096 },
1097 [FEAT_8000_0007_EDX] = {
1098 .type = CPUID_FEATURE_WORD,
1099 .feat_names = {
1100 NULL, NULL, NULL, NULL,
1101 NULL, NULL, NULL, NULL,
1102 "invtsc", NULL, NULL, NULL,
1103 NULL, NULL, NULL, NULL,
1104 NULL, NULL, NULL, NULL,
1105 NULL, NULL, NULL, NULL,
1106 NULL, NULL, NULL, NULL,
1107 NULL, NULL, NULL, NULL,
1108 },
1109 .cpuid = { .eax = 0x80000007, .reg = R_EDX, },
1110 .tcg_features = TCG_APM_FEATURES,
1111 .unmigratable_flags = CPUID_APM_INVTSC,
1112 },
1113 [FEAT_8000_0008_EBX] = {
1114 .type = CPUID_FEATURE_WORD,
1115 .feat_names = {
1116 NULL, NULL, NULL, NULL,
1117 NULL, NULL, NULL, NULL,
1118 NULL, "wbnoinvd", NULL, NULL,
1119 "ibpb", NULL, NULL, NULL,
1120 NULL, NULL, NULL, NULL,
1121 NULL, NULL, NULL, NULL,
1122 "amd-ssbd", "virt-ssbd", "amd-no-ssb", NULL,
1123 NULL, NULL, NULL, NULL,
1124 },
1125 .cpuid = { .eax = 0x80000008, .reg = R_EBX, },
1126 .tcg_features = 0,
1127 .unmigratable_flags = 0,
1128 },
1129 [FEAT_XSAVE] = {
1130 .type = CPUID_FEATURE_WORD,
1131 .feat_names = {
1132 "xsaveopt", "xsavec", "xgetbv1", "xsaves",
1133 NULL, NULL, NULL, NULL,
1134 NULL, NULL, NULL, NULL,
1135 NULL, NULL, NULL, NULL,
1136 NULL, NULL, NULL, NULL,
1137 NULL, NULL, NULL, NULL,
1138 NULL, NULL, NULL, NULL,
1139 NULL, NULL, NULL, NULL,
1140 },
1141 .cpuid = {
1142 .eax = 0xd,
1143 .needs_ecx = true, .ecx = 1,
1144 .reg = R_EAX,
1145 },
1146 .tcg_features = TCG_XSAVE_FEATURES,
1147 },
1148 [FEAT_6_EAX] = {
1149 .type = CPUID_FEATURE_WORD,
1150 .feat_names = {
1151 NULL, NULL, "arat", NULL,
1152 NULL, NULL, NULL, NULL,
1153 NULL, NULL, NULL, NULL,
1154 NULL, NULL, NULL, NULL,
1155 NULL, NULL, NULL, NULL,
1156 NULL, NULL, NULL, NULL,
1157 NULL, NULL, NULL, NULL,
1158 NULL, NULL, NULL, NULL,
1159 },
1160 .cpuid = { .eax = 6, .reg = R_EAX, },
1161 .tcg_features = TCG_6_EAX_FEATURES,
1162 },
1163 [FEAT_XSAVE_COMP_LO] = {
1164 .type = CPUID_FEATURE_WORD,
1165 .cpuid = {
1166 .eax = 0xD,
1167 .needs_ecx = true, .ecx = 0,
1168 .reg = R_EAX,
1169 },
1170 .tcg_features = ~0U,
1171 .migratable_flags = XSTATE_FP_MASK | XSTATE_SSE_MASK |
1172 XSTATE_YMM_MASK | XSTATE_BNDREGS_MASK | XSTATE_BNDCSR_MASK |
1173 XSTATE_OPMASK_MASK | XSTATE_ZMM_Hi256_MASK | XSTATE_Hi16_ZMM_MASK |
1174 XSTATE_PKRU_MASK,
1175 },
1176 [FEAT_XSAVE_COMP_HI] = {
1177 .type = CPUID_FEATURE_WORD,
1178 .cpuid = {
1179 .eax = 0xD,
1180 .needs_ecx = true, .ecx = 0,
1181 .reg = R_EDX,
1182 },
1183 .tcg_features = ~0U,
1184 },
1185 /*Below are MSR exposed features*/
1186 [FEAT_ARCH_CAPABILITIES] = {
1187 .type = MSR_FEATURE_WORD,
1188 .feat_names = {
1189 "rdctl-no", "ibrs-all", "rsba", "skip-l1dfl-vmentry",
1190 "ssb-no", "mds-no", NULL, NULL,
1191 NULL, NULL, NULL, NULL,
1192 NULL, NULL, NULL, NULL,
1193 NULL, NULL, NULL, NULL,
1194 NULL, NULL, NULL, NULL,
1195 NULL, NULL, NULL, NULL,
1196 NULL, NULL, NULL, NULL,
1197 },
1198 .msr = {
1199 .index = MSR_IA32_ARCH_CAPABILITIES,
1200 .cpuid_dep = {
1201 FEAT_7_0_EDX,
1202 CPUID_7_0_EDX_ARCH_CAPABILITIES
1203 }
1204 },
1205 },
1206 [FEAT_CORE_CAPABILITY] = {
1207 .type = MSR_FEATURE_WORD,
1208 .feat_names = {
1209 NULL, NULL, NULL, NULL,
1210 NULL, "split-lock-detect", NULL, NULL,
1211 NULL, NULL, NULL, NULL,
1212 NULL, NULL, NULL, NULL,
1213 NULL, NULL, NULL, NULL,
1214 NULL, NULL, NULL, NULL,
1215 NULL, NULL, NULL, NULL,
1216 NULL, NULL, NULL, NULL,
1217 },
1218 .msr = {
1219 .index = MSR_IA32_CORE_CAPABILITY,
1220 .cpuid_dep = {
1221 FEAT_7_0_EDX,
1222 CPUID_7_0_EDX_CORE_CAPABILITY,
1223 },
1224 },
1225 },
1226 };
1227
1228 typedef struct X86RegisterInfo32 {
1229 /* Name of register */
1230 const char *name;
1231 /* QAPI enum value register */
1232 X86CPURegister32 qapi_enum;
1233 } X86RegisterInfo32;
1234
1235 #define REGISTER(reg) \
1236 [R_##reg] = { .name = #reg, .qapi_enum = X86_CPU_REGISTER32_##reg }
1237 static const X86RegisterInfo32 x86_reg_info_32[CPU_NB_REGS32] = {
1238 REGISTER(EAX),
1239 REGISTER(ECX),
1240 REGISTER(EDX),
1241 REGISTER(EBX),
1242 REGISTER(ESP),
1243 REGISTER(EBP),
1244 REGISTER(ESI),
1245 REGISTER(EDI),
1246 };
1247 #undef REGISTER
1248
1249 typedef struct ExtSaveArea {
1250 uint32_t feature, bits;
1251 uint32_t offset, size;
1252 } ExtSaveArea;
1253
1254 static const ExtSaveArea x86_ext_save_areas[] = {
1255 [XSTATE_FP_BIT] = {
1256 /* x87 FP state component is always enabled if XSAVE is supported */
1257 .feature = FEAT_1_ECX, .bits = CPUID_EXT_XSAVE,
1258 /* x87 state is in the legacy region of the XSAVE area */
1259 .offset = 0,
1260 .size = sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader),
1261 },
1262 [XSTATE_SSE_BIT] = {
1263 /* SSE state component is always enabled if XSAVE is supported */
1264 .feature = FEAT_1_ECX, .bits = CPUID_EXT_XSAVE,
1265 /* SSE state is in the legacy region of the XSAVE area */
1266 .offset = 0,
1267 .size = sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader),
1268 },
1269 [XSTATE_YMM_BIT] =
1270 { .feature = FEAT_1_ECX, .bits = CPUID_EXT_AVX,
1271 .offset = offsetof(X86XSaveArea, avx_state),
1272 .size = sizeof(XSaveAVX) },
1273 [XSTATE_BNDREGS_BIT] =
1274 { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX,
1275 .offset = offsetof(X86XSaveArea, bndreg_state),
1276 .size = sizeof(XSaveBNDREG) },
1277 [XSTATE_BNDCSR_BIT] =
1278 { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX,
1279 .offset = offsetof(X86XSaveArea, bndcsr_state),
1280 .size = sizeof(XSaveBNDCSR) },
1281 [XSTATE_OPMASK_BIT] =
1282 { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
1283 .offset = offsetof(X86XSaveArea, opmask_state),
1284 .size = sizeof(XSaveOpmask) },
1285 [XSTATE_ZMM_Hi256_BIT] =
1286 { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
1287 .offset = offsetof(X86XSaveArea, zmm_hi256_state),
1288 .size = sizeof(XSaveZMM_Hi256) },
1289 [XSTATE_Hi16_ZMM_BIT] =
1290 { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
1291 .offset = offsetof(X86XSaveArea, hi16_zmm_state),
1292 .size = sizeof(XSaveHi16_ZMM) },
1293 [XSTATE_PKRU_BIT] =
1294 { .feature = FEAT_7_0_ECX, .bits = CPUID_7_0_ECX_PKU,
1295 .offset = offsetof(X86XSaveArea, pkru_state),
1296 .size = sizeof(XSavePKRU) },
1297 };
1298
1299 static uint32_t xsave_area_size(uint64_t mask)
1300 {
1301 int i;
1302 uint64_t ret = 0;
1303
1304 for (i = 0; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
1305 const ExtSaveArea *esa = &x86_ext_save_areas[i];
1306 if ((mask >> i) & 1) {
1307 ret = MAX(ret, esa->offset + esa->size);
1308 }
1309 }
1310 return ret;
1311 }
1312
1313 static inline bool accel_uses_host_cpuid(void)
1314 {
1315 return kvm_enabled() || hvf_enabled();
1316 }
1317
1318 static inline uint64_t x86_cpu_xsave_components(X86CPU *cpu)
1319 {
1320 return ((uint64_t)cpu->env.features[FEAT_XSAVE_COMP_HI]) << 32 |
1321 cpu->env.features[FEAT_XSAVE_COMP_LO];
1322 }
1323
1324 const char *get_register_name_32(unsigned int reg)
1325 {
1326 if (reg >= CPU_NB_REGS32) {
1327 return NULL;
1328 }
1329 return x86_reg_info_32[reg].name;
1330 }
1331
1332 /*
1333 * Returns the set of feature flags that are supported and migratable by
1334 * QEMU, for a given FeatureWord.
1335 */
1336 static uint32_t x86_cpu_get_migratable_flags(FeatureWord w)
1337 {
1338 FeatureWordInfo *wi = &feature_word_info[w];
1339 uint32_t r = 0;
1340 int i;
1341
1342 for (i = 0; i < 32; i++) {
1343 uint32_t f = 1U << i;
1344
1345 /* If the feature name is known, it is implicitly considered migratable,
1346 * unless it is explicitly set in unmigratable_flags */
1347 if ((wi->migratable_flags & f) ||
1348 (wi->feat_names[i] && !(wi->unmigratable_flags & f))) {
1349 r |= f;
1350 }
1351 }
1352 return r;
1353 }
1354
1355 void host_cpuid(uint32_t function, uint32_t count,
1356 uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
1357 {
1358 uint32_t vec[4];
1359
1360 #ifdef __x86_64__
1361 asm volatile("cpuid"
1362 : "=a"(vec[0]), "=b"(vec[1]),
1363 "=c"(vec[2]), "=d"(vec[3])
1364 : "0"(function), "c"(count) : "cc");
1365 #elif defined(__i386__)
1366 asm volatile("pusha \n\t"
1367 "cpuid \n\t"
1368 "mov %%eax, 0(%2) \n\t"
1369 "mov %%ebx, 4(%2) \n\t"
1370 "mov %%ecx, 8(%2) \n\t"
1371 "mov %%edx, 12(%2) \n\t"
1372 "popa"
1373 : : "a"(function), "c"(count), "S"(vec)
1374 : "memory", "cc");
1375 #else
1376 abort();
1377 #endif
1378
1379 if (eax)
1380 *eax = vec[0];
1381 if (ebx)
1382 *ebx = vec[1];
1383 if (ecx)
1384 *ecx = vec[2];
1385 if (edx)
1386 *edx = vec[3];
1387 }
1388
1389 void host_vendor_fms(char *vendor, int *family, int *model, int *stepping)
1390 {
1391 uint32_t eax, ebx, ecx, edx;
1392
1393 host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
1394 x86_cpu_vendor_words2str(vendor, ebx, edx, ecx);
1395
1396 host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx);
1397 if (family) {
1398 *family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF);
1399 }
1400 if (model) {
1401 *model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12);
1402 }
1403 if (stepping) {
1404 *stepping = eax & 0x0F;
1405 }
1406 }
1407
1408 /* CPU class name definitions: */
1409
1410 /* Return type name for a given CPU model name
1411 * Caller is responsible for freeing the returned string.
1412 */
1413 static char *x86_cpu_type_name(const char *model_name)
1414 {
1415 return g_strdup_printf(X86_CPU_TYPE_NAME("%s"), model_name);
1416 }
1417
1418 static ObjectClass *x86_cpu_class_by_name(const char *cpu_model)
1419 {
1420 ObjectClass *oc;
1421 char *typename = x86_cpu_type_name(cpu_model);
1422 oc = object_class_by_name(typename);
1423 g_free(typename);
1424 return oc;
1425 }
1426
1427 static char *x86_cpu_class_get_model_name(X86CPUClass *cc)
1428 {
1429 const char *class_name = object_class_get_name(OBJECT_CLASS(cc));
1430 assert(g_str_has_suffix(class_name, X86_CPU_TYPE_SUFFIX));
1431 return g_strndup(class_name,
1432 strlen(class_name) - strlen(X86_CPU_TYPE_SUFFIX));
1433 }
1434
1435 struct X86CPUDefinition {
1436 const char *name;
1437 uint32_t level;
1438 uint32_t xlevel;
1439 /* vendor is zero-terminated, 12 character ASCII string */
1440 char vendor[CPUID_VENDOR_SZ + 1];
1441 int family;
1442 int model;
1443 int stepping;
1444 FeatureWordArray features;
1445 const char *model_id;
1446 CPUCaches *cache_info;
1447 };
1448
1449 static CPUCaches epyc_cache_info = {
1450 .l1d_cache = &(CPUCacheInfo) {
1451 .type = DATA_CACHE,
1452 .level = 1,
1453 .size = 32 * KiB,
1454 .line_size = 64,
1455 .associativity = 8,
1456 .partitions = 1,
1457 .sets = 64,
1458 .lines_per_tag = 1,
1459 .self_init = 1,
1460 .no_invd_sharing = true,
1461 },
1462 .l1i_cache = &(CPUCacheInfo) {
1463 .type = INSTRUCTION_CACHE,
1464 .level = 1,
1465 .size = 64 * KiB,
1466 .line_size = 64,
1467 .associativity = 4,
1468 .partitions = 1,
1469 .sets = 256,
1470 .lines_per_tag = 1,
1471 .self_init = 1,
1472 .no_invd_sharing = true,
1473 },
1474 .l2_cache = &(CPUCacheInfo) {
1475 .type = UNIFIED_CACHE,
1476 .level = 2,
1477 .size = 512 * KiB,
1478 .line_size = 64,
1479 .associativity = 8,
1480 .partitions = 1,
1481 .sets = 1024,
1482 .lines_per_tag = 1,
1483 },
1484 .l3_cache = &(CPUCacheInfo) {
1485 .type = UNIFIED_CACHE,
1486 .level = 3,
1487 .size = 8 * MiB,
1488 .line_size = 64,
1489 .associativity = 16,
1490 .partitions = 1,
1491 .sets = 8192,
1492 .lines_per_tag = 1,
1493 .self_init = true,
1494 .inclusive = true,
1495 .complex_indexing = true,
1496 },
1497 };
1498
1499 static X86CPUDefinition builtin_x86_defs[] = {
1500 {
1501 .name = "qemu64",
1502 .level = 0xd,
1503 .vendor = CPUID_VENDOR_AMD,
1504 .family = 6,
1505 .model = 6,
1506 .stepping = 3,
1507 .features[FEAT_1_EDX] =
1508 PPRO_FEATURES |
1509 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
1510 CPUID_PSE36,
1511 .features[FEAT_1_ECX] =
1512 CPUID_EXT_SSE3 | CPUID_EXT_CX16,
1513 .features[FEAT_8000_0001_EDX] =
1514 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1515 .features[FEAT_8000_0001_ECX] =
1516 CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM,
1517 .xlevel = 0x8000000A,
1518 .model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
1519 },
1520 {
1521 .name = "phenom",
1522 .level = 5,
1523 .vendor = CPUID_VENDOR_AMD,
1524 .family = 16,
1525 .model = 2,
1526 .stepping = 3,
1527 /* Missing: CPUID_HT */
1528 .features[FEAT_1_EDX] =
1529 PPRO_FEATURES |
1530 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
1531 CPUID_PSE36 | CPUID_VME,
1532 .features[FEAT_1_ECX] =
1533 CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 |
1534 CPUID_EXT_POPCNT,
1535 .features[FEAT_8000_0001_EDX] =
1536 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX |
1537 CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT |
1538 CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP,
1539 /* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
1540 CPUID_EXT3_CR8LEG,
1541 CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
1542 CPUID_EXT3_OSVW, CPUID_EXT3_IBS */
1543 .features[FEAT_8000_0001_ECX] =
1544 CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM |
1545 CPUID_EXT3_ABM | CPUID_EXT3_SSE4A,
1546 /* Missing: CPUID_SVM_LBRV */
1547 .features[FEAT_SVM] =
1548 CPUID_SVM_NPT,
1549 .xlevel = 0x8000001A,
1550 .model_id = "AMD Phenom(tm) 9550 Quad-Core Processor"
1551 },
1552 {
1553 .name = "core2duo",
1554 .level = 10,
1555 .vendor = CPUID_VENDOR_INTEL,
1556 .family = 6,
1557 .model = 15,
1558 .stepping = 11,
1559 /* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
1560 .features[FEAT_1_EDX] =
1561 PPRO_FEATURES |
1562 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
1563 CPUID_PSE36 | CPUID_VME | CPUID_ACPI | CPUID_SS,
1564 /* Missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_EST,
1565 * CPUID_EXT_TM2, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_VMX */
1566 .features[FEAT_1_ECX] =
1567 CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
1568 CPUID_EXT_CX16,
1569 .features[FEAT_8000_0001_EDX] =
1570 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1571 .features[FEAT_8000_0001_ECX] =
1572 CPUID_EXT3_LAHF_LM,
1573 .xlevel = 0x80000008,
1574 .model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz",
1575 },
1576 {
1577 .name = "kvm64",
1578 .level = 0xd,
1579 .vendor = CPUID_VENDOR_INTEL,
1580 .family = 15,
1581 .model = 6,
1582 .stepping = 1,
1583 /* Missing: CPUID_HT */
1584 .features[FEAT_1_EDX] =
1585 PPRO_FEATURES | CPUID_VME |
1586 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
1587 CPUID_PSE36,
1588 /* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */
1589 .features[FEAT_1_ECX] =
1590 CPUID_EXT_SSE3 | CPUID_EXT_CX16,
1591 /* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */
1592 .features[FEAT_8000_0001_EDX] =
1593 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1594 /* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
1595 CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A,
1596 CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
1597 CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */
1598 .features[FEAT_8000_0001_ECX] =
1599 0,
1600 .xlevel = 0x80000008,
1601 .model_id = "Common KVM processor"
1602 },
1603 {
1604 .name = "qemu32",
1605 .level = 4,
1606 .vendor = CPUID_VENDOR_INTEL,
1607 .family = 6,
1608 .model = 6,
1609 .stepping = 3,
1610 .features[FEAT_1_EDX] =
1611 PPRO_FEATURES,
1612 .features[FEAT_1_ECX] =
1613 CPUID_EXT_SSE3,
1614 .xlevel = 0x80000004,
1615 .model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
1616 },
1617 {
1618 .name = "kvm32",
1619 .level = 5,
1620 .vendor = CPUID_VENDOR_INTEL,
1621 .family = 15,
1622 .model = 6,
1623 .stepping = 1,
1624 .features[FEAT_1_EDX] =
1625 PPRO_FEATURES | CPUID_VME |
1626 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36,
1627 .features[FEAT_1_ECX] =
1628 CPUID_EXT_SSE3,
1629 .features[FEAT_8000_0001_ECX] =
1630 0,
1631 .xlevel = 0x80000008,
1632 .model_id = "Common 32-bit KVM processor"
1633 },
1634 {
1635 .name = "coreduo",
1636 .level = 10,
1637 .vendor = CPUID_VENDOR_INTEL,
1638 .family = 6,
1639 .model = 14,
1640 .stepping = 8,
1641 /* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
1642 .features[FEAT_1_EDX] =
1643 PPRO_FEATURES | CPUID_VME |
1644 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_ACPI |
1645 CPUID_SS,
1646 /* Missing: CPUID_EXT_EST, CPUID_EXT_TM2 , CPUID_EXT_XTPR,
1647 * CPUID_EXT_PDCM, CPUID_EXT_VMX */
1648 .features[FEAT_1_ECX] =
1649 CPUID_EXT_SSE3 | CPUID_EXT_MONITOR,
1650 .features[FEAT_8000_0001_EDX] =
1651 CPUID_EXT2_NX,
1652 .xlevel = 0x80000008,
1653 .model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz",
1654 },
1655 {
1656 .name = "486",
1657 .level = 1,
1658 .vendor = CPUID_VENDOR_INTEL,
1659 .family = 4,
1660 .model = 8,
1661 .stepping = 0,
1662 .features[FEAT_1_EDX] =
1663 I486_FEATURES,
1664 .xlevel = 0,
1665 .model_id = "",
1666 },
1667 {
1668 .name = "pentium",
1669 .level = 1,
1670 .vendor = CPUID_VENDOR_INTEL,
1671 .family = 5,
1672 .model = 4,
1673 .stepping = 3,
1674 .features[FEAT_1_EDX] =
1675 PENTIUM_FEATURES,
1676 .xlevel = 0,
1677 .model_id = "",
1678 },
1679 {
1680 .name = "pentium2",
1681 .level = 2,
1682 .vendor = CPUID_VENDOR_INTEL,
1683 .family = 6,
1684 .model = 5,
1685 .stepping = 2,
1686 .features[FEAT_1_EDX] =
1687 PENTIUM2_FEATURES,
1688 .xlevel = 0,
1689 .model_id = "",
1690 },
1691 {
1692 .name = "pentium3",
1693 .level = 3,
1694 .vendor = CPUID_VENDOR_INTEL,
1695 .family = 6,
1696 .model = 7,
1697 .stepping = 3,
1698 .features[FEAT_1_EDX] =
1699 PENTIUM3_FEATURES,
1700 .xlevel = 0,
1701 .model_id = "",
1702 },
1703 {
1704 .name = "athlon",
1705 .level = 2,
1706 .vendor = CPUID_VENDOR_AMD,
1707 .family = 6,
1708 .model = 2,
1709 .stepping = 3,
1710 .features[FEAT_1_EDX] =
1711 PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR |
1712 CPUID_MCA,
1713 .features[FEAT_8000_0001_EDX] =
1714 CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT,
1715 .xlevel = 0x80000008,
1716 .model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
1717 },
1718 {
1719 .name = "n270",
1720 .level = 10,
1721 .vendor = CPUID_VENDOR_INTEL,
1722 .family = 6,
1723 .model = 28,
1724 .stepping = 2,
1725 /* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
1726 .features[FEAT_1_EDX] =
1727 PPRO_FEATURES |
1728 CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME |
1729 CPUID_ACPI | CPUID_SS,
1730 /* Some CPUs got no CPUID_SEP */
1731 /* Missing: CPUID_EXT_DSCPL, CPUID_EXT_EST, CPUID_EXT_TM2,
1732 * CPUID_EXT_XTPR */
1733 .features[FEAT_1_ECX] =
1734 CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
1735 CPUID_EXT_MOVBE,
1736 .features[FEAT_8000_0001_EDX] =
1737 CPUID_EXT2_NX,
1738 .features[FEAT_8000_0001_ECX] =
1739 CPUID_EXT3_LAHF_LM,
1740 .xlevel = 0x80000008,
1741 .model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz",
1742 },
1743 {
1744 .name = "Conroe",
1745 .level = 10,
1746 .vendor = CPUID_VENDOR_INTEL,
1747 .family = 6,
1748 .model = 15,
1749 .stepping = 3,
1750 .features[FEAT_1_EDX] =
1751 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1752 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1753 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1754 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1755 CPUID_DE | CPUID_FP87,
1756 .features[FEAT_1_ECX] =
1757 CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
1758 .features[FEAT_8000_0001_EDX] =
1759 CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
1760 .features[FEAT_8000_0001_ECX] =
1761 CPUID_EXT3_LAHF_LM,
1762 .xlevel = 0x80000008,
1763 .model_id = "Intel Celeron_4x0 (Conroe/Merom Class Core 2)",
1764 },
1765 {
1766 .name = "Penryn",
1767 .level = 10,
1768 .vendor = CPUID_VENDOR_INTEL,
1769 .family = 6,
1770 .model = 23,
1771 .stepping = 3,
1772 .features[FEAT_1_EDX] =
1773 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1774 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1775 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1776 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1777 CPUID_DE | CPUID_FP87,
1778 .features[FEAT_1_ECX] =
1779 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
1780 CPUID_EXT_SSE3,
1781 .features[FEAT_8000_0001_EDX] =
1782 CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
1783 .features[FEAT_8000_0001_ECX] =
1784 CPUID_EXT3_LAHF_LM,
1785 .xlevel = 0x80000008,
1786 .model_id = "Intel Core 2 Duo P9xxx (Penryn Class Core 2)",
1787 },
1788 {
1789 .name = "Nehalem",
1790 .level = 11,
1791 .vendor = CPUID_VENDOR_INTEL,
1792 .family = 6,
1793 .model = 26,
1794 .stepping = 3,
1795 .features[FEAT_1_EDX] =
1796 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1797 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1798 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1799 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1800 CPUID_DE | CPUID_FP87,
1801 .features[FEAT_1_ECX] =
1802 CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
1803 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
1804 .features[FEAT_8000_0001_EDX] =
1805 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1806 .features[FEAT_8000_0001_ECX] =
1807 CPUID_EXT3_LAHF_LM,
1808 .xlevel = 0x80000008,
1809 .model_id = "Intel Core i7 9xx (Nehalem Class Core i7)",
1810 },
1811 {
1812 .name = "Nehalem-IBRS",
1813 .level = 11,
1814 .vendor = CPUID_VENDOR_INTEL,
1815 .family = 6,
1816 .model = 26,
1817 .stepping = 3,
1818 .features[FEAT_1_EDX] =
1819 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1820 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1821 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1822 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1823 CPUID_DE | CPUID_FP87,
1824 .features[FEAT_1_ECX] =
1825 CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
1826 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
1827 .features[FEAT_7_0_EDX] =
1828 CPUID_7_0_EDX_SPEC_CTRL,
1829 .features[FEAT_8000_0001_EDX] =
1830 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1831 .features[FEAT_8000_0001_ECX] =
1832 CPUID_EXT3_LAHF_LM,
1833 .xlevel = 0x80000008,
1834 .model_id = "Intel Core i7 9xx (Nehalem Core i7, IBRS update)",
1835 },
1836 {
1837 .name = "Westmere",
1838 .level = 11,
1839 .vendor = CPUID_VENDOR_INTEL,
1840 .family = 6,
1841 .model = 44,
1842 .stepping = 1,
1843 .features[FEAT_1_EDX] =
1844 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1845 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1846 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1847 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1848 CPUID_DE | CPUID_FP87,
1849 .features[FEAT_1_ECX] =
1850 CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
1851 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
1852 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
1853 .features[FEAT_8000_0001_EDX] =
1854 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1855 .features[FEAT_8000_0001_ECX] =
1856 CPUID_EXT3_LAHF_LM,
1857 .features[FEAT_6_EAX] =
1858 CPUID_6_EAX_ARAT,
1859 .xlevel = 0x80000008,
1860 .model_id = "Westmere E56xx/L56xx/X56xx (Nehalem-C)",
1861 },
1862 {
1863 .name = "Westmere-IBRS",
1864 .level = 11,
1865 .vendor = CPUID_VENDOR_INTEL,
1866 .family = 6,
1867 .model = 44,
1868 .stepping = 1,
1869 .features[FEAT_1_EDX] =
1870 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1871 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1872 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1873 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1874 CPUID_DE | CPUID_FP87,
1875 .features[FEAT_1_ECX] =
1876 CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
1877 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
1878 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
1879 .features[FEAT_8000_0001_EDX] =
1880 CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
1881 .features[FEAT_8000_0001_ECX] =
1882 CPUID_EXT3_LAHF_LM,
1883 .features[FEAT_7_0_EDX] =
1884 CPUID_7_0_EDX_SPEC_CTRL,
1885 .features[FEAT_6_EAX] =
1886 CPUID_6_EAX_ARAT,
1887 .xlevel = 0x80000008,
1888 .model_id = "Westmere E56xx/L56xx/X56xx (IBRS update)",
1889 },
1890 {
1891 .name = "SandyBridge",
1892 .level = 0xd,
1893 .vendor = CPUID_VENDOR_INTEL,
1894 .family = 6,
1895 .model = 42,
1896 .stepping = 1,
1897 .features[FEAT_1_EDX] =
1898 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1899 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1900 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1901 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1902 CPUID_DE | CPUID_FP87,
1903 .features[FEAT_1_ECX] =
1904 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
1905 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
1906 CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
1907 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
1908 CPUID_EXT_SSE3,
1909 .features[FEAT_8000_0001_EDX] =
1910 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
1911 CPUID_EXT2_SYSCALL,
1912 .features[FEAT_8000_0001_ECX] =
1913 CPUID_EXT3_LAHF_LM,
1914 .features[FEAT_XSAVE] =
1915 CPUID_XSAVE_XSAVEOPT,
1916 .features[FEAT_6_EAX] =
1917 CPUID_6_EAX_ARAT,
1918 .xlevel = 0x80000008,
1919 .model_id = "Intel Xeon E312xx (Sandy Bridge)",
1920 },
1921 {
1922 .name = "SandyBridge-IBRS",
1923 .level = 0xd,
1924 .vendor = CPUID_VENDOR_INTEL,
1925 .family = 6,
1926 .model = 42,
1927 .stepping = 1,
1928 .features[FEAT_1_EDX] =
1929 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1930 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1931 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1932 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1933 CPUID_DE | CPUID_FP87,
1934 .features[FEAT_1_ECX] =
1935 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
1936 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
1937 CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
1938 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
1939 CPUID_EXT_SSE3,
1940 .features[FEAT_8000_0001_EDX] =
1941 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
1942 CPUID_EXT2_SYSCALL,
1943 .features[FEAT_8000_0001_ECX] =
1944 CPUID_EXT3_LAHF_LM,
1945 .features[FEAT_7_0_EDX] =
1946 CPUID_7_0_EDX_SPEC_CTRL,
1947 .features[FEAT_XSAVE] =
1948 CPUID_XSAVE_XSAVEOPT,
1949 .features[FEAT_6_EAX] =
1950 CPUID_6_EAX_ARAT,
1951 .xlevel = 0x80000008,
1952 .model_id = "Intel Xeon E312xx (Sandy Bridge, IBRS update)",
1953 },
1954 {
1955 .name = "IvyBridge",
1956 .level = 0xd,
1957 .vendor = CPUID_VENDOR_INTEL,
1958 .family = 6,
1959 .model = 58,
1960 .stepping = 9,
1961 .features[FEAT_1_EDX] =
1962 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1963 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1964 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1965 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
1966 CPUID_DE | CPUID_FP87,
1967 .features[FEAT_1_ECX] =
1968 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
1969 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
1970 CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
1971 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
1972 CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
1973 .features[FEAT_7_0_EBX] =
1974 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP |
1975 CPUID_7_0_EBX_ERMS,
1976 .features[FEAT_8000_0001_EDX] =
1977 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
1978 CPUID_EXT2_SYSCALL,
1979 .features[FEAT_8000_0001_ECX] =
1980 CPUID_EXT3_LAHF_LM,
1981 .features[FEAT_XSAVE] =
1982 CPUID_XSAVE_XSAVEOPT,
1983 .features[FEAT_6_EAX] =
1984 CPUID_6_EAX_ARAT,
1985 .xlevel = 0x80000008,
1986 .model_id = "Intel Xeon E3-12xx v2 (Ivy Bridge)",
1987 },
1988 {
1989 .name = "IvyBridge-IBRS",
1990 .level = 0xd,
1991 .vendor = CPUID_VENDOR_INTEL,
1992 .family = 6,
1993 .model = 58,
1994 .stepping = 9,
1995 .features[FEAT_1_EDX] =
1996 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
1997 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
1998 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
1999 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2000 CPUID_DE | CPUID_FP87,
2001 .features[FEAT_1_ECX] =
2002 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2003 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
2004 CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
2005 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
2006 CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2007 .features[FEAT_7_0_EBX] =
2008 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP |
2009 CPUID_7_0_EBX_ERMS,
2010 .features[FEAT_8000_0001_EDX] =
2011 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2012 CPUID_EXT2_SYSCALL,
2013 .features[FEAT_8000_0001_ECX] =
2014 CPUID_EXT3_LAHF_LM,
2015 .features[FEAT_7_0_EDX] =
2016 CPUID_7_0_EDX_SPEC_CTRL,
2017 .features[FEAT_XSAVE] =
2018 CPUID_XSAVE_XSAVEOPT,
2019 .features[FEAT_6_EAX] =
2020 CPUID_6_EAX_ARAT,
2021 .xlevel = 0x80000008,
2022 .model_id = "Intel Xeon E3-12xx v2 (Ivy Bridge, IBRS)",
2023 },
2024 {
2025 .name = "Haswell-noTSX",
2026 .level = 0xd,
2027 .vendor = CPUID_VENDOR_INTEL,
2028 .family = 6,
2029 .model = 60,
2030 .stepping = 1,
2031 .features[FEAT_1_EDX] =
2032 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2033 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2034 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2035 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2036 CPUID_DE | CPUID_FP87,
2037 .features[FEAT_1_ECX] =
2038 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2039 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2040 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2041 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2042 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2043 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2044 .features[FEAT_8000_0001_EDX] =
2045 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2046 CPUID_EXT2_SYSCALL,
2047 .features[FEAT_8000_0001_ECX] =
2048 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
2049 .features[FEAT_7_0_EBX] =
2050 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2051 CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2052 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID,
2053 .features[FEAT_XSAVE] =
2054 CPUID_XSAVE_XSAVEOPT,
2055 .features[FEAT_6_EAX] =
2056 CPUID_6_EAX_ARAT,
2057 .xlevel = 0x80000008,
2058 .model_id = "Intel Core Processor (Haswell, no TSX)",
2059 },
2060 {
2061 .name = "Haswell-noTSX-IBRS",
2062 .level = 0xd,
2063 .vendor = CPUID_VENDOR_INTEL,
2064 .family = 6,
2065 .model = 60,
2066 .stepping = 1,
2067 .features[FEAT_1_EDX] =
2068 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2069 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2070 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2071 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2072 CPUID_DE | CPUID_FP87,
2073 .features[FEAT_1_ECX] =
2074 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2075 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2076 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2077 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2078 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2079 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2080 .features[FEAT_8000_0001_EDX] =
2081 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2082 CPUID_EXT2_SYSCALL,
2083 .features[FEAT_8000_0001_ECX] =
2084 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
2085 .features[FEAT_7_0_EDX] =
2086 CPUID_7_0_EDX_SPEC_CTRL,
2087 .features[FEAT_7_0_EBX] =
2088 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2089 CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2090 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID,
2091 .features[FEAT_XSAVE] =
2092 CPUID_XSAVE_XSAVEOPT,
2093 .features[FEAT_6_EAX] =
2094 CPUID_6_EAX_ARAT,
2095 .xlevel = 0x80000008,
2096 .model_id = "Intel Core Processor (Haswell, no TSX, IBRS)",
2097 },
2098 {
2099 .name = "Haswell",
2100 .level = 0xd,
2101 .vendor = CPUID_VENDOR_INTEL,
2102 .family = 6,
2103 .model = 60,
2104 .stepping = 4,
2105 .features[FEAT_1_EDX] =
2106 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2107 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2108 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2109 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2110 CPUID_DE | CPUID_FP87,
2111 .features[FEAT_1_ECX] =
2112 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2113 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2114 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2115 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2116 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2117 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2118 .features[FEAT_8000_0001_EDX] =
2119 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2120 CPUID_EXT2_SYSCALL,
2121 .features[FEAT_8000_0001_ECX] =
2122 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
2123 .features[FEAT_7_0_EBX] =
2124 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2125 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2126 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2127 CPUID_7_0_EBX_RTM,
2128 .features[FEAT_XSAVE] =
2129 CPUID_XSAVE_XSAVEOPT,
2130 .features[FEAT_6_EAX] =
2131 CPUID_6_EAX_ARAT,
2132 .xlevel = 0x80000008,
2133 .model_id = "Intel Core Processor (Haswell)",
2134 },
2135 {
2136 .name = "Haswell-IBRS",
2137 .level = 0xd,
2138 .vendor = CPUID_VENDOR_INTEL,
2139 .family = 6,
2140 .model = 60,
2141 .stepping = 4,
2142 .features[FEAT_1_EDX] =
2143 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2144 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2145 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2146 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2147 CPUID_DE | CPUID_FP87,
2148 .features[FEAT_1_ECX] =
2149 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2150 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2151 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2152 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2153 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2154 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2155 .features[FEAT_8000_0001_EDX] =
2156 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2157 CPUID_EXT2_SYSCALL,
2158 .features[FEAT_8000_0001_ECX] =
2159 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
2160 .features[FEAT_7_0_EDX] =
2161 CPUID_7_0_EDX_SPEC_CTRL,
2162 .features[FEAT_7_0_EBX] =
2163 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2164 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2165 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2166 CPUID_7_0_EBX_RTM,
2167 .features[FEAT_XSAVE] =
2168 CPUID_XSAVE_XSAVEOPT,
2169 .features[FEAT_6_EAX] =
2170 CPUID_6_EAX_ARAT,
2171 .xlevel = 0x80000008,
2172 .model_id = "Intel Core Processor (Haswell, IBRS)",
2173 },
2174 {
2175 .name = "Broadwell-noTSX",
2176 .level = 0xd,
2177 .vendor = CPUID_VENDOR_INTEL,
2178 .family = 6,
2179 .model = 61,
2180 .stepping = 2,
2181 .features[FEAT_1_EDX] =
2182 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2183 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2184 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2185 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2186 CPUID_DE | CPUID_FP87,
2187 .features[FEAT_1_ECX] =
2188 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2189 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2190 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2191 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2192 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2193 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2194 .features[FEAT_8000_0001_EDX] =
2195 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2196 CPUID_EXT2_SYSCALL,
2197 .features[FEAT_8000_0001_ECX] =
2198 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2199 .features[FEAT_7_0_EBX] =
2200 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2201 CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2202 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2203 CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2204 CPUID_7_0_EBX_SMAP,
2205 .features[FEAT_XSAVE] =
2206 CPUID_XSAVE_XSAVEOPT,
2207 .features[FEAT_6_EAX] =
2208 CPUID_6_EAX_ARAT,
2209 .xlevel = 0x80000008,
2210 .model_id = "Intel Core Processor (Broadwell, no TSX)",
2211 },
2212 {
2213 .name = "Broadwell-noTSX-IBRS",
2214 .level = 0xd,
2215 .vendor = CPUID_VENDOR_INTEL,
2216 .family = 6,
2217 .model = 61,
2218 .stepping = 2,
2219 .features[FEAT_1_EDX] =
2220 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2221 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2222 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2223 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2224 CPUID_DE | CPUID_FP87,
2225 .features[FEAT_1_ECX] =
2226 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2227 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2228 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2229 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2230 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2231 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2232 .features[FEAT_8000_0001_EDX] =
2233 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2234 CPUID_EXT2_SYSCALL,
2235 .features[FEAT_8000_0001_ECX] =
2236 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2237 .features[FEAT_7_0_EDX] =
2238 CPUID_7_0_EDX_SPEC_CTRL,
2239 .features[FEAT_7_0_EBX] =
2240 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2241 CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2242 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2243 CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2244 CPUID_7_0_EBX_SMAP,
2245 .features[FEAT_XSAVE] =
2246 CPUID_XSAVE_XSAVEOPT,
2247 .features[FEAT_6_EAX] =
2248 CPUID_6_EAX_ARAT,
2249 .xlevel = 0x80000008,
2250 .model_id = "Intel Core Processor (Broadwell, no TSX, IBRS)",
2251 },
2252 {
2253 .name = "Broadwell",
2254 .level = 0xd,
2255 .vendor = CPUID_VENDOR_INTEL,
2256 .family = 6,
2257 .model = 61,
2258 .stepping = 2,
2259 .features[FEAT_1_EDX] =
2260 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2261 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2262 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2263 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2264 CPUID_DE | CPUID_FP87,
2265 .features[FEAT_1_ECX] =
2266 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2267 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2268 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2269 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2270 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2271 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2272 .features[FEAT_8000_0001_EDX] =
2273 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2274 CPUID_EXT2_SYSCALL,
2275 .features[FEAT_8000_0001_ECX] =
2276 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2277 .features[FEAT_7_0_EBX] =
2278 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2279 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2280 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2281 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2282 CPUID_7_0_EBX_SMAP,
2283 .features[FEAT_XSAVE] =
2284 CPUID_XSAVE_XSAVEOPT,
2285 .features[FEAT_6_EAX] =
2286 CPUID_6_EAX_ARAT,
2287 .xlevel = 0x80000008,
2288 .model_id = "Intel Core Processor (Broadwell)",
2289 },
2290 {
2291 .name = "Broadwell-IBRS",
2292 .level = 0xd,
2293 .vendor = CPUID_VENDOR_INTEL,
2294 .family = 6,
2295 .model = 61,
2296 .stepping = 2,
2297 .features[FEAT_1_EDX] =
2298 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2299 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2300 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2301 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2302 CPUID_DE | CPUID_FP87,
2303 .features[FEAT_1_ECX] =
2304 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2305 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2306 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2307 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2308 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2309 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2310 .features[FEAT_8000_0001_EDX] =
2311 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2312 CPUID_EXT2_SYSCALL,
2313 .features[FEAT_8000_0001_ECX] =
2314 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2315 .features[FEAT_7_0_EDX] =
2316 CPUID_7_0_EDX_SPEC_CTRL,
2317 .features[FEAT_7_0_EBX] =
2318 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2319 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2320 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2321 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2322 CPUID_7_0_EBX_SMAP,
2323 .features[FEAT_XSAVE] =
2324 CPUID_XSAVE_XSAVEOPT,
2325 .features[FEAT_6_EAX] =
2326 CPUID_6_EAX_ARAT,
2327 .xlevel = 0x80000008,
2328 .model_id = "Intel Core Processor (Broadwell, IBRS)",
2329 },
2330 {
2331 .name = "Skylake-Client",
2332 .level = 0xd,
2333 .vendor = CPUID_VENDOR_INTEL,
2334 .family = 6,
2335 .model = 94,
2336 .stepping = 3,
2337 .features[FEAT_1_EDX] =
2338 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2339 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2340 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2341 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2342 CPUID_DE | CPUID_FP87,
2343 .features[FEAT_1_ECX] =
2344 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2345 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2346 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2347 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2348 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2349 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2350 .features[FEAT_8000_0001_EDX] =
2351 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2352 CPUID_EXT2_SYSCALL,
2353 .features[FEAT_8000_0001_ECX] =
2354 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2355 .features[FEAT_7_0_EBX] =
2356 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2357 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2358 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2359 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2360 CPUID_7_0_EBX_SMAP,
2361 /* Missing: XSAVES (not supported by some Linux versions,
2362 * including v4.1 to v4.12).
2363 * KVM doesn't yet expose any XSAVES state save component,
2364 * and the only one defined in Skylake (processor tracing)
2365 * probably will block migration anyway.
2366 */
2367 .features[FEAT_XSAVE] =
2368 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2369 CPUID_XSAVE_XGETBV1,
2370 .features[FEAT_6_EAX] =
2371 CPUID_6_EAX_ARAT,
2372 .xlevel = 0x80000008,
2373 .model_id = "Intel Core Processor (Skylake)",
2374 },
2375 {
2376 .name = "Skylake-Client-IBRS",
2377 .level = 0xd,
2378 .vendor = CPUID_VENDOR_INTEL,
2379 .family = 6,
2380 .model = 94,
2381 .stepping = 3,
2382 .features[FEAT_1_EDX] =
2383 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2384 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2385 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2386 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2387 CPUID_DE | CPUID_FP87,
2388 .features[FEAT_1_ECX] =
2389 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2390 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2391 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2392 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2393 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2394 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2395 .features[FEAT_8000_0001_EDX] =
2396 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2397 CPUID_EXT2_SYSCALL,
2398 .features[FEAT_8000_0001_ECX] =
2399 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2400 .features[FEAT_7_0_EDX] =
2401 CPUID_7_0_EDX_SPEC_CTRL,
2402 .features[FEAT_7_0_EBX] =
2403 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2404 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2405 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2406 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2407 CPUID_7_0_EBX_SMAP,
2408 /* Missing: XSAVES (not supported by some Linux versions,
2409 * including v4.1 to v4.12).
2410 * KVM doesn't yet expose any XSAVES state save component,
2411 * and the only one defined in Skylake (processor tracing)
2412 * probably will block migration anyway.
2413 */
2414 .features[FEAT_XSAVE] =
2415 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2416 CPUID_XSAVE_XGETBV1,
2417 .features[FEAT_6_EAX] =
2418 CPUID_6_EAX_ARAT,
2419 .xlevel = 0x80000008,
2420 .model_id = "Intel Core Processor (Skylake, IBRS)",
2421 },
2422 {
2423 .name = "Skylake-Server",
2424 .level = 0xd,
2425 .vendor = CPUID_VENDOR_INTEL,
2426 .family = 6,
2427 .model = 85,
2428 .stepping = 4,
2429 .features[FEAT_1_EDX] =
2430 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2431 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2432 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2433 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2434 CPUID_DE | CPUID_FP87,
2435 .features[FEAT_1_ECX] =
2436 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2437 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2438 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2439 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2440 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2441 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2442 .features[FEAT_8000_0001_EDX] =
2443 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
2444 CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2445 .features[FEAT_8000_0001_ECX] =
2446 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2447 .features[FEAT_7_0_EBX] =
2448 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2449 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2450 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2451 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2452 CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB |
2453 CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
2454 CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
2455 CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT,
2456 .features[FEAT_7_0_ECX] =
2457 CPUID_7_0_ECX_PKU,
2458 /* Missing: XSAVES (not supported by some Linux versions,
2459 * including v4.1 to v4.12).
2460 * KVM doesn't yet expose any XSAVES state save component,
2461 * and the only one defined in Skylake (processor tracing)
2462 * probably will block migration anyway.
2463 */
2464 .features[FEAT_XSAVE] =
2465 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2466 CPUID_XSAVE_XGETBV1,
2467 .features[FEAT_6_EAX] =
2468 CPUID_6_EAX_ARAT,
2469 .xlevel = 0x80000008,
2470 .model_id = "Intel Xeon Processor (Skylake)",
2471 },
2472 {
2473 .name = "Skylake-Server-IBRS",
2474 .level = 0xd,
2475 .vendor = CPUID_VENDOR_INTEL,
2476 .family = 6,
2477 .model = 85,
2478 .stepping = 4,
2479 .features[FEAT_1_EDX] =
2480 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2481 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2482 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2483 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2484 CPUID_DE | CPUID_FP87,
2485 .features[FEAT_1_ECX] =
2486 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2487 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2488 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2489 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2490 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2491 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2492 .features[FEAT_8000_0001_EDX] =
2493 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
2494 CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2495 .features[FEAT_8000_0001_ECX] =
2496 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2497 .features[FEAT_7_0_EDX] =
2498 CPUID_7_0_EDX_SPEC_CTRL,
2499 .features[FEAT_7_0_EBX] =
2500 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2501 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2502 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2503 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2504 CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB |
2505 CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
2506 CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
2507 CPUID_7_0_EBX_AVX512VL,
2508 .features[FEAT_7_0_ECX] =
2509 CPUID_7_0_ECX_PKU,
2510 /* Missing: XSAVES (not supported by some Linux versions,
2511 * including v4.1 to v4.12).
2512 * KVM doesn't yet expose any XSAVES state save component,
2513 * and the only one defined in Skylake (processor tracing)
2514 * probably will block migration anyway.
2515 */
2516 .features[FEAT_XSAVE] =
2517 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2518 CPUID_XSAVE_XGETBV1,
2519 .features[FEAT_6_EAX] =
2520 CPUID_6_EAX_ARAT,
2521 .xlevel = 0x80000008,
2522 .model_id = "Intel Xeon Processor (Skylake, IBRS)",
2523 },
2524 {
2525 .name = "Cascadelake-Server",
2526 .level = 0xd,
2527 .vendor = CPUID_VENDOR_INTEL,
2528 .family = 6,
2529 .model = 85,
2530 .stepping = 6,
2531 .features[FEAT_1_EDX] =
2532 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2533 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2534 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2535 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2536 CPUID_DE | CPUID_FP87,
2537 .features[FEAT_1_ECX] =
2538 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2539 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2540 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2541 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2542 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2543 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2544 .features[FEAT_8000_0001_EDX] =
2545 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
2546 CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2547 .features[FEAT_8000_0001_ECX] =
2548 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2549 .features[FEAT_7_0_EBX] =
2550 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2551 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2552 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2553 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2554 CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB |
2555 CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
2556 CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
2557 CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT,
2558 .features[FEAT_7_0_ECX] =
2559 CPUID_7_0_ECX_PKU |
2560 CPUID_7_0_ECX_AVX512VNNI,
2561 .features[FEAT_7_0_EDX] =
2562 CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_SPEC_CTRL_SSBD,
2563 /* Missing: XSAVES (not supported by some Linux versions,
2564 * including v4.1 to v4.12).
2565 * KVM doesn't yet expose any XSAVES state save component,
2566 * and the only one defined in Skylake (processor tracing)
2567 * probably will block migration anyway.
2568 */
2569 .features[FEAT_XSAVE] =
2570 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2571 CPUID_XSAVE_XGETBV1,
2572 .features[FEAT_6_EAX] =
2573 CPUID_6_EAX_ARAT,
2574 .xlevel = 0x80000008,
2575 .model_id = "Intel Xeon Processor (Cascadelake)",
2576 },
2577 {
2578 .name = "Icelake-Client",
2579 .level = 0xd,
2580 .vendor = CPUID_VENDOR_INTEL,
2581 .family = 6,
2582 .model = 126,
2583 .stepping = 0,
2584 .features[FEAT_1_EDX] =
2585 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2586 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2587 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2588 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2589 CPUID_DE | CPUID_FP87,
2590 .features[FEAT_1_ECX] =
2591 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2592 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2593 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2594 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2595 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2596 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2597 .features[FEAT_8000_0001_EDX] =
2598 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
2599 CPUID_EXT2_SYSCALL,
2600 .features[FEAT_8000_0001_ECX] =
2601 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2602 .features[FEAT_8000_0008_EBX] =
2603 CPUID_8000_0008_EBX_WBNOINVD,
2604 .features[FEAT_7_0_EBX] =
2605 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2606 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2607 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2608 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2609 CPUID_7_0_EBX_SMAP,
2610 .features[FEAT_7_0_ECX] =
2611 CPUID_7_0_ECX_VBMI | CPUID_7_0_ECX_UMIP | CPUID_7_0_ECX_PKU |
2612 CPUID_7_0_ECX_VBMI2 | CPUID_7_0_ECX_GFNI |
2613 CPUID_7_0_ECX_VAES | CPUID_7_0_ECX_VPCLMULQDQ |
2614 CPUID_7_0_ECX_AVX512VNNI | CPUID_7_0_ECX_AVX512BITALG |
2615 CPUID_7_0_ECX_AVX512_VPOPCNTDQ,
2616 .features[FEAT_7_0_EDX] =
2617 CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_SPEC_CTRL_SSBD,
2618 /* Missing: XSAVES (not supported by some Linux versions,
2619 * including v4.1 to v4.12).
2620 * KVM doesn't yet expose any XSAVES state save component,
2621 * and the only one defined in Skylake (processor tracing)
2622 * probably will block migration anyway.
2623 */
2624 .features[FEAT_XSAVE] =
2625 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2626 CPUID_XSAVE_XGETBV1,
2627 .features[FEAT_6_EAX] =
2628 CPUID_6_EAX_ARAT,
2629 .xlevel = 0x80000008,
2630 .model_id = "Intel Core Processor (Icelake)",
2631 },
2632 {
2633 .name = "Icelake-Server",
2634 .level = 0xd,
2635 .vendor = CPUID_VENDOR_INTEL,
2636 .family = 6,
2637 .model = 134,
2638 .stepping = 0,
2639 .features[FEAT_1_EDX] =
2640 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2641 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2642 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2643 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2644 CPUID_DE | CPUID_FP87,
2645 .features[FEAT_1_ECX] =
2646 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2647 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2648 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2649 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2650 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2651 CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2652 .features[FEAT_8000_0001_EDX] =
2653 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
2654 CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2655 .features[FEAT_8000_0001_ECX] =
2656 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2657 .features[FEAT_8000_0008_EBX] =
2658 CPUID_8000_0008_EBX_WBNOINVD,
2659 .features[FEAT_7_0_EBX] =
2660 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
2661 CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
2662 CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
2663 CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
2664 CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB |
2665 CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
2666 CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
2667 CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT,
2668 .features[FEAT_7_0_ECX] =
2669 CPUID_7_0_ECX_VBMI | CPUID_7_0_ECX_UMIP | CPUID_7_0_ECX_PKU |
2670 CPUID_7_0_ECX_VBMI2 | CPUID_7_0_ECX_GFNI |
2671 CPUID_7_0_ECX_VAES | CPUID_7_0_ECX_VPCLMULQDQ |
2672 CPUID_7_0_ECX_AVX512VNNI | CPUID_7_0_ECX_AVX512BITALG |
2673 CPUID_7_0_ECX_AVX512_VPOPCNTDQ | CPUID_7_0_ECX_LA57,
2674 .features[FEAT_7_0_EDX] =
2675 CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_SPEC_CTRL_SSBD,
2676 /* Missing: XSAVES (not supported by some Linux versions,
2677 * including v4.1 to v4.12).
2678 * KVM doesn't yet expose any XSAVES state save component,
2679 * and the only one defined in Skylake (processor tracing)
2680 * probably will block migration anyway.
2681 */
2682 .features[FEAT_XSAVE] =
2683 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2684 CPUID_XSAVE_XGETBV1,
2685 .features[FEAT_6_EAX] =
2686 CPUID_6_EAX_ARAT,
2687 .xlevel = 0x80000008,
2688 .model_id = "Intel Xeon Processor (Icelake)",
2689 },
2690 {
2691 .name = "KnightsMill",
2692 .level = 0xd,
2693 .vendor = CPUID_VENDOR_INTEL,
2694 .family = 6,
2695 .model = 133,
2696 .stepping = 0,
2697 .features[FEAT_1_EDX] =
2698 CPUID_VME | CPUID_SS | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR |
2699 CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV |
2700 CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC |
2701 CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC |
2702 CPUID_PSE | CPUID_DE | CPUID_FP87,
2703 .features[FEAT_1_ECX] =
2704 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2705 CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
2706 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
2707 CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
2708 CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
2709 CPUID_EXT_F16C | CPUID_EXT_RDRAND,
2710 .features[FEAT_8000_0001_EDX] =
2711 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
2712 CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2713 .features[FEAT_8000_0001_ECX] =
2714 CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
2715 .features[FEAT_7_0_EBX] =
2716 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
2717 CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS |
2718 CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_AVX512F |
2719 CPUID_7_0_EBX_AVX512CD | CPUID_7_0_EBX_AVX512PF |
2720 CPUID_7_0_EBX_AVX512ER,
2721 .features[FEAT_7_0_ECX] =
2722 CPUID_7_0_ECX_AVX512_VPOPCNTDQ,
2723 .features[FEAT_7_0_EDX] =
2724 CPUID_7_0_EDX_AVX512_4VNNIW | CPUID_7_0_EDX_AVX512_4FMAPS,
2725 .features[FEAT_XSAVE] =
2726 CPUID_XSAVE_XSAVEOPT,
2727 .features[FEAT_6_EAX] =
2728 CPUID_6_EAX_ARAT,
2729 .xlevel = 0x80000008,
2730 .model_id = "Intel Xeon Phi Processor (Knights Mill)",
2731 },
2732 {
2733 .name = "Opteron_G1",
2734 .level = 5,
2735 .vendor = CPUID_VENDOR_AMD,
2736 .family = 15,
2737 .model = 6,
2738 .stepping = 1,
2739 .features[FEAT_1_EDX] =
2740 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2741 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2742 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2743 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2744 CPUID_DE | CPUID_FP87,
2745 .features[FEAT_1_ECX] =
2746 CPUID_EXT_SSE3,
2747 .features[FEAT_8000_0001_EDX] =
2748 CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2749 .xlevel = 0x80000008,
2750 .model_id = "AMD Opteron 240 (Gen 1 Class Opteron)",
2751 },
2752 {
2753 .name = "Opteron_G2",
2754 .level = 5,
2755 .vendor = CPUID_VENDOR_AMD,
2756 .family = 15,
2757 .model = 6,
2758 .stepping = 1,
2759 .features[FEAT_1_EDX] =
2760 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2761 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2762 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2763 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2764 CPUID_DE | CPUID_FP87,
2765 .features[FEAT_1_ECX] =
2766 CPUID_EXT_CX16 | CPUID_EXT_SSE3,
2767 .features[FEAT_8000_0001_EDX] =
2768 CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
2769 .features[FEAT_8000_0001_ECX] =
2770 CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
2771 .xlevel = 0x80000008,
2772 .model_id = "AMD Opteron 22xx (Gen 2 Class Opteron)",
2773 },
2774 {
2775 .name = "Opteron_G3",
2776 .level = 5,
2777 .vendor = CPUID_VENDOR_AMD,
2778 .family = 16,
2779 .model = 2,
2780 .stepping = 3,
2781 .features[FEAT_1_EDX] =
2782 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2783 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2784 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2785 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2786 CPUID_DE | CPUID_FP87,
2787 .features[FEAT_1_ECX] =
2788 CPUID_EXT_POPCNT | CPUID_EXT_CX16 | CPUID_EXT_MONITOR |
2789 CPUID_EXT_SSE3,
2790 .features[FEAT_8000_0001_EDX] =
2791 CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL |
2792 CPUID_EXT2_RDTSCP,
2793 .features[FEAT_8000_0001_ECX] =
2794 CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A |
2795 CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
2796 .xlevel = 0x80000008,
2797 .model_id = "AMD Opteron 23xx (Gen 3 Class Opteron)",
2798 },
2799 {
2800 .name = "Opteron_G4",
2801 .level = 0xd,
2802 .vendor = CPUID_VENDOR_AMD,
2803 .family = 21,
2804 .model = 1,
2805 .stepping = 2,
2806 .features[FEAT_1_EDX] =
2807 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2808 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2809 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2810 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2811 CPUID_DE | CPUID_FP87,
2812 .features[FEAT_1_ECX] =
2813 CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
2814 CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
2815 CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
2816 CPUID_EXT_SSE3,
2817 .features[FEAT_8000_0001_EDX] =
2818 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_NX |
2819 CPUID_EXT2_SYSCALL | CPUID_EXT2_RDTSCP,
2820 .features[FEAT_8000_0001_ECX] =
2821 CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
2822 CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
2823 CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
2824 CPUID_EXT3_LAHF_LM,
2825 .features[FEAT_SVM] =
2826 CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
2827 /* no xsaveopt! */
2828 .xlevel = 0x8000001A,
2829 .model_id = "AMD Opteron 62xx class CPU",
2830 },
2831 {
2832 .name = "Opteron_G5",
2833 .level = 0xd,
2834 .vendor = CPUID_VENDOR_AMD,
2835 .family = 21,
2836 .model = 2,
2837 .stepping = 0,
2838 .features[FEAT_1_EDX] =
2839 CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
2840 CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
2841 CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
2842 CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
2843 CPUID_DE | CPUID_FP87,
2844 .features[FEAT_1_ECX] =
2845 CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE |
2846 CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
2847 CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA |
2848 CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
2849 .features[FEAT_8000_0001_EDX] =
2850 CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_NX |
2851 CPUID_EXT2_SYSCALL | CPUID_EXT2_RDTSCP,
2852 .features[FEAT_8000_0001_ECX] =
2853 CPUID_EXT3_TBM | CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
2854 CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
2855 CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
2856 CPUID_EXT3_LAHF_LM,
2857 .features[FEAT_SVM] =
2858 CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
2859 /* no xsaveopt! */
2860 .xlevel = 0x8000001A,
2861 .model_id = "AMD Opteron 63xx class CPU",
2862 },
2863 {
2864 .name = "EPYC",
2865 .level = 0xd,
2866 .vendor = CPUID_VENDOR_AMD,
2867 .family = 23,
2868 .model = 1,
2869 .stepping = 2,
2870 .features[FEAT_1_EDX] =
2871 CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH |
2872 CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE |
2873 CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE |
2874 CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE |
2875 CPUID_VME | CPUID_FP87,
2876 .features[FEAT_1_ECX] =
2877 CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX |
2878 CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT |
2879 CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
2880 CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 |
2881 CPUID_EXT_MONITOR | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
2882 .features[FEAT_8000_0001_EDX] =
2883 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB |
2884 CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX |
2885 CPUID_EXT2_SYSCALL,
2886 .features[FEAT_8000_0001_ECX] =
2887 CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH |
2888 CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM |
2889 CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM |
2890 CPUID_EXT3_TOPOEXT,
2891 .features[FEAT_7_0_EBX] =
2892 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
2893 CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED |
2894 CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT |
2895 CPUID_7_0_EBX_SHA_NI,
2896 /* Missing: XSAVES (not supported by some Linux versions,
2897 * including v4.1 to v4.12).
2898 * KVM doesn't yet expose any XSAVES state save component.
2899 */
2900 .features[FEAT_XSAVE] =
2901 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2902 CPUID_XSAVE_XGETBV1,
2903 .features[FEAT_6_EAX] =
2904 CPUID_6_EAX_ARAT,
2905 .features[FEAT_SVM] =
2906 CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
2907 .xlevel = 0x8000001E,
2908 .model_id = "AMD EPYC Processor",
2909 .cache_info = &epyc_cache_info,
2910 },
2911 {
2912 .name = "EPYC-IBPB",
2913 .level = 0xd,
2914 .vendor = CPUID_VENDOR_AMD,
2915 .family = 23,
2916 .model = 1,
2917 .stepping = 2,
2918 .features[FEAT_1_EDX] =
2919 CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH |
2920 CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE |
2921 CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE |
2922 CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE |
2923 CPUID_VME | CPUID_FP87,
2924 .features[FEAT_1_ECX] =
2925 CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX |
2926 CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT |
2927 CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
2928 CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 |
2929 CPUID_EXT_MONITOR | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
2930 .features[FEAT_8000_0001_EDX] =
2931 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB |
2932 CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX |
2933 CPUID_EXT2_SYSCALL,
2934 .features[FEAT_8000_0001_ECX] =
2935 CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH |
2936 CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM |
2937 CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM |
2938 CPUID_EXT3_TOPOEXT,
2939 .features[FEAT_8000_0008_EBX] =
2940 CPUID_8000_0008_EBX_IBPB,
2941 .features[FEAT_7_0_EBX] =
2942 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
2943 CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED |
2944 CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT |
2945 CPUID_7_0_EBX_SHA_NI,
2946 /* Missing: XSAVES (not supported by some Linux versions,
2947 * including v4.1 to v4.12).
2948 * KVM doesn't yet expose any XSAVES state save component.
2949 */
2950 .features[FEAT_XSAVE] =
2951 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
2952 CPUID_XSAVE_XGETBV1,
2953 .features[FEAT_6_EAX] =
2954 CPUID_6_EAX_ARAT,
2955 .features[FEAT_SVM] =
2956 CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
2957 .xlevel = 0x8000001E,
2958 .model_id = "AMD EPYC Processor (with IBPB)",
2959 .cache_info = &epyc_cache_info,
2960 },
2961 {
2962 .name = "Dhyana",
2963 .level = 0xd,
2964 .vendor = CPUID_VENDOR_HYGON,
2965 .family = 24,
2966 .model = 0,
2967 .stepping = 1,
2968 .features[FEAT_1_EDX] =
2969 CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH |
2970 CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE |
2971 CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE |
2972 CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE |
2973 CPUID_VME | CPUID_FP87,
2974 .features[FEAT_1_ECX] =
2975 CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX |
2976 CPUID_EXT_XSAVE | CPUID_EXT_POPCNT |
2977 CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
2978 CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 |
2979 CPUID_EXT_MONITOR | CPUID_EXT_SSE3,
2980 .features[FEAT_8000_0001_EDX] =
2981 CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB |
2982 CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX |
2983 CPUID_EXT2_SYSCALL,
2984 .features[FEAT_8000_0001_ECX] =
2985 CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH |
2986 CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM |
2987 CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM |
2988 CPUID_EXT3_TOPOEXT,
2989 .features[FEAT_8000_0008_EBX] =
2990 CPUID_8000_0008_EBX_IBPB,
2991 .features[FEAT_7_0_EBX] =
2992 CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
2993 CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED |
2994 CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT,
2995 /*
2996 * Missing: XSAVES (not supported by some Linux versions,
2997 * including v4.1 to v4.12).
2998 * KVM doesn't yet expose any XSAVES state save component.
2999 */
3000 .features[FEAT_XSAVE] =
3001 CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
3002 CPUID_XSAVE_XGETBV1,
3003 .features[FEAT_6_EAX] =
3004 CPUID_6_EAX_ARAT,
3005 .features[FEAT_SVM] =
3006 CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
3007 .xlevel = 0x8000001E,
3008 .model_id = "Hygon Dhyana Processor",
3009 .cache_info = &epyc_cache_info,
3010 },
3011 };
3012
3013 typedef struct PropValue {
3014 const char *prop, *value;
3015 } PropValue;
3016
3017 /* KVM-specific features that are automatically added/removed
3018 * from all CPU models when KVM is enabled.
3019 */
3020 static PropValue kvm_default_props[] = {
3021 { "kvmclock", "on" },
3022 { "kvm-nopiodelay", "on" },
3023 { "kvm-asyncpf", "on" },
3024 { "kvm-steal-time", "on" },
3025 { "kvm-pv-eoi", "on" },
3026 { "kvmclock-stable-bit", "on" },
3027 { "x2apic", "on" },
3028 { "acpi", "off" },
3029 { "monitor", "off" },
3030 { "svm", "off" },
3031 { NULL, NULL },
3032 };
3033
3034 /* TCG-specific defaults that override all CPU models when using TCG
3035 */
3036 static PropValue tcg_default_props[] = {
3037 { "vme", "off" },
3038 { NULL, NULL },
3039 };
3040
3041
3042 void x86_cpu_change_kvm_default(const char *prop, const char *value)
3043 {
3044 PropValue *pv;
3045 for (pv = kvm_default_props; pv->prop; pv++) {
3046 if (!strcmp(pv->prop, prop)) {
3047 pv->value = value;
3048 break;
3049 }
3050 }
3051
3052 /* It is valid to call this function only for properties that
3053 * are already present in the kvm_default_props table.
3054 */
3055 assert(pv->prop);
3056 }
3057
3058 static uint32_t x86_cpu_get_supported_feature_word(FeatureWord w,
3059 bool migratable_only);
3060
3061 static bool lmce_supported(void)
3062 {
3063 uint64_t mce_cap = 0;
3064
3065 #ifdef CONFIG_KVM
3066 if (kvm_ioctl(kvm_state, KVM_X86_GET_MCE_CAP_SUPPORTED, &mce_cap) < 0) {
3067 return false;
3068 }
3069 #endif
3070
3071 return !!(mce_cap & MCG_LMCE_P);
3072 }
3073
3074 #define CPUID_MODEL_ID_SZ 48
3075
3076 /**
3077 * cpu_x86_fill_model_id:
3078 * Get CPUID model ID string from host CPU.
3079 *
3080 * @str should have at least CPUID_MODEL_ID_SZ bytes
3081 *
3082 * The function does NOT add a null terminator to the string
3083 * automatically.
3084 */
3085 static int cpu_x86_fill_model_id(char *str)
3086 {
3087 uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
3088 int i;
3089
3090 for (i = 0; i < 3; i++) {
3091 host_cpuid(0x80000002 + i, 0, &eax, &ebx, &ecx, &edx);
3092 memcpy(str + i * 16 + 0, &eax, 4);
3093 memcpy(str + i * 16 + 4, &ebx, 4);
3094 memcpy(str + i * 16 + 8, &ecx, 4);
3095 memcpy(str + i * 16 + 12, &edx, 4);
3096 }
3097 return 0;
3098 }
3099
3100 static Property max_x86_cpu_properties[] = {
3101 DEFINE_PROP_BOOL("migratable", X86CPU, migratable, true),
3102 DEFINE_PROP_BOOL("host-cache-info", X86CPU, cache_info_passthrough, false),
3103 DEFINE_PROP_END_OF_LIST()
3104 };
3105
3106 static void max_x86_cpu_class_init(ObjectClass *oc, void *data)
3107 {
3108 DeviceClass *dc = DEVICE_CLASS(oc);
3109 X86CPUClass *xcc = X86_CPU_CLASS(oc);
3110
3111 xcc->ordering = 9;
3112
3113 xcc->model_description =
3114 "Enables all features supported by the accelerator in the current host";
3115
3116 dc->props = max_x86_cpu_properties;
3117 }
3118
3119 static void x86_cpu_load_def(X86CPU *cpu, X86CPUDefinition *def, Error **errp);
3120
3121 static void max_x86_cpu_initfn(Object *obj)
3122 {
3123 X86CPU *cpu = X86_CPU(obj);
3124 CPUX86State *env = &cpu->env;
3125 KVMState *s = kvm_state;
3126
3127 /* We can't fill the features array here because we don't know yet if
3128 * "migratable" is true or false.
3129 */
3130 cpu->max_features = true;
3131
3132 if (accel_uses_host_cpuid()) {
3133 char vendor[CPUID_VENDOR_SZ + 1] = { 0 };
3134 char model_id[CPUID_MODEL_ID_SZ + 1] = { 0 };
3135 int family, model, stepping;
3136 X86CPUDefinition host_cpudef = { };
3137 uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
3138
3139 host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
3140 x86_cpu_vendor_words2str(host_cpudef.vendor, ebx, edx, ecx);
3141
3142 host_vendor_fms(vendor, &family, &model, &stepping);
3143
3144 cpu_x86_fill_model_id(model_id);
3145
3146 object_property_set_str(OBJECT(cpu), vendor, "vendor", &error_abort);
3147 object_property_set_int(OBJECT(cpu), family, "family", &error_abort);
3148 object_property_set_int(OBJECT(cpu), model, "model", &error_abort);
3149 object_property_set_int(OBJECT(cpu), stepping, "stepping",
3150 &error_abort);
3151 object_property_set_str(OBJECT(cpu), model_id, "model-id",
3152 &error_abort);
3153
3154 if (kvm_enabled()) {
3155 env->cpuid_min_level =
3156 kvm_arch_get_supported_cpuid(s, 0x0, 0, R_EAX);
3157 env->cpuid_min_xlevel =
3158 kvm_arch_get_supported_cpuid(s, 0x80000000, 0, R_EAX);
3159 env->cpuid_min_xlevel2 =
3160 kvm_arch_get_supported_cpuid(s, 0xC0000000, 0, R_EAX);
3161 } else {
3162 env->cpuid_min_level =
3163 hvf_get_supported_cpuid(0x0, 0, R_EAX);
3164 env->cpuid_min_xlevel =
3165 hvf_get_supported_cpuid(0x80000000, 0, R_EAX);
3166 env->cpuid_min_xlevel2 =
3167 hvf_get_supported_cpuid(0xC0000000, 0, R_EAX);
3168 }
3169
3170 if (lmce_supported()) {
3171 object_property_set_bool(OBJECT(cpu), true, "lmce", &error_abort);
3172 }
3173 } else {
3174 object_property_set_str(OBJECT(cpu), CPUID_VENDOR_AMD,
3175 "vendor", &error_abort);
3176 object_property_set_int(OBJECT(cpu), 6, "family", &error_abort);
3177 object_property_set_int(OBJECT(cpu), 6, "model", &error_abort);
3178 object_property_set_int(OBJECT(cpu), 3, "stepping", &error_abort);
3179 object_property_set_str(OBJECT(cpu),
3180 "QEMU TCG CPU version " QEMU_HW_VERSION,
3181 "model-id", &error_abort);
3182 }
3183
3184 object_property_set_bool(OBJECT(cpu), true, "pmu", &error_abort);
3185 }
3186
3187 static const TypeInfo max_x86_cpu_type_info = {
3188 .name = X86_CPU_TYPE_NAME("max"),
3189 .parent = TYPE_X86_CPU,
3190 .instance_init = max_x86_cpu_initfn,
3191 .class_init = max_x86_cpu_class_init,
3192 };
3193
3194 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
3195 static void host_x86_cpu_class_init(ObjectClass *oc, void *data)
3196 {
3197 X86CPUClass *xcc = X86_CPU_CLASS(oc);
3198
3199 xcc->host_cpuid_required = true;
3200 xcc->ordering = 8;
3201
3202 #if defined(CONFIG_KVM)
3203 xcc->model_description =
3204 "KVM processor with all supported host features ";
3205 #elif defined(CONFIG_HVF)
3206 xcc->model_description =
3207 "HVF processor with all supported host features ";
3208 #endif
3209 }
3210
3211 static const TypeInfo host_x86_cpu_type_info = {
3212 .name = X86_CPU_TYPE_NAME("host"),
3213 .parent = X86_CPU_TYPE_NAME("max"),
3214 .class_init = host_x86_cpu_class_init,
3215 };
3216
3217 #endif
3218
3219 static char *feature_word_description(FeatureWordInfo *f, uint32_t bit)
3220 {
3221 assert(f->type == CPUID_FEATURE_WORD || f->type == MSR_FEATURE_WORD);
3222
3223 switch (f->type) {
3224 case CPUID_FEATURE_WORD:
3225 {
3226 const char *reg = get_register_name_32(f->cpuid.reg);
3227 assert(reg);
3228 return g_strdup_printf("CPUID.%02XH:%s",
3229 f->cpuid.eax, reg);
3230 }
3231 case MSR_FEATURE_WORD:
3232 return g_strdup_printf("MSR(%02XH)",
3233 f->msr.index);
3234 }
3235
3236 return NULL;
3237 }
3238
3239 static void report_unavailable_features(FeatureWord w, uint32_t mask)
3240 {
3241 FeatureWordInfo *f = &feature_word_info[w];
3242 int i;
3243 char *feat_word_str;
3244
3245 for (i = 0; i < 32; ++i) {
3246 if ((1UL << i) & mask) {
3247 feat_word_str = feature_word_description(f, i);
3248 warn_report("%s doesn't support requested feature: %s%s%s [bit %d]",
3249 accel_uses_host_cpuid() ? "host" : "TCG",
3250 feat_word_str,
3251 f->feat_names[i] ? "." : "",
3252 f->feat_names[i] ? f->feat_names[i] : "", i);
3253 g_free(feat_word_str);
3254 }
3255 }
3256 }
3257
3258 static void x86_cpuid_version_get_family(Object *obj, Visitor *v,
3259 const char *name, void *opaque,
3260 Error **errp)
3261 {
3262 X86CPU *cpu = X86_CPU(obj);
3263 CPUX86State *env = &cpu->env;
3264 int64_t value;
3265
3266 value = (env->cpuid_version >> 8) & 0xf;
3267 if (value == 0xf) {
3268 value += (env->cpuid_version >> 20) & 0xff;
3269 }
3270 visit_type_int(v, name, &value, errp);
3271 }
3272
3273 static void x86_cpuid_version_set_family(Object *obj, Visitor *v,
3274 const char *name, void *opaque,
3275 Error **errp)
3276 {
3277 X86CPU *cpu = X86_CPU(obj);
3278 CPUX86State *env = &cpu->env;
3279 const int64_t min = 0;
3280 const int64_t max = 0xff + 0xf;
3281 Error *local_err = NULL;
3282 int64_t value;
3283
3284 visit_type_int(v, name, &value, &local_err);
3285 if (local_err) {
3286 error_propagate(errp, local_err);
3287 return;
3288 }
3289 if (value < min || value > max) {
3290 error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
3291 name ? name : "null", value, min, max);
3292 return;
3293 }
3294
3295 env->cpuid_version &= ~0xff00f00;
3296 if (value > 0x0f) {
3297 env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20);
3298 } else {
3299 env->cpuid_version |= value << 8;
3300 }
3301 }
3302
3303 static void x86_cpuid_version_get_model(Object *obj, Visitor *v,
3304 const char *name, void *opaque,
3305 Error **errp)
3306 {
3307 X86CPU *cpu = X86_CPU(obj);
3308 CPUX86State *env = &cpu->env;
3309 int64_t value;
3310
3311 value = (env->cpuid_version >> 4) & 0xf;
3312 value |= ((env->cpuid_version >> 16) & 0xf) << 4;
3313 visit_type_int(v, name, &value, errp);
3314 }
3315
3316 static void x86_cpuid_version_set_model(Object *obj, Visitor *v,
3317 const char *name, void *opaque,
3318 Error **errp)
3319 {
3320 X86CPU *cpu = X86_CPU(obj);
3321 CPUX86State *env = &cpu->env;
3322 const int64_t min = 0;
3323 const int64_t max = 0xff;
3324 Error *local_err = NULL;
3325 int64_t value;
3326
3327 visit_type_int(v, name, &value, &local_err);
3328 if (local_err) {
3329 error_propagate(errp, local_err);
3330 return;
3331 }
3332 if (value < min || value > max) {
3333 error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
3334 name ? name : "null", value, min, max);
3335 return;
3336 }
3337
3338 env->cpuid_version &= ~0xf00f0;
3339 env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16);
3340 }
3341
3342 static void x86_cpuid_version_get_stepping(Object *obj, Visitor *v,
3343 const char *name, void *opaque,
3344 Error **errp)
3345 {
3346 X86CPU *cpu = X86_CPU(obj);
3347 CPUX86State *env = &cpu->env;
3348 int64_t value;
3349
3350 value = env->cpuid_version & 0xf;
3351 visit_type_int(v, name, &value, errp);
3352 }
3353
3354 static void x86_cpuid_version_set_stepping(Object *obj, Visitor *v,
3355 const char *name, void *opaque,
3356 Error **errp)
3357 {
3358 X86CPU *cpu = X86_CPU(obj);
3359 CPUX86State *env = &cpu->env;
3360 const int64_t min = 0;
3361 const int64_t max = 0xf;
3362 Error *local_err = NULL;
3363 int64_t value;
3364
3365 visit_type_int(v, name, &value, &local_err);
3366 if (local_err) {
3367 error_propagate(errp, local_err);
3368 return;
3369 }
3370 if (value < min || value > max) {
3371 error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
3372 name ? name : "null", value, min, max);
3373 return;
3374 }
3375
3376 env->cpuid_version &= ~0xf;
3377 env->cpuid_version |= value & 0xf;
3378 }
3379
3380 static char *x86_cpuid_get_vendor(Object *obj, Error **errp)
3381 {
3382 X86CPU *cpu = X86_CPU(obj);
3383 CPUX86State *env = &cpu->env;
3384 char *value;
3385
3386 value = g_malloc(CPUID_VENDOR_SZ + 1);
3387 x86_cpu_vendor_words2str(value, env->cpuid_vendor1, env->cpuid_vendor2,
3388 env->cpuid_vendor3);
3389 return value;
3390 }
3391
3392 static void x86_cpuid_set_vendor(Object *obj, const char *value,
3393 Error **errp)
3394 {
3395 X86CPU *cpu = X86_CPU(obj);
3396 CPUX86State *env = &cpu->env;
3397 int i;
3398
3399 if (strlen(value) != CPUID_VENDOR_SZ) {
3400 error_setg(errp, QERR_PROPERTY_VALUE_BAD, "", "vendor", value);
3401 return;
3402 }
3403
3404 env->cpuid_vendor1 = 0;
3405 env->cpuid_vendor2 = 0;
3406 env->cpuid_vendor3 = 0;
3407 for (i = 0; i < 4; i++) {
3408 env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i);
3409 env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i);
3410 env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i);
3411 }
3412 }
3413
3414 static char *x86_cpuid_get_model_id(Object *obj, Error **errp)
3415 {
3416 X86CPU *cpu = X86_CPU(obj);
3417 CPUX86State *env = &cpu->env;
3418 char *value;
3419 int i;
3420
3421 value = g_malloc(48 + 1);
3422 for (i = 0; i < 48; i++) {
3423 value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3));
3424 }
3425 value[48] = '\0';
3426 return value;
3427 }
3428
3429 static void x86_cpuid_set_model_id(Object *obj, const char *model_id,
3430 Error **errp)
3431 {
3432 X86CPU *cpu = X86_CPU(obj);
3433 CPUX86State *env = &cpu->env;
3434 int c, len, i;
3435
3436 if (model_id == NULL) {
3437 model_id = "";
3438 }
3439 len = strlen(model_id);
3440 memset(env->cpuid_model, 0, 48);
3441 for (i = 0; i < 48; i++) {
3442 if (i >= len) {
3443 c = '\0';
3444 } else {
3445 c = (uint8_t)model_id[i];
3446 }
3447 env->cpuid_model[i >> 2] |= c << (8 * (i & 3));
3448 }
3449 }
3450
3451 static void x86_cpuid_get_tsc_freq(Object *obj, Visitor *v, const char *name,
3452 void *opaque, Error **errp)
3453 {
3454 X86CPU *cpu = X86_CPU(obj);
3455 int64_t value;
3456
3457 value = cpu->env.tsc_khz * 1000;
3458 visit_type_int(v, name, &value, errp);
3459 }
3460
3461 static void x86_cpuid_set_tsc_freq(Object *obj, Visitor *v, const char *name,
3462 void *opaque, Error **errp)
3463 {
3464 X86CPU *cpu = X86_CPU(obj);
3465 const int64_t min = 0;
3466 const int64_t max = INT64_MAX;
3467 Error *local_err = NULL;
3468 int64_t value;
3469
3470 visit_type_int(v, name, &value, &local_err);
3471 if (local_err) {
3472 error_propagate(errp, local_err);
3473 return;
3474 }
3475 if (value < min || value > max) {
3476 error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
3477 name ? name : "null", value, min, max);
3478 return;
3479 }
3480
3481 cpu->env.tsc_khz = cpu->env.user_tsc_khz = value / 1000;
3482 }
3483
3484 /* Generic getter for "feature-words" and "filtered-features" properties */
3485 static void x86_cpu_get_feature_words(Object *obj, Visitor *v,
3486 const char *name, void *opaque,
3487 Error **errp)
3488 {
3489 uint32_t *array = (uint32_t *)opaque;
3490 FeatureWord w;
3491 X86CPUFeatureWordInfo word_infos[FEATURE_WORDS] = { };
3492 X86CPUFeatureWordInfoList list_entries[FEATURE_WORDS] = { };
3493 X86CPUFeatureWordInfoList *list = NULL;
3494
3495 for (w = 0; w < FEATURE_WORDS; w++) {
3496 FeatureWordInfo *wi = &feature_word_info[w];
3497 /*
3498 * We didn't have MSR features when "feature-words" was
3499 * introduced. Therefore skipped other type entries.
3500 */
3501 if (wi->type != CPUID_FEATURE_WORD) {
3502 continue;
3503 }
3504 X86CPUFeatureWordInfo *qwi = &word_infos[w];
3505 qwi->cpuid_input_eax = wi->cpuid.eax;
3506 qwi->has_cpuid_input_ecx = wi->cpuid.needs_ecx;
3507 qwi->cpuid_input_ecx = wi->cpuid.ecx;
3508 qwi->cpuid_register = x86_reg_info_32[wi->cpuid.reg].qapi_enum;
3509 qwi->features = array[w];
3510
3511 /* List will be in reverse order, but order shouldn't matter */
3512 list_entries[w].next = list;
3513 list_entries[w].value = &word_infos[w];
3514 list = &list_entries[w];
3515 }
3516
3517 visit_type_X86CPUFeatureWordInfoList(v, "feature-words", &list, errp);
3518 }
3519
3520 static void x86_get_hv_spinlocks(Object *obj, Visitor *v, const char *name,
3521 void *opaque, Error **errp)
3522 {
3523 X86CPU *cpu = X86_CPU(obj);
3524 int64_t value = cpu->hyperv_spinlock_attempts;
3525
3526 visit_type_int(v, name, &value, errp);
3527 }
3528
3529 static void x86_set_hv_spinlocks(Object *obj, Visitor *v, const char *name,
3530 void *opaque, Error **errp)
3531 {
3532 const int64_t min = 0xFFF;
3533 const int64_t max = UINT_MAX;
3534 X86CPU *cpu = X86_CPU(obj);
3535 Error *err = NULL;
3536 int64_t value;
3537
3538 visit_type_int(v, name, &value, &err);
3539 if (err) {
3540 error_propagate(errp, err);
3541 return;
3542 }
3543
3544 if (value < min || value > max) {
3545 error_setg(errp, "Property %s.%s doesn't take value %" PRId64
3546 " (minimum: %" PRId64 ", maximum: %" PRId64 ")",
3547 object_get_typename(obj), name ? name : "null",
3548 value, min, max);
3549 return;
3550 }
3551 cpu->hyperv_spinlock_attempts = value;
3552 }
3553
3554 static const PropertyInfo qdev_prop_spinlocks = {
3555 .name = "int",
3556 .get = x86_get_hv_spinlocks,
3557 .set = x86_set_hv_spinlocks,
3558 };
3559
3560 /* Convert all '_' in a feature string option name to '-', to make feature
3561 * name conform to QOM property naming rule, which uses '-' instead of '_'.
3562 */
3563 static inline void feat2prop(char *s)
3564 {
3565 while ((s = strchr(s, '_'))) {
3566 *s = '-';
3567 }
3568 }
3569
3570 /* Return the feature property name for a feature flag bit */
3571 static const char *x86_cpu_feature_name(FeatureWord w, int bitnr)
3572 {
3573 /* XSAVE components are automatically enabled by other features,
3574 * so return the original feature name instead
3575 */
3576 if (w == FEAT_XSAVE_COMP_LO || w == FEAT_XSAVE_COMP_HI) {
3577 int comp = (w == FEAT_XSAVE_COMP_HI) ? bitnr + 32 : bitnr;
3578
3579 if (comp < ARRAY_SIZE(x86_ext_save_areas) &&
3580 x86_ext_save_areas[comp].bits) {
3581 w = x86_ext_save_areas[comp].feature;
3582 bitnr = ctz32(x86_ext_save_areas[comp].bits);
3583 }
3584 }
3585
3586 assert(bitnr < 32);
3587 assert(w < FEATURE_WORDS);
3588 return feature_word_info[w].feat_names[bitnr];
3589 }
3590
3591 /* Compatibily hack to maintain legacy +-feat semantic,
3592 * where +-feat overwrites any feature set by
3593 * feat=on|feat even if the later is parsed after +-feat
3594 * (i.e. "-x2apic,x2apic=on" will result in x2apic disabled)
3595 */
3596 static GList *plus_features, *minus_features;
3597
3598 static gint compare_string(gconstpointer a, gconstpointer b)
3599 {
3600 return g_strcmp0(a, b);
3601 }
3602
3603 /* Parse "+feature,-feature,feature=foo" CPU feature string
3604 */
3605 static void x86_cpu_parse_featurestr(const char *typename, char *features,
3606 Error **errp)
3607 {
3608 char *featurestr; /* Single 'key=value" string being parsed */
3609 static bool cpu_globals_initialized;
3610 bool ambiguous = false;
3611
3612 if (cpu_globals_initialized) {
3613 return;
3614 }
3615 cpu_globals_initialized = true;
3616
3617 if (!features) {
3618 return;
3619 }
3620
3621 for (featurestr = strtok(features, ",");
3622 featurestr;
3623 featurestr = strtok(NULL, ",")) {
3624 const char *name;
3625 const char *val = NULL;
3626 char *eq = NULL;
3627 char num[32];
3628 GlobalProperty *prop;
3629
3630 /* Compatibility syntax: */
3631 if (featurestr[0] == '+') {
3632 plus_features = g_list_append(plus_features,
3633 g_strdup(featurestr + 1));
3634 continue;
3635 } else if (featurestr[0] == '-') {
3636 minus_features = g_list_append(minus_features,
3637 g_strdup(featurestr + 1));
3638 continue;
3639 }
3640
3641 eq = strchr(featurestr, '=');
3642 if (eq) {
3643 *eq++ = 0;
3644 val = eq;
3645 } else {
3646 val = "on";
3647 }
3648
3649 feat2prop(featurestr);
3650 name = featurestr;
3651
3652 if (g_list_find_custom(plus_features, name, compare_string)) {
3653 warn_report("Ambiguous CPU model string. "
3654 "Don't mix both \"+%s\" and \"%s=%s\"",
3655 name, name, val);
3656 ambiguous = true;
3657 }
3658 if (g_list_find_custom(minus_features, name, compare_string)) {
3659 warn_report("Ambiguous CPU model string. "
3660 "Don't mix both \"-%s\" and \"%s=%s\"",
3661 name, name, val);
3662 ambiguous = true;
3663 }
3664
3665 /* Special case: */
3666 if (!strcmp(name, "tsc-freq")) {
3667 int ret;
3668 uint64_t tsc_freq;
3669
3670 ret = qemu_strtosz_metric(val, NULL, &tsc_freq);
3671 if (ret < 0 || tsc_freq > INT64_MAX) {
3672 error_setg(errp, "bad numerical value %s", val);
3673 return;
3674 }
3675 snprintf(num, sizeof(num), "%" PRId64, tsc_freq);
3676 val = num;
3677 name = "tsc-frequency";
3678 }
3679
3680 prop = g_new0(typeof(*prop), 1);
3681 prop->driver = typename;
3682 prop->property = g_strdup(name);
3683 prop->value = g_strdup(val);
3684 qdev_prop_register_global(prop);
3685 }
3686
3687 if (ambiguous) {
3688 warn_report("Compatibility of ambiguous CPU model "
3689 "strings won't be kept on future QEMU versions");
3690 }
3691 }
3692
3693 static void x86_cpu_expand_features(X86CPU *cpu, Error **errp);
3694 static int x86_cpu_filter_features(X86CPU *cpu);
3695
3696 /* Build a list with the name of all features on a feature word array */
3697 static void x86_cpu_list_feature_names(FeatureWordArray features,
3698 strList **feat_names)
3699 {
3700 FeatureWord w;
3701 strList **next = feat_names;
3702
3703 for (w = 0; w < FEATURE_WORDS; w++) {
3704 uint32_t filtered = features[w];
3705 int i;
3706 for (i = 0; i < 32; i++) {
3707 if (filtered & (1UL << i)) {
3708 strList *new = g_new0(strList, 1);
3709 new->value = g_strdup(x86_cpu_feature_name(w, i));
3710 *next = new;
3711 next = &new->next;
3712 }
3713 }
3714 }
3715 }
3716
3717 static void x86_cpu_get_unavailable_features(Object *obj, Visitor *v,
3718 const char *name, void *opaque,
3719 Error **errp)
3720 {
3721 X86CPU *xc = X86_CPU(obj);
3722 strList *result = NULL;
3723
3724 x86_cpu_list_feature_names(xc->filtered_features, &result);
3725 visit_type_strList(v, "unavailable-features", &result, errp);
3726 }
3727
3728 /* Check for missing features that may prevent the CPU class from
3729 * running using the current machine and accelerator.
3730 */
3731 static void x86_cpu_class_check_missing_features(X86CPUClass *xcc,
3732 strList **missing_feats)
3733 {
3734 X86CPU *xc;
3735 Error *err = NULL;
3736 strList **next = missing_feats;
3737
3738 if (xcc->host_cpuid_required && !accel_uses_host_cpuid()) {
3739 strList *new = g_new0(strList, 1);
3740 new->value = g_strdup("kvm");
3741 *missing_feats = new;
3742 return;
3743 }
3744
3745 xc = X86_CPU(object_new(object_class_get_name(OBJECT_CLASS(xcc))));
3746
3747 x86_cpu_expand_features(xc, &err);
3748 if (err) {
3749 /* Errors at x86_cpu_expand_features should never happen,
3750 * but in case it does, just report the model as not
3751 * runnable at all using the "type" property.
3752 */
3753 strList *new = g_new0(strList, 1);
3754 new->value = g_strdup("type");
3755 *next = new;
3756 next = &new->next;
3757 }
3758
3759 x86_cpu_filter_features(xc);
3760
3761 x86_cpu_list_feature_names(xc->filtered_features, next);
3762
3763 object_unref(OBJECT(xc));
3764 }
3765
3766 /* Print all cpuid feature names in featureset
3767 */
3768 static void listflags(GList *features)
3769 {
3770 size_t len = 0;
3771 GList *tmp;
3772
3773 for (tmp = features; tmp; tmp = tmp->next) {
3774 const char *name = tmp->data;
3775 if ((len + strlen(name) + 1) >= 75) {
3776 qemu_printf("\n");
3777 len = 0;
3778 }
3779 qemu_printf("%s%s", len == 0 ? " " : " ", name);
3780 len += strlen(name) + 1;
3781 }
3782 qemu_printf("\n");
3783 }
3784
3785 /* Sort alphabetically by type name, respecting X86CPUClass::ordering. */
3786 static gint x86_cpu_list_compare(gconstpointer a, gconstpointer b)
3787 {
3788 ObjectClass *class_a = (ObjectClass *)a;
3789 ObjectClass *class_b = (ObjectClass *)b;
3790 X86CPUClass *cc_a = X86_CPU_CLASS(class_a);
3791 X86CPUClass *cc_b = X86_CPU_CLASS(class_b);
3792 char *name_a, *name_b;
3793 int ret;
3794
3795 if (cc_a->ordering != cc_b->ordering) {
3796 ret = cc_a->ordering - cc_b->ordering;
3797 } else {
3798 name_a = x86_cpu_class_get_model_name(cc_a);
3799 name_b = x86_cpu_class_get_model_name(cc_b);
3800 ret = strcmp(name_a, name_b);
3801 g_free(name_a);
3802 g_free(name_b);
3803 }
3804 return ret;
3805 }
3806
3807 static GSList *get_sorted_cpu_model_list(void)
3808 {
3809 GSList *list = object_class_get_list(TYPE_X86_CPU, false);
3810 list = g_slist_sort(list, x86_cpu_list_compare);
3811 return list;
3812 }
3813
3814 static void x86_cpu_list_entry(gpointer data, gpointer user_data)
3815 {
3816 ObjectClass *oc = data;
3817 X86CPUClass *cc = X86_CPU_CLASS(oc);
3818 char *name = x86_cpu_class_get_model_name(cc);
3819 const char *desc = cc->model_description;
3820 if (!desc && cc->cpu_def) {
3821 desc = cc->cpu_def->model_id;
3822 }
3823
3824 qemu_printf("x86 %-20s %-48s\n", name, desc);
3825 g_free(name);
3826 }
3827
3828 /* list available CPU models and flags */
3829 void x86_cpu_list(void)
3830 {
3831 int i, j;
3832 GSList *list;
3833 GList *names = NULL;
3834
3835 qemu_printf("Available CPUs:\n");
3836 list = get_sorted_cpu_model_list();
3837 g_slist_foreach(list, x86_cpu_list_entry, NULL);
3838 g_slist_free(list);
3839
3840 names = NULL;
3841 for (i = 0; i < ARRAY_SIZE(feature_word_info); i++) {
3842 FeatureWordInfo *fw = &feature_word_info[i];
3843 for (j = 0; j < 32; j++) {
3844 if (fw->feat_names[j]) {
3845 names = g_list_append(names, (gpointer)fw->feat_names[j]);
3846 }
3847 }
3848 }
3849
3850 names = g_list_sort(names, (GCompareFunc)strcmp);
3851
3852 qemu_printf("\nRecognized CPUID flags:\n");
3853 listflags(names);
3854 qemu_printf("\n");
3855 g_list_free(names);
3856 }
3857
3858 static void x86_cpu_definition_entry(gpointer data, gpointer user_data)
3859 {
3860 ObjectClass *oc = data;
3861 X86CPUClass *cc = X86_CPU_CLASS(oc);
3862 CpuDefinitionInfoList **cpu_list = user_data;
3863 CpuDefinitionInfoList *entry;
3864 CpuDefinitionInfo *info;
3865
3866 info = g_malloc0(sizeof(*info));
3867 info->name = x86_cpu_class_get_model_name(cc);
3868 x86_cpu_class_check_missing_features(cc, &info->unavailable_features);
3869 info->has_unavailable_features = true;
3870 info->q_typename = g_strdup(object_class_get_name(oc));
3871 info->migration_safe = cc->migration_safe;
3872 info->has_migration_safe = true;
3873 info->q_static = cc->static_model;
3874
3875 entry = g_malloc0(sizeof(*entry));
3876 entry->value = info;
3877 entry->next = *cpu_list;
3878 *cpu_list = entry;
3879 }
3880
3881 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
3882 {
3883 CpuDefinitionInfoList *cpu_list = NULL;
3884 GSList *list = get_sorted_cpu_model_list();
3885 g_slist_foreach(list, x86_cpu_definition_entry, &cpu_list);
3886 g_slist_free(list);
3887 return cpu_list;
3888 }
3889
3890 static uint32_t x86_cpu_get_supported_feature_word(FeatureWord w,
3891 bool migratable_only)
3892 {
3893 FeatureWordInfo *wi = &feature_word_info[w];
3894 uint32_t r = 0;
3895
3896 if (kvm_enabled()) {
3897 switch (wi->type) {
3898 case CPUID_FEATURE_WORD:
3899 r = kvm_arch_get_supported_cpuid(kvm_state, wi->cpuid.eax,
3900 wi->cpuid.ecx,
3901 wi->cpuid.reg);
3902 break;
3903 case MSR_FEATURE_WORD:
3904 r = kvm_arch_get_supported_msr_feature(kvm_state,
3905 wi->msr.index);
3906 break;
3907 }
3908 } else if (hvf_enabled()) {
3909 if (wi->type != CPUID_FEATURE_WORD) {
3910 return 0;
3911 }
3912 r = hvf_get_supported_cpuid(wi->cpuid.eax,
3913 wi->cpuid.ecx,
3914 wi->cpuid.reg);
3915 } else if (tcg_enabled()) {
3916 r = wi->tcg_features;
3917 } else {
3918 return ~0;
3919 }
3920 if (migratable_only) {
3921 r &= x86_cpu_get_migratable_flags(w);
3922 }
3923 return r;
3924 }
3925
3926 static void x86_cpu_report_filtered_features(X86CPU *cpu)
3927 {
3928 FeatureWord w;
3929
3930 for (w = 0; w < FEATURE_WORDS; w++) {
3931 report_unavailable_features(w, cpu->filtered_features[w]);
3932 }
3933 }
3934
3935 static void x86_cpu_apply_props(X86CPU *cpu, PropValue *props)
3936 {
3937 PropValue *pv;
3938 for (pv = props; pv->prop; pv++) {
3939 if (!pv->value) {
3940 continue;
3941 }
3942 object_property_parse(OBJECT(cpu), pv->value, pv->prop,
3943 &error_abort);
3944 }
3945 }
3946
3947 /* Load data from X86CPUDefinition into a X86CPU object
3948 */
3949 static void x86_cpu_load_def(X86CPU *cpu, X86CPUDefinition *def, Error **errp)
3950 {
3951 CPUX86State *env = &cpu->env;
3952 const char *vendor;
3953 char host_vendor[CPUID_VENDOR_SZ + 1];
3954 FeatureWord w;
3955
3956 /*NOTE: any property set by this function should be returned by
3957 * x86_cpu_static_props(), so static expansion of
3958 * query-cpu-model-expansion is always complete.
3959 */
3960
3961 /* CPU models only set _minimum_ values for level/xlevel: */
3962 object_property_set_uint(OBJECT(cpu), def->level, "min-level", errp);
3963 object_property_set_uint(OBJECT(cpu), def->xlevel, "min-xlevel", errp);
3964
3965 object_property_set_int(OBJECT(cpu), def->family, "family", errp);
3966 object_property_set_int(OBJECT(cpu), def->model, "model", errp);
3967 object_property_set_int(OBJECT(cpu), def->stepping, "stepping", errp);
3968 object_property_set_str(OBJECT(cpu), def->model_id, "model-id", errp);
3969 for (w = 0; w < FEATURE_WORDS; w++) {
3970 env->features[w] = def->features[w];
3971 }
3972
3973 /* legacy-cache defaults to 'off' if CPU model provides cache info */
3974 cpu->legacy_cache = !def->cache_info;
3975
3976 /* Special cases not set in the X86CPUDefinition structs: */
3977 /* TODO: in-kernel irqchip for hvf */
3978 if (kvm_enabled()) {
3979 if (!kvm_irqchip_in_kernel()) {
3980 x86_cpu_change_kvm_default("x2apic", "off");
3981 }
3982
3983 x86_cpu_apply_props(cpu, kvm_default_props);
3984 } else if (tcg_enabled()) {
3985 x86_cpu_apply_props(cpu, tcg_default_props);
3986 }
3987
3988 env->features[FEAT_1_ECX] |= CPUID_EXT_HYPERVISOR;
3989
3990 /* sysenter isn't supported in compatibility mode on AMD,
3991 * syscall isn't supported in compatibility mode on Intel.
3992 * Normally we advertise the actual CPU vendor, but you can
3993 * override this using the 'vendor' property if you want to use
3994 * KVM's sysenter/syscall emulation in compatibility mode and
3995 * when doing cross vendor migration
3996 */
3997 vendor = def->vendor;
3998 if (accel_uses_host_cpuid()) {
3999 uint32_t ebx = 0, ecx = 0, edx = 0;
4000 host_cpuid(0, 0, NULL, &ebx, &ecx, &edx);
4001 x86_cpu_vendor_words2str(host_vendor, ebx, edx, ecx);
4002 vendor = host_vendor;
4003 }
4004
4005 object_property_set_str(OBJECT(cpu), vendor, "vendor", errp);
4006
4007 }
4008
4009 #ifndef CONFIG_USER_ONLY
4010 /* Return a QDict containing keys for all properties that can be included
4011 * in static expansion of CPU models. All properties set by x86_cpu_load_def()
4012 * must be included in the dictionary.
4013 */
4014 static QDict *x86_cpu_static_props(void)
4015 {
4016 FeatureWord w;
4017 int i;
4018 static const char *props[] = {
4019 "min-level",
4020 "min-xlevel",
4021 "family",
4022 "model",
4023 "stepping",
4024 "model-id",
4025 "vendor",
4026 "lmce",
4027 NULL,
4028 };
4029 static QDict *d;
4030
4031 if (d) {
4032 return d;
4033 }
4034
4035 d = qdict_new();
4036 for (i = 0; props[i]; i++) {
4037 qdict_put_null(d, props[i]);
4038 }
4039
4040 for (w = 0; w < FEATURE_WORDS; w++) {
4041 FeatureWordInfo *fi = &feature_word_info[w];
4042 int bit;
4043 for (bit = 0; bit < 32; bit++) {
4044 if (!fi->feat_names[bit]) {
4045 continue;
4046 }
4047 qdict_put_null(d, fi->feat_names[bit]);
4048 }
4049 }
4050
4051 return d;
4052 }
4053
4054 /* Add an entry to @props dict, with the value for property. */
4055 static void x86_cpu_expand_prop(X86CPU *cpu, QDict *props, const char *prop)
4056 {
4057 QObject *value = object_property_get_qobject(OBJECT(cpu), prop,
4058 &error_abort);
4059
4060 qdict_put_obj(props, prop, value);
4061 }
4062
4063 /* Convert CPU model data from X86CPU object to a property dictionary
4064 * that can recreate exactly the same CPU model.
4065 */
4066 static void x86_cpu_to_dict(X86CPU *cpu, QDict *props)
4067 {
4068 QDict *sprops = x86_cpu_static_props();
4069 const QDictEntry *e;
4070
4071 for (e = qdict_first(sprops); e; e = qdict_next(sprops, e)) {
4072 const char *prop = qdict_entry_key(e);
4073 x86_cpu_expand_prop(cpu, props, prop);
4074 }
4075 }
4076
4077 /* Convert CPU model data from X86CPU object to a property dictionary
4078 * that can recreate exactly the same CPU model, including every
4079 * writeable QOM property.
4080 */
4081 static void x86_cpu_to_dict_full(X86CPU *cpu, QDict *props)
4082 {
4083 ObjectPropertyIterator iter;
4084 ObjectProperty *prop;
4085
4086 object_property_iter_init(&iter, OBJECT(cpu));
4087 while ((prop = object_property_iter_next(&iter))) {
4088 /* skip read-only or write-only properties */
4089 if (!prop->get || !prop->set) {
4090 continue;
4091 }
4092
4093 /* "hotplugged" is the only property that is configurable
4094 * on the command-line but will be set differently on CPUs
4095 * created using "-cpu ... -smp ..." and by CPUs created
4096 * on the fly by x86_cpu_from_model() for querying. Skip it.
4097 */
4098 if (!strcmp(prop->name, "hotplugged")) {
4099 continue;
4100 }
4101 x86_cpu_expand_prop(cpu, props, prop->name);
4102 }
4103 }
4104
4105 static void object_apply_props(Object *obj, QDict *props, Error **errp)
4106 {
4107 const QDictEntry *prop;
4108 Error *err = NULL;
4109
4110 for (prop = qdict_first(props); prop; prop = qdict_next(props, prop)) {
4111 object_property_set_qobject(obj, qdict_entry_value(prop),
4112 qdict_entry_key(prop), &err);
4113 if (err) {
4114 break;
4115 }
4116 }
4117
4118 error_propagate(errp, err);
4119 }
4120
4121 /* Create X86CPU object according to model+props specification */
4122 static X86CPU *x86_cpu_from_model(const char *model, QDict *props, Error **errp)
4123 {
4124 X86CPU *xc = NULL;
4125 X86CPUClass *xcc;
4126 Error *err = NULL;
4127
4128 xcc = X86_CPU_CLASS(cpu_class_by_name(TYPE_X86_CPU, model));
4129 if (xcc == NULL) {
4130 error_setg(&err, "CPU model '%s' not found", model);
4131 goto out;
4132 }
4133
4134 xc = X86_CPU(object_new(object_class_get_name(OBJECT_CLASS(xcc))));
4135 if (props) {
4136 object_apply_props(OBJECT(xc), props, &err);
4137 if (err) {
4138 goto out;
4139 }
4140 }
4141
4142 x86_cpu_expand_features(xc, &err);
4143 if (err) {
4144 goto out;
4145 }
4146
4147 out:
4148 if (err) {
4149 error_propagate(errp, err);
4150 object_unref(OBJECT(xc));
4151 xc = NULL;
4152 }
4153 return xc;
4154 }
4155
4156 CpuModelExpansionInfo *
4157 qmp_query_cpu_model_expansion(CpuModelExpansionType type,
4158 CpuModelInfo *model,
4159 Error **errp)
4160 {
4161 X86CPU *xc = NULL;
4162 Error *err = NULL;
4163 CpuModelExpansionInfo *ret = g_new0(CpuModelExpansionInfo, 1);
4164 QDict *props = NULL;
4165 const char *base_name;
4166
4167 xc = x86_cpu_from_model(model->name,
4168 model->has_props ?
4169 qobject_to(QDict, model->props) :
4170 NULL, &err);
4171 if (err) {
4172 goto out;
4173 }
4174
4175 props = qdict_new();
4176 ret->model = g_new0(CpuModelInfo, 1);
4177 ret->model->props = QOBJECT(props);
4178 ret->model->has_props = true;
4179
4180 switch (type) {
4181 case CPU_MODEL_EXPANSION_TYPE_STATIC:
4182 /* Static expansion will be based on "base" only */
4183 base_name = "base";
4184 x86_cpu_to_dict(xc, props);
4185 break;
4186 case CPU_MODEL_EXPANSION_TYPE_FULL:
4187 /* As we don't return every single property, full expansion needs
4188 * to keep the original model name+props, and add extra
4189 * properties on top of that.
4190 */
4191 base_name = model->name;
4192 x86_cpu_to_dict_full(xc, props);
4193 break;
4194 default:
4195 error_setg(&err, "Unsupported expansion type");
4196 goto out;
4197 }
4198
4199 x86_cpu_to_dict(xc, props);
4200
4201 ret->model->name = g_strdup(base_name);
4202
4203 out:
4204 object_unref(OBJECT(xc));
4205 if (err) {
4206 error_propagate(errp, err);
4207 qapi_free_CpuModelExpansionInfo(ret);
4208 ret = NULL;
4209 }
4210 return ret;
4211 }
4212 #endif /* !CONFIG_USER_ONLY */
4213
4214 static gchar *x86_gdb_arch_name(CPUState *cs)
4215 {
4216 #ifdef TARGET_X86_64
4217 return g_strdup("i386:x86-64");
4218 #else
4219 return g_strdup("i386");
4220 #endif
4221 }
4222
4223 static void x86_cpu_cpudef_class_init(ObjectClass *oc, void *data)
4224 {
4225 X86CPUDefinition *cpudef = data;
4226 X86CPUClass *xcc = X86_CPU_CLASS(oc);
4227
4228 xcc->cpu_def = cpudef;
4229 xcc->migration_safe = true;
4230 }
4231
4232 static void x86_register_cpudef_type(X86CPUDefinition *def)
4233 {
4234 char *typename = x86_cpu_type_name(def->name);
4235 TypeInfo ti = {
4236 .name = typename,
4237 .parent = TYPE_X86_CPU,
4238 .class_init = x86_cpu_cpudef_class_init,
4239 .class_data = def,
4240 };
4241
4242 /* AMD aliases are handled at runtime based on CPUID vendor, so
4243 * they shouldn't be set on the CPU model table.
4244 */
4245 assert(!(def->features[FEAT_8000_0001_EDX] & CPUID_EXT2_AMD_ALIASES));
4246 /* catch mistakes instead of silently truncating model_id when too long */
4247 assert(def->model_id && strlen(def->model_id) <= 48);
4248
4249
4250 type_register(&ti);
4251 g_free(typename);
4252 }
4253
4254 #if !defined(CONFIG_USER_ONLY)
4255
4256 void cpu_clear_apic_feature(CPUX86State *env)
4257 {
4258 env->features[FEAT_1_EDX] &= ~CPUID_APIC;
4259 }
4260
4261 #endif /* !CONFIG_USER_ONLY */
4262
4263 void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
4264 uint32_t *eax, uint32_t *ebx,
4265 uint32_t *ecx, uint32_t *edx)
4266 {
4267 X86CPU *cpu = env_archcpu(env);
4268 CPUState *cs = env_cpu(env);
4269 uint32_t pkg_offset;
4270 uint32_t limit;
4271 uint32_t signature[3];
4272
4273 /* Calculate & apply limits for different index ranges */
4274 if (index >= 0xC0000000) {
4275 limit = env->cpuid_xlevel2;
4276 } else if (index >= 0x80000000) {
4277 limit = env->cpuid_xlevel;
4278 } else if (index >= 0x40000000) {
4279 limit = 0x40000001;
4280 } else {
4281 limit = env->cpuid_level;
4282 }
4283
4284 if (index > limit) {
4285 /* Intel documentation states that invalid EAX input will
4286 * return the same information as EAX=cpuid_level
4287 * (Intel SDM Vol. 2A - Instruction Set Reference - CPUID)
4288 */
4289 index = env->cpuid_level;
4290 }
4291
4292 switch(index) {
4293 case 0:
4294 *eax = env->cpuid_level;
4295 *ebx = env->cpuid_vendor1;
4296 *edx = env->cpuid_vendor2;
4297 *ecx = env->cpuid_vendor3;
4298 break;
4299 case 1:
4300 *eax = env->cpuid_version;
4301 *ebx = (cpu->apic_id << 24) |
4302 8 << 8; /* CLFLUSH size in quad words, Linux wants it. */
4303 *ecx = env->features[FEAT_1_ECX];
4304 if ((*ecx & CPUID_EXT_XSAVE) && (env->cr[4] & CR4_OSXSAVE_MASK)) {
4305 *ecx |= CPUID_EXT_OSXSAVE;
4306 }
4307 *edx = env->features[FEAT_1_EDX];
4308 if (cs->nr_cores * cs->nr_threads > 1) {
4309 *ebx |= (cs->nr_cores * cs->nr_threads) << 16;
4310 *edx |= CPUID_HT;
4311 }
4312 break;
4313 case 2:
4314 /* cache info: needed for Pentium Pro compatibility */
4315 if (cpu->cache_info_passthrough) {
4316 host_cpuid(index, 0, eax, ebx, ecx, edx);
4317 break;
4318 }
4319 *eax = 1; /* Number of CPUID[EAX=2] calls required */
4320 *ebx = 0;
4321 if (!cpu->enable_l3_cache) {
4322 *ecx = 0;
4323 } else {
4324 *ecx = cpuid2_cache_descriptor(env->cache_info_cpuid2.l3_cache);
4325 }
4326 *edx = (cpuid2_cache_descriptor(env->cache_info_cpuid2.l1d_cache) << 16) |
4327 (cpuid2_cache_descriptor(env->cache_info_cpuid2.l1i_cache) << 8) |
4328 (cpuid2_cache_descriptor(env->cache_info_cpuid2.l2_cache));
4329 break;
4330 case 4:
4331 /* cache info: needed for Core compatibility */
4332 if (cpu->cache_info_passthrough) {
4333 host_cpuid(index, count, eax, ebx, ecx, edx);
4334 /* QEMU gives out its own APIC IDs, never pass down bits 31..26. */
4335 *eax &= ~0xFC000000;
4336 if ((*eax & 31) && cs->nr_cores > 1) {
4337 *eax |= (cs->nr_cores - 1) << 26;
4338 }
4339 } else {
4340 *eax = 0;
4341 switch (count) {
4342 case 0: /* L1 dcache info */
4343 encode_cache_cpuid4(env->cache_info_cpuid4.l1d_cache,
4344 1, cs->nr_cores,
4345 eax, ebx, ecx, edx);
4346 break;
4347 case 1: /* L1 icache info */
4348 encode_cache_cpuid4(env->cache_info_cpuid4.l1i_cache,
4349 1, cs->nr_cores,
4350 eax, ebx, ecx, edx);
4351 break;
4352 case 2: /* L2 cache info */
4353 encode_cache_cpuid4(env->cache_info_cpuid4.l2_cache,
4354 cs->nr_threads, cs->nr_cores,
4355 eax, ebx, ecx, edx);
4356 break;
4357 case 3: /* L3 cache info */
4358 pkg_offset = apicid_pkg_offset(cs->nr_cores, cs->nr_threads);
4359 if (cpu->enable_l3_cache) {
4360 encode_cache_cpuid4(env->cache_info_cpuid4.l3_cache,
4361 (1 << pkg_offset), cs->nr_cores,
4362 eax, ebx, ecx, edx);
4363 break;
4364 }
4365 /* fall through */
4366 default: /* end of info */
4367 *eax = *ebx = *ecx = *edx = 0;
4368 break;
4369 }
4370 }
4371 break;
4372 case 5:
4373 /* MONITOR/MWAIT Leaf */
4374 *eax = cpu->mwait.eax; /* Smallest monitor-line size in bytes */
4375 *ebx = cpu->mwait.ebx; /* Largest monitor-line size in bytes */
4376 *ecx = cpu->mwait.ecx; /* flags */
4377 *edx = cpu->mwait.edx; /* mwait substates */
4378 break;
4379 case 6:
4380 /* Thermal and Power Leaf */
4381 *eax = env->features[FEAT_6_EAX];
4382 *ebx = 0;
4383 *ecx = 0;
4384 *edx = 0;
4385 break;
4386 case 7:
4387 /* Structured Extended Feature Flags Enumeration Leaf */
4388 if (count == 0) {
4389 *eax = 0; /* Maximum ECX value for sub-leaves */
4390 *ebx = env->features[FEAT_7_0_EBX]; /* Feature flags */
4391 *ecx = env->features[FEAT_7_0_ECX]; /* Feature flags */
4392 if ((*ecx & CPUID_7_0_ECX_PKU) && env->cr[4] & CR4_PKE_MASK) {
4393 *ecx |= CPUID_7_0_ECX_OSPKE;
4394 }
4395 *edx = env->features[FEAT_7_0_EDX]; /* Feature flags */
4396 } else {
4397 *eax = 0;
4398 *ebx = 0;
4399 *ecx = 0;
4400 *edx = 0;
4401 }
4402 break;
4403 case 9:
4404 /* Direct Cache Access Information Leaf */
4405 *eax = 0; /* Bits 0-31 in DCA_CAP MSR */
4406 *ebx = 0;
4407 *ecx = 0;
4408 *edx = 0;
4409 break;
4410 case 0xA:
4411 /* Architectural Performance Monitoring Leaf */
4412 if (kvm_enabled() && cpu->enable_pmu) {
4413 KVMState *s = cs->kvm_state;
4414
4415 *eax = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EAX);
4416 *ebx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EBX);
4417 *ecx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_ECX);
4418 *edx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EDX);
4419 } else if (hvf_enabled() && cpu->enable_pmu) {
4420 *eax = hvf_get_supported_cpuid(0xA, count, R_EAX);
4421 *ebx = hvf_get_supported_cpuid(0xA, count, R_EBX);
4422 *ecx = hvf_get_supported_cpuid(0xA, count, R_ECX);
4423 *edx = hvf_get_supported_cpuid(0xA, count, R_EDX);
4424 } else {
4425 *eax = 0;
4426 *ebx = 0;
4427 *ecx = 0;
4428 *edx = 0;
4429 }
4430 break;
4431 case 0xB:
4432 /* Extended Topology Enumeration Leaf */
4433 if (!cpu->enable_cpuid_0xb) {
4434 *eax = *ebx = *ecx = *edx = 0;
4435 break;
4436 }
4437
4438 *ecx = count & 0xff;
4439 *edx = cpu->apic_id;
4440
4441 switch (count) {
4442 case 0:
4443 *eax = apicid_core_offset(cs->nr_cores, cs->nr_threads);
4444 *ebx = cs->nr_threads;
4445 *ecx |= CPUID_TOPOLOGY_LEVEL_SMT;
4446 break;
4447 case 1:
4448 *eax = apicid_pkg_offset(cs->nr_cores, cs->nr_threads);
4449 *ebx = cs->nr_cores * cs->nr_threads;
4450 *ecx |= CPUID_TOPOLOGY_LEVEL_CORE;
4451 break;
4452 default:
4453 *eax = 0;
4454 *ebx = 0;
4455 *ecx |= CPUID_TOPOLOGY_LEVEL_INVALID;
4456 }
4457
4458 assert(!(*eax & ~0x1f));
4459 *ebx &= 0xffff; /* The count doesn't need to be reliable. */
4460 break;
4461 case 0xD: {
4462 /* Processor Extended State */
4463 *eax = 0;
4464 *ebx = 0;
4465 *ecx = 0;
4466 *edx = 0;
4467 if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
4468 break;
4469 }
4470
4471 if (count == 0) {
4472 *ecx = xsave_area_size(x86_cpu_xsave_components(cpu));
4473 *eax = env->features[FEAT_XSAVE_COMP_LO];
4474 *edx = env->features[FEAT_XSAVE_COMP_HI];
4475 *ebx = xsave_area_size(env->xcr0);
4476 } else if (count == 1) {
4477 *eax = env->features[FEAT_XSAVE];
4478 } else if (count < ARRAY_SIZE(x86_ext_save_areas)) {
4479 if ((x86_cpu_xsave_components(cpu) >> count) & 1) {
4480 const ExtSaveArea *esa = &x86_ext_save_areas[count];
4481 *eax = esa->size;
4482 *ebx = esa->offset;
4483 }
4484 }
4485 break;
4486 }
4487 case 0x14: {
4488 /* Intel Processor Trace Enumeration */
4489 *eax = 0;
4490 *ebx = 0;
4491 *ecx = 0;
4492 *edx = 0;
4493 if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) ||
4494 !kvm_enabled()) {
4495 break;
4496 }
4497
4498 if (count == 0) {
4499 *eax = INTEL_PT_MAX_SUBLEAF;
4500 *ebx = INTEL_PT_MINIMAL_EBX;
4501 *ecx = INTEL_PT_MINIMAL_ECX;
4502 } else if (count == 1) {
4503 *eax = INTEL_PT_MTC_BITMAP | INTEL_PT_ADDR_RANGES_NUM;
4504 *ebx = INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP;
4505 }
4506 break;
4507 }
4508 case 0x40000000:
4509 /*
4510 * CPUID code in kvm_arch_init_vcpu() ignores stuff
4511 * set here, but we restrict to TCG none the less.
4512 */
4513 if (tcg_enabled() && cpu->expose_tcg) {
4514 memcpy(signature, "TCGTCGTCGTCG", 12);
4515 *eax = 0x40000001;
4516 *ebx = signature[0];
4517 *ecx = signature[1];
4518 *edx = signature[2];
4519 } else {
4520 *eax = 0;
4521 *ebx = 0;
4522 *ecx = 0;
4523 *edx = 0;
4524 }
4525 break;
4526 case 0x40000001:
4527 *eax = 0;
4528 *ebx = 0;
4529 *ecx = 0;
4530 *edx = 0;
4531 break;
4532 case 0x80000000:
4533 *eax = env->cpuid_xlevel;
4534 *ebx = env->cpuid_vendor1;
4535 *edx = env->cpuid_vendor2;
4536 *ecx = env->cpuid_vendor3;
4537 break;
4538 case 0x80000001:
4539 *eax = env->cpuid_version;
4540 *ebx = 0;
4541 *ecx = env->features[FEAT_8000_0001_ECX];
4542 *edx = env->features[FEAT_8000_0001_EDX];
4543
4544 /* The Linux kernel checks for the CMPLegacy bit and
4545 * discards multiple thread information if it is set.
4546 * So don't set it here for Intel to make Linux guests happy.
4547 */
4548 if (cs->nr_cores * cs->nr_threads > 1) {
4549 if (env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1 ||
4550 env->cpuid_vendor2 != CPUID_VENDOR_INTEL_2 ||
4551 env->cpuid_vendor3 != CPUID_VENDOR_INTEL_3) {
4552 *ecx |= 1 << 1; /* CmpLegacy bit */
4553 }
4554 }
4555 break;
4556 case 0x80000002:
4557 case 0x80000003:
4558 case 0x80000004:
4559 *eax = env->cpuid_model[(index - 0x80000002) * 4 + 0];
4560 *ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1];
4561 *ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2];
4562 *edx = env->cpuid_model[(index - 0x80000002) * 4 + 3];
4563 break;
4564 case 0x80000005:
4565 /* cache info (L1 cache) */
4566 if (cpu->cache_info_passthrough) {
4567 host_cpuid(index, 0, eax, ebx, ecx, edx);
4568 break;
4569 }
4570 *eax = (L1_DTLB_2M_ASSOC << 24) | (L1_DTLB_2M_ENTRIES << 16) | \
4571 (L1_ITLB_2M_ASSOC << 8) | (L1_ITLB_2M_ENTRIES);
4572 *ebx = (L1_DTLB_4K_ASSOC << 24) | (L1_DTLB_4K_ENTRIES << 16) | \
4573 (L1_ITLB_4K_ASSOC << 8) | (L1_ITLB_4K_ENTRIES);
4574 *ecx = encode_cache_cpuid80000005(env->cache_info_amd.l1d_cache);
4575 *edx = encode_cache_cpuid80000005(env->cache_info_amd.l1i_cache);
4576 break;
4577 case 0x80000006:
4578 /* cache info (L2 cache) */
4579 if (cpu->cache_info_passthrough) {
4580 host_cpuid(index, 0, eax, ebx, ecx, edx);
4581 break;
4582 }
4583 *eax = (AMD_ENC_ASSOC(L2_DTLB_2M_ASSOC) << 28) | \
4584 (L2_DTLB_2M_ENTRIES << 16) | \
4585 (AMD_ENC_ASSOC(L2_ITLB_2M_ASSOC) << 12) | \
4586 (L2_ITLB_2M_ENTRIES);
4587 *ebx = (AMD_ENC_ASSOC(L2_DTLB_4K_ASSOC) << 28) | \
4588 (L2_DTLB_4K_ENTRIES << 16) | \
4589 (AMD_ENC_ASSOC(L2_ITLB_4K_ASSOC) << 12) | \
4590 (L2_ITLB_4K_ENTRIES);
4591 encode_cache_cpuid80000006(env->cache_info_amd.l2_cache,
4592 cpu->enable_l3_cache ?
4593 env->cache_info_amd.l3_cache : NULL,
4594 ecx, edx);
4595 break;
4596 case 0x80000007:
4597 *eax = 0;
4598 *ebx = 0;
4599 *ecx = 0;
4600 *edx = env->features[FEAT_8000_0007_EDX];
4601 break;
4602 case 0x80000008:
4603 /* virtual & phys address size in low 2 bytes. */
4604 if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
4605 /* 64 bit processor */
4606 *eax = cpu->phys_bits; /* configurable physical bits */
4607 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_LA57) {
4608 *eax |= 0x00003900; /* 57 bits virtual */
4609 } else {
4610 *eax |= 0x00003000; /* 48 bits virtual */
4611 }
4612 } else {
4613 *eax = cpu->phys_bits;
4614 }
4615 *ebx = env->features[FEAT_8000_0008_EBX];
4616 *ecx = 0;
4617 *edx = 0;
4618 if (cs->nr_cores * cs->nr_threads > 1) {
4619 *ecx |= (cs->nr_cores * cs->nr_threads) - 1;
4620 }
4621 break;
4622 case 0x8000000A:
4623 if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
4624 *eax = 0x00000001; /* SVM Revision */
4625 *ebx = 0x00000010; /* nr of ASIDs */
4626 *ecx = 0;
4627 *edx = env->features[FEAT_SVM]; /* optional features */
4628 } else {
4629 *eax = 0;
4630 *ebx = 0;
4631 *ecx = 0;
4632 *edx = 0;
4633 }
4634 break;
4635 case 0x8000001D:
4636 *eax = 0;
4637 if (cpu->cache_info_passthrough) {
4638 host_cpuid(index, count, eax, ebx, ecx, edx);
4639 break;
4640 }
4641 switch (count) {
4642 case 0: /* L1 dcache info */
4643 encode_cache_cpuid8000001d(env->cache_info_amd.l1d_cache, cs,
4644 eax, ebx, ecx, edx);
4645 break;
4646 case 1: /* L1 icache info */
4647 encode_cache_cpuid8000001d(env->cache_info_amd.l1i_cache, cs,
4648 eax, ebx, ecx, edx);
4649 break;
4650 case 2: /* L2 cache info */
4651 encode_cache_cpuid8000001d(env->cache_info_amd.l2_cache, cs,
4652 eax, ebx, ecx, edx);
4653 break;
4654 case 3: /* L3 cache info */
4655 encode_cache_cpuid8000001d(env->cache_info_amd.l3_cache, cs,
4656 eax, ebx, ecx, edx);
4657 break;
4658 default: /* end of info */
4659 *eax = *ebx = *ecx = *edx = 0;
4660 break;
4661 }
4662 break;
4663 case 0x8000001E:
4664 assert(cpu->core_id <= 255);
4665 encode_topo_cpuid8000001e(cs, cpu,
4666 eax, ebx, ecx, edx);
4667 break;
4668 case 0xC0000000:
4669 *eax = env->cpuid_xlevel2;
4670 *ebx = 0;
4671 *ecx = 0;
4672 *edx = 0;
4673 break;
4674 case 0xC0000001:
4675 /* Support for VIA CPU's CPUID instruction */
4676 *eax = env->cpuid_version;
4677 *ebx = 0;
4678 *ecx = 0;
4679 *edx = env->features[FEAT_C000_0001_EDX];
4680 break;
4681 case 0xC0000002:
4682 case 0xC0000003:
4683 case 0xC0000004:
4684 /* Reserved for the future, and now filled with zero */
4685 *eax = 0;
4686 *ebx = 0;
4687 *ecx = 0;
4688 *edx = 0;
4689 break;
4690 case 0x8000001F:
4691 *eax = sev_enabled() ? 0x2 : 0;
4692 *ebx = sev_get_cbit_position();
4693 *ebx |= sev_get_reduced_phys_bits() << 6;
4694 *ecx = 0;
4695 *edx = 0;
4696 break;
4697 default:
4698 /* reserved values: zero */
4699 *eax = 0;
4700 *ebx = 0;
4701 *ecx = 0;
4702 *edx = 0;
4703 break;
4704 }
4705 }
4706
4707 /* CPUClass::reset() */
4708 static void x86_cpu_reset(CPUState *s)
4709 {
4710 X86CPU *cpu = X86_CPU(s);
4711 X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu);
4712 CPUX86State *env = &cpu->env;
4713 target_ulong cr4;
4714 uint64_t xcr0;
4715 int i;
4716
4717 xcc->parent_reset(s);
4718
4719 memset(env, 0, offsetof(CPUX86State, end_reset_fields));
4720
4721 env->old_exception = -1;
4722
4723 /* init to reset state */
4724
4725 env->hflags2 |= HF2_GIF_MASK;
4726
4727 cpu_x86_update_cr0(env, 0x60000010);
4728 env->a20_mask = ~0x0;
4729 env->smbase = 0x30000;
4730 env->msr_smi_count = 0;
4731
4732 env->idt.limit = 0xffff;
4733 env->gdt.limit = 0xffff;
4734 env->ldt.limit = 0xffff;
4735 env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
4736 env->tr.limit = 0xffff;
4737 env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
4738
4739 cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
4740 DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK |
4741 DESC_R_MASK | DESC_A_MASK);
4742 cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
4743 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
4744 DESC_A_MASK);
4745 cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
4746 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
4747 DESC_A_MASK);
4748 cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
4749 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
4750 DESC_A_MASK);
4751 cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
4752 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
4753 DESC_A_MASK);
4754 cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
4755 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
4756 DESC_A_MASK);
4757
4758 env->eip = 0xfff0;
4759 env->regs[R_EDX] = env->cpuid_version;
4760
4761 env->eflags = 0x2;
4762
4763 /* FPU init */
4764 for (i = 0; i < 8; i++) {
4765 env->fptags[i] = 1;
4766 }
4767 cpu_set_fpuc(env, 0x37f);
4768
4769 env->mxcsr = 0x1f80;
4770 /* All units are in INIT state. */
4771 env->xstate_bv = 0;
4772
4773 env->pat = 0x0007040600070406ULL;
4774 env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT;
4775 if (env->features[FEAT_1_ECX] & CPUID_EXT_MONITOR) {
4776 env->msr_ia32_misc_enable |= MSR_IA32_MISC_ENABLE_MWAIT;
4777 }
4778
4779 memset(env->dr, 0, sizeof(env->dr));
4780 env->dr[6] = DR6_FIXED_1;
4781 env->dr[7] = DR7_FIXED_1;
4782 cpu_breakpoint_remove_all(s, BP_CPU);
4783 cpu_watchpoint_remove_all(s, BP_CPU);
4784
4785 cr4 = 0;
4786 xcr0 = XSTATE_FP_MASK;
4787
4788 #ifdef CONFIG_USER_ONLY
4789 /* Enable all the features for user-mode. */
4790 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
4791 xcr0 |= XSTATE_SSE_MASK;
4792 }
4793 for (i = 2; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
4794 const ExtSaveArea *esa = &x86_ext_save_areas[i];
4795 if (env->features[esa->feature] & esa->bits) {
4796 xcr0 |= 1ull << i;
4797 }
4798 }
4799
4800 if (env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE) {
4801 cr4 |= CR4_OSFXSR_MASK | CR4_OSXSAVE_MASK;
4802 }
4803 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_FSGSBASE) {
4804 cr4 |= CR4_FSGSBASE_MASK;
4805 }
4806 #endif
4807
4808 env->xcr0 = xcr0;
4809 cpu_x86_update_cr4(env, cr4);
4810
4811 /*
4812 * SDM 11.11.5 requires:
4813 * - IA32_MTRR_DEF_TYPE MSR.E = 0
4814 * - IA32_MTRR_PHYSMASKn.V = 0
4815 * All other bits are undefined. For simplification, zero it all.
4816 */
4817 env->mtrr_deftype = 0;
4818 memset(env->mtrr_var, 0, sizeof(env->mtrr_var));
4819 memset(env->mtrr_fixed, 0, sizeof(env->mtrr_fixed));
4820
4821 env->interrupt_injected = -1;
4822 env->exception_injected = -1;
4823 env->nmi_injected = false;
4824 #if !defined(CONFIG_USER_ONLY)
4825 /* We hard-wire the BSP to the first CPU. */
4826 apic_designate_bsp(cpu->apic_state, s->cpu_index == 0);
4827
4828 s->halted = !cpu_is_bsp(cpu);
4829
4830 if (kvm_enabled()) {
4831 kvm_arch_reset_vcpu(cpu);
4832 }
4833 else if (hvf_enabled()) {
4834 hvf_reset_vcpu(s);
4835 }
4836 #endif
4837 }
4838
4839 #ifndef CONFIG_USER_ONLY
4840 bool cpu_is_bsp(X86CPU *cpu)
4841 {
4842 return cpu_get_apic_base(cpu->apic_state) & MSR_IA32_APICBASE_BSP;
4843 }
4844
4845 /* TODO: remove me, when reset over QOM tree is implemented */
4846 static void x86_cpu_machine_reset_cb(void *opaque)
4847 {
4848 X86CPU *cpu = opaque;
4849 cpu_reset(CPU(cpu));
4850 }
4851 #endif
4852
4853 static void mce_init(X86CPU *cpu)
4854 {
4855 CPUX86State *cenv = &cpu->env;
4856 unsigned int bank;
4857
4858 if (((cenv->cpuid_version >> 8) & 0xf) >= 6
4859 && (cenv->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
4860 (CPUID_MCE | CPUID_MCA)) {
4861 cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF |
4862 (cpu->enable_lmce ? MCG_LMCE_P : 0);
4863 cenv->mcg_ctl = ~(uint64_t)0;
4864 for (bank = 0; bank < MCE_BANKS_DEF; bank++) {
4865 cenv->mce_banks[bank * 4] = ~(uint64_t)0;
4866 }
4867 }
4868 }
4869
4870 #ifndef CONFIG_USER_ONLY
4871 APICCommonClass *apic_get_class(void)
4872 {
4873 const char *apic_type = "apic";
4874
4875 /* TODO: in-kernel irqchip for hvf */
4876 if (kvm_apic_in_kernel()) {
4877 apic_type = "kvm-apic";
4878 } else if (xen_enabled()) {
4879 apic_type = "xen-apic";
4880 }
4881
4882 return APIC_COMMON_CLASS(object_class_by_name(apic_type));
4883 }
4884
4885 static void x86_cpu_apic_create(X86CPU *cpu, Error **errp)
4886 {
4887 APICCommonState *apic;
4888 ObjectClass *apic_class = OBJECT_CLASS(apic_get_class());
4889
4890 cpu->apic_state = DEVICE(object_new(object_class_get_name(apic_class)));
4891
4892 object_property_add_child(OBJECT(cpu), "lapic",
4893 OBJECT(cpu->apic_state), &error_abort);
4894 object_unref(OBJECT(cpu->apic_state));
4895
4896 qdev_prop_set_uint32(cpu->apic_state, "id", cpu->apic_id);
4897 /* TODO: convert to link<> */
4898 apic = APIC_COMMON(cpu->apic_state);
4899 apic->cpu = cpu;
4900 apic->apicbase = APIC_DEFAULT_ADDRESS | MSR_IA32_APICBASE_ENABLE;
4901 }
4902
4903 static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
4904 {
4905 APICCommonState *apic;
4906 static bool apic_mmio_map_once;
4907
4908 if (cpu->apic_state == NULL) {
4909 return;
4910 }
4911 object_property_set_bool(OBJECT(cpu->apic_state), true, "realized",
4912 errp);
4913
4914 /* Map APIC MMIO area */
4915 apic = APIC_COMMON(cpu->apic_state);
4916 if (!apic_mmio_map_once) {
4917 memory_region_add_subregion_overlap(get_system_memory(),
4918 apic->apicbase &
4919 MSR_IA32_APICBASE_BASE,
4920 &apic->io_memory,
4921 0x1000);
4922 apic_mmio_map_once = true;
4923 }
4924 }
4925
4926 static void x86_cpu_machine_done(Notifier *n, void *unused)
4927 {
4928 X86CPU *cpu = container_of(n, X86CPU, machine_done);
4929 MemoryRegion *smram =
4930 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
4931
4932 if (smram) {
4933 cpu->smram = g_new(MemoryRegion, 1);
4934 memory_region_init_alias(cpu->smram, OBJECT(cpu), "smram",
4935 smram, 0, 1ull << 32);
4936 memory_region_set_enabled(cpu->smram, true);
4937 memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->smram, 1);
4938 }
4939 }
4940 #else
4941 static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
4942 {
4943 }
4944 #endif
4945
4946 /* Note: Only safe for use on x86(-64) hosts */
4947 static uint32_t x86_host_phys_bits(void)
4948 {
4949 uint32_t eax;
4950 uint32_t host_phys_bits;
4951
4952 host_cpuid(0x80000000, 0, &eax, NULL, NULL, NULL);
4953 if (eax >= 0x80000008) {
4954 host_cpuid(0x80000008, 0, &eax, NULL, NULL, NULL);
4955 /* Note: According to AMD doc 25481 rev 2.34 they have a field
4956 * at 23:16 that can specify a maximum physical address bits for
4957 * the guest that can override this value; but I've not seen
4958 * anything with that set.
4959 */
4960 host_phys_bits = eax & 0xff;
4961 } else {
4962 /* It's an odd 64 bit machine that doesn't have the leaf for
4963 * physical address bits; fall back to 36 that's most older
4964 * Intel.
4965 */
4966 host_phys_bits = 36;
4967 }
4968
4969 return host_phys_bits;
4970 }
4971
4972 static void x86_cpu_adjust_level(X86CPU *cpu, uint32_t *min, uint32_t value)
4973 {
4974 if (*min < value) {
4975 *min = value;
4976 }
4977 }
4978
4979 /* Increase cpuid_min_{level,xlevel,xlevel2} automatically, if appropriate */
4980 static void x86_cpu_adjust_feat_level(X86CPU *cpu, FeatureWord w)
4981 {
4982 CPUX86State *env = &cpu->env;
4983 FeatureWordInfo *fi = &feature_word_info[w];
4984 uint32_t eax = fi->cpuid.eax;
4985 uint32_t region = eax & 0xF0000000;
4986
4987 assert(feature_word_info[w].type == CPUID_FEATURE_WORD);
4988 if (!env->features[w]) {
4989 return;
4990 }
4991
4992 switch (region) {
4993 case 0x00000000:
4994 x86_cpu_adjust_level(cpu, &env->cpuid_min_level, eax);
4995 break;
4996 case 0x80000000:
4997 x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, eax);
4998 break;
4999 case 0xC0000000:
5000 x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel2, eax);
5001 break;
5002 }
5003 }
5004
5005 /* Calculate XSAVE components based on the configured CPU feature flags */
5006 static void x86_cpu_enable_xsave_components(X86CPU *cpu)
5007 {
5008 CPUX86State *env = &cpu->env;
5009 int i;
5010 uint64_t mask;
5011
5012 if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
5013 return;
5014 }
5015
5016 mask = 0;
5017 for (i = 0; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
5018 const ExtSaveArea *esa = &x86_ext_save_areas[i];
5019 if (env->features[esa->feature] & esa->bits) {
5020 mask |= (1ULL << i);
5021 }
5022 }
5023
5024 env->features[FEAT_XSAVE_COMP_LO] = mask;
5025 env->features[FEAT_XSAVE_COMP_HI] = mask >> 32;
5026 }
5027
5028 /***** Steps involved on loading and filtering CPUID data
5029 *
5030 * When initializing and realizing a CPU object, the steps
5031 * involved in setting up CPUID data are:
5032 *
5033 * 1) Loading CPU model definition (X86CPUDefinition). This is
5034 * implemented by x86_cpu_load_def() and should be completely
5035 * transparent, as it is done automatically by instance_init.
5036 * No code should need to look at X86CPUDefinition structs
5037 * outside instance_init.
5038 *
5039 * 2) CPU expansion. This is done by realize before CPUID
5040 * filtering, and will make sure host/accelerator data is
5041 * loaded for CPU models that depend on host capabilities
5042 * (e.g. "host"). Done by x86_cpu_expand_features().
5043 *
5044 * 3) CPUID filtering. This initializes extra data related to
5045 * CPUID, and checks if the host supports all capabilities
5046 * required by the CPU. Runnability of a CPU model is
5047 * determined at this step. Done by x86_cpu_filter_features().
5048 *
5049 * Some operations don't require all steps to be performed.
5050 * More precisely:
5051 *
5052 * - CPU instance creation (instance_init) will run only CPU
5053 * model loading. CPU expansion can't run at instance_init-time
5054 * because host/accelerator data may be not available yet.
5055 * - CPU realization will perform both CPU model expansion and CPUID
5056 * filtering, and return an error in case one of them fails.
5057 * - query-cpu-definitions needs to run all 3 steps. It needs
5058 * to run CPUID filtering, as the 'unavailable-features'
5059 * field is set based on the filtering results.
5060 * - The query-cpu-model-expansion QMP command only needs to run
5061 * CPU model loading and CPU expansion. It should not filter
5062 * any CPUID data based on host capabilities.
5063 */
5064
5065 /* Expand CPU configuration data, based on configured features
5066 * and host/accelerator capabilities when appropriate.
5067 */
5068 static void x86_cpu_expand_features(X86CPU *cpu, Error **errp)
5069 {
5070 CPUX86State *env = &cpu->env;
5071 FeatureWord w;
5072 GList *l;
5073 Error *local_err = NULL;
5074
5075 /*TODO: Now cpu->max_features doesn't overwrite features
5076 * set using QOM properties, and we can convert
5077 * plus_features & minus_features to global properties
5078 * inside x86_cpu_parse_featurestr() too.
5079 */
5080 if (cpu->max_features) {
5081 for (w = 0; w < FEATURE_WORDS; w++) {
5082 /* Override only features that weren't set explicitly
5083 * by the user.
5084 */
5085 env->features[w] |=
5086 x86_cpu_get_supported_feature_word(w, cpu->migratable) &
5087 ~env->user_features[w] & \
5088 ~feature_word_info[w].no_autoenable_flags;
5089 }
5090 }
5091
5092 for (l = plus_features; l; l = l->next) {
5093 const char *prop = l->data;
5094 object_property_set_bool(OBJECT(cpu), true, prop, &local_err);
5095 if (local_err) {
5096 goto out;
5097 }
5098 }
5099
5100 for (l = minus_features; l; l = l->next) {
5101 const char *prop = l->data;
5102 object_property_set_bool(OBJECT(cpu), false, prop, &local_err);
5103 if (local_err) {
5104 goto out;
5105 }
5106 }
5107
5108 if (!kvm_enabled() || !cpu->expose_kvm) {
5109 env->features[FEAT_KVM] = 0;
5110 }
5111
5112 x86_cpu_enable_xsave_components(cpu);
5113
5114 /* CPUID[EAX=7,ECX=0].EBX always increased level automatically: */
5115 x86_cpu_adjust_feat_level(cpu, FEAT_7_0_EBX);
5116 if (cpu->full_cpuid_auto_level) {
5117 x86_cpu_adjust_feat_level(cpu, FEAT_1_EDX);
5118 x86_cpu_adjust_feat_level(cpu, FEAT_1_ECX);
5119 x86_cpu_adjust_feat_level(cpu, FEAT_6_EAX);
5120 x86_cpu_adjust_feat_level(cpu, FEAT_7_0_ECX);
5121 x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_EDX);
5122 x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_ECX);
5123 x86_cpu_adjust_feat_level(cpu, FEAT_8000_0007_EDX);
5124 x86_cpu_adjust_feat_level(cpu, FEAT_8000_0008_EBX);
5125 x86_cpu_adjust_feat_level(cpu, FEAT_C000_0001_EDX);
5126 x86_cpu_adjust_feat_level(cpu, FEAT_SVM);
5127 x86_cpu_adjust_feat_level(cpu, FEAT_XSAVE);
5128
5129 /* Intel Processor Trace requires CPUID[0x14] */
5130 if ((env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) &&
5131 kvm_enabled() && cpu->intel_pt_auto_level) {
5132 x86_cpu_adjust_level(cpu, &cpu->env.cpuid_min_level, 0x14);
5133 }
5134
5135 /* SVM requires CPUID[0x8000000A] */
5136 if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
5137 x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, 0x8000000A);
5138 }
5139
5140 /* SEV requires CPUID[0x8000001F] */
5141 if (sev_enabled()) {
5142 x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, 0x8000001F);
5143 }
5144 }
5145
5146 /* Set cpuid_*level* based on cpuid_min_*level, if not explicitly set */
5147 if (env->cpuid_level == UINT32_MAX) {
5148 env->cpuid_level = env->cpuid_min_level;
5149 }
5150 if (env->cpuid_xlevel == UINT32_MAX) {
5151 env->cpuid_xlevel = env->cpuid_min_xlevel;
5152 }
5153 if (env->cpuid_xlevel2 == UINT32_MAX) {
5154 env->cpuid_xlevel2 = env->cpuid_min_xlevel2;
5155 }
5156
5157 out:
5158 if (local_err != NULL) {
5159 error_propagate(errp, local_err);
5160 }
5161 }
5162
5163 /*
5164 * Finishes initialization of CPUID data, filters CPU feature
5165 * words based on host availability of each feature.
5166 *
5167 * Returns: 0 if all flags are supported by the host, non-zero otherwise.
5168 */
5169 static int x86_cpu_filter_features(X86CPU *cpu)
5170 {
5171 CPUX86State *env = &cpu->env;
5172 FeatureWord w;
5173 int rv = 0;
5174
5175 for (w = 0; w < FEATURE_WORDS; w++) {
5176 uint32_t host_feat =
5177 x86_cpu_get_supported_feature_word(w, false);
5178 uint32_t requested_features = env->features[w];
5179 env->features[w] &= host_feat;
5180 cpu->filtered_features[w] = requested_features & ~env->features[w];
5181 if (cpu->filtered_features[w]) {
5182 rv = 1;
5183 }
5184 }
5185
5186 if ((env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) &&
5187 kvm_enabled()) {
5188 KVMState *s = CPU(cpu)->kvm_state;
5189 uint32_t eax_0 = kvm_arch_get_supported_cpuid(s, 0x14, 0, R_EAX);
5190 uint32_t ebx_0 = kvm_arch_get_supported_cpuid(s, 0x14, 0, R_EBX);
5191 uint32_t ecx_0 = kvm_arch_get_supported_cpuid(s, 0x14, 0, R_ECX);
5192 uint32_t eax_1 = kvm_arch_get_supported_cpuid(s, 0x14, 1, R_EAX);
5193 uint32_t ebx_1 = kvm_arch_get_supported_cpuid(s, 0x14, 1, R_EBX);
5194
5195 if (!eax_0 ||
5196 ((ebx_0 & INTEL_PT_MINIMAL_EBX) != INTEL_PT_MINIMAL_EBX) ||
5197 ((ecx_0 & INTEL_PT_MINIMAL_ECX) != INTEL_PT_MINIMAL_ECX) ||
5198 ((eax_1 & INTEL_PT_MTC_BITMAP) != INTEL_PT_MTC_BITMAP) ||
5199 ((eax_1 & INTEL_PT_ADDR_RANGES_NUM_MASK) <
5200 INTEL_PT_ADDR_RANGES_NUM) ||
5201 ((ebx_1 & (INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP)) !=
5202 (INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP)) ||
5203 (ecx_0 & INTEL_PT_IP_LIP)) {
5204 /*
5205 * Processor Trace capabilities aren't configurable, so if the
5206 * host can't emulate the capabilities we report on
5207 * cpu_x86_cpuid(), intel-pt can't be enabled on the current host.
5208 */
5209 env->features[FEAT_7_0_EBX] &= ~CPUID_7_0_EBX_INTEL_PT;
5210 cpu->filtered_features[FEAT_7_0_EBX] |= CPUID_7_0_EBX_INTEL_PT;
5211 rv = 1;
5212 }
5213 }
5214
5215 return rv;
5216 }
5217
5218 #define IS_INTEL_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_INTEL_1 && \
5219 (env)->cpuid_vendor2 == CPUID_VENDOR_INTEL_2 && \
5220 (env)->cpuid_vendor3 == CPUID_VENDOR_INTEL_3)
5221 #define IS_AMD_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_AMD_1 && \
5222 (env)->cpuid_vendor2 == CPUID_VENDOR_AMD_2 && \
5223 (env)->cpuid_vendor3 == CPUID_VENDOR_AMD_3)
5224 static void x86_cpu_realizefn(DeviceState *dev, Error **errp)
5225 {
5226 CPUState *cs = CPU(dev);
5227 X86CPU *cpu = X86_CPU(dev);
5228 X86CPUClass *xcc = X86_CPU_GET_CLASS(dev);
5229 CPUX86State *env = &cpu->env;
5230 Error *local_err = NULL;
5231 static bool ht_warned;
5232
5233 if (xcc->host_cpuid_required) {
5234 if (!accel_uses_host_cpuid()) {
5235 char *name = x86_cpu_class_get_model_name(xcc);
5236 error_setg(&local_err, "CPU model '%s' requires KVM", name);
5237 g_free(name);
5238 goto out;
5239 }
5240
5241 if (enable_cpu_pm) {
5242 host_cpuid(5, 0, &cpu->mwait.eax, &cpu->mwait.ebx,
5243 &cpu->mwait.ecx, &cpu->mwait.edx);
5244 env->features[FEAT_1_ECX] |= CPUID_EXT_MONITOR;
5245 }
5246 }
5247
5248 /* mwait extended info: needed for Core compatibility */
5249 /* We always wake on interrupt even if host does not have the capability */
5250 cpu->mwait.ecx |= CPUID_MWAIT_EMX | CPUID_MWAIT_IBE;
5251
5252 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
5253 error_setg(errp, "apic-id property was not initialized properly");
5254 return;
5255 }
5256
5257 x86_cpu_expand_features(cpu, &local_err);
5258 if (local_err) {
5259 goto out;
5260 }
5261
5262 if (x86_cpu_filter_features(cpu) &&
5263 (cpu->check_cpuid || cpu->enforce_cpuid)) {
5264 x86_cpu_report_filtered_features(cpu);
5265 if (cpu->enforce_cpuid) {
5266 error_setg(&local_err,
5267 accel_uses_host_cpuid() ?
5268 "Host doesn't support requested features" :
5269 "TCG doesn't support requested features");
5270 goto out;
5271 }
5272 }
5273
5274 /* On AMD CPUs, some CPUID[8000_0001].EDX bits must match the bits on
5275 * CPUID[1].EDX.
5276 */
5277 if (IS_AMD_CPU(env)) {
5278 env->features[FEAT_8000_0001_EDX] &= ~CPUID_EXT2_AMD_ALIASES;
5279 env->features[FEAT_8000_0001_EDX] |= (env->features[FEAT_1_EDX]
5280 & CPUID_EXT2_AMD_ALIASES);
5281 }
5282
5283 /* For 64bit systems think about the number of physical bits to present.
5284 * ideally this should be the same as the host; anything other than matching
5285 * the host can cause incorrect guest behaviour.
5286 * QEMU used to pick the magic value of 40 bits that corresponds to
5287 * consumer AMD devices but nothing else.
5288 */
5289 if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
5290 if (accel_uses_host_cpuid()) {
5291 uint32_t host_phys_bits = x86_host_phys_bits();
5292 static bool warned;
5293
5294 if (cpu->host_phys_bits) {
5295 /* The user asked for us to use the host physical bits */
5296 cpu->phys_bits = host_phys_bits;
5297 if (cpu->host_phys_bits_limit &&
5298 cpu->phys_bits > cpu->host_phys_bits_limit) {
5299 cpu->phys_bits = cpu->host_phys_bits_limit;
5300 }
5301 }
5302
5303 /* Print a warning if the user set it to a value that's not the
5304 * host value.
5305 */
5306 if (cpu->phys_bits != host_phys_bits && cpu->phys_bits != 0 &&
5307 !warned) {
5308 warn_report("Host physical bits (%u)"
5309 " does not match phys-bits property (%u)",
5310 host_phys_bits, cpu->phys_bits);
5311 warned = true;
5312 }
5313
5314 if (cpu->phys_bits &&
5315 (cpu->phys_bits > TARGET_PHYS_ADDR_SPACE_BITS ||
5316 cpu->phys_bits < 32)) {
5317 error_setg(errp, "phys-bits should be between 32 and %u "
5318 " (but is %u)",
5319 TARGET_PHYS_ADDR_SPACE_BITS, cpu->phys_bits);
5320 return;
5321 }
5322 } else {
5323 if (cpu->phys_bits && cpu->phys_bits != TCG_PHYS_ADDR_BITS) {
5324 error_setg(errp, "TCG only supports phys-bits=%u",
5325 TCG_PHYS_ADDR_BITS);
5326 return;
5327 }
5328 }
5329 /* 0 means it was not explicitly set by the user (or by machine
5330 * compat_props or by the host code above). In this case, the default
5331 * is the value used by TCG (40).
5332 */
5333 if (cpu->phys_bits == 0) {
5334 cpu->phys_bits = TCG_PHYS_ADDR_BITS;
5335 }
5336 } else {
5337 /* For 32 bit systems don't use the user set value, but keep
5338 * phys_bits consistent with what we tell the guest.
5339 */
5340 if (cpu->phys_bits != 0) {
5341 error_setg(errp, "phys-bits is not user-configurable in 32 bit");
5342 return;
5343 }
5344
5345 if (env->features[FEAT_1_EDX] & CPUID_PSE36) {
5346 cpu->phys_bits = 36;
5347 } else {
5348 cpu->phys_bits = 32;
5349 }
5350 }
5351
5352 /* Cache information initialization */
5353 if (!cpu->legacy_cache) {
5354 if (!xcc->cpu_def || !xcc->cpu_def->cache_info) {
5355 char *name = x86_cpu_class_get_model_name(xcc);
5356 error_setg(errp,
5357 "CPU model '%s' doesn't support legacy-cache=off", name);
5358 g_free(name);
5359 return;
5360 }
5361 env->cache_info_cpuid2 = env->cache_info_cpuid4 = env->cache_info_amd =
5362 *xcc->cpu_def->cache_info;
5363 } else {
5364 /* Build legacy cache information */
5365 env->cache_info_cpuid2.l1d_cache = &legacy_l1d_cache;
5366 env->cache_info_cpuid2.l1i_cache = &legacy_l1i_cache;
5367 env->cache_info_cpuid2.l2_cache = &legacy_l2_cache_cpuid2;
5368 env->cache_info_cpuid2.l3_cache = &legacy_l3_cache;
5369
5370 env->cache_info_cpuid4.l1d_cache = &legacy_l1d_cache;
5371 env->cache_info_cpuid4.l1i_cache = &legacy_l1i_cache;
5372 env->cache_info_cpuid4.l2_cache = &legacy_l2_cache;
5373 env->cache_info_cpuid4.l3_cache = &legacy_l3_cache;
5374
5375 env->cache_info_amd.l1d_cache = &legacy_l1d_cache_amd;
5376 env->cache_info_amd.l1i_cache = &legacy_l1i_cache_amd;
5377 env->cache_info_amd.l2_cache = &legacy_l2_cache_amd;
5378 env->cache_info_amd.l3_cache = &legacy_l3_cache;
5379 }
5380
5381
5382 cpu_exec_realizefn(cs, &local_err);
5383 if (local_err != NULL) {
5384 error_propagate(errp, local_err);
5385 return;
5386 }
5387
5388 #ifndef CONFIG_USER_ONLY
5389 qemu_register_reset(x86_cpu_machine_reset_cb, cpu);
5390
5391 if (cpu->env.features[FEAT_1_EDX] & CPUID_APIC || smp_cpus > 1) {
5392 x86_cpu_apic_create(cpu, &local_err);
5393 if (local_err != NULL) {
5394 goto out;
5395 }
5396 }
5397 #endif
5398
5399 mce_init(cpu);
5400
5401 #ifndef CONFIG_USER_ONLY
5402 if (tcg_enabled()) {
5403 cpu->cpu_as_mem = g_new(MemoryRegion, 1);
5404 cpu->cpu_as_root = g_new(MemoryRegion, 1);
5405
5406 /* Outer container... */
5407 memory_region_init(cpu->cpu_as_root, OBJECT(cpu), "memory", ~0ull);
5408 memory_region_set_enabled(cpu->cpu_as_root, true);
5409
5410 /* ... with two regions inside: normal system memory with low
5411 * priority, and...
5412 */
5413 memory_region_init_alias(cpu->cpu_as_mem, OBJECT(cpu), "memory",
5414 get_system_memory(), 0, ~0ull);
5415 memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->cpu_as_mem, 0);
5416 memory_region_set_enabled(cpu->cpu_as_mem, true);
5417
5418 cs->num_ases = 2;
5419 cpu_address_space_init(cs, 0, "cpu-memory", cs->memory);
5420 cpu_address_space_init(cs, 1, "cpu-smm", cpu->cpu_as_root);
5421
5422 /* ... SMRAM with higher priority, linked from /machine/smram. */
5423 cpu->machine_done.notify = x86_cpu_machine_done;
5424 qemu_add_machine_init_done_notifier(&cpu->machine_done);
5425 }
5426 #endif
5427
5428 qemu_init_vcpu(cs);
5429
5430 /*
5431 * Most Intel and certain AMD CPUs support hyperthreading. Even though QEMU
5432 * fixes this issue by adjusting CPUID_0000_0001_EBX and CPUID_8000_0008_ECX
5433 * based on inputs (sockets,cores,threads), it is still better to give
5434 * users a warning.
5435 *
5436 * NOTE: the following code has to follow qemu_init_vcpu(). Otherwise
5437 * cs->nr_threads hasn't be populated yet and the checking is incorrect.
5438 */
5439 if (IS_AMD_CPU(env) &&
5440 !(env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_TOPOEXT) &&
5441 cs->nr_threads > 1 && !ht_warned) {
5442 warn_report("This family of AMD CPU doesn't support "
5443 "hyperthreading(%d)",
5444 cs->nr_threads);
5445 error_printf("Please configure -smp options properly"
5446 " or try enabling topoext feature.\n");
5447 ht_warned = true;
5448 }
5449
5450 x86_cpu_apic_realize(cpu, &local_err);
5451 if (local_err != NULL) {
5452 goto out;
5453 }
5454 cpu_reset(cs);
5455
5456 xcc->parent_realize(dev, &local_err);
5457
5458 out:
5459 if (local_err != NULL) {
5460 error_propagate(errp, local_err);
5461 return;
5462 }
5463 }
5464
5465 static void x86_cpu_unrealizefn(DeviceState *dev, Error **errp)
5466 {
5467 X86CPU *cpu = X86_CPU(dev);
5468 X86CPUClass *xcc = X86_CPU_GET_CLASS(dev);
5469 Error *local_err = NULL;
5470
5471 #ifndef CONFIG_USER_ONLY
5472 cpu_remove_sync(CPU(dev));
5473 qemu_unregister_reset(x86_cpu_machine_reset_cb, dev);
5474 #endif
5475
5476 if (cpu->apic_state) {
5477 object_unparent(OBJECT(cpu->apic_state));
5478 cpu->apic_state = NULL;
5479 }
5480
5481 xcc->parent_unrealize(dev, &local_err);
5482 if (local_err != NULL) {
5483 error_propagate(errp, local_err);
5484 return;
5485 }
5486 }
5487
5488 typedef struct BitProperty {
5489 FeatureWord w;
5490 uint32_t mask;
5491 } BitProperty;
5492
5493 static void x86_cpu_get_bit_prop(Object *obj, Visitor *v, const char *name,
5494 void *opaque, Error **errp)
5495 {
5496 X86CPU *cpu = X86_CPU(obj);
5497 BitProperty *fp = opaque;
5498 uint32_t f = cpu->env.features[fp->w];
5499 bool value = (f & fp->mask) == fp->mask;
5500 visit_type_bool(v, name, &value, errp);
5501 }
5502
5503 static void x86_cpu_set_bit_prop(Object *obj, Visitor *v, const char *name,
5504 void *opaque, Error **errp)
5505 {
5506 DeviceState *dev = DEVICE(obj);
5507 X86CPU *cpu = X86_CPU(obj);
5508 BitProperty *fp = opaque;
5509 Error *local_err = NULL;
5510 bool value;
5511
5512 if (dev->realized) {
5513 qdev_prop_set_after_realize(dev, name, errp);
5514 return;
5515 }
5516
5517 visit_type_bool(v, name, &value, &local_err);
5518 if (local_err) {
5519 error_propagate(errp, local_err);
5520 return;
5521 }
5522
5523 if (value) {
5524 cpu->env.features[fp->w] |= fp->mask;
5525 } else {
5526 cpu->env.features[fp->w] &= ~fp->mask;
5527 }
5528 cpu->env.user_features[fp->w] |= fp->mask;
5529 }
5530
5531 static void x86_cpu_release_bit_prop(Object *obj, const char *name,
5532 void *opaque)
5533 {
5534 BitProperty *prop = opaque;
5535 g_free(prop);
5536 }
5537
5538 /* Register a boolean property to get/set a single bit in a uint32_t field.
5539 *
5540 * The same property name can be registered multiple times to make it affect
5541 * multiple bits in the same FeatureWord. In that case, the getter will return
5542 * true only if all bits are set.
5543 */
5544 static void x86_cpu_register_bit_prop(X86CPU *cpu,
5545 const char *prop_name,
5546 FeatureWord w,
5547 int bitnr)
5548 {
5549 BitProperty *fp;
5550 ObjectProperty *op;
5551 uint32_t mask = (1UL << bitnr);
5552
5553 op = object_property_find(OBJECT(cpu), prop_name, NULL);
5554 if (op) {
5555 fp = op->opaque;
5556 assert(fp->w == w);
5557 fp->mask |= mask;
5558 } else {
5559 fp = g_new0(BitProperty, 1);
5560 fp->w = w;
5561 fp->mask = mask;
5562 object_property_add(OBJECT(cpu), prop_name, "bool",
5563 x86_cpu_get_bit_prop,
5564 x86_cpu_set_bit_prop,
5565 x86_cpu_release_bit_prop, fp, &error_abort);
5566 }
5567 }
5568
5569 static void x86_cpu_register_feature_bit_props(X86CPU *cpu,
5570 FeatureWord w,
5571 int bitnr)
5572 {
5573 FeatureWordInfo *fi = &feature_word_info[w];
5574 const char *name = fi->feat_names[bitnr];
5575
5576 if (!name) {
5577 return;
5578 }
5579
5580 /* Property names should use "-" instead of "_".
5581 * Old names containing underscores are registered as aliases
5582 * using object_property_add_alias()
5583 */
5584 assert(!strchr(name, '_'));
5585 /* aliases don't use "|" delimiters anymore, they are registered
5586 * manually using object_property_add_alias() */
5587 assert(!strchr(name, '|'));
5588 x86_cpu_register_bit_prop(cpu, name, w, bitnr);
5589 }
5590
5591 static GuestPanicInformation *x86_cpu_get_crash_info(CPUState *cs)
5592 {
5593 X86CPU *cpu = X86_CPU(cs);
5594 CPUX86State *env = &cpu->env;
5595 GuestPanicInformation *panic_info = NULL;
5596
5597 if (env->features[FEAT_HYPERV_EDX] & HV_GUEST_CRASH_MSR_AVAILABLE) {
5598 panic_info = g_malloc0(sizeof(GuestPanicInformation));
5599
5600 panic_info->type = GUEST_PANIC_INFORMATION_TYPE_HYPER_V;
5601
5602 assert(HV_CRASH_PARAMS >= 5);
5603 panic_info->u.hyper_v.arg1 = env->msr_hv_crash_params[0];
5604 panic_info->u.hyper_v.arg2 = env->msr_hv_crash_params[1];
5605 panic_info->u.hyper_v.arg3 = env->msr_hv_crash_params[2];
5606 panic_info->u.hyper_v.arg4 = env->msr_hv_crash_params[3];
5607 panic_info->u.hyper_v.arg5 = env->msr_hv_crash_params[4];
5608 }
5609
5610 return panic_info;
5611 }
5612 static void x86_cpu_get_crash_info_qom(Object *obj, Visitor *v,
5613 const char *name, void *opaque,
5614 Error **errp)
5615 {
5616 CPUState *cs = CPU(obj);
5617 GuestPanicInformation *panic_info;
5618
5619 if (!cs->crash_occurred) {
5620 error_setg(errp, "No crash occured");
5621 return;
5622 }
5623
5624 panic_info = x86_cpu_get_crash_info(cs);
5625 if (panic_info == NULL) {
5626 error_setg(errp, "No crash information");
5627 return;
5628 }
5629
5630 visit_type_GuestPanicInformation(v, "crash-information", &panic_info,
5631 errp);
5632 qapi_free_GuestPanicInformation(panic_info);
5633 }
5634
5635 static void x86_cpu_initfn(Object *obj)
5636 {
5637 X86CPU *cpu = X86_CPU(obj);
5638 X86CPUClass *xcc = X86_CPU_GET_CLASS(obj);
5639 CPUX86State *env = &cpu->env;
5640 FeatureWord w;
5641
5642 cpu_set_cpustate_pointers(cpu);
5643
5644 object_property_add(obj, "family", "int",
5645 x86_cpuid_version_get_family,
5646 x86_cpuid_version_set_family, NULL, NULL, NULL);
5647 object_property_add(obj, "model", "int",
5648 x86_cpuid_version_get_model,
5649 x86_cpuid_version_set_model, NULL, NULL, NULL);
5650 object_property_add(obj, "stepping", "int",
5651 x86_cpuid_version_get_stepping,
5652 x86_cpuid_version_set_stepping, NULL, NULL, NULL);
5653 object_property_add_str(obj, "vendor",
5654 x86_cpuid_get_vendor,
5655 x86_cpuid_set_vendor, NULL);
5656 object_property_add_str(obj, "model-id",
5657 x86_cpuid_get_model_id,
5658 x86_cpuid_set_model_id, NULL);
5659 object_property_add(obj, "tsc-frequency", "int",
5660 x86_cpuid_get_tsc_freq,
5661 x86_cpuid_set_tsc_freq, NULL, NULL, NULL);
5662 object_property_add(obj, "feature-words", "X86CPUFeatureWordInfo",
5663 x86_cpu_get_feature_words,
5664 NULL, NULL, (void *)env->features, NULL);
5665 object_property_add(obj, "filtered-features", "X86CPUFeatureWordInfo",
5666 x86_cpu_get_feature_words,
5667 NULL, NULL, (void *)cpu->filtered_features, NULL);
5668 /*
5669 * The "unavailable-features" property has the same semantics as
5670 * CpuDefinitionInfo.unavailable-features on the "query-cpu-definitions"
5671 * QMP command: they list the features that would have prevented the
5672 * CPU from running if the "enforce" flag was set.
5673 */
5674 object_property_add(obj, "unavailable-features", "strList",
5675 x86_cpu_get_unavailable_features,
5676 NULL, NULL, NULL, &error_abort);
5677
5678 object_property_add(obj, "crash-information", "GuestPanicInformation",
5679 x86_cpu_get_crash_info_qom, NULL, NULL, NULL, NULL);
5680
5681 cpu->hyperv_spinlock_attempts = HYPERV_SPINLOCK_NEVER_RETRY;
5682
5683 for (w = 0; w < FEATURE_WORDS; w++) {
5684 int bitnr;
5685
5686 for (bitnr = 0; bitnr < 32; bitnr++) {
5687 x86_cpu_register_feature_bit_props(cpu, w, bitnr);
5688 }
5689 }
5690
5691 object_property_add_alias(obj, "sse3", obj, "pni", &error_abort);
5692 object_property_add_alias(obj, "pclmuldq", obj, "pclmulqdq", &error_abort);
5693 object_property_add_alias(obj, "sse4-1", obj, "sse4.1", &error_abort);
5694 object_property_add_alias(obj, "sse4-2", obj, "sse4.2", &error_abort);
5695 object_property_add_alias(obj, "xd", obj, "nx", &error_abort);
5696 object_property_add_alias(obj, "ffxsr", obj, "fxsr-opt", &error_abort);
5697 object_property_add_alias(obj, "i64", obj, "lm", &error_abort);
5698
5699 object_property_add_alias(obj, "ds_cpl", obj, "ds-cpl", &error_abort);
5700 object_property_add_alias(obj, "tsc_adjust", obj, "tsc-adjust", &error_abort);
5701 object_property_add_alias(obj, "fxsr_opt", obj, "fxsr-opt", &error_abort);
5702 object_property_add_alias(obj, "lahf_lm", obj, "lahf-lm", &error_abort);
5703 object_property_add_alias(obj, "cmp_legacy", obj, "cmp-legacy", &error_abort);
5704 object_property_add_alias(obj, "nodeid_msr", obj, "nodeid-msr", &error_abort);
5705 object_property_add_alias(obj, "perfctr_core", obj, "perfctr-core", &error_abort);
5706 object_property_add_alias(obj, "perfctr_nb", obj, "perfctr-nb", &error_abort);
5707 object_property_add_alias(obj, "kvm_nopiodelay", obj, "kvm-nopiodelay", &error_abort);
5708 object_property_add_alias(obj, "kvm_mmu", obj, "kvm-mmu", &error_abort);
5709 object_property_add_alias(obj, "kvm_asyncpf", obj, "kvm-asyncpf", &error_abort);
5710 object_property_add_alias(obj, "kvm_steal_time", obj, "kvm-steal-time", &error_abort);
5711 object_property_add_alias(obj, "kvm_pv_eoi", obj, "kvm-pv-eoi", &error_abort);
5712 object_property_add_alias(obj, "kvm_pv_unhalt", obj, "kvm-pv-unhalt", &error_abort);
5713 object_property_add_alias(obj, "svm_lock", obj, "svm-lock", &error_abort);
5714 object_property_add_alias(obj, "nrip_save", obj, "nrip-save", &error_abort);
5715 object_property_add_alias(obj, "tsc_scale", obj, "tsc-scale", &error_abort);
5716 object_property_add_alias(obj, "vmcb_clean", obj, "vmcb-clean", &error_abort);
5717 object_property_add_alias(obj, "pause_filter", obj, "pause-filter", &error_abort);
5718 object_property_add_alias(obj, "sse4_1", obj, "sse4.1", &error_abort);
5719 object_property_add_alias(obj, "sse4_2", obj, "sse4.2", &error_abort);
5720
5721 if (xcc->cpu_def) {
5722 x86_cpu_load_def(cpu, xcc->cpu_def, &error_abort);
5723 }
5724 }
5725
5726 static int64_t x86_cpu_get_arch_id(CPUState *cs)
5727 {
5728 X86CPU *cpu = X86_CPU(cs);
5729
5730 return cpu->apic_id;
5731 }
5732
5733 static bool x86_cpu_get_paging_enabled(const CPUState *cs)
5734 {
5735 X86CPU *cpu = X86_CPU(cs);
5736
5737 return cpu->env.cr[0] & CR0_PG_MASK;
5738 }
5739
5740 static void x86_cpu_set_pc(CPUState *cs, vaddr value)
5741 {
5742 X86CPU *cpu = X86_CPU(cs);
5743
5744 cpu->env.eip = value;
5745 }
5746
5747 static void x86_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
5748 {
5749 X86CPU *cpu = X86_CPU(cs);
5750
5751 cpu->env.eip = tb->pc - tb->cs_base;
5752 }
5753
5754 int x86_cpu_pending_interrupt(CPUState *cs, int interrupt_request)
5755 {
5756 X86CPU *cpu = X86_CPU(cs);
5757 CPUX86State *env = &cpu->env;
5758
5759 #if !defined(CONFIG_USER_ONLY)
5760 if (interrupt_request & CPU_INTERRUPT_POLL) {
5761 return CPU_INTERRUPT_POLL;
5762 }
5763 #endif
5764 if (interrupt_request & CPU_INTERRUPT_SIPI) {
5765 return CPU_INTERRUPT_SIPI;
5766 }
5767
5768 if (env->hflags2 & HF2_GIF_MASK) {
5769 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
5770 !(env->hflags & HF_SMM_MASK)) {
5771 return CPU_INTERRUPT_SMI;
5772 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
5773 !(env->hflags2 & HF2_NMI_MASK)) {
5774 return CPU_INTERRUPT_NMI;
5775 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
5776 return CPU_INTERRUPT_MCE;
5777 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
5778 (((env->hflags2 & HF2_VINTR_MASK) &&
5779 (env->hflags2 & HF2_HIF_MASK)) ||
5780 (!(env->hflags2 & HF2_VINTR_MASK) &&
5781 (env->eflags & IF_MASK &&
5782 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
5783 return CPU_INTERRUPT_HARD;
5784 #if !defined(CONFIG_USER_ONLY)
5785 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
5786 (env->eflags & IF_MASK) &&
5787 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
5788 return CPU_INTERRUPT_VIRQ;
5789 #endif
5790 }
5791 }
5792
5793 return 0;
5794 }
5795
5796 static bool x86_cpu_has_work(CPUState *cs)
5797 {
5798 return x86_cpu_pending_interrupt(cs, cs->interrupt_request) != 0;
5799 }
5800
5801 static void x86_disas_set_info(CPUState *cs, disassemble_info *info)
5802 {
5803 X86CPU *cpu = X86_CPU(cs);
5804 CPUX86State *env = &cpu->env;
5805
5806 info->mach = (env->hflags & HF_CS64_MASK ? bfd_mach_x86_64
5807 : env->hflags & HF_CS32_MASK ? bfd_mach_i386_i386
5808 : bfd_mach_i386_i8086);
5809 info->print_insn = print_insn_i386;
5810
5811 info->cap_arch = CS_ARCH_X86;
5812 info->cap_mode = (env->hflags & HF_CS64_MASK ? CS_MODE_64
5813 : env->hflags & HF_CS32_MASK ? CS_MODE_32
5814 : CS_MODE_16);
5815 info->cap_insn_unit = 1;
5816 info->cap_insn_split = 8;
5817 }
5818
5819 void x86_update_hflags(CPUX86State *env)
5820 {
5821 uint32_t hflags;
5822 #define HFLAG_COPY_MASK \
5823 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
5824 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
5825 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
5826 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
5827
5828 hflags = env->hflags & HFLAG_COPY_MASK;
5829 hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
5830 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
5831 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
5832 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
5833 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
5834
5835 if (env->cr[4] & CR4_OSFXSR_MASK) {
5836 hflags |= HF_OSFXSR_MASK;
5837 }
5838
5839 if (env->efer & MSR_EFER_LMA) {
5840 hflags |= HF_LMA_MASK;
5841 }
5842
5843 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
5844 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
5845 } else {
5846 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
5847 (DESC_B_SHIFT - HF_CS32_SHIFT);
5848 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
5849 (DESC_B_SHIFT - HF_SS32_SHIFT);
5850 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
5851 !(hflags & HF_CS32_MASK)) {
5852 hflags |= HF_ADDSEG_MASK;
5853 } else {
5854 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
5855 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
5856 }
5857 }
5858 env->hflags = hflags;
5859 }
5860
5861 static Property x86_cpu_properties[] = {
5862 #ifdef CONFIG_USER_ONLY
5863 /* apic_id = 0 by default for *-user, see commit 9886e834 */
5864 DEFINE_PROP_UINT32("apic-id", X86CPU, apic_id, 0),
5865 DEFINE_PROP_INT32("thread-id", X86CPU, thread_id, 0),
5866 DEFINE_PROP_INT32("core-id", X86CPU, core_id, 0),
5867 DEFINE_PROP_INT32("socket-id", X86CPU, socket_id, 0),
5868 #else
5869 DEFINE_PROP_UINT32("apic-id", X86CPU, apic_id, UNASSIGNED_APIC_ID),
5870 DEFINE_PROP_INT32("thread-id", X86CPU, thread_id, -1),
5871 DEFINE_PROP_INT32("core-id", X86CPU, core_id, -1),
5872 DEFINE_PROP_INT32("socket-id", X86CPU, socket_id, -1),
5873 #endif
5874 DEFINE_PROP_INT32("node-id", X86CPU, node_id, CPU_UNSET_NUMA_NODE_ID),
5875 DEFINE_PROP_BOOL("pmu", X86CPU, enable_pmu, false),
5876
5877 { .name = "hv-spinlocks", .info = &qdev_prop_spinlocks },
5878 DEFINE_PROP_BIT64("hv-relaxed", X86CPU, hyperv_features,
5879 HYPERV_FEAT_RELAXED, 0),
5880 DEFINE_PROP_BIT64("hv-vapic", X86CPU, hyperv_features,
5881 HYPERV_FEAT_VAPIC, 0),
5882 DEFINE_PROP_BIT64("hv-time", X86CPU, hyperv_features,
5883 HYPERV_FEAT_TIME, 0),
5884 DEFINE_PROP_BIT64("hv-crash", X86CPU, hyperv_features,
5885 HYPERV_FEAT_CRASH, 0),
5886 DEFINE_PROP_BIT64("hv-reset", X86CPU, hyperv_features,
5887 HYPERV_FEAT_RESET, 0),
5888 DEFINE_PROP_BIT64("hv-vpindex", X86CPU, hyperv_features,
5889 HYPERV_FEAT_VPINDEX, 0),
5890 DEFINE_PROP_BIT64("hv-runtime", X86CPU, hyperv_features,
5891 HYPERV_FEAT_RUNTIME, 0),
5892 DEFINE_PROP_BIT64("hv-synic", X86CPU, hyperv_features,
5893 HYPERV_FEAT_SYNIC, 0),
5894 DEFINE_PROP_BIT64("hv-stimer", X86CPU, hyperv_features,
5895 HYPERV_FEAT_STIMER, 0),
5896 DEFINE_PROP_BIT64("hv-frequencies", X86CPU, hyperv_features,
5897 HYPERV_FEAT_FREQUENCIES, 0),
5898 DEFINE_PROP_BIT64("hv-reenlightenment", X86CPU, hyperv_features,
5899 HYPERV_FEAT_REENLIGHTENMENT, 0),
5900 DEFINE_PROP_BIT64("hv-tlbflush", X86CPU, hyperv_features,
5901 HYPERV_FEAT_TLBFLUSH, 0),
5902 DEFINE_PROP_BIT64("hv-evmcs", X86CPU, hyperv_features,
5903 HYPERV_FEAT_EVMCS, 0),
5904 DEFINE_PROP_BIT64("hv-ipi", X86CPU, hyperv_features,
5905 HYPERV_FEAT_IPI, 0),
5906 DEFINE_PROP_BIT64("hv-stimer-direct", X86CPU, hyperv_features,
5907 HYPERV_FEAT_STIMER_DIRECT, 0),
5908 DEFINE_PROP_BOOL("hv-passthrough", X86CPU, hyperv_passthrough, false),
5909
5910 DEFINE_PROP_BOOL("check", X86CPU, check_cpuid, true),
5911 DEFINE_PROP_BOOL("enforce", X86CPU, enforce_cpuid, false),
5912 DEFINE_PROP_BOOL("kvm", X86CPU, expose_kvm, true),
5913 DEFINE_PROP_UINT32("phys-bits", X86CPU, phys_bits, 0),
5914 DEFINE_PROP_BOOL("host-phys-bits", X86CPU, host_phys_bits, false),
5915 DEFINE_PROP_UINT8("host-phys-bits-limit", X86CPU, host_phys_bits_limit, 0),
5916 DEFINE_PROP_BOOL("fill-mtrr-mask", X86CPU, fill_mtrr_mask, true),
5917 DEFINE_PROP_UINT32("level", X86CPU, env.cpuid_level, UINT32_MAX),
5918 DEFINE_PROP_UINT32("xlevel", X86CPU, env.cpuid_xlevel, UINT32_MAX),
5919 DEFINE_PROP_UINT32("xlevel2", X86CPU, env.cpuid_xlevel2, UINT32_MAX),
5920 DEFINE_PROP_UINT32("min-level", X86CPU, env.cpuid_min_level, 0),
5921 DEFINE_PROP_UINT32("min-xlevel", X86CPU, env.cpuid_min_xlevel, 0),
5922 DEFINE_PROP_UINT32("min-xlevel2", X86CPU, env.cpuid_min_xlevel2, 0),
5923 DEFINE_PROP_BOOL("full-cpuid-auto-level", X86CPU, full_cpuid_auto_level, true),
5924 DEFINE_PROP_STRING("hv-vendor-id", X86CPU, hyperv_vendor_id),
5925 DEFINE_PROP_BOOL("cpuid-0xb", X86CPU, enable_cpuid_0xb, true),
5926 DEFINE_PROP_BOOL("lmce", X86CPU, enable_lmce, false),
5927 DEFINE_PROP_BOOL("l3-cache", X86CPU, enable_l3_cache, true),
5928 DEFINE_PROP_BOOL("kvm-no-smi-migration", X86CPU, kvm_no_smi_migration,
5929 false),
5930 DEFINE_PROP_BOOL("vmware-cpuid-freq", X86CPU, vmware_cpuid_freq, true),
5931 DEFINE_PROP_BOOL("tcg-cpuid", X86CPU, expose_tcg, true),
5932 DEFINE_PROP_BOOL("x-migrate-smi-count", X86CPU, migrate_smi_count,
5933 true),
5934 /*
5935 * lecacy_cache defaults to true unless the CPU model provides its
5936 * own cache information (see x86_cpu_load_def()).
5937 */
5938 DEFINE_PROP_BOOL("legacy-cache", X86CPU, legacy_cache, true),
5939
5940 /*
5941 * From "Requirements for Implementing the Microsoft
5942 * Hypervisor Interface":
5943 * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
5944 *
5945 * "Starting with Windows Server 2012 and Windows 8, if
5946 * CPUID.40000005.EAX contains a value of -1, Windows assumes that
5947 * the hypervisor imposes no specific limit to the number of VPs.
5948 * In this case, Windows Server 2012 guest VMs may use more than
5949 * 64 VPs, up to the maximum supported number of processors applicable
5950 * to the specific Windows version being used."
5951 */
5952 DEFINE_PROP_INT32("x-hv-max-vps", X86CPU, hv_max_vps, -1),
5953 DEFINE_PROP_BOOL("x-hv-synic-kvm-only", X86CPU, hyperv_synic_kvm_only,
5954 false),
5955 DEFINE_PROP_BOOL("x-intel-pt-auto-level", X86CPU, intel_pt_auto_level,
5956 true),
5957 DEFINE_PROP_END_OF_LIST()
5958 };
5959
5960 static void x86_cpu_common_class_init(ObjectClass *oc, void *data)
5961 {
5962 X86CPUClass *xcc = X86_CPU_CLASS(oc);
5963 CPUClass *cc = CPU_CLASS(oc);
5964 DeviceClass *dc = DEVICE_CLASS(oc);
5965
5966 device_class_set_parent_realize(dc, x86_cpu_realizefn,
5967 &xcc->parent_realize);
5968 device_class_set_parent_unrealize(dc, x86_cpu_unrealizefn,
5969 &xcc->parent_unrealize);
5970 dc->props = x86_cpu_properties;
5971
5972 xcc->parent_reset = cc->reset;
5973 cc->reset = x86_cpu_reset;
5974 cc->reset_dump_flags = CPU_DUMP_FPU | CPU_DUMP_CCOP;
5975
5976 cc->class_by_name = x86_cpu_class_by_name;
5977 cc->parse_features = x86_cpu_parse_featurestr;
5978 cc->has_work = x86_cpu_has_work;
5979 #ifdef CONFIG_TCG
5980 cc->do_interrupt = x86_cpu_do_interrupt;
5981 cc->cpu_exec_interrupt = x86_cpu_exec_interrupt;
5982 #endif
5983 cc->dump_state = x86_cpu_dump_state;
5984 cc->get_crash_info = x86_cpu_get_crash_info;
5985 cc->set_pc = x86_cpu_set_pc;
5986 cc->synchronize_from_tb = x86_cpu_synchronize_from_tb;
5987 cc->gdb_read_register = x86_cpu_gdb_read_register;
5988 cc->gdb_write_register = x86_cpu_gdb_write_register;
5989 cc->get_arch_id = x86_cpu_get_arch_id;
5990 cc->get_paging_enabled = x86_cpu_get_paging_enabled;
5991 #ifndef CONFIG_USER_ONLY
5992 cc->asidx_from_attrs = x86_asidx_from_attrs;
5993 cc->get_memory_mapping = x86_cpu_get_memory_mapping;
5994 cc->get_phys_page_debug = x86_cpu_get_phys_page_debug;
5995 cc->write_elf64_note = x86_cpu_write_elf64_note;
5996 cc->write_elf64_qemunote = x86_cpu_write_elf64_qemunote;
5997 cc->write_elf32_note = x86_cpu_write_elf32_note;
5998 cc->write_elf32_qemunote = x86_cpu_write_elf32_qemunote;
5999 cc->vmsd = &vmstate_x86_cpu;
6000 #endif
6001 cc->gdb_arch_name = x86_gdb_arch_name;
6002 #ifdef TARGET_X86_64
6003 cc->gdb_core_xml_file = "i386-64bit.xml";
6004 cc->gdb_num_core_regs = 66;
6005 #else
6006 cc->gdb_core_xml_file = "i386-32bit.xml";
6007 cc->gdb_num_core_regs = 50;
6008 #endif
6009 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
6010 cc->debug_excp_handler = breakpoint_handler;
6011 #endif
6012 cc->cpu_exec_enter = x86_cpu_exec_enter;
6013 cc->cpu_exec_exit = x86_cpu_exec_exit;
6014 #ifdef CONFIG_TCG
6015 cc->tcg_initialize = tcg_x86_init;
6016 cc->tlb_fill = x86_cpu_tlb_fill;
6017 #endif
6018 cc->disas_set_info = x86_disas_set_info;
6019
6020 dc->user_creatable = true;
6021 }
6022
6023 static const TypeInfo x86_cpu_type_info = {
6024 .name = TYPE_X86_CPU,
6025 .parent = TYPE_CPU,
6026 .instance_size = sizeof(X86CPU),
6027 .instance_init = x86_cpu_initfn,
6028 .abstract = true,
6029 .class_size = sizeof(X86CPUClass),
6030 .class_init = x86_cpu_common_class_init,
6031 };
6032
6033
6034 /* "base" CPU model, used by query-cpu-model-expansion */
6035 static void x86_cpu_base_class_init(ObjectClass *oc, void *data)
6036 {
6037 X86CPUClass *xcc = X86_CPU_CLASS(oc);
6038
6039 xcc->static_model = true;
6040 xcc->migration_safe = true;
6041 xcc->model_description = "base CPU model type with no features enabled";
6042 xcc->ordering = 8;
6043 }
6044
6045 static const TypeInfo x86_base_cpu_type_info = {
6046 .name = X86_CPU_TYPE_NAME("base"),
6047 .parent = TYPE_X86_CPU,
6048 .class_init = x86_cpu_base_class_init,
6049 };
6050
6051 static void x86_cpu_register_types(void)
6052 {
6053 int i;
6054
6055 type_register_static(&x86_cpu_type_info);
6056 for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
6057 x86_register_cpudef_type(&builtin_x86_defs[i]);
6058 }
6059 type_register_static(&max_x86_cpu_type_info);
6060 type_register_static(&x86_base_cpu_type_info);
6061 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
6062 type_register_static(&host_x86_cpu_type_info);
6063 #endif
6064 }
6065
6066 type_init(x86_cpu_register_types)