]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/cpu.h
Move target-* CPU file into a target/ folder
[mirror_qemu.git] / target / i386 / cpu.h
1 /*
2 * i386 virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef I386_CPU_H
21 #define I386_CPU_H
22
23 #include "qemu-common.h"
24 #include "cpu-qom.h"
25 #include "standard-headers/asm-x86/hyperv.h"
26
27 #ifdef TARGET_X86_64
28 #define TARGET_LONG_BITS 64
29 #else
30 #define TARGET_LONG_BITS 32
31 #endif
32
33 /* Maximum instruction code size */
34 #define TARGET_MAX_INSN_SIZE 16
35
36 /* support for self modifying code even if the modified instruction is
37 close to the modifying instruction */
38 #define TARGET_HAS_PRECISE_SMC
39
40 #ifdef TARGET_X86_64
41 #define I386_ELF_MACHINE EM_X86_64
42 #define ELF_MACHINE_UNAME "x86_64"
43 #else
44 #define I386_ELF_MACHINE EM_386
45 #define ELF_MACHINE_UNAME "i686"
46 #endif
47
48 #define CPUArchState struct CPUX86State
49
50 #include "exec/cpu-defs.h"
51
52 #include "fpu/softfloat.h"
53
54 #define R_EAX 0
55 #define R_ECX 1
56 #define R_EDX 2
57 #define R_EBX 3
58 #define R_ESP 4
59 #define R_EBP 5
60 #define R_ESI 6
61 #define R_EDI 7
62
63 #define R_AL 0
64 #define R_CL 1
65 #define R_DL 2
66 #define R_BL 3
67 #define R_AH 4
68 #define R_CH 5
69 #define R_DH 6
70 #define R_BH 7
71
72 #define R_ES 0
73 #define R_CS 1
74 #define R_SS 2
75 #define R_DS 3
76 #define R_FS 4
77 #define R_GS 5
78
79 /* segment descriptor fields */
80 #define DESC_G_MASK (1 << 23)
81 #define DESC_B_SHIFT 22
82 #define DESC_B_MASK (1 << DESC_B_SHIFT)
83 #define DESC_L_SHIFT 21 /* x86_64 only : 64 bit code segment */
84 #define DESC_L_MASK (1 << DESC_L_SHIFT)
85 #define DESC_AVL_MASK (1 << 20)
86 #define DESC_P_MASK (1 << 15)
87 #define DESC_DPL_SHIFT 13
88 #define DESC_DPL_MASK (3 << DESC_DPL_SHIFT)
89 #define DESC_S_MASK (1 << 12)
90 #define DESC_TYPE_SHIFT 8
91 #define DESC_TYPE_MASK (15 << DESC_TYPE_SHIFT)
92 #define DESC_A_MASK (1 << 8)
93
94 #define DESC_CS_MASK (1 << 11) /* 1=code segment 0=data segment */
95 #define DESC_C_MASK (1 << 10) /* code: conforming */
96 #define DESC_R_MASK (1 << 9) /* code: readable */
97
98 #define DESC_E_MASK (1 << 10) /* data: expansion direction */
99 #define DESC_W_MASK (1 << 9) /* data: writable */
100
101 #define DESC_TSS_BUSY_MASK (1 << 9)
102
103 /* eflags masks */
104 #define CC_C 0x0001
105 #define CC_P 0x0004
106 #define CC_A 0x0010
107 #define CC_Z 0x0040
108 #define CC_S 0x0080
109 #define CC_O 0x0800
110
111 #define TF_SHIFT 8
112 #define IOPL_SHIFT 12
113 #define VM_SHIFT 17
114
115 #define TF_MASK 0x00000100
116 #define IF_MASK 0x00000200
117 #define DF_MASK 0x00000400
118 #define IOPL_MASK 0x00003000
119 #define NT_MASK 0x00004000
120 #define RF_MASK 0x00010000
121 #define VM_MASK 0x00020000
122 #define AC_MASK 0x00040000
123 #define VIF_MASK 0x00080000
124 #define VIP_MASK 0x00100000
125 #define ID_MASK 0x00200000
126
127 /* hidden flags - used internally by qemu to represent additional cpu
128 states. Only the INHIBIT_IRQ, SMM and SVMI are not redundant. We
129 avoid using the IOPL_MASK, TF_MASK, VM_MASK and AC_MASK bit
130 positions to ease oring with eflags. */
131 /* current cpl */
132 #define HF_CPL_SHIFT 0
133 /* true if hardware interrupts must be disabled for next instruction */
134 #define HF_INHIBIT_IRQ_SHIFT 3
135 /* 16 or 32 segments */
136 #define HF_CS32_SHIFT 4
137 #define HF_SS32_SHIFT 5
138 /* zero base for DS, ES and SS : can be '0' only in 32 bit CS segment */
139 #define HF_ADDSEG_SHIFT 6
140 /* copy of CR0.PE (protected mode) */
141 #define HF_PE_SHIFT 7
142 #define HF_TF_SHIFT 8 /* must be same as eflags */
143 #define HF_MP_SHIFT 9 /* the order must be MP, EM, TS */
144 #define HF_EM_SHIFT 10
145 #define HF_TS_SHIFT 11
146 #define HF_IOPL_SHIFT 12 /* must be same as eflags */
147 #define HF_LMA_SHIFT 14 /* only used on x86_64: long mode active */
148 #define HF_CS64_SHIFT 15 /* only used on x86_64: 64 bit code segment */
149 #define HF_RF_SHIFT 16 /* must be same as eflags */
150 #define HF_VM_SHIFT 17 /* must be same as eflags */
151 #define HF_AC_SHIFT 18 /* must be same as eflags */
152 #define HF_SMM_SHIFT 19 /* CPU in SMM mode */
153 #define HF_SVME_SHIFT 20 /* SVME enabled (copy of EFER.SVME) */
154 #define HF_SVMI_SHIFT 21 /* SVM intercepts are active */
155 #define HF_OSFXSR_SHIFT 22 /* CR4.OSFXSR */
156 #define HF_SMAP_SHIFT 23 /* CR4.SMAP */
157 #define HF_IOBPT_SHIFT 24 /* an io breakpoint enabled */
158 #define HF_MPX_EN_SHIFT 25 /* MPX Enabled (CR4+XCR0+BNDCFGx) */
159 #define HF_MPX_IU_SHIFT 26 /* BND registers in-use */
160
161 #define HF_CPL_MASK (3 << HF_CPL_SHIFT)
162 #define HF_INHIBIT_IRQ_MASK (1 << HF_INHIBIT_IRQ_SHIFT)
163 #define HF_CS32_MASK (1 << HF_CS32_SHIFT)
164 #define HF_SS32_MASK (1 << HF_SS32_SHIFT)
165 #define HF_ADDSEG_MASK (1 << HF_ADDSEG_SHIFT)
166 #define HF_PE_MASK (1 << HF_PE_SHIFT)
167 #define HF_TF_MASK (1 << HF_TF_SHIFT)
168 #define HF_MP_MASK (1 << HF_MP_SHIFT)
169 #define HF_EM_MASK (1 << HF_EM_SHIFT)
170 #define HF_TS_MASK (1 << HF_TS_SHIFT)
171 #define HF_IOPL_MASK (3 << HF_IOPL_SHIFT)
172 #define HF_LMA_MASK (1 << HF_LMA_SHIFT)
173 #define HF_CS64_MASK (1 << HF_CS64_SHIFT)
174 #define HF_RF_MASK (1 << HF_RF_SHIFT)
175 #define HF_VM_MASK (1 << HF_VM_SHIFT)
176 #define HF_AC_MASK (1 << HF_AC_SHIFT)
177 #define HF_SMM_MASK (1 << HF_SMM_SHIFT)
178 #define HF_SVME_MASK (1 << HF_SVME_SHIFT)
179 #define HF_SVMI_MASK (1 << HF_SVMI_SHIFT)
180 #define HF_OSFXSR_MASK (1 << HF_OSFXSR_SHIFT)
181 #define HF_SMAP_MASK (1 << HF_SMAP_SHIFT)
182 #define HF_IOBPT_MASK (1 << HF_IOBPT_SHIFT)
183 #define HF_MPX_EN_MASK (1 << HF_MPX_EN_SHIFT)
184 #define HF_MPX_IU_MASK (1 << HF_MPX_IU_SHIFT)
185
186 /* hflags2 */
187
188 #define HF2_GIF_SHIFT 0 /* if set CPU takes interrupts */
189 #define HF2_HIF_SHIFT 1 /* value of IF_MASK when entering SVM */
190 #define HF2_NMI_SHIFT 2 /* CPU serving NMI */
191 #define HF2_VINTR_SHIFT 3 /* value of V_INTR_MASKING bit */
192 #define HF2_SMM_INSIDE_NMI_SHIFT 4 /* CPU serving SMI nested inside NMI */
193 #define HF2_MPX_PR_SHIFT 5 /* BNDCFGx.BNDPRESERVE */
194
195 #define HF2_GIF_MASK (1 << HF2_GIF_SHIFT)
196 #define HF2_HIF_MASK (1 << HF2_HIF_SHIFT)
197 #define HF2_NMI_MASK (1 << HF2_NMI_SHIFT)
198 #define HF2_VINTR_MASK (1 << HF2_VINTR_SHIFT)
199 #define HF2_SMM_INSIDE_NMI_MASK (1 << HF2_SMM_INSIDE_NMI_SHIFT)
200 #define HF2_MPX_PR_MASK (1 << HF2_MPX_PR_SHIFT)
201
202 #define CR0_PE_SHIFT 0
203 #define CR0_MP_SHIFT 1
204
205 #define CR0_PE_MASK (1U << 0)
206 #define CR0_MP_MASK (1U << 1)
207 #define CR0_EM_MASK (1U << 2)
208 #define CR0_TS_MASK (1U << 3)
209 #define CR0_ET_MASK (1U << 4)
210 #define CR0_NE_MASK (1U << 5)
211 #define CR0_WP_MASK (1U << 16)
212 #define CR0_AM_MASK (1U << 18)
213 #define CR0_PG_MASK (1U << 31)
214
215 #define CR4_VME_MASK (1U << 0)
216 #define CR4_PVI_MASK (1U << 1)
217 #define CR4_TSD_MASK (1U << 2)
218 #define CR4_DE_MASK (1U << 3)
219 #define CR4_PSE_MASK (1U << 4)
220 #define CR4_PAE_MASK (1U << 5)
221 #define CR4_MCE_MASK (1U << 6)
222 #define CR4_PGE_MASK (1U << 7)
223 #define CR4_PCE_MASK (1U << 8)
224 #define CR4_OSFXSR_SHIFT 9
225 #define CR4_OSFXSR_MASK (1U << CR4_OSFXSR_SHIFT)
226 #define CR4_OSXMMEXCPT_MASK (1U << 10)
227 #define CR4_VMXE_MASK (1U << 13)
228 #define CR4_SMXE_MASK (1U << 14)
229 #define CR4_FSGSBASE_MASK (1U << 16)
230 #define CR4_PCIDE_MASK (1U << 17)
231 #define CR4_OSXSAVE_MASK (1U << 18)
232 #define CR4_SMEP_MASK (1U << 20)
233 #define CR4_SMAP_MASK (1U << 21)
234 #define CR4_PKE_MASK (1U << 22)
235
236 #define DR6_BD (1 << 13)
237 #define DR6_BS (1 << 14)
238 #define DR6_BT (1 << 15)
239 #define DR6_FIXED_1 0xffff0ff0
240
241 #define DR7_GD (1 << 13)
242 #define DR7_TYPE_SHIFT 16
243 #define DR7_LEN_SHIFT 18
244 #define DR7_FIXED_1 0x00000400
245 #define DR7_GLOBAL_BP_MASK 0xaa
246 #define DR7_LOCAL_BP_MASK 0x55
247 #define DR7_MAX_BP 4
248 #define DR7_TYPE_BP_INST 0x0
249 #define DR7_TYPE_DATA_WR 0x1
250 #define DR7_TYPE_IO_RW 0x2
251 #define DR7_TYPE_DATA_RW 0x3
252
253 #define PG_PRESENT_BIT 0
254 #define PG_RW_BIT 1
255 #define PG_USER_BIT 2
256 #define PG_PWT_BIT 3
257 #define PG_PCD_BIT 4
258 #define PG_ACCESSED_BIT 5
259 #define PG_DIRTY_BIT 6
260 #define PG_PSE_BIT 7
261 #define PG_GLOBAL_BIT 8
262 #define PG_PSE_PAT_BIT 12
263 #define PG_PKRU_BIT 59
264 #define PG_NX_BIT 63
265
266 #define PG_PRESENT_MASK (1 << PG_PRESENT_BIT)
267 #define PG_RW_MASK (1 << PG_RW_BIT)
268 #define PG_USER_MASK (1 << PG_USER_BIT)
269 #define PG_PWT_MASK (1 << PG_PWT_BIT)
270 #define PG_PCD_MASK (1 << PG_PCD_BIT)
271 #define PG_ACCESSED_MASK (1 << PG_ACCESSED_BIT)
272 #define PG_DIRTY_MASK (1 << PG_DIRTY_BIT)
273 #define PG_PSE_MASK (1 << PG_PSE_BIT)
274 #define PG_GLOBAL_MASK (1 << PG_GLOBAL_BIT)
275 #define PG_PSE_PAT_MASK (1 << PG_PSE_PAT_BIT)
276 #define PG_ADDRESS_MASK 0x000ffffffffff000LL
277 #define PG_HI_RSVD_MASK (PG_ADDRESS_MASK & ~PHYS_ADDR_MASK)
278 #define PG_HI_USER_MASK 0x7ff0000000000000LL
279 #define PG_PKRU_MASK (15ULL << PG_PKRU_BIT)
280 #define PG_NX_MASK (1ULL << PG_NX_BIT)
281
282 #define PG_ERROR_W_BIT 1
283
284 #define PG_ERROR_P_MASK 0x01
285 #define PG_ERROR_W_MASK (1 << PG_ERROR_W_BIT)
286 #define PG_ERROR_U_MASK 0x04
287 #define PG_ERROR_RSVD_MASK 0x08
288 #define PG_ERROR_I_D_MASK 0x10
289 #define PG_ERROR_PK_MASK 0x20
290
291 #define MCG_CTL_P (1ULL<<8) /* MCG_CAP register available */
292 #define MCG_SER_P (1ULL<<24) /* MCA recovery/new status bits */
293 #define MCG_LMCE_P (1ULL<<27) /* Local Machine Check Supported */
294
295 #define MCE_CAP_DEF (MCG_CTL_P|MCG_SER_P)
296 #define MCE_BANKS_DEF 10
297
298 #define MCG_CAP_BANKS_MASK 0xff
299
300 #define MCG_STATUS_RIPV (1ULL<<0) /* restart ip valid */
301 #define MCG_STATUS_EIPV (1ULL<<1) /* ip points to correct instruction */
302 #define MCG_STATUS_MCIP (1ULL<<2) /* machine check in progress */
303 #define MCG_STATUS_LMCE (1ULL<<3) /* Local MCE signaled */
304
305 #define MCG_EXT_CTL_LMCE_EN (1ULL<<0) /* Local MCE enabled */
306
307 #define MCI_STATUS_VAL (1ULL<<63) /* valid error */
308 #define MCI_STATUS_OVER (1ULL<<62) /* previous errors lost */
309 #define MCI_STATUS_UC (1ULL<<61) /* uncorrected error */
310 #define MCI_STATUS_EN (1ULL<<60) /* error enabled */
311 #define MCI_STATUS_MISCV (1ULL<<59) /* misc error reg. valid */
312 #define MCI_STATUS_ADDRV (1ULL<<58) /* addr reg. valid */
313 #define MCI_STATUS_PCC (1ULL<<57) /* processor context corrupt */
314 #define MCI_STATUS_S (1ULL<<56) /* Signaled machine check */
315 #define MCI_STATUS_AR (1ULL<<55) /* Action required */
316
317 /* MISC register defines */
318 #define MCM_ADDR_SEGOFF 0 /* segment offset */
319 #define MCM_ADDR_LINEAR 1 /* linear address */
320 #define MCM_ADDR_PHYS 2 /* physical address */
321 #define MCM_ADDR_MEM 3 /* memory address */
322 #define MCM_ADDR_GENERIC 7 /* generic */
323
324 #define MSR_IA32_TSC 0x10
325 #define MSR_IA32_APICBASE 0x1b
326 #define MSR_IA32_APICBASE_BSP (1<<8)
327 #define MSR_IA32_APICBASE_ENABLE (1<<11)
328 #define MSR_IA32_APICBASE_EXTD (1 << 10)
329 #define MSR_IA32_APICBASE_BASE (0xfffffU<<12)
330 #define MSR_IA32_FEATURE_CONTROL 0x0000003a
331 #define MSR_TSC_ADJUST 0x0000003b
332 #define MSR_IA32_TSCDEADLINE 0x6e0
333
334 #define FEATURE_CONTROL_LOCKED (1<<0)
335 #define FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX (1<<2)
336 #define FEATURE_CONTROL_LMCE (1<<20)
337
338 #define MSR_P6_PERFCTR0 0xc1
339
340 #define MSR_IA32_SMBASE 0x9e
341 #define MSR_MTRRcap 0xfe
342 #define MSR_MTRRcap_VCNT 8
343 #define MSR_MTRRcap_FIXRANGE_SUPPORT (1 << 8)
344 #define MSR_MTRRcap_WC_SUPPORTED (1 << 10)
345
346 #define MSR_IA32_SYSENTER_CS 0x174
347 #define MSR_IA32_SYSENTER_ESP 0x175
348 #define MSR_IA32_SYSENTER_EIP 0x176
349
350 #define MSR_MCG_CAP 0x179
351 #define MSR_MCG_STATUS 0x17a
352 #define MSR_MCG_CTL 0x17b
353 #define MSR_MCG_EXT_CTL 0x4d0
354
355 #define MSR_P6_EVNTSEL0 0x186
356
357 #define MSR_IA32_PERF_STATUS 0x198
358
359 #define MSR_IA32_MISC_ENABLE 0x1a0
360 /* Indicates good rep/movs microcode on some processors: */
361 #define MSR_IA32_MISC_ENABLE_DEFAULT 1
362
363 #define MSR_MTRRphysBase(reg) (0x200 + 2 * (reg))
364 #define MSR_MTRRphysMask(reg) (0x200 + 2 * (reg) + 1)
365
366 #define MSR_MTRRphysIndex(addr) ((((addr) & ~1u) - 0x200) / 2)
367
368 #define MSR_MTRRfix64K_00000 0x250
369 #define MSR_MTRRfix16K_80000 0x258
370 #define MSR_MTRRfix16K_A0000 0x259
371 #define MSR_MTRRfix4K_C0000 0x268
372 #define MSR_MTRRfix4K_C8000 0x269
373 #define MSR_MTRRfix4K_D0000 0x26a
374 #define MSR_MTRRfix4K_D8000 0x26b
375 #define MSR_MTRRfix4K_E0000 0x26c
376 #define MSR_MTRRfix4K_E8000 0x26d
377 #define MSR_MTRRfix4K_F0000 0x26e
378 #define MSR_MTRRfix4K_F8000 0x26f
379
380 #define MSR_PAT 0x277
381
382 #define MSR_MTRRdefType 0x2ff
383
384 #define MSR_CORE_PERF_FIXED_CTR0 0x309
385 #define MSR_CORE_PERF_FIXED_CTR1 0x30a
386 #define MSR_CORE_PERF_FIXED_CTR2 0x30b
387 #define MSR_CORE_PERF_FIXED_CTR_CTRL 0x38d
388 #define MSR_CORE_PERF_GLOBAL_STATUS 0x38e
389 #define MSR_CORE_PERF_GLOBAL_CTRL 0x38f
390 #define MSR_CORE_PERF_GLOBAL_OVF_CTRL 0x390
391
392 #define MSR_MC0_CTL 0x400
393 #define MSR_MC0_STATUS 0x401
394 #define MSR_MC0_ADDR 0x402
395 #define MSR_MC0_MISC 0x403
396
397 #define MSR_EFER 0xc0000080
398
399 #define MSR_EFER_SCE (1 << 0)
400 #define MSR_EFER_LME (1 << 8)
401 #define MSR_EFER_LMA (1 << 10)
402 #define MSR_EFER_NXE (1 << 11)
403 #define MSR_EFER_SVME (1 << 12)
404 #define MSR_EFER_FFXSR (1 << 14)
405
406 #define MSR_STAR 0xc0000081
407 #define MSR_LSTAR 0xc0000082
408 #define MSR_CSTAR 0xc0000083
409 #define MSR_FMASK 0xc0000084
410 #define MSR_FSBASE 0xc0000100
411 #define MSR_GSBASE 0xc0000101
412 #define MSR_KERNELGSBASE 0xc0000102
413 #define MSR_TSC_AUX 0xc0000103
414
415 #define MSR_VM_HSAVE_PA 0xc0010117
416
417 #define MSR_IA32_BNDCFGS 0x00000d90
418 #define MSR_IA32_XSS 0x00000da0
419
420 #define XSTATE_FP_BIT 0
421 #define XSTATE_SSE_BIT 1
422 #define XSTATE_YMM_BIT 2
423 #define XSTATE_BNDREGS_BIT 3
424 #define XSTATE_BNDCSR_BIT 4
425 #define XSTATE_OPMASK_BIT 5
426 #define XSTATE_ZMM_Hi256_BIT 6
427 #define XSTATE_Hi16_ZMM_BIT 7
428 #define XSTATE_PKRU_BIT 9
429
430 #define XSTATE_FP_MASK (1ULL << XSTATE_FP_BIT)
431 #define XSTATE_SSE_MASK (1ULL << XSTATE_SSE_BIT)
432 #define XSTATE_YMM_MASK (1ULL << XSTATE_YMM_BIT)
433 #define XSTATE_BNDREGS_MASK (1ULL << XSTATE_BNDREGS_BIT)
434 #define XSTATE_BNDCSR_MASK (1ULL << XSTATE_BNDCSR_BIT)
435 #define XSTATE_OPMASK_MASK (1ULL << XSTATE_OPMASK_BIT)
436 #define XSTATE_ZMM_Hi256_MASK (1ULL << XSTATE_ZMM_Hi256_BIT)
437 #define XSTATE_Hi16_ZMM_MASK (1ULL << XSTATE_Hi16_ZMM_BIT)
438 #define XSTATE_PKRU_MASK (1ULL << XSTATE_PKRU_BIT)
439
440 /* CPUID feature words */
441 typedef enum FeatureWord {
442 FEAT_1_EDX, /* CPUID[1].EDX */
443 FEAT_1_ECX, /* CPUID[1].ECX */
444 FEAT_7_0_EBX, /* CPUID[EAX=7,ECX=0].EBX */
445 FEAT_7_0_ECX, /* CPUID[EAX=7,ECX=0].ECX */
446 FEAT_7_0_EDX, /* CPUID[EAX=7,ECX=0].EDX */
447 FEAT_8000_0001_EDX, /* CPUID[8000_0001].EDX */
448 FEAT_8000_0001_ECX, /* CPUID[8000_0001].ECX */
449 FEAT_8000_0007_EDX, /* CPUID[8000_0007].EDX */
450 FEAT_C000_0001_EDX, /* CPUID[C000_0001].EDX */
451 FEAT_KVM, /* CPUID[4000_0001].EAX (KVM_CPUID_FEATURES) */
452 FEAT_HYPERV_EAX, /* CPUID[4000_0003].EAX */
453 FEAT_HYPERV_EBX, /* CPUID[4000_0003].EBX */
454 FEAT_HYPERV_EDX, /* CPUID[4000_0003].EDX */
455 FEAT_SVM, /* CPUID[8000_000A].EDX */
456 FEAT_XSAVE, /* CPUID[EAX=0xd,ECX=1].EAX */
457 FEAT_6_EAX, /* CPUID[6].EAX */
458 FEAT_XSAVE_COMP_LO, /* CPUID[EAX=0xd,ECX=0].EAX */
459 FEAT_XSAVE_COMP_HI, /* CPUID[EAX=0xd,ECX=0].EDX */
460 FEATURE_WORDS,
461 } FeatureWord;
462
463 typedef uint32_t FeatureWordArray[FEATURE_WORDS];
464
465 /* cpuid_features bits */
466 #define CPUID_FP87 (1U << 0)
467 #define CPUID_VME (1U << 1)
468 #define CPUID_DE (1U << 2)
469 #define CPUID_PSE (1U << 3)
470 #define CPUID_TSC (1U << 4)
471 #define CPUID_MSR (1U << 5)
472 #define CPUID_PAE (1U << 6)
473 #define CPUID_MCE (1U << 7)
474 #define CPUID_CX8 (1U << 8)
475 #define CPUID_APIC (1U << 9)
476 #define CPUID_SEP (1U << 11) /* sysenter/sysexit */
477 #define CPUID_MTRR (1U << 12)
478 #define CPUID_PGE (1U << 13)
479 #define CPUID_MCA (1U << 14)
480 #define CPUID_CMOV (1U << 15)
481 #define CPUID_PAT (1U << 16)
482 #define CPUID_PSE36 (1U << 17)
483 #define CPUID_PN (1U << 18)
484 #define CPUID_CLFLUSH (1U << 19)
485 #define CPUID_DTS (1U << 21)
486 #define CPUID_ACPI (1U << 22)
487 #define CPUID_MMX (1U << 23)
488 #define CPUID_FXSR (1U << 24)
489 #define CPUID_SSE (1U << 25)
490 #define CPUID_SSE2 (1U << 26)
491 #define CPUID_SS (1U << 27)
492 #define CPUID_HT (1U << 28)
493 #define CPUID_TM (1U << 29)
494 #define CPUID_IA64 (1U << 30)
495 #define CPUID_PBE (1U << 31)
496
497 #define CPUID_EXT_SSE3 (1U << 0)
498 #define CPUID_EXT_PCLMULQDQ (1U << 1)
499 #define CPUID_EXT_DTES64 (1U << 2)
500 #define CPUID_EXT_MONITOR (1U << 3)
501 #define CPUID_EXT_DSCPL (1U << 4)
502 #define CPUID_EXT_VMX (1U << 5)
503 #define CPUID_EXT_SMX (1U << 6)
504 #define CPUID_EXT_EST (1U << 7)
505 #define CPUID_EXT_TM2 (1U << 8)
506 #define CPUID_EXT_SSSE3 (1U << 9)
507 #define CPUID_EXT_CID (1U << 10)
508 #define CPUID_EXT_FMA (1U << 12)
509 #define CPUID_EXT_CX16 (1U << 13)
510 #define CPUID_EXT_XTPR (1U << 14)
511 #define CPUID_EXT_PDCM (1U << 15)
512 #define CPUID_EXT_PCID (1U << 17)
513 #define CPUID_EXT_DCA (1U << 18)
514 #define CPUID_EXT_SSE41 (1U << 19)
515 #define CPUID_EXT_SSE42 (1U << 20)
516 #define CPUID_EXT_X2APIC (1U << 21)
517 #define CPUID_EXT_MOVBE (1U << 22)
518 #define CPUID_EXT_POPCNT (1U << 23)
519 #define CPUID_EXT_TSC_DEADLINE_TIMER (1U << 24)
520 #define CPUID_EXT_AES (1U << 25)
521 #define CPUID_EXT_XSAVE (1U << 26)
522 #define CPUID_EXT_OSXSAVE (1U << 27)
523 #define CPUID_EXT_AVX (1U << 28)
524 #define CPUID_EXT_F16C (1U << 29)
525 #define CPUID_EXT_RDRAND (1U << 30)
526 #define CPUID_EXT_HYPERVISOR (1U << 31)
527
528 #define CPUID_EXT2_FPU (1U << 0)
529 #define CPUID_EXT2_VME (1U << 1)
530 #define CPUID_EXT2_DE (1U << 2)
531 #define CPUID_EXT2_PSE (1U << 3)
532 #define CPUID_EXT2_TSC (1U << 4)
533 #define CPUID_EXT2_MSR (1U << 5)
534 #define CPUID_EXT2_PAE (1U << 6)
535 #define CPUID_EXT2_MCE (1U << 7)
536 #define CPUID_EXT2_CX8 (1U << 8)
537 #define CPUID_EXT2_APIC (1U << 9)
538 #define CPUID_EXT2_SYSCALL (1U << 11)
539 #define CPUID_EXT2_MTRR (1U << 12)
540 #define CPUID_EXT2_PGE (1U << 13)
541 #define CPUID_EXT2_MCA (1U << 14)
542 #define CPUID_EXT2_CMOV (1U << 15)
543 #define CPUID_EXT2_PAT (1U << 16)
544 #define CPUID_EXT2_PSE36 (1U << 17)
545 #define CPUID_EXT2_MP (1U << 19)
546 #define CPUID_EXT2_NX (1U << 20)
547 #define CPUID_EXT2_MMXEXT (1U << 22)
548 #define CPUID_EXT2_MMX (1U << 23)
549 #define CPUID_EXT2_FXSR (1U << 24)
550 #define CPUID_EXT2_FFXSR (1U << 25)
551 #define CPUID_EXT2_PDPE1GB (1U << 26)
552 #define CPUID_EXT2_RDTSCP (1U << 27)
553 #define CPUID_EXT2_LM (1U << 29)
554 #define CPUID_EXT2_3DNOWEXT (1U << 30)
555 #define CPUID_EXT2_3DNOW (1U << 31)
556
557 /* CPUID[8000_0001].EDX bits that are aliase of CPUID[1].EDX bits on AMD CPUs */
558 #define CPUID_EXT2_AMD_ALIASES (CPUID_EXT2_FPU | CPUID_EXT2_VME | \
559 CPUID_EXT2_DE | CPUID_EXT2_PSE | \
560 CPUID_EXT2_TSC | CPUID_EXT2_MSR | \
561 CPUID_EXT2_PAE | CPUID_EXT2_MCE | \
562 CPUID_EXT2_CX8 | CPUID_EXT2_APIC | \
563 CPUID_EXT2_MTRR | CPUID_EXT2_PGE | \
564 CPUID_EXT2_MCA | CPUID_EXT2_CMOV | \
565 CPUID_EXT2_PAT | CPUID_EXT2_PSE36 | \
566 CPUID_EXT2_MMX | CPUID_EXT2_FXSR)
567
568 #define CPUID_EXT3_LAHF_LM (1U << 0)
569 #define CPUID_EXT3_CMP_LEG (1U << 1)
570 #define CPUID_EXT3_SVM (1U << 2)
571 #define CPUID_EXT3_EXTAPIC (1U << 3)
572 #define CPUID_EXT3_CR8LEG (1U << 4)
573 #define CPUID_EXT3_ABM (1U << 5)
574 #define CPUID_EXT3_SSE4A (1U << 6)
575 #define CPUID_EXT3_MISALIGNSSE (1U << 7)
576 #define CPUID_EXT3_3DNOWPREFETCH (1U << 8)
577 #define CPUID_EXT3_OSVW (1U << 9)
578 #define CPUID_EXT3_IBS (1U << 10)
579 #define CPUID_EXT3_XOP (1U << 11)
580 #define CPUID_EXT3_SKINIT (1U << 12)
581 #define CPUID_EXT3_WDT (1U << 13)
582 #define CPUID_EXT3_LWP (1U << 15)
583 #define CPUID_EXT3_FMA4 (1U << 16)
584 #define CPUID_EXT3_TCE (1U << 17)
585 #define CPUID_EXT3_NODEID (1U << 19)
586 #define CPUID_EXT3_TBM (1U << 21)
587 #define CPUID_EXT3_TOPOEXT (1U << 22)
588 #define CPUID_EXT3_PERFCORE (1U << 23)
589 #define CPUID_EXT3_PERFNB (1U << 24)
590
591 #define CPUID_SVM_NPT (1U << 0)
592 #define CPUID_SVM_LBRV (1U << 1)
593 #define CPUID_SVM_SVMLOCK (1U << 2)
594 #define CPUID_SVM_NRIPSAVE (1U << 3)
595 #define CPUID_SVM_TSCSCALE (1U << 4)
596 #define CPUID_SVM_VMCBCLEAN (1U << 5)
597 #define CPUID_SVM_FLUSHASID (1U << 6)
598 #define CPUID_SVM_DECODEASSIST (1U << 7)
599 #define CPUID_SVM_PAUSEFILTER (1U << 10)
600 #define CPUID_SVM_PFTHRESHOLD (1U << 12)
601
602 #define CPUID_7_0_EBX_FSGSBASE (1U << 0)
603 #define CPUID_7_0_EBX_BMI1 (1U << 3)
604 #define CPUID_7_0_EBX_HLE (1U << 4)
605 #define CPUID_7_0_EBX_AVX2 (1U << 5)
606 #define CPUID_7_0_EBX_SMEP (1U << 7)
607 #define CPUID_7_0_EBX_BMI2 (1U << 8)
608 #define CPUID_7_0_EBX_ERMS (1U << 9)
609 #define CPUID_7_0_EBX_INVPCID (1U << 10)
610 #define CPUID_7_0_EBX_RTM (1U << 11)
611 #define CPUID_7_0_EBX_MPX (1U << 14)
612 #define CPUID_7_0_EBX_AVX512F (1U << 16) /* AVX-512 Foundation */
613 #define CPUID_7_0_EBX_AVX512DQ (1U << 17) /* AVX-512 Doubleword & Quadword Instrs */
614 #define CPUID_7_0_EBX_RDSEED (1U << 18)
615 #define CPUID_7_0_EBX_ADX (1U << 19)
616 #define CPUID_7_0_EBX_SMAP (1U << 20)
617 #define CPUID_7_0_EBX_AVX512IFMA (1U << 21) /* AVX-512 Integer Fused Multiply Add */
618 #define CPUID_7_0_EBX_PCOMMIT (1U << 22) /* Persistent Commit */
619 #define CPUID_7_0_EBX_CLFLUSHOPT (1U << 23) /* Flush a Cache Line Optimized */
620 #define CPUID_7_0_EBX_CLWB (1U << 24) /* Cache Line Write Back */
621 #define CPUID_7_0_EBX_AVX512PF (1U << 26) /* AVX-512 Prefetch */
622 #define CPUID_7_0_EBX_AVX512ER (1U << 27) /* AVX-512 Exponential and Reciprocal */
623 #define CPUID_7_0_EBX_AVX512CD (1U << 28) /* AVX-512 Conflict Detection */
624 #define CPUID_7_0_EBX_AVX512BW (1U << 30) /* AVX-512 Byte and Word Instructions */
625 #define CPUID_7_0_EBX_AVX512VL (1U << 31) /* AVX-512 Vector Length Extensions */
626
627 #define CPUID_7_0_ECX_VBMI (1U << 1) /* AVX-512 Vector Byte Manipulation Instrs */
628 #define CPUID_7_0_ECX_UMIP (1U << 2)
629 #define CPUID_7_0_ECX_PKU (1U << 3)
630 #define CPUID_7_0_ECX_OSPKE (1U << 4)
631 #define CPUID_7_0_ECX_RDPID (1U << 22)
632
633 #define CPUID_7_0_EDX_AVX512_4VNNIW (1U << 2) /* AVX512 Neural Network Instructions */
634 #define CPUID_7_0_EDX_AVX512_4FMAPS (1U << 3) /* AVX512 Multiply Accumulation Single Precision */
635
636 #define CPUID_XSAVE_XSAVEOPT (1U << 0)
637 #define CPUID_XSAVE_XSAVEC (1U << 1)
638 #define CPUID_XSAVE_XGETBV1 (1U << 2)
639 #define CPUID_XSAVE_XSAVES (1U << 3)
640
641 #define CPUID_6_EAX_ARAT (1U << 2)
642
643 /* CPUID[0x80000007].EDX flags: */
644 #define CPUID_APM_INVTSC (1U << 8)
645
646 #define CPUID_VENDOR_SZ 12
647
648 #define CPUID_VENDOR_INTEL_1 0x756e6547 /* "Genu" */
649 #define CPUID_VENDOR_INTEL_2 0x49656e69 /* "ineI" */
650 #define CPUID_VENDOR_INTEL_3 0x6c65746e /* "ntel" */
651 #define CPUID_VENDOR_INTEL "GenuineIntel"
652
653 #define CPUID_VENDOR_AMD_1 0x68747541 /* "Auth" */
654 #define CPUID_VENDOR_AMD_2 0x69746e65 /* "enti" */
655 #define CPUID_VENDOR_AMD_3 0x444d4163 /* "cAMD" */
656 #define CPUID_VENDOR_AMD "AuthenticAMD"
657
658 #define CPUID_VENDOR_VIA "CentaurHauls"
659
660 #define CPUID_MWAIT_IBE (1U << 1) /* Interrupts can exit capability */
661 #define CPUID_MWAIT_EMX (1U << 0) /* enumeration supported */
662
663 /* CPUID[0xB].ECX level types */
664 #define CPUID_TOPOLOGY_LEVEL_INVALID (0U << 8)
665 #define CPUID_TOPOLOGY_LEVEL_SMT (1U << 8)
666 #define CPUID_TOPOLOGY_LEVEL_CORE (2U << 8)
667
668 #ifndef HYPERV_SPINLOCK_NEVER_RETRY
669 #define HYPERV_SPINLOCK_NEVER_RETRY 0xFFFFFFFF
670 #endif
671
672 #define EXCP00_DIVZ 0
673 #define EXCP01_DB 1
674 #define EXCP02_NMI 2
675 #define EXCP03_INT3 3
676 #define EXCP04_INTO 4
677 #define EXCP05_BOUND 5
678 #define EXCP06_ILLOP 6
679 #define EXCP07_PREX 7
680 #define EXCP08_DBLE 8
681 #define EXCP09_XERR 9
682 #define EXCP0A_TSS 10
683 #define EXCP0B_NOSEG 11
684 #define EXCP0C_STACK 12
685 #define EXCP0D_GPF 13
686 #define EXCP0E_PAGE 14
687 #define EXCP10_COPR 16
688 #define EXCP11_ALGN 17
689 #define EXCP12_MCHK 18
690
691 #define EXCP_SYSCALL 0x100 /* only happens in user only emulation
692 for syscall instruction */
693
694 /* i386-specific interrupt pending bits. */
695 #define CPU_INTERRUPT_POLL CPU_INTERRUPT_TGT_EXT_1
696 #define CPU_INTERRUPT_SMI CPU_INTERRUPT_TGT_EXT_2
697 #define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_3
698 #define CPU_INTERRUPT_MCE CPU_INTERRUPT_TGT_EXT_4
699 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_INT_0
700 #define CPU_INTERRUPT_SIPI CPU_INTERRUPT_TGT_INT_1
701 #define CPU_INTERRUPT_TPR CPU_INTERRUPT_TGT_INT_2
702
703 /* Use a clearer name for this. */
704 #define CPU_INTERRUPT_INIT CPU_INTERRUPT_RESET
705
706 /* Instead of computing the condition codes after each x86 instruction,
707 * QEMU just stores one operand (called CC_SRC), the result
708 * (called CC_DST) and the type of operation (called CC_OP). When the
709 * condition codes are needed, the condition codes can be calculated
710 * using this information. Condition codes are not generated if they
711 * are only needed for conditional branches.
712 */
713 typedef enum {
714 CC_OP_DYNAMIC, /* must use dynamic code to get cc_op */
715 CC_OP_EFLAGS, /* all cc are explicitly computed, CC_SRC = flags */
716
717 CC_OP_MULB, /* modify all flags, C, O = (CC_SRC != 0) */
718 CC_OP_MULW,
719 CC_OP_MULL,
720 CC_OP_MULQ,
721
722 CC_OP_ADDB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
723 CC_OP_ADDW,
724 CC_OP_ADDL,
725 CC_OP_ADDQ,
726
727 CC_OP_ADCB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
728 CC_OP_ADCW,
729 CC_OP_ADCL,
730 CC_OP_ADCQ,
731
732 CC_OP_SUBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
733 CC_OP_SUBW,
734 CC_OP_SUBL,
735 CC_OP_SUBQ,
736
737 CC_OP_SBBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
738 CC_OP_SBBW,
739 CC_OP_SBBL,
740 CC_OP_SBBQ,
741
742 CC_OP_LOGICB, /* modify all flags, CC_DST = res */
743 CC_OP_LOGICW,
744 CC_OP_LOGICL,
745 CC_OP_LOGICQ,
746
747 CC_OP_INCB, /* modify all flags except, CC_DST = res, CC_SRC = C */
748 CC_OP_INCW,
749 CC_OP_INCL,
750 CC_OP_INCQ,
751
752 CC_OP_DECB, /* modify all flags except, CC_DST = res, CC_SRC = C */
753 CC_OP_DECW,
754 CC_OP_DECL,
755 CC_OP_DECQ,
756
757 CC_OP_SHLB, /* modify all flags, CC_DST = res, CC_SRC.msb = C */
758 CC_OP_SHLW,
759 CC_OP_SHLL,
760 CC_OP_SHLQ,
761
762 CC_OP_SARB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */
763 CC_OP_SARW,
764 CC_OP_SARL,
765 CC_OP_SARQ,
766
767 CC_OP_BMILGB, /* Z,S via CC_DST, C = SRC==0; O=0; P,A undefined */
768 CC_OP_BMILGW,
769 CC_OP_BMILGL,
770 CC_OP_BMILGQ,
771
772 CC_OP_ADCX, /* CC_DST = C, CC_SRC = rest. */
773 CC_OP_ADOX, /* CC_DST = O, CC_SRC = rest. */
774 CC_OP_ADCOX, /* CC_DST = C, CC_SRC2 = O, CC_SRC = rest. */
775
776 CC_OP_CLR, /* Z set, all other flags clear. */
777
778 CC_OP_NB,
779 } CCOp;
780
781 typedef struct SegmentCache {
782 uint32_t selector;
783 target_ulong base;
784 uint32_t limit;
785 uint32_t flags;
786 } SegmentCache;
787
788 #define MMREG_UNION(n, bits) \
789 union n { \
790 uint8_t _b_##n[(bits)/8]; \
791 uint16_t _w_##n[(bits)/16]; \
792 uint32_t _l_##n[(bits)/32]; \
793 uint64_t _q_##n[(bits)/64]; \
794 float32 _s_##n[(bits)/32]; \
795 float64 _d_##n[(bits)/64]; \
796 }
797
798 typedef MMREG_UNION(ZMMReg, 512) ZMMReg;
799 typedef MMREG_UNION(MMXReg, 64) MMXReg;
800
801 typedef struct BNDReg {
802 uint64_t lb;
803 uint64_t ub;
804 } BNDReg;
805
806 typedef struct BNDCSReg {
807 uint64_t cfgu;
808 uint64_t sts;
809 } BNDCSReg;
810
811 #define BNDCFG_ENABLE 1ULL
812 #define BNDCFG_BNDPRESERVE 2ULL
813 #define BNDCFG_BDIR_MASK TARGET_PAGE_MASK
814
815 #ifdef HOST_WORDS_BIGENDIAN
816 #define ZMM_B(n) _b_ZMMReg[63 - (n)]
817 #define ZMM_W(n) _w_ZMMReg[31 - (n)]
818 #define ZMM_L(n) _l_ZMMReg[15 - (n)]
819 #define ZMM_S(n) _s_ZMMReg[15 - (n)]
820 #define ZMM_Q(n) _q_ZMMReg[7 - (n)]
821 #define ZMM_D(n) _d_ZMMReg[7 - (n)]
822
823 #define MMX_B(n) _b_MMXReg[7 - (n)]
824 #define MMX_W(n) _w_MMXReg[3 - (n)]
825 #define MMX_L(n) _l_MMXReg[1 - (n)]
826 #define MMX_S(n) _s_MMXReg[1 - (n)]
827 #else
828 #define ZMM_B(n) _b_ZMMReg[n]
829 #define ZMM_W(n) _w_ZMMReg[n]
830 #define ZMM_L(n) _l_ZMMReg[n]
831 #define ZMM_S(n) _s_ZMMReg[n]
832 #define ZMM_Q(n) _q_ZMMReg[n]
833 #define ZMM_D(n) _d_ZMMReg[n]
834
835 #define MMX_B(n) _b_MMXReg[n]
836 #define MMX_W(n) _w_MMXReg[n]
837 #define MMX_L(n) _l_MMXReg[n]
838 #define MMX_S(n) _s_MMXReg[n]
839 #endif
840 #define MMX_Q(n) _q_MMXReg[n]
841
842 typedef union {
843 floatx80 d __attribute__((aligned(16)));
844 MMXReg mmx;
845 } FPReg;
846
847 typedef struct {
848 uint64_t base;
849 uint64_t mask;
850 } MTRRVar;
851
852 #define CPU_NB_REGS64 16
853 #define CPU_NB_REGS32 8
854
855 #ifdef TARGET_X86_64
856 #define CPU_NB_REGS CPU_NB_REGS64
857 #else
858 #define CPU_NB_REGS CPU_NB_REGS32
859 #endif
860
861 #define MAX_FIXED_COUNTERS 3
862 #define MAX_GP_COUNTERS (MSR_IA32_PERF_STATUS - MSR_P6_EVNTSEL0)
863
864 #define NB_MMU_MODES 3
865 #define TARGET_INSN_START_EXTRA_WORDS 1
866
867 #define NB_OPMASK_REGS 8
868
869 /* CPU can't have 0xFFFFFFFF APIC ID, use that value to distinguish
870 * that APIC ID hasn't been set yet
871 */
872 #define UNASSIGNED_APIC_ID 0xFFFFFFFF
873
874 typedef union X86LegacyXSaveArea {
875 struct {
876 uint16_t fcw;
877 uint16_t fsw;
878 uint8_t ftw;
879 uint8_t reserved;
880 uint16_t fpop;
881 uint64_t fpip;
882 uint64_t fpdp;
883 uint32_t mxcsr;
884 uint32_t mxcsr_mask;
885 FPReg fpregs[8];
886 uint8_t xmm_regs[16][16];
887 };
888 uint8_t data[512];
889 } X86LegacyXSaveArea;
890
891 typedef struct X86XSaveHeader {
892 uint64_t xstate_bv;
893 uint64_t xcomp_bv;
894 uint64_t reserve0;
895 uint8_t reserved[40];
896 } X86XSaveHeader;
897
898 /* Ext. save area 2: AVX State */
899 typedef struct XSaveAVX {
900 uint8_t ymmh[16][16];
901 } XSaveAVX;
902
903 /* Ext. save area 3: BNDREG */
904 typedef struct XSaveBNDREG {
905 BNDReg bnd_regs[4];
906 } XSaveBNDREG;
907
908 /* Ext. save area 4: BNDCSR */
909 typedef union XSaveBNDCSR {
910 BNDCSReg bndcsr;
911 uint8_t data[64];
912 } XSaveBNDCSR;
913
914 /* Ext. save area 5: Opmask */
915 typedef struct XSaveOpmask {
916 uint64_t opmask_regs[NB_OPMASK_REGS];
917 } XSaveOpmask;
918
919 /* Ext. save area 6: ZMM_Hi256 */
920 typedef struct XSaveZMM_Hi256 {
921 uint8_t zmm_hi256[16][32];
922 } XSaveZMM_Hi256;
923
924 /* Ext. save area 7: Hi16_ZMM */
925 typedef struct XSaveHi16_ZMM {
926 uint8_t hi16_zmm[16][64];
927 } XSaveHi16_ZMM;
928
929 /* Ext. save area 9: PKRU state */
930 typedef struct XSavePKRU {
931 uint32_t pkru;
932 uint32_t padding;
933 } XSavePKRU;
934
935 typedef struct X86XSaveArea {
936 X86LegacyXSaveArea legacy;
937 X86XSaveHeader header;
938
939 /* Extended save areas: */
940
941 /* AVX State: */
942 XSaveAVX avx_state;
943 uint8_t padding[960 - 576 - sizeof(XSaveAVX)];
944 /* MPX State: */
945 XSaveBNDREG bndreg_state;
946 XSaveBNDCSR bndcsr_state;
947 /* AVX-512 State: */
948 XSaveOpmask opmask_state;
949 XSaveZMM_Hi256 zmm_hi256_state;
950 XSaveHi16_ZMM hi16_zmm_state;
951 /* PKRU State: */
952 XSavePKRU pkru_state;
953 } X86XSaveArea;
954
955 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, avx_state) != 0x240);
956 QEMU_BUILD_BUG_ON(sizeof(XSaveAVX) != 0x100);
957 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, bndreg_state) != 0x3c0);
958 QEMU_BUILD_BUG_ON(sizeof(XSaveBNDREG) != 0x40);
959 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, bndcsr_state) != 0x400);
960 QEMU_BUILD_BUG_ON(sizeof(XSaveBNDCSR) != 0x40);
961 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, opmask_state) != 0x440);
962 QEMU_BUILD_BUG_ON(sizeof(XSaveOpmask) != 0x40);
963 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, zmm_hi256_state) != 0x480);
964 QEMU_BUILD_BUG_ON(sizeof(XSaveZMM_Hi256) != 0x200);
965 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, hi16_zmm_state) != 0x680);
966 QEMU_BUILD_BUG_ON(sizeof(XSaveHi16_ZMM) != 0x400);
967 QEMU_BUILD_BUG_ON(offsetof(X86XSaveArea, pkru_state) != 0xA80);
968 QEMU_BUILD_BUG_ON(sizeof(XSavePKRU) != 0x8);
969
970 typedef enum TPRAccess {
971 TPR_ACCESS_READ,
972 TPR_ACCESS_WRITE,
973 } TPRAccess;
974
975 typedef struct CPUX86State {
976 /* standard registers */
977 target_ulong regs[CPU_NB_REGS];
978 target_ulong eip;
979 target_ulong eflags; /* eflags register. During CPU emulation, CC
980 flags and DF are set to zero because they are
981 stored elsewhere */
982
983 /* emulator internal eflags handling */
984 target_ulong cc_dst;
985 target_ulong cc_src;
986 target_ulong cc_src2;
987 uint32_t cc_op;
988 int32_t df; /* D flag : 1 if D = 0, -1 if D = 1 */
989 uint32_t hflags; /* TB flags, see HF_xxx constants. These flags
990 are known at translation time. */
991 uint32_t hflags2; /* various other flags, see HF2_xxx constants. */
992
993 /* segments */
994 SegmentCache segs[6]; /* selector values */
995 SegmentCache ldt;
996 SegmentCache tr;
997 SegmentCache gdt; /* only base and limit are used */
998 SegmentCache idt; /* only base and limit are used */
999
1000 target_ulong cr[5]; /* NOTE: cr1 is unused */
1001 int32_t a20_mask;
1002
1003 BNDReg bnd_regs[4];
1004 BNDCSReg bndcs_regs;
1005 uint64_t msr_bndcfgs;
1006 uint64_t efer;
1007
1008 /* Beginning of state preserved by INIT (dummy marker). */
1009 struct {} start_init_save;
1010
1011 /* FPU state */
1012 unsigned int fpstt; /* top of stack index */
1013 uint16_t fpus;
1014 uint16_t fpuc;
1015 uint8_t fptags[8]; /* 0 = valid, 1 = empty */
1016 FPReg fpregs[8];
1017 /* KVM-only so far */
1018 uint16_t fpop;
1019 uint64_t fpip;
1020 uint64_t fpdp;
1021
1022 /* emulator internal variables */
1023 float_status fp_status;
1024 floatx80 ft0;
1025
1026 float_status mmx_status; /* for 3DNow! float ops */
1027 float_status sse_status;
1028 uint32_t mxcsr;
1029 ZMMReg xmm_regs[CPU_NB_REGS == 8 ? 8 : 32];
1030 ZMMReg xmm_t0;
1031 MMXReg mmx_t0;
1032
1033 uint64_t opmask_regs[NB_OPMASK_REGS];
1034
1035 /* sysenter registers */
1036 uint32_t sysenter_cs;
1037 target_ulong sysenter_esp;
1038 target_ulong sysenter_eip;
1039 uint64_t star;
1040
1041 uint64_t vm_hsave;
1042
1043 #ifdef TARGET_X86_64
1044 target_ulong lstar;
1045 target_ulong cstar;
1046 target_ulong fmask;
1047 target_ulong kernelgsbase;
1048 #endif
1049
1050 uint64_t tsc;
1051 uint64_t tsc_adjust;
1052 uint64_t tsc_deadline;
1053 uint64_t tsc_aux;
1054
1055 uint64_t xcr0;
1056
1057 uint64_t mcg_status;
1058 uint64_t msr_ia32_misc_enable;
1059 uint64_t msr_ia32_feature_control;
1060
1061 uint64_t msr_fixed_ctr_ctrl;
1062 uint64_t msr_global_ctrl;
1063 uint64_t msr_global_status;
1064 uint64_t msr_global_ovf_ctrl;
1065 uint64_t msr_fixed_counters[MAX_FIXED_COUNTERS];
1066 uint64_t msr_gp_counters[MAX_GP_COUNTERS];
1067 uint64_t msr_gp_evtsel[MAX_GP_COUNTERS];
1068
1069 uint64_t pat;
1070 uint32_t smbase;
1071
1072 uint32_t pkru;
1073
1074 /* End of state preserved by INIT (dummy marker). */
1075 struct {} end_init_save;
1076
1077 uint64_t system_time_msr;
1078 uint64_t wall_clock_msr;
1079 uint64_t steal_time_msr;
1080 uint64_t async_pf_en_msr;
1081 uint64_t pv_eoi_en_msr;
1082
1083 uint64_t msr_hv_hypercall;
1084 uint64_t msr_hv_guest_os_id;
1085 uint64_t msr_hv_vapic;
1086 uint64_t msr_hv_tsc;
1087 uint64_t msr_hv_crash_params[HV_X64_MSR_CRASH_PARAMS];
1088 uint64_t msr_hv_runtime;
1089 uint64_t msr_hv_synic_control;
1090 uint64_t msr_hv_synic_version;
1091 uint64_t msr_hv_synic_evt_page;
1092 uint64_t msr_hv_synic_msg_page;
1093 uint64_t msr_hv_synic_sint[HV_SYNIC_SINT_COUNT];
1094 uint64_t msr_hv_stimer_config[HV_SYNIC_STIMER_COUNT];
1095 uint64_t msr_hv_stimer_count[HV_SYNIC_STIMER_COUNT];
1096
1097 /* exception/interrupt handling */
1098 int error_code;
1099 int exception_is_int;
1100 target_ulong exception_next_eip;
1101 target_ulong dr[8]; /* debug registers; note dr4 and dr5 are unused */
1102 union {
1103 struct CPUBreakpoint *cpu_breakpoint[4];
1104 struct CPUWatchpoint *cpu_watchpoint[4];
1105 }; /* break/watchpoints for dr[0..3] */
1106 int old_exception; /* exception in flight */
1107
1108 uint64_t vm_vmcb;
1109 uint64_t tsc_offset;
1110 uint64_t intercept;
1111 uint16_t intercept_cr_read;
1112 uint16_t intercept_cr_write;
1113 uint16_t intercept_dr_read;
1114 uint16_t intercept_dr_write;
1115 uint32_t intercept_exceptions;
1116 uint8_t v_tpr;
1117
1118 /* KVM states, automatically cleared on reset */
1119 uint8_t nmi_injected;
1120 uint8_t nmi_pending;
1121
1122 CPU_COMMON
1123
1124 /* Fields from here on are preserved across CPU reset. */
1125 struct {} end_reset_fields;
1126
1127 /* processor features (e.g. for CPUID insn) */
1128 /* Minimum level/xlevel/xlevel2, based on CPU model + features */
1129 uint32_t cpuid_min_level, cpuid_min_xlevel, cpuid_min_xlevel2;
1130 /* Maximum level/xlevel/xlevel2 value for auto-assignment: */
1131 uint32_t cpuid_max_level, cpuid_max_xlevel, cpuid_max_xlevel2;
1132 /* Actual level/xlevel/xlevel2 value: */
1133 uint32_t cpuid_level, cpuid_xlevel, cpuid_xlevel2;
1134 uint32_t cpuid_vendor1;
1135 uint32_t cpuid_vendor2;
1136 uint32_t cpuid_vendor3;
1137 uint32_t cpuid_version;
1138 FeatureWordArray features;
1139 uint32_t cpuid_model[12];
1140
1141 /* MTRRs */
1142 uint64_t mtrr_fixed[11];
1143 uint64_t mtrr_deftype;
1144 MTRRVar mtrr_var[MSR_MTRRcap_VCNT];
1145
1146 /* For KVM */
1147 uint32_t mp_state;
1148 int32_t exception_injected;
1149 int32_t interrupt_injected;
1150 uint8_t soft_interrupt;
1151 uint8_t has_error_code;
1152 uint32_t sipi_vector;
1153 bool tsc_valid;
1154 int64_t tsc_khz;
1155 int64_t user_tsc_khz; /* for sanity check only */
1156 void *kvm_xsave_buf;
1157
1158 uint64_t mcg_cap;
1159 uint64_t mcg_ctl;
1160 uint64_t mcg_ext_ctl;
1161 uint64_t mce_banks[MCE_BANKS_DEF*4];
1162 uint64_t xstate_bv;
1163
1164 /* vmstate */
1165 uint16_t fpus_vmstate;
1166 uint16_t fptag_vmstate;
1167 uint16_t fpregs_format_vmstate;
1168
1169 uint64_t xss;
1170
1171 TPRAccess tpr_access_type;
1172 } CPUX86State;
1173
1174 struct kvm_msrs;
1175
1176 /**
1177 * X86CPU:
1178 * @env: #CPUX86State
1179 * @migratable: If set, only migratable flags will be accepted when "enforce"
1180 * mode is used, and only migratable flags will be included in the "host"
1181 * CPU model.
1182 *
1183 * An x86 CPU.
1184 */
1185 struct X86CPU {
1186 /*< private >*/
1187 CPUState parent_obj;
1188 /*< public >*/
1189
1190 CPUX86State env;
1191
1192 bool hyperv_vapic;
1193 bool hyperv_relaxed_timing;
1194 int hyperv_spinlock_attempts;
1195 char *hyperv_vendor_id;
1196 bool hyperv_time;
1197 bool hyperv_crash;
1198 bool hyperv_reset;
1199 bool hyperv_vpindex;
1200 bool hyperv_runtime;
1201 bool hyperv_synic;
1202 bool hyperv_stimer;
1203 bool check_cpuid;
1204 bool enforce_cpuid;
1205 bool expose_kvm;
1206 bool migratable;
1207 bool host_features;
1208 uint32_t apic_id;
1209
1210 /* if true the CPUID code directly forward host cache leaves to the guest */
1211 bool cache_info_passthrough;
1212
1213 /* Features that were filtered out because of missing host capabilities */
1214 uint32_t filtered_features[FEATURE_WORDS];
1215
1216 /* Enable PMU CPUID bits. This can't be enabled by default yet because
1217 * it doesn't have ABI stability guarantees, as it passes all PMU CPUID
1218 * bits returned by GET_SUPPORTED_CPUID (that depend on host CPU and kernel
1219 * capabilities) directly to the guest.
1220 */
1221 bool enable_pmu;
1222
1223 /* LMCE support can be enabled/disabled via cpu option 'lmce=on/off'. It is
1224 * disabled by default to avoid breaking migration between QEMU with
1225 * different LMCE configurations.
1226 */
1227 bool enable_lmce;
1228
1229 /* Compatibility bits for old machine types.
1230 * If true present virtual l3 cache for VM, the vcpus in the same virtual
1231 * socket share an virtual l3 cache.
1232 */
1233 bool enable_l3_cache;
1234
1235 /* Compatibility bits for old machine types: */
1236 bool enable_cpuid_0xb;
1237
1238 /* Enable auto level-increase for all CPUID leaves */
1239 bool full_cpuid_auto_level;
1240
1241 /* if true fill the top bits of the MTRR_PHYSMASKn variable range */
1242 bool fill_mtrr_mask;
1243
1244 /* if true override the phys_bits value with a value read from the host */
1245 bool host_phys_bits;
1246
1247 /* Number of physical address bits supported */
1248 uint32_t phys_bits;
1249
1250 /* in order to simplify APIC support, we leave this pointer to the
1251 user */
1252 struct DeviceState *apic_state;
1253 struct MemoryRegion *cpu_as_root, *cpu_as_mem, *smram;
1254 Notifier machine_done;
1255
1256 struct kvm_msrs *kvm_msr_buf;
1257
1258 int32_t socket_id;
1259 int32_t core_id;
1260 int32_t thread_id;
1261 };
1262
1263 static inline X86CPU *x86_env_get_cpu(CPUX86State *env)
1264 {
1265 return container_of(env, X86CPU, env);
1266 }
1267
1268 #define ENV_GET_CPU(e) CPU(x86_env_get_cpu(e))
1269
1270 #define ENV_OFFSET offsetof(X86CPU, env)
1271
1272 #ifndef CONFIG_USER_ONLY
1273 extern struct VMStateDescription vmstate_x86_cpu;
1274 #endif
1275
1276 /**
1277 * x86_cpu_do_interrupt:
1278 * @cpu: vCPU the interrupt is to be handled by.
1279 */
1280 void x86_cpu_do_interrupt(CPUState *cpu);
1281 bool x86_cpu_exec_interrupt(CPUState *cpu, int int_req);
1282
1283 int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
1284 int cpuid, void *opaque);
1285 int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
1286 int cpuid, void *opaque);
1287 int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
1288 void *opaque);
1289 int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
1290 void *opaque);
1291
1292 void x86_cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
1293 Error **errp);
1294
1295 void x86_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
1296 int flags);
1297
1298 hwaddr x86_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
1299
1300 int x86_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
1301 int x86_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1302
1303 void x86_cpu_exec_enter(CPUState *cpu);
1304 void x86_cpu_exec_exit(CPUState *cpu);
1305
1306 X86CPU *cpu_x86_init(const char *cpu_model);
1307 void x86_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1308 int cpu_x86_support_mca_broadcast(CPUX86State *env);
1309
1310 int cpu_get_pic_interrupt(CPUX86State *s);
1311 /* MSDOS compatibility mode FPU exception support */
1312 void cpu_set_ferr(CPUX86State *s);
1313
1314 /* this function must always be used to load data in the segment
1315 cache: it synchronizes the hflags with the segment cache values */
1316 static inline void cpu_x86_load_seg_cache(CPUX86State *env,
1317 int seg_reg, unsigned int selector,
1318 target_ulong base,
1319 unsigned int limit,
1320 unsigned int flags)
1321 {
1322 SegmentCache *sc;
1323 unsigned int new_hflags;
1324
1325 sc = &env->segs[seg_reg];
1326 sc->selector = selector;
1327 sc->base = base;
1328 sc->limit = limit;
1329 sc->flags = flags;
1330
1331 /* update the hidden flags */
1332 {
1333 if (seg_reg == R_CS) {
1334 #ifdef TARGET_X86_64
1335 if ((env->hflags & HF_LMA_MASK) && (flags & DESC_L_MASK)) {
1336 /* long mode */
1337 env->hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1338 env->hflags &= ~(HF_ADDSEG_MASK);
1339 } else
1340 #endif
1341 {
1342 /* legacy / compatibility case */
1343 new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
1344 >> (DESC_B_SHIFT - HF_CS32_SHIFT);
1345 env->hflags = (env->hflags & ~(HF_CS32_MASK | HF_CS64_MASK)) |
1346 new_hflags;
1347 }
1348 }
1349 if (seg_reg == R_SS) {
1350 int cpl = (flags >> DESC_DPL_SHIFT) & 3;
1351 #if HF_CPL_MASK != 3
1352 #error HF_CPL_MASK is hardcoded
1353 #endif
1354 env->hflags = (env->hflags & ~HF_CPL_MASK) | cpl;
1355 }
1356 new_hflags = (env->segs[R_SS].flags & DESC_B_MASK)
1357 >> (DESC_B_SHIFT - HF_SS32_SHIFT);
1358 if (env->hflags & HF_CS64_MASK) {
1359 /* zero base assumed for DS, ES and SS in long mode */
1360 } else if (!(env->cr[0] & CR0_PE_MASK) ||
1361 (env->eflags & VM_MASK) ||
1362 !(env->hflags & HF_CS32_MASK)) {
1363 /* XXX: try to avoid this test. The problem comes from the
1364 fact that is real mode or vm86 mode we only modify the
1365 'base' and 'selector' fields of the segment cache to go
1366 faster. A solution may be to force addseg to one in
1367 translate-i386.c. */
1368 new_hflags |= HF_ADDSEG_MASK;
1369 } else {
1370 new_hflags |= ((env->segs[R_DS].base |
1371 env->segs[R_ES].base |
1372 env->segs[R_SS].base) != 0) <<
1373 HF_ADDSEG_SHIFT;
1374 }
1375 env->hflags = (env->hflags &
1376 ~(HF_SS32_MASK | HF_ADDSEG_MASK)) | new_hflags;
1377 }
1378 }
1379
1380 static inline void cpu_x86_load_seg_cache_sipi(X86CPU *cpu,
1381 uint8_t sipi_vector)
1382 {
1383 CPUState *cs = CPU(cpu);
1384 CPUX86State *env = &cpu->env;
1385
1386 env->eip = 0;
1387 cpu_x86_load_seg_cache(env, R_CS, sipi_vector << 8,
1388 sipi_vector << 12,
1389 env->segs[R_CS].limit,
1390 env->segs[R_CS].flags);
1391 cs->halted = 0;
1392 }
1393
1394 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
1395 target_ulong *base, unsigned int *limit,
1396 unsigned int *flags);
1397
1398 /* op_helper.c */
1399 /* used for debug or cpu save/restore */
1400 void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, floatx80 f);
1401 floatx80 cpu_set_fp80(uint64_t mant, uint16_t upper);
1402
1403 /* cpu-exec.c */
1404 /* the following helpers are only usable in user mode simulation as
1405 they can trigger unexpected exceptions */
1406 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector);
1407 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32);
1408 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32);
1409
1410 /* you can call this signal handler from your SIGBUS and SIGSEGV
1411 signal handlers to inform the virtual CPU of exceptions. non zero
1412 is returned if the signal was handled by the virtual CPU. */
1413 int cpu_x86_signal_handler(int host_signum, void *pinfo,
1414 void *puc);
1415
1416 /* cpu.c */
1417 void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
1418 uint32_t *eax, uint32_t *ebx,
1419 uint32_t *ecx, uint32_t *edx);
1420 void cpu_clear_apic_feature(CPUX86State *env);
1421 void host_cpuid(uint32_t function, uint32_t count,
1422 uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx);
1423
1424 /* helper.c */
1425 int x86_cpu_handle_mmu_fault(CPUState *cpu, vaddr addr,
1426 int is_write, int mmu_idx);
1427 void x86_cpu_set_a20(X86CPU *cpu, int a20_state);
1428
1429 #ifndef CONFIG_USER_ONLY
1430 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr);
1431 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr);
1432 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr);
1433 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr);
1434 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val);
1435 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val);
1436 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val);
1437 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val);
1438 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val);
1439 #endif
1440
1441 void breakpoint_handler(CPUState *cs);
1442
1443 /* will be suppressed */
1444 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
1445 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
1446 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
1447 void cpu_x86_update_dr7(CPUX86State *env, uint32_t new_dr7);
1448
1449 /* hw/pc.c */
1450 uint64_t cpu_get_tsc(CPUX86State *env);
1451
1452 #define TARGET_PAGE_BITS 12
1453
1454 #ifdef TARGET_X86_64
1455 #define TARGET_PHYS_ADDR_SPACE_BITS 52
1456 /* ??? This is really 48 bits, sign-extended, but the only thing
1457 accessible to userland with bit 48 set is the VSYSCALL, and that
1458 is handled via other mechanisms. */
1459 #define TARGET_VIRT_ADDR_SPACE_BITS 47
1460 #else
1461 #define TARGET_PHYS_ADDR_SPACE_BITS 36
1462 #define TARGET_VIRT_ADDR_SPACE_BITS 32
1463 #endif
1464
1465 /* XXX: This value should match the one returned by CPUID
1466 * and in exec.c */
1467 # if defined(TARGET_X86_64)
1468 # define TCG_PHYS_ADDR_BITS 40
1469 # else
1470 # define TCG_PHYS_ADDR_BITS 36
1471 # endif
1472
1473 #define PHYS_ADDR_MASK MAKE_64BIT_MASK(0, TCG_PHYS_ADDR_BITS)
1474
1475 #define cpu_init(cpu_model) CPU(cpu_x86_init(cpu_model))
1476
1477 #define cpu_signal_handler cpu_x86_signal_handler
1478 #define cpu_list x86_cpu_list
1479
1480 /* MMU modes definitions */
1481 #define MMU_MODE0_SUFFIX _ksmap
1482 #define MMU_MODE1_SUFFIX _user
1483 #define MMU_MODE2_SUFFIX _knosmap /* SMAP disabled or CPL<3 && AC=1 */
1484 #define MMU_KSMAP_IDX 0
1485 #define MMU_USER_IDX 1
1486 #define MMU_KNOSMAP_IDX 2
1487 static inline int cpu_mmu_index(CPUX86State *env, bool ifetch)
1488 {
1489 return (env->hflags & HF_CPL_MASK) == 3 ? MMU_USER_IDX :
1490 (!(env->hflags & HF_SMAP_MASK) || (env->eflags & AC_MASK))
1491 ? MMU_KNOSMAP_IDX : MMU_KSMAP_IDX;
1492 }
1493
1494 static inline int cpu_mmu_index_kernel(CPUX86State *env)
1495 {
1496 return !(env->hflags & HF_SMAP_MASK) ? MMU_KNOSMAP_IDX :
1497 ((env->hflags & HF_CPL_MASK) < 3 && (env->eflags & AC_MASK))
1498 ? MMU_KNOSMAP_IDX : MMU_KSMAP_IDX;
1499 }
1500
1501 #define CC_DST (env->cc_dst)
1502 #define CC_SRC (env->cc_src)
1503 #define CC_SRC2 (env->cc_src2)
1504 #define CC_OP (env->cc_op)
1505
1506 /* n must be a constant to be efficient */
1507 static inline target_long lshift(target_long x, int n)
1508 {
1509 if (n >= 0) {
1510 return x << n;
1511 } else {
1512 return x >> (-n);
1513 }
1514 }
1515
1516 /* float macros */
1517 #define FT0 (env->ft0)
1518 #define ST0 (env->fpregs[env->fpstt].d)
1519 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
1520 #define ST1 ST(1)
1521
1522 /* translate.c */
1523 void tcg_x86_init(void);
1524
1525 #include "exec/cpu-all.h"
1526 #include "svm.h"
1527
1528 #if !defined(CONFIG_USER_ONLY)
1529 #include "hw/i386/apic.h"
1530 #endif
1531
1532 static inline void cpu_get_tb_cpu_state(CPUX86State *env, target_ulong *pc,
1533 target_ulong *cs_base, uint32_t *flags)
1534 {
1535 *cs_base = env->segs[R_CS].base;
1536 *pc = *cs_base + env->eip;
1537 *flags = env->hflags |
1538 (env->eflags & (IOPL_MASK | TF_MASK | RF_MASK | VM_MASK | AC_MASK));
1539 }
1540
1541 void do_cpu_init(X86CPU *cpu);
1542 void do_cpu_sipi(X86CPU *cpu);
1543
1544 #define MCE_INJECT_BROADCAST 1
1545 #define MCE_INJECT_UNCOND_AO 2
1546
1547 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
1548 uint64_t status, uint64_t mcg_status, uint64_t addr,
1549 uint64_t misc, int flags);
1550
1551 /* excp_helper.c */
1552 void QEMU_NORETURN raise_exception(CPUX86State *env, int exception_index);
1553 void QEMU_NORETURN raise_exception_ra(CPUX86State *env, int exception_index,
1554 uintptr_t retaddr);
1555 void QEMU_NORETURN raise_exception_err(CPUX86State *env, int exception_index,
1556 int error_code);
1557 void QEMU_NORETURN raise_exception_err_ra(CPUX86State *env, int exception_index,
1558 int error_code, uintptr_t retaddr);
1559 void QEMU_NORETURN raise_interrupt(CPUX86State *nenv, int intno, int is_int,
1560 int error_code, int next_eip_addend);
1561
1562 /* cc_helper.c */
1563 extern const uint8_t parity_table[256];
1564 uint32_t cpu_cc_compute_all(CPUX86State *env1, int op);
1565 void update_fp_status(CPUX86State *env);
1566
1567 static inline uint32_t cpu_compute_eflags(CPUX86State *env)
1568 {
1569 return env->eflags | cpu_cc_compute_all(env, CC_OP) | (env->df & DF_MASK);
1570 }
1571
1572 /* NOTE: the translator must set DisasContext.cc_op to CC_OP_EFLAGS
1573 * after generating a call to a helper that uses this.
1574 */
1575 static inline void cpu_load_eflags(CPUX86State *env, int eflags,
1576 int update_mask)
1577 {
1578 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1579 CC_OP = CC_OP_EFLAGS;
1580 env->df = 1 - (2 * ((eflags >> 10) & 1));
1581 env->eflags = (env->eflags & ~update_mask) |
1582 (eflags & update_mask) | 0x2;
1583 }
1584
1585 /* load efer and update the corresponding hflags. XXX: do consistency
1586 checks with cpuid bits? */
1587 static inline void cpu_load_efer(CPUX86State *env, uint64_t val)
1588 {
1589 env->efer = val;
1590 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
1591 if (env->efer & MSR_EFER_LMA) {
1592 env->hflags |= HF_LMA_MASK;
1593 }
1594 if (env->efer & MSR_EFER_SVME) {
1595 env->hflags |= HF_SVME_MASK;
1596 }
1597 }
1598
1599 static inline MemTxAttrs cpu_get_mem_attrs(CPUX86State *env)
1600 {
1601 return ((MemTxAttrs) { .secure = (env->hflags & HF_SMM_MASK) != 0 });
1602 }
1603
1604 /* fpu_helper.c */
1605 void cpu_set_mxcsr(CPUX86State *env, uint32_t val);
1606 void cpu_set_fpuc(CPUX86State *env, uint16_t val);
1607
1608 /* mem_helper.c */
1609 void helper_lock_init(void);
1610
1611 /* svm_helper.c */
1612 void cpu_svm_check_intercept_param(CPUX86State *env1, uint32_t type,
1613 uint64_t param);
1614 void cpu_vmexit(CPUX86State *nenv, uint32_t exit_code, uint64_t exit_info_1);
1615
1616 /* seg_helper.c */
1617 void do_interrupt_x86_hardirq(CPUX86State *env, int intno, int is_hw);
1618
1619 /* smm_helper.c */
1620 void do_smm_enter(X86CPU *cpu);
1621 void cpu_smm_update(X86CPU *cpu);
1622
1623 /* apic.c */
1624 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access);
1625 void apic_handle_tpr_access_report(DeviceState *d, target_ulong ip,
1626 TPRAccess access);
1627
1628
1629 /* Change the value of a KVM-specific default
1630 *
1631 * If value is NULL, no default will be set and the original
1632 * value from the CPU model table will be kept.
1633 *
1634 * It is valid to call this function only for properties that
1635 * are already present in the kvm_default_props table.
1636 */
1637 void x86_cpu_change_kvm_default(const char *prop, const char *value);
1638
1639 /* mpx_helper.c */
1640 void cpu_sync_bndcs_hflags(CPUX86State *env);
1641
1642 /* Return name of 32-bit register, from a R_* constant */
1643 const char *get_register_name_32(unsigned int reg);
1644
1645 void enable_compat_apic_id_mode(void);
1646
1647 #define APIC_DEFAULT_ADDRESS 0xfee00000
1648 #define APIC_SPACE_SIZE 0x100000
1649
1650 void x86_cpu_dump_local_apic_state(CPUState *cs, FILE *f,
1651 fprintf_function cpu_fprintf, int flags);
1652
1653 /* cpu.c */
1654 bool cpu_is_bsp(X86CPU *cpu);
1655
1656 #endif /* I386_CPU_H */