]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/excp_helper.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / target / i386 / excp_helper.c
1 /*
2 * x86 exception helpers
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "sysemu/sysemu.h"
25 #include "exec/helper-proto.h"
26
27 void helper_raise_interrupt(CPUX86State *env, int intno, int next_eip_addend)
28 {
29 raise_interrupt(env, intno, 1, 0, next_eip_addend);
30 }
31
32 void helper_raise_exception(CPUX86State *env, int exception_index)
33 {
34 raise_exception(env, exception_index);
35 }
36
37 /*
38 * Check nested exceptions and change to double or triple fault if
39 * needed. It should only be called, if this is not an interrupt.
40 * Returns the new exception number.
41 */
42 static int check_exception(CPUX86State *env, int intno, int *error_code,
43 uintptr_t retaddr)
44 {
45 int first_contributory = env->old_exception == 0 ||
46 (env->old_exception >= 10 &&
47 env->old_exception <= 13);
48 int second_contributory = intno == 0 ||
49 (intno >= 10 && intno <= 13);
50
51 qemu_log_mask(CPU_LOG_INT, "check_exception old: 0x%x new 0x%x\n",
52 env->old_exception, intno);
53
54 #if !defined(CONFIG_USER_ONLY)
55 if (env->old_exception == EXCP08_DBLE) {
56 if (env->hflags & HF_SVMI_MASK) {
57 cpu_vmexit(env, SVM_EXIT_SHUTDOWN, 0, retaddr); /* does not return */
58 }
59
60 qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
61
62 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
63 return EXCP_HLT;
64 }
65 #endif
66
67 if ((first_contributory && second_contributory)
68 || (env->old_exception == EXCP0E_PAGE &&
69 (second_contributory || (intno == EXCP0E_PAGE)))) {
70 intno = EXCP08_DBLE;
71 *error_code = 0;
72 }
73
74 if (second_contributory || (intno == EXCP0E_PAGE) ||
75 (intno == EXCP08_DBLE)) {
76 env->old_exception = intno;
77 }
78
79 return intno;
80 }
81
82 /*
83 * Signal an interruption. It is executed in the main CPU loop.
84 * is_int is TRUE if coming from the int instruction. next_eip is the
85 * env->eip value AFTER the interrupt instruction. It is only relevant if
86 * is_int is TRUE.
87 */
88 static void QEMU_NORETURN raise_interrupt2(CPUX86State *env, int intno,
89 int is_int, int error_code,
90 int next_eip_addend,
91 uintptr_t retaddr)
92 {
93 CPUState *cs = CPU(x86_env_get_cpu(env));
94
95 if (!is_int) {
96 cpu_svm_check_intercept_param(env, SVM_EXIT_EXCP_BASE + intno,
97 error_code, retaddr);
98 intno = check_exception(env, intno, &error_code, retaddr);
99 } else {
100 cpu_svm_check_intercept_param(env, SVM_EXIT_SWINT, 0, retaddr);
101 }
102
103 cs->exception_index = intno;
104 env->error_code = error_code;
105 env->exception_is_int = is_int;
106 env->exception_next_eip = env->eip + next_eip_addend;
107 cpu_loop_exit_restore(cs, retaddr);
108 }
109
110 /* shortcuts to generate exceptions */
111
112 void QEMU_NORETURN raise_interrupt(CPUX86State *env, int intno, int is_int,
113 int error_code, int next_eip_addend)
114 {
115 raise_interrupt2(env, intno, is_int, error_code, next_eip_addend, 0);
116 }
117
118 void raise_exception_err(CPUX86State *env, int exception_index,
119 int error_code)
120 {
121 raise_interrupt2(env, exception_index, 0, error_code, 0, 0);
122 }
123
124 void raise_exception_err_ra(CPUX86State *env, int exception_index,
125 int error_code, uintptr_t retaddr)
126 {
127 raise_interrupt2(env, exception_index, 0, error_code, 0, retaddr);
128 }
129
130 void raise_exception(CPUX86State *env, int exception_index)
131 {
132 raise_interrupt2(env, exception_index, 0, 0, 0, 0);
133 }
134
135 void raise_exception_ra(CPUX86State *env, int exception_index, uintptr_t retaddr)
136 {
137 raise_interrupt2(env, exception_index, 0, 0, 0, retaddr);
138 }
139
140 #if defined(CONFIG_USER_ONLY)
141 int x86_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int size,
142 int is_write, int mmu_idx)
143 {
144 X86CPU *cpu = X86_CPU(cs);
145 CPUX86State *env = &cpu->env;
146
147 /* user mode only emulation */
148 is_write &= 1;
149 env->cr[2] = addr;
150 env->error_code = (is_write << PG_ERROR_W_BIT);
151 env->error_code |= PG_ERROR_U_MASK;
152 cs->exception_index = EXCP0E_PAGE;
153 env->exception_is_int = 0;
154 env->exception_next_eip = -1;
155 return 1;
156 }
157
158 #else
159
160 static hwaddr get_hphys(CPUState *cs, hwaddr gphys, MMUAccessType access_type,
161 int *prot)
162 {
163 CPUX86State *env = &X86_CPU(cs)->env;
164 uint64_t rsvd_mask = PG_HI_RSVD_MASK;
165 uint64_t ptep, pte;
166 uint64_t exit_info_1 = 0;
167 target_ulong pde_addr, pte_addr;
168 uint32_t page_offset;
169 int page_size;
170
171 if (likely(!(env->hflags2 & HF2_NPT_MASK))) {
172 return gphys;
173 }
174
175 if (!(env->nested_pg_mode & SVM_NPT_NXE)) {
176 rsvd_mask |= PG_NX_MASK;
177 }
178
179 if (env->nested_pg_mode & SVM_NPT_PAE) {
180 uint64_t pde, pdpe;
181 target_ulong pdpe_addr;
182
183 #ifdef TARGET_X86_64
184 if (env->nested_pg_mode & SVM_NPT_LMA) {
185 uint64_t pml5e;
186 uint64_t pml4e_addr, pml4e;
187
188 pml5e = env->nested_cr3;
189 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
190
191 pml4e_addr = (pml5e & PG_ADDRESS_MASK) +
192 (((gphys >> 39) & 0x1ff) << 3);
193 pml4e = x86_ldq_phys(cs, pml4e_addr);
194 if (!(pml4e & PG_PRESENT_MASK)) {
195 goto do_fault;
196 }
197 if (pml4e & (rsvd_mask | PG_PSE_MASK)) {
198 goto do_fault_rsvd;
199 }
200 if (!(pml4e & PG_ACCESSED_MASK)) {
201 pml4e |= PG_ACCESSED_MASK;
202 x86_stl_phys_notdirty(cs, pml4e_addr, pml4e);
203 }
204 ptep &= pml4e ^ PG_NX_MASK;
205 pdpe_addr = (pml4e & PG_ADDRESS_MASK) +
206 (((gphys >> 30) & 0x1ff) << 3);
207 pdpe = x86_ldq_phys(cs, pdpe_addr);
208 if (!(pdpe & PG_PRESENT_MASK)) {
209 goto do_fault;
210 }
211 if (pdpe & rsvd_mask) {
212 goto do_fault_rsvd;
213 }
214 ptep &= pdpe ^ PG_NX_MASK;
215 if (!(pdpe & PG_ACCESSED_MASK)) {
216 pdpe |= PG_ACCESSED_MASK;
217 x86_stl_phys_notdirty(cs, pdpe_addr, pdpe);
218 }
219 if (pdpe & PG_PSE_MASK) {
220 /* 1 GB page */
221 page_size = 1024 * 1024 * 1024;
222 pte_addr = pdpe_addr;
223 pte = pdpe;
224 goto do_check_protect;
225 }
226 } else
227 #endif
228 {
229 pdpe_addr = (env->nested_cr3 & ~0x1f) + ((gphys >> 27) & 0x18);
230 pdpe = x86_ldq_phys(cs, pdpe_addr);
231 if (!(pdpe & PG_PRESENT_MASK)) {
232 goto do_fault;
233 }
234 rsvd_mask |= PG_HI_USER_MASK;
235 if (pdpe & (rsvd_mask | PG_NX_MASK)) {
236 goto do_fault_rsvd;
237 }
238 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
239 }
240
241 pde_addr = (pdpe & PG_ADDRESS_MASK) + (((gphys >> 21) & 0x1ff) << 3);
242 pde = x86_ldq_phys(cs, pde_addr);
243 if (!(pde & PG_PRESENT_MASK)) {
244 goto do_fault;
245 }
246 if (pde & rsvd_mask) {
247 goto do_fault_rsvd;
248 }
249 ptep &= pde ^ PG_NX_MASK;
250 if (pde & PG_PSE_MASK) {
251 /* 2 MB page */
252 page_size = 2048 * 1024;
253 pte_addr = pde_addr;
254 pte = pde;
255 goto do_check_protect;
256 }
257 /* 4 KB page */
258 if (!(pde & PG_ACCESSED_MASK)) {
259 pde |= PG_ACCESSED_MASK;
260 x86_stl_phys_notdirty(cs, pde_addr, pde);
261 }
262 pte_addr = (pde & PG_ADDRESS_MASK) + (((gphys >> 12) & 0x1ff) << 3);
263 pte = x86_ldq_phys(cs, pte_addr);
264 if (!(pte & PG_PRESENT_MASK)) {
265 goto do_fault;
266 }
267 if (pte & rsvd_mask) {
268 goto do_fault_rsvd;
269 }
270 /* combine pde and pte nx, user and rw protections */
271 ptep &= pte ^ PG_NX_MASK;
272 page_size = 4096;
273 } else {
274 uint32_t pde;
275
276 /* page directory entry */
277 pde_addr = (env->nested_cr3 & ~0xfff) + ((gphys >> 20) & 0xffc);
278 pde = x86_ldl_phys(cs, pde_addr);
279 if (!(pde & PG_PRESENT_MASK)) {
280 goto do_fault;
281 }
282 ptep = pde | PG_NX_MASK;
283
284 /* if PSE bit is set, then we use a 4MB page */
285 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
286 page_size = 4096 * 1024;
287 pte_addr = pde_addr;
288
289 /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
290 * Leave bits 20-13 in place for setting accessed/dirty bits below.
291 */
292 pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
293 rsvd_mask = 0x200000;
294 goto do_check_protect_pse36;
295 }
296
297 if (!(pde & PG_ACCESSED_MASK)) {
298 pde |= PG_ACCESSED_MASK;
299 x86_stl_phys_notdirty(cs, pde_addr, pde);
300 }
301
302 /* page directory entry */
303 pte_addr = (pde & ~0xfff) + ((gphys >> 10) & 0xffc);
304 pte = x86_ldl_phys(cs, pte_addr);
305 if (!(pte & PG_PRESENT_MASK)) {
306 goto do_fault;
307 }
308 /* combine pde and pte user and rw protections */
309 ptep &= pte | PG_NX_MASK;
310 page_size = 4096;
311 rsvd_mask = 0;
312 }
313
314 do_check_protect:
315 rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK;
316 do_check_protect_pse36:
317 if (pte & rsvd_mask) {
318 goto do_fault_rsvd;
319 }
320 ptep ^= PG_NX_MASK;
321
322 if (!(ptep & PG_USER_MASK)) {
323 goto do_fault_protect;
324 }
325 if (ptep & PG_NX_MASK) {
326 if (access_type == MMU_INST_FETCH) {
327 goto do_fault_protect;
328 }
329 *prot &= ~PAGE_EXEC;
330 }
331 if (!(ptep & PG_RW_MASK)) {
332 if (access_type == MMU_DATA_STORE) {
333 goto do_fault_protect;
334 }
335 *prot &= ~PAGE_WRITE;
336 }
337
338 pte &= PG_ADDRESS_MASK & ~(page_size - 1);
339 page_offset = gphys & (page_size - 1);
340 return pte + page_offset;
341
342 do_fault_rsvd:
343 exit_info_1 |= SVM_NPTEXIT_RSVD;
344 do_fault_protect:
345 exit_info_1 |= SVM_NPTEXIT_P;
346 do_fault:
347 x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
348 gphys);
349 exit_info_1 |= SVM_NPTEXIT_US;
350 if (access_type == MMU_DATA_STORE) {
351 exit_info_1 |= SVM_NPTEXIT_RW;
352 } else if (access_type == MMU_INST_FETCH) {
353 exit_info_1 |= SVM_NPTEXIT_ID;
354 }
355 if (prot) {
356 exit_info_1 |= SVM_NPTEXIT_GPA;
357 } else { /* page table access */
358 exit_info_1 |= SVM_NPTEXIT_GPT;
359 }
360 cpu_vmexit(env, SVM_EXIT_NPF, exit_info_1, env->retaddr);
361 }
362
363 /* return value:
364 * -1 = cannot handle fault
365 * 0 = nothing more to do
366 * 1 = generate PF fault
367 */
368 int x86_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int size,
369 int is_write1, int mmu_idx)
370 {
371 X86CPU *cpu = X86_CPU(cs);
372 CPUX86State *env = &cpu->env;
373 uint64_t ptep, pte;
374 int32_t a20_mask;
375 target_ulong pde_addr, pte_addr;
376 int error_code = 0;
377 int is_dirty, prot, page_size, is_write, is_user;
378 hwaddr paddr;
379 uint64_t rsvd_mask = PG_HI_RSVD_MASK;
380 uint32_t page_offset;
381 target_ulong vaddr;
382
383 is_user = mmu_idx == MMU_USER_IDX;
384 #if defined(DEBUG_MMU)
385 printf("MMU fault: addr=%" VADDR_PRIx " w=%d u=%d eip=" TARGET_FMT_lx "\n",
386 addr, is_write1, is_user, env->eip);
387 #endif
388 is_write = is_write1 & 1;
389
390 a20_mask = x86_get_a20_mask(env);
391 if (!(env->cr[0] & CR0_PG_MASK)) {
392 pte = addr;
393 #ifdef TARGET_X86_64
394 if (!(env->hflags & HF_LMA_MASK)) {
395 /* Without long mode we can only address 32bits in real mode */
396 pte = (uint32_t)pte;
397 }
398 #endif
399 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
400 page_size = 4096;
401 goto do_mapping;
402 }
403
404 if (!(env->efer & MSR_EFER_NXE)) {
405 rsvd_mask |= PG_NX_MASK;
406 }
407
408 if (env->cr[4] & CR4_PAE_MASK) {
409 uint64_t pde, pdpe;
410 target_ulong pdpe_addr;
411
412 #ifdef TARGET_X86_64
413 if (env->hflags & HF_LMA_MASK) {
414 bool la57 = env->cr[4] & CR4_LA57_MASK;
415 uint64_t pml5e_addr, pml5e;
416 uint64_t pml4e_addr, pml4e;
417 int32_t sext;
418
419 /* test virtual address sign extension */
420 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
421 if (sext != 0 && sext != -1) {
422 env->error_code = 0;
423 cs->exception_index = EXCP0D_GPF;
424 return 1;
425 }
426
427 if (la57) {
428 pml5e_addr = ((env->cr[3] & ~0xfff) +
429 (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
430 pml5e_addr = get_hphys(cs, pml5e_addr, MMU_DATA_STORE, NULL);
431 pml5e = x86_ldq_phys(cs, pml5e_addr);
432 if (!(pml5e & PG_PRESENT_MASK)) {
433 goto do_fault;
434 }
435 if (pml5e & (rsvd_mask | PG_PSE_MASK)) {
436 goto do_fault_rsvd;
437 }
438 if (!(pml5e & PG_ACCESSED_MASK)) {
439 pml5e |= PG_ACCESSED_MASK;
440 x86_stl_phys_notdirty(cs, pml5e_addr, pml5e);
441 }
442 ptep = pml5e ^ PG_NX_MASK;
443 } else {
444 pml5e = env->cr[3];
445 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
446 }
447
448 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
449 (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
450 pml4e_addr = get_hphys(cs, pml4e_addr, MMU_DATA_STORE, false);
451 pml4e = x86_ldq_phys(cs, pml4e_addr);
452 if (!(pml4e & PG_PRESENT_MASK)) {
453 goto do_fault;
454 }
455 if (pml4e & (rsvd_mask | PG_PSE_MASK)) {
456 goto do_fault_rsvd;
457 }
458 if (!(pml4e & PG_ACCESSED_MASK)) {
459 pml4e |= PG_ACCESSED_MASK;
460 x86_stl_phys_notdirty(cs, pml4e_addr, pml4e);
461 }
462 ptep &= pml4e ^ PG_NX_MASK;
463 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3)) &
464 a20_mask;
465 pdpe_addr = get_hphys(cs, pdpe_addr, MMU_DATA_STORE, NULL);
466 pdpe = x86_ldq_phys(cs, pdpe_addr);
467 if (!(pdpe & PG_PRESENT_MASK)) {
468 goto do_fault;
469 }
470 if (pdpe & rsvd_mask) {
471 goto do_fault_rsvd;
472 }
473 ptep &= pdpe ^ PG_NX_MASK;
474 if (!(pdpe & PG_ACCESSED_MASK)) {
475 pdpe |= PG_ACCESSED_MASK;
476 x86_stl_phys_notdirty(cs, pdpe_addr, pdpe);
477 }
478 if (pdpe & PG_PSE_MASK) {
479 /* 1 GB page */
480 page_size = 1024 * 1024 * 1024;
481 pte_addr = pdpe_addr;
482 pte = pdpe;
483 goto do_check_protect;
484 }
485 } else
486 #endif
487 {
488 /* XXX: load them when cr3 is loaded ? */
489 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
490 a20_mask;
491 pdpe_addr = get_hphys(cs, pdpe_addr, MMU_DATA_STORE, false);
492 pdpe = x86_ldq_phys(cs, pdpe_addr);
493 if (!(pdpe & PG_PRESENT_MASK)) {
494 goto do_fault;
495 }
496 rsvd_mask |= PG_HI_USER_MASK;
497 if (pdpe & (rsvd_mask | PG_NX_MASK)) {
498 goto do_fault_rsvd;
499 }
500 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
501 }
502
503 pde_addr = ((pdpe & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3)) &
504 a20_mask;
505 pde_addr = get_hphys(cs, pde_addr, MMU_DATA_STORE, NULL);
506 pde = x86_ldq_phys(cs, pde_addr);
507 if (!(pde & PG_PRESENT_MASK)) {
508 goto do_fault;
509 }
510 if (pde & rsvd_mask) {
511 goto do_fault_rsvd;
512 }
513 ptep &= pde ^ PG_NX_MASK;
514 if (pde & PG_PSE_MASK) {
515 /* 2 MB page */
516 page_size = 2048 * 1024;
517 pte_addr = pde_addr;
518 pte = pde;
519 goto do_check_protect;
520 }
521 /* 4 KB page */
522 if (!(pde & PG_ACCESSED_MASK)) {
523 pde |= PG_ACCESSED_MASK;
524 x86_stl_phys_notdirty(cs, pde_addr, pde);
525 }
526 pte_addr = ((pde & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3)) &
527 a20_mask;
528 pte_addr = get_hphys(cs, pte_addr, MMU_DATA_STORE, NULL);
529 pte = x86_ldq_phys(cs, pte_addr);
530 if (!(pte & PG_PRESENT_MASK)) {
531 goto do_fault;
532 }
533 if (pte & rsvd_mask) {
534 goto do_fault_rsvd;
535 }
536 /* combine pde and pte nx, user and rw protections */
537 ptep &= pte ^ PG_NX_MASK;
538 page_size = 4096;
539 } else {
540 uint32_t pde;
541
542 /* page directory entry */
543 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) &
544 a20_mask;
545 pde_addr = get_hphys(cs, pde_addr, MMU_DATA_STORE, NULL);
546 pde = x86_ldl_phys(cs, pde_addr);
547 if (!(pde & PG_PRESENT_MASK)) {
548 goto do_fault;
549 }
550 ptep = pde | PG_NX_MASK;
551
552 /* if PSE bit is set, then we use a 4MB page */
553 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
554 page_size = 4096 * 1024;
555 pte_addr = pde_addr;
556
557 /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
558 * Leave bits 20-13 in place for setting accessed/dirty bits below.
559 */
560 pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
561 rsvd_mask = 0x200000;
562 goto do_check_protect_pse36;
563 }
564
565 if (!(pde & PG_ACCESSED_MASK)) {
566 pde |= PG_ACCESSED_MASK;
567 x86_stl_phys_notdirty(cs, pde_addr, pde);
568 }
569
570 /* page directory entry */
571 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) &
572 a20_mask;
573 pte_addr = get_hphys(cs, pte_addr, MMU_DATA_STORE, NULL);
574 pte = x86_ldl_phys(cs, pte_addr);
575 if (!(pte & PG_PRESENT_MASK)) {
576 goto do_fault;
577 }
578 /* combine pde and pte user and rw protections */
579 ptep &= pte | PG_NX_MASK;
580 page_size = 4096;
581 rsvd_mask = 0;
582 }
583
584 do_check_protect:
585 rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK;
586 do_check_protect_pse36:
587 if (pte & rsvd_mask) {
588 goto do_fault_rsvd;
589 }
590 ptep ^= PG_NX_MASK;
591
592 /* can the page can be put in the TLB? prot will tell us */
593 if (is_user && !(ptep & PG_USER_MASK)) {
594 goto do_fault_protect;
595 }
596
597 prot = 0;
598 if (mmu_idx != MMU_KSMAP_IDX || !(ptep & PG_USER_MASK)) {
599 prot |= PAGE_READ;
600 if ((ptep & PG_RW_MASK) || (!is_user && !(env->cr[0] & CR0_WP_MASK))) {
601 prot |= PAGE_WRITE;
602 }
603 }
604 if (!(ptep & PG_NX_MASK) &&
605 (mmu_idx == MMU_USER_IDX ||
606 !((env->cr[4] & CR4_SMEP_MASK) && (ptep & PG_USER_MASK)))) {
607 prot |= PAGE_EXEC;
608 }
609 if ((env->cr[4] & CR4_PKE_MASK) && (env->hflags & HF_LMA_MASK) &&
610 (ptep & PG_USER_MASK) && env->pkru) {
611 uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT;
612 uint32_t pkru_ad = (env->pkru >> pk * 2) & 1;
613 uint32_t pkru_wd = (env->pkru >> pk * 2) & 2;
614 uint32_t pkru_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
615
616 if (pkru_ad) {
617 pkru_prot &= ~(PAGE_READ | PAGE_WRITE);
618 } else if (pkru_wd && (is_user || env->cr[0] & CR0_WP_MASK)) {
619 pkru_prot &= ~PAGE_WRITE;
620 }
621
622 prot &= pkru_prot;
623 if ((pkru_prot & (1 << is_write1)) == 0) {
624 assert(is_write1 != 2);
625 error_code |= PG_ERROR_PK_MASK;
626 goto do_fault_protect;
627 }
628 }
629
630 if ((prot & (1 << is_write1)) == 0) {
631 goto do_fault_protect;
632 }
633
634 /* yes, it can! */
635 is_dirty = is_write && !(pte & PG_DIRTY_MASK);
636 if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
637 pte |= PG_ACCESSED_MASK;
638 if (is_dirty) {
639 pte |= PG_DIRTY_MASK;
640 }
641 x86_stl_phys_notdirty(cs, pte_addr, pte);
642 }
643
644 if (!(pte & PG_DIRTY_MASK)) {
645 /* only set write access if already dirty... otherwise wait
646 for dirty access */
647 assert(!is_write);
648 prot &= ~PAGE_WRITE;
649 }
650
651 do_mapping:
652 pte = pte & a20_mask;
653
654 /* align to page_size */
655 pte &= PG_ADDRESS_MASK & ~(page_size - 1);
656 page_offset = addr & (page_size - 1);
657 paddr = get_hphys(cs, pte + page_offset, is_write1, &prot);
658
659 /* Even if 4MB pages, we map only one 4KB page in the cache to
660 avoid filling it too fast */
661 vaddr = addr & TARGET_PAGE_MASK;
662 paddr &= TARGET_PAGE_MASK;
663
664 assert(prot & (1 << is_write1));
665 tlb_set_page_with_attrs(cs, vaddr, paddr, cpu_get_mem_attrs(env),
666 prot, mmu_idx, page_size);
667 return 0;
668 do_fault_rsvd:
669 error_code |= PG_ERROR_RSVD_MASK;
670 do_fault_protect:
671 error_code |= PG_ERROR_P_MASK;
672 do_fault:
673 error_code |= (is_write << PG_ERROR_W_BIT);
674 if (is_user)
675 error_code |= PG_ERROR_U_MASK;
676 if (is_write1 == 2 &&
677 (((env->efer & MSR_EFER_NXE) &&
678 (env->cr[4] & CR4_PAE_MASK)) ||
679 (env->cr[4] & CR4_SMEP_MASK)))
680 error_code |= PG_ERROR_I_D_MASK;
681 if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) {
682 /* cr2 is not modified in case of exceptions */
683 x86_stq_phys(cs,
684 env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
685 addr);
686 } else {
687 env->cr[2] = addr;
688 }
689 env->error_code = error_code;
690 cs->exception_index = EXCP0E_PAGE;
691 return 1;
692 }
693 #endif