]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/hvf/hvf.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20190205' into...
[mirror_qemu.git] / target / i386 / hvf / hvf.c
1 /* Copyright 2008 IBM Corporation
2 * 2008 Red Hat, Inc.
3 * Copyright 2011 Intel Corporation
4 * Copyright 2016 Veertu, Inc.
5 * Copyright 2017 The Android Open Source Project
6 *
7 * QEMU Hypervisor.framework support
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of version 2 of the GNU General Public
11 * License as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 *
21 * This file contain code under public domain from the hvdos project:
22 * https://github.com/mist64/hvdos
23 *
24 * Parts Copyright (c) 2011 NetApp, Inc.
25 * All rights reserved.
26 *
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
35 *
36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
47 */
48 #include "qemu/osdep.h"
49 #include "qemu-common.h"
50 #include "qemu/error-report.h"
51
52 #include "sysemu/hvf.h"
53 #include "hvf-i386.h"
54 #include "vmcs.h"
55 #include "vmx.h"
56 #include "x86.h"
57 #include "x86_descr.h"
58 #include "x86_mmu.h"
59 #include "x86_decode.h"
60 #include "x86_emu.h"
61 #include "x86_task.h"
62 #include "x86hvf.h"
63
64 #include <Hypervisor/hv.h>
65 #include <Hypervisor/hv_vmx.h>
66
67 #include "exec/address-spaces.h"
68 #include "hw/i386/apic_internal.h"
69 #include "hw/boards.h"
70 #include "qemu/main-loop.h"
71 #include "sysemu/accel.h"
72 #include "sysemu/sysemu.h"
73 #include "target/i386/cpu.h"
74
75 HVFState *hvf_state;
76
77 static void assert_hvf_ok(hv_return_t ret)
78 {
79 if (ret == HV_SUCCESS) {
80 return;
81 }
82
83 switch (ret) {
84 case HV_ERROR:
85 error_report("Error: HV_ERROR");
86 break;
87 case HV_BUSY:
88 error_report("Error: HV_BUSY");
89 break;
90 case HV_BAD_ARGUMENT:
91 error_report("Error: HV_BAD_ARGUMENT");
92 break;
93 case HV_NO_RESOURCES:
94 error_report("Error: HV_NO_RESOURCES");
95 break;
96 case HV_NO_DEVICE:
97 error_report("Error: HV_NO_DEVICE");
98 break;
99 case HV_UNSUPPORTED:
100 error_report("Error: HV_UNSUPPORTED");
101 break;
102 default:
103 error_report("Unknown Error");
104 }
105
106 abort();
107 }
108
109 /* Memory slots */
110 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t end)
111 {
112 hvf_slot *slot;
113 int x;
114 for (x = 0; x < hvf_state->num_slots; ++x) {
115 slot = &hvf_state->slots[x];
116 if (slot->size && start < (slot->start + slot->size) &&
117 end > slot->start) {
118 return slot;
119 }
120 }
121 return NULL;
122 }
123
124 struct mac_slot {
125 int present;
126 uint64_t size;
127 uint64_t gpa_start;
128 uint64_t gva;
129 };
130
131 struct mac_slot mac_slots[32];
132 #define ALIGN(x, y) (((x) + (y) - 1) & ~((y) - 1))
133
134 static int do_hvf_set_memory(hvf_slot *slot)
135 {
136 struct mac_slot *macslot;
137 hv_memory_flags_t flags;
138 hv_return_t ret;
139
140 macslot = &mac_slots[slot->slot_id];
141
142 if (macslot->present) {
143 if (macslot->size != slot->size) {
144 macslot->present = 0;
145 ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
146 assert_hvf_ok(ret);
147 }
148 }
149
150 if (!slot->size) {
151 return 0;
152 }
153
154 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
155
156 macslot->present = 1;
157 macslot->gpa_start = slot->start;
158 macslot->size = slot->size;
159 ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
160 assert_hvf_ok(ret);
161 return 0;
162 }
163
164 void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
165 {
166 hvf_slot *mem;
167 MemoryRegion *area = section->mr;
168
169 if (!memory_region_is_ram(area)) {
170 return;
171 }
172
173 mem = hvf_find_overlap_slot(
174 section->offset_within_address_space,
175 section->offset_within_address_space + int128_get64(section->size));
176
177 if (mem && add) {
178 if (mem->size == int128_get64(section->size) &&
179 mem->start == section->offset_within_address_space &&
180 mem->mem == (memory_region_get_ram_ptr(area) +
181 section->offset_within_region)) {
182 return; /* Same region was attempted to register, go away. */
183 }
184 }
185
186 /* Region needs to be reset. set the size to 0 and remap it. */
187 if (mem) {
188 mem->size = 0;
189 if (do_hvf_set_memory(mem)) {
190 error_report("Failed to reset overlapping slot");
191 abort();
192 }
193 }
194
195 if (!add) {
196 return;
197 }
198
199 /* Now make a new slot. */
200 int x;
201
202 for (x = 0; x < hvf_state->num_slots; ++x) {
203 mem = &hvf_state->slots[x];
204 if (!mem->size) {
205 break;
206 }
207 }
208
209 if (x == hvf_state->num_slots) {
210 error_report("No free slots");
211 abort();
212 }
213
214 mem->size = int128_get64(section->size);
215 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
216 mem->start = section->offset_within_address_space;
217 mem->region = area;
218
219 if (do_hvf_set_memory(mem)) {
220 error_report("Error registering new memory slot");
221 abort();
222 }
223 }
224
225 void vmx_update_tpr(CPUState *cpu)
226 {
227 /* TODO: need integrate APIC handling */
228 X86CPU *x86_cpu = X86_CPU(cpu);
229 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
230 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
231
232 wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
233 if (irr == -1) {
234 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
235 } else {
236 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
237 irr >> 4);
238 }
239 }
240
241 void update_apic_tpr(CPUState *cpu)
242 {
243 X86CPU *x86_cpu = X86_CPU(cpu);
244 int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
245 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
246 }
247
248 #define VECTORING_INFO_VECTOR_MASK 0xff
249
250 static void hvf_handle_interrupt(CPUState * cpu, int mask)
251 {
252 cpu->interrupt_request |= mask;
253 if (!qemu_cpu_is_self(cpu)) {
254 qemu_cpu_kick(cpu);
255 }
256 }
257
258 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
259 int direction, int size, int count)
260 {
261 int i;
262 uint8_t *ptr = buffer;
263
264 for (i = 0; i < count; i++) {
265 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
266 ptr, size,
267 direction);
268 ptr += size;
269 }
270 }
271
272 /* TODO: synchronize vcpu state */
273 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
274 {
275 CPUState *cpu_state = cpu;
276 if (cpu_state->vcpu_dirty == 0) {
277 hvf_get_registers(cpu_state);
278 }
279
280 cpu_state->vcpu_dirty = 1;
281 }
282
283 void hvf_cpu_synchronize_state(CPUState *cpu_state)
284 {
285 if (cpu_state->vcpu_dirty == 0) {
286 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
287 }
288 }
289
290 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
291 {
292 CPUState *cpu_state = cpu;
293 hvf_put_registers(cpu_state);
294 cpu_state->vcpu_dirty = false;
295 }
296
297 void hvf_cpu_synchronize_post_reset(CPUState *cpu_state)
298 {
299 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
300 }
301
302 void _hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
303 {
304 CPUState *cpu_state = cpu;
305 hvf_put_registers(cpu_state);
306 cpu_state->vcpu_dirty = false;
307 }
308
309 void hvf_cpu_synchronize_post_init(CPUState *cpu_state)
310 {
311 run_on_cpu(cpu_state, _hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
312 }
313
314 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
315 {
316 int read, write;
317
318 /* EPT fault on an instruction fetch doesn't make sense here */
319 if (ept_qual & EPT_VIOLATION_INST_FETCH) {
320 return false;
321 }
322
323 /* EPT fault must be a read fault or a write fault */
324 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
325 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
326 if ((read | write) == 0) {
327 return false;
328 }
329
330 if (write && slot) {
331 if (slot->flags & HVF_SLOT_LOG) {
332 memory_region_set_dirty(slot->region, gpa - slot->start, 1);
333 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
334 HV_MEMORY_READ | HV_MEMORY_WRITE);
335 }
336 }
337
338 /*
339 * The EPT violation must have been caused by accessing a
340 * guest-physical address that is a translation of a guest-linear
341 * address.
342 */
343 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
344 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
345 return false;
346 }
347
348 return !slot;
349 }
350
351 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
352 {
353 hvf_slot *slot;
354
355 slot = hvf_find_overlap_slot(
356 section->offset_within_address_space,
357 section->offset_within_address_space + int128_get64(section->size));
358
359 /* protect region against writes; begin tracking it */
360 if (on) {
361 slot->flags |= HVF_SLOT_LOG;
362 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
363 HV_MEMORY_READ);
364 /* stop tracking region*/
365 } else {
366 slot->flags &= ~HVF_SLOT_LOG;
367 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
368 HV_MEMORY_READ | HV_MEMORY_WRITE);
369 }
370 }
371
372 static void hvf_log_start(MemoryListener *listener,
373 MemoryRegionSection *section, int old, int new)
374 {
375 if (old != 0) {
376 return;
377 }
378
379 hvf_set_dirty_tracking(section, 1);
380 }
381
382 static void hvf_log_stop(MemoryListener *listener,
383 MemoryRegionSection *section, int old, int new)
384 {
385 if (new != 0) {
386 return;
387 }
388
389 hvf_set_dirty_tracking(section, 0);
390 }
391
392 static void hvf_log_sync(MemoryListener *listener,
393 MemoryRegionSection *section)
394 {
395 /*
396 * sync of dirty pages is handled elsewhere; just make sure we keep
397 * tracking the region.
398 */
399 hvf_set_dirty_tracking(section, 1);
400 }
401
402 static void hvf_region_add(MemoryListener *listener,
403 MemoryRegionSection *section)
404 {
405 hvf_set_phys_mem(section, true);
406 }
407
408 static void hvf_region_del(MemoryListener *listener,
409 MemoryRegionSection *section)
410 {
411 hvf_set_phys_mem(section, false);
412 }
413
414 static MemoryListener hvf_memory_listener = {
415 .priority = 10,
416 .region_add = hvf_region_add,
417 .region_del = hvf_region_del,
418 .log_start = hvf_log_start,
419 .log_stop = hvf_log_stop,
420 .log_sync = hvf_log_sync,
421 };
422
423 void hvf_reset_vcpu(CPUState *cpu) {
424
425 /* TODO: this shouldn't be needed; there is already a call to
426 * cpu_synchronize_all_post_reset in vl.c
427 */
428 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0);
429 wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0);
430 macvm_set_cr0(cpu->hvf_fd, 0x60000010);
431
432 wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK);
433 wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0);
434 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK);
435
436 /* set VMCS guest state fields */
437 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000);
438 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff);
439 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b);
440 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000);
441
442 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0);
443 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff);
444 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93);
445 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0);
446
447 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0);
448 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff);
449 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93);
450 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0);
451
452 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0);
453 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff);
454 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93);
455 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0);
456
457 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0);
458 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff);
459 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93);
460 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0);
461
462 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0);
463 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff);
464 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93);
465 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0);
466
467 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0);
468 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0);
469 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000);
470 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0);
471
472 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0);
473 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0);
474 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83);
475 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0);
476
477 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0);
478 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0);
479
480 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0);
481 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0);
482
483 /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/
484 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0);
485
486 wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0);
487 wreg(cpu->hvf_fd, HV_X86_RDX, 0x623);
488 wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2);
489 wreg(cpu->hvf_fd, HV_X86_RSP, 0x0);
490 wreg(cpu->hvf_fd, HV_X86_RAX, 0x0);
491 wreg(cpu->hvf_fd, HV_X86_RBX, 0x0);
492 wreg(cpu->hvf_fd, HV_X86_RCX, 0x0);
493 wreg(cpu->hvf_fd, HV_X86_RSI, 0x0);
494 wreg(cpu->hvf_fd, HV_X86_RDI, 0x0);
495 wreg(cpu->hvf_fd, HV_X86_RBP, 0x0);
496
497 for (int i = 0; i < 8; i++) {
498 wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0);
499 }
500
501 hv_vm_sync_tsc(0);
502 cpu->halted = 0;
503 hv_vcpu_invalidate_tlb(cpu->hvf_fd);
504 hv_vcpu_flush(cpu->hvf_fd);
505 }
506
507 void hvf_vcpu_destroy(CPUState *cpu)
508 {
509 hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
510 assert_hvf_ok(ret);
511 }
512
513 static void dummy_signal(int sig)
514 {
515 }
516
517 int hvf_init_vcpu(CPUState *cpu)
518 {
519
520 X86CPU *x86cpu = X86_CPU(cpu);
521 CPUX86State *env = &x86cpu->env;
522 int r;
523
524 /* init cpu signals */
525 sigset_t set;
526 struct sigaction sigact;
527
528 memset(&sigact, 0, sizeof(sigact));
529 sigact.sa_handler = dummy_signal;
530 sigaction(SIG_IPI, &sigact, NULL);
531
532 pthread_sigmask(SIG_BLOCK, NULL, &set);
533 sigdelset(&set, SIG_IPI);
534
535 init_emu();
536 init_decoder();
537
538 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
539 env->hvf_emul = g_new0(HVFX86EmulatorState, 1);
540
541 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
542 cpu->vcpu_dirty = 1;
543 assert_hvf_ok(r);
544
545 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
546 &hvf_state->hvf_caps->vmx_cap_pinbased)) {
547 abort();
548 }
549 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
550 &hvf_state->hvf_caps->vmx_cap_procbased)) {
551 abort();
552 }
553 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
554 &hvf_state->hvf_caps->vmx_cap_procbased2)) {
555 abort();
556 }
557 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
558 &hvf_state->hvf_caps->vmx_cap_entry)) {
559 abort();
560 }
561
562 /* set VMCS control fields */
563 wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
564 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
565 VMCS_PIN_BASED_CTLS_EXTINT |
566 VMCS_PIN_BASED_CTLS_NMI |
567 VMCS_PIN_BASED_CTLS_VNMI));
568 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
569 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
570 VMCS_PRI_PROC_BASED_CTLS_HLT |
571 VMCS_PRI_PROC_BASED_CTLS_MWAIT |
572 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
573 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
574 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
575 wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
576 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
577 VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
578
579 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
580 0));
581 wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
582
583 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
584
585 hvf_reset_vcpu(cpu);
586
587 x86cpu = X86_CPU(cpu);
588 x86cpu->env.xsave_buf = qemu_memalign(4096, 4096);
589
590 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
591 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
592 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
593 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
594 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
595 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
596 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
597 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
598 /*hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);*/
599 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
600 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
601 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
602
603 return 0;
604 }
605
606 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
607 {
608 X86CPU *x86_cpu = X86_CPU(cpu);
609 CPUX86State *env = &x86_cpu->env;
610
611 env->exception_injected = -1;
612 env->interrupt_injected = -1;
613 env->nmi_injected = false;
614 if (idtvec_info & VMCS_IDT_VEC_VALID) {
615 switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
616 case VMCS_IDT_VEC_HWINTR:
617 case VMCS_IDT_VEC_SWINTR:
618 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
619 break;
620 case VMCS_IDT_VEC_NMI:
621 env->nmi_injected = true;
622 break;
623 case VMCS_IDT_VEC_HWEXCEPTION:
624 case VMCS_IDT_VEC_SWEXCEPTION:
625 env->exception_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
626 break;
627 case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
628 default:
629 abort();
630 }
631 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
632 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
633 env->ins_len = ins_len;
634 }
635 if (idtvec_info & VMCS_INTR_DEL_ERRCODE) {
636 env->has_error_code = true;
637 env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
638 }
639 }
640 if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
641 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
642 env->hflags2 |= HF2_NMI_MASK;
643 } else {
644 env->hflags2 &= ~HF2_NMI_MASK;
645 }
646 if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
647 (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
648 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
649 env->hflags |= HF_INHIBIT_IRQ_MASK;
650 } else {
651 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
652 }
653 }
654
655 int hvf_vcpu_exec(CPUState *cpu)
656 {
657 X86CPU *x86_cpu = X86_CPU(cpu);
658 CPUX86State *env = &x86_cpu->env;
659 int ret = 0;
660 uint64_t rip = 0;
661
662 cpu->halted = 0;
663
664 if (hvf_process_events(cpu)) {
665 return EXCP_HLT;
666 }
667
668 do {
669 if (cpu->vcpu_dirty) {
670 hvf_put_registers(cpu);
671 cpu->vcpu_dirty = false;
672 }
673
674 if (hvf_inject_interrupts(cpu)) {
675 return EXCP_INTERRUPT;
676 }
677 vmx_update_tpr(cpu);
678
679 qemu_mutex_unlock_iothread();
680 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
681 qemu_mutex_lock_iothread();
682 return EXCP_HLT;
683 }
684
685 hv_return_t r = hv_vcpu_run(cpu->hvf_fd);
686 assert_hvf_ok(r);
687
688 /* handle VMEXIT */
689 uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
690 uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
691 uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
692 VMCS_EXIT_INSTRUCTION_LENGTH);
693
694 uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
695
696 hvf_store_events(cpu, ins_len, idtvec_info);
697 rip = rreg(cpu->hvf_fd, HV_X86_RIP);
698 RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
699 env->eflags = RFLAGS(env);
700
701 qemu_mutex_lock_iothread();
702
703 update_apic_tpr(cpu);
704 current_cpu = cpu;
705
706 ret = 0;
707 switch (exit_reason) {
708 case EXIT_REASON_HLT: {
709 macvm_set_rip(cpu, rip + ins_len);
710 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
711 (EFLAGS(env) & IF_MASK))
712 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
713 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
714 cpu->halted = 1;
715 ret = EXCP_HLT;
716 }
717 ret = EXCP_INTERRUPT;
718 break;
719 }
720 case EXIT_REASON_MWAIT: {
721 ret = EXCP_INTERRUPT;
722 break;
723 }
724 /* Need to check if MMIO or unmmaped fault */
725 case EXIT_REASON_EPT_FAULT:
726 {
727 hvf_slot *slot;
728 uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
729
730 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
731 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
732 vmx_set_nmi_blocking(cpu);
733 }
734
735 slot = hvf_find_overlap_slot(gpa, gpa);
736 /* mmio */
737 if (ept_emulation_fault(slot, gpa, exit_qual)) {
738 struct x86_decode decode;
739
740 load_regs(cpu);
741 env->hvf_emul->fetch_rip = rip;
742
743 decode_instruction(env, &decode);
744 exec_instruction(env, &decode);
745 store_regs(cpu);
746 break;
747 }
748 break;
749 }
750 case EXIT_REASON_INOUT:
751 {
752 uint32_t in = (exit_qual & 8) != 0;
753 uint32_t size = (exit_qual & 7) + 1;
754 uint32_t string = (exit_qual & 16) != 0;
755 uint32_t port = exit_qual >> 16;
756 /*uint32_t rep = (exit_qual & 0x20) != 0;*/
757
758 if (!string && in) {
759 uint64_t val = 0;
760 load_regs(cpu);
761 hvf_handle_io(env, port, &val, 0, size, 1);
762 if (size == 1) {
763 AL(env) = val;
764 } else if (size == 2) {
765 AX(env) = val;
766 } else if (size == 4) {
767 RAX(env) = (uint32_t)val;
768 } else {
769 RAX(env) = (uint64_t)val;
770 }
771 RIP(env) += ins_len;
772 store_regs(cpu);
773 break;
774 } else if (!string && !in) {
775 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
776 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
777 macvm_set_rip(cpu, rip + ins_len);
778 break;
779 }
780 struct x86_decode decode;
781
782 load_regs(cpu);
783 env->hvf_emul->fetch_rip = rip;
784
785 decode_instruction(env, &decode);
786 assert(ins_len == decode.len);
787 exec_instruction(env, &decode);
788 store_regs(cpu);
789
790 break;
791 }
792 case EXIT_REASON_CPUID: {
793 uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
794 uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
795 uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
796 uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
797
798 cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
799
800 wreg(cpu->hvf_fd, HV_X86_RAX, rax);
801 wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
802 wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
803 wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
804
805 macvm_set_rip(cpu, rip + ins_len);
806 break;
807 }
808 case EXIT_REASON_XSETBV: {
809 X86CPU *x86_cpu = X86_CPU(cpu);
810 CPUX86State *env = &x86_cpu->env;
811 uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
812 uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
813 uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
814
815 if (ecx) {
816 macvm_set_rip(cpu, rip + ins_len);
817 break;
818 }
819 env->xcr0 = ((uint64_t)edx << 32) | eax;
820 wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
821 macvm_set_rip(cpu, rip + ins_len);
822 break;
823 }
824 case EXIT_REASON_INTR_WINDOW:
825 vmx_clear_int_window_exiting(cpu);
826 ret = EXCP_INTERRUPT;
827 break;
828 case EXIT_REASON_NMI_WINDOW:
829 vmx_clear_nmi_window_exiting(cpu);
830 ret = EXCP_INTERRUPT;
831 break;
832 case EXIT_REASON_EXT_INTR:
833 /* force exit and allow io handling */
834 ret = EXCP_INTERRUPT;
835 break;
836 case EXIT_REASON_RDMSR:
837 case EXIT_REASON_WRMSR:
838 {
839 load_regs(cpu);
840 if (exit_reason == EXIT_REASON_RDMSR) {
841 simulate_rdmsr(cpu);
842 } else {
843 simulate_wrmsr(cpu);
844 }
845 RIP(env) += rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH);
846 store_regs(cpu);
847 break;
848 }
849 case EXIT_REASON_CR_ACCESS: {
850 int cr;
851 int reg;
852
853 load_regs(cpu);
854 cr = exit_qual & 15;
855 reg = (exit_qual >> 8) & 15;
856
857 switch (cr) {
858 case 0x0: {
859 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
860 break;
861 }
862 case 4: {
863 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
864 break;
865 }
866 case 8: {
867 X86CPU *x86_cpu = X86_CPU(cpu);
868 if (exit_qual & 0x10) {
869 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
870 } else {
871 int tpr = RRX(env, reg);
872 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
873 ret = EXCP_INTERRUPT;
874 }
875 break;
876 }
877 default:
878 error_report("Unrecognized CR %d", cr);
879 abort();
880 }
881 RIP(env) += ins_len;
882 store_regs(cpu);
883 break;
884 }
885 case EXIT_REASON_APIC_ACCESS: { /* TODO */
886 struct x86_decode decode;
887
888 load_regs(cpu);
889 env->hvf_emul->fetch_rip = rip;
890
891 decode_instruction(env, &decode);
892 exec_instruction(env, &decode);
893 store_regs(cpu);
894 break;
895 }
896 case EXIT_REASON_TPR: {
897 ret = 1;
898 break;
899 }
900 case EXIT_REASON_TASK_SWITCH: {
901 uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
902 x68_segment_selector sel = {.sel = exit_qual & 0xffff};
903 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
904 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
905 & VMCS_INTR_T_MASK);
906 break;
907 }
908 case EXIT_REASON_TRIPLE_FAULT: {
909 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
910 ret = EXCP_INTERRUPT;
911 break;
912 }
913 case EXIT_REASON_RDPMC:
914 wreg(cpu->hvf_fd, HV_X86_RAX, 0);
915 wreg(cpu->hvf_fd, HV_X86_RDX, 0);
916 macvm_set_rip(cpu, rip + ins_len);
917 break;
918 case VMX_REASON_VMCALL:
919 env->exception_injected = EXCP0D_GPF;
920 env->has_error_code = true;
921 env->error_code = 0;
922 break;
923 default:
924 error_report("%llx: unhandled exit %llx", rip, exit_reason);
925 }
926 } while (ret == 0);
927
928 return ret;
929 }
930
931 bool hvf_allowed;
932
933 static int hvf_accel_init(MachineState *ms)
934 {
935 int x;
936 hv_return_t ret;
937 HVFState *s;
938
939 ret = hv_vm_create(HV_VM_DEFAULT);
940 assert_hvf_ok(ret);
941
942 s = g_new0(HVFState, 1);
943
944 s->num_slots = 32;
945 for (x = 0; x < s->num_slots; ++x) {
946 s->slots[x].size = 0;
947 s->slots[x].slot_id = x;
948 }
949
950 hvf_state = s;
951 cpu_interrupt_handler = hvf_handle_interrupt;
952 memory_listener_register(&hvf_memory_listener, &address_space_memory);
953 return 0;
954 }
955
956 static void hvf_accel_class_init(ObjectClass *oc, void *data)
957 {
958 AccelClass *ac = ACCEL_CLASS(oc);
959 ac->name = "HVF";
960 ac->init_machine = hvf_accel_init;
961 ac->allowed = &hvf_allowed;
962 }
963
964 static const TypeInfo hvf_accel_type = {
965 .name = TYPE_HVF_ACCEL,
966 .parent = TYPE_ACCEL,
967 .class_init = hvf_accel_class_init,
968 };
969
970 static void hvf_type_init(void)
971 {
972 type_register_static(&hvf_accel_type);
973 }
974
975 type_init(hvf_type_init);