]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/hvf/hvf.c
pc-bios/s390-ccw: add -Wno-array-bounds
[mirror_qemu.git] / target / i386 / hvf / hvf.c
1 /* Copyright 2008 IBM Corporation
2 * 2008 Red Hat, Inc.
3 * Copyright 2011 Intel Corporation
4 * Copyright 2016 Veertu, Inc.
5 * Copyright 2017 The Android Open Source Project
6 *
7 * QEMU Hypervisor.framework support
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of version 2 of the GNU General Public
11 * License as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 *
21 * This file contain code under public domain from the hvdos project:
22 * https://github.com/mist64/hvdos
23 *
24 * Parts Copyright (c) 2011 NetApp, Inc.
25 * All rights reserved.
26 *
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
35 *
36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
47 */
48
49 #include "qemu/osdep.h"
50 #include "qemu/error-report.h"
51 #include "qemu/memalign.h"
52
53 #include "sysemu/hvf.h"
54 #include "sysemu/hvf_int.h"
55 #include "sysemu/runstate.h"
56 #include "sysemu/cpus.h"
57 #include "hvf-i386.h"
58 #include "vmcs.h"
59 #include "vmx.h"
60 #include "x86.h"
61 #include "x86_descr.h"
62 #include "x86_mmu.h"
63 #include "x86_decode.h"
64 #include "x86_emu.h"
65 #include "x86_task.h"
66 #include "x86hvf.h"
67
68 #include <Hypervisor/hv.h>
69 #include <Hypervisor/hv_vmx.h>
70 #include <sys/sysctl.h>
71
72 #include "hw/i386/apic_internal.h"
73 #include "qemu/main-loop.h"
74 #include "qemu/accel.h"
75 #include "target/i386/cpu.h"
76
77 void vmx_update_tpr(CPUState *cpu)
78 {
79 /* TODO: need integrate APIC handling */
80 X86CPU *x86_cpu = X86_CPU(cpu);
81 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
82 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
83
84 wreg(cpu->hvf->fd, HV_X86_TPR, tpr);
85 if (irr == -1) {
86 wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0);
87 } else {
88 wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
89 irr >> 4);
90 }
91 }
92
93 static void update_apic_tpr(CPUState *cpu)
94 {
95 X86CPU *x86_cpu = X86_CPU(cpu);
96 int tpr = rreg(cpu->hvf->fd, HV_X86_TPR) >> 4;
97 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
98 }
99
100 #define VECTORING_INFO_VECTOR_MASK 0xff
101
102 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
103 int direction, int size, int count)
104 {
105 int i;
106 uint8_t *ptr = buffer;
107
108 for (i = 0; i < count; i++) {
109 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
110 ptr, size,
111 direction);
112 ptr += size;
113 }
114 }
115
116 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
117 {
118 int read, write;
119
120 /* EPT fault on an instruction fetch doesn't make sense here */
121 if (ept_qual & EPT_VIOLATION_INST_FETCH) {
122 return false;
123 }
124
125 /* EPT fault must be a read fault or a write fault */
126 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
127 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
128 if ((read | write) == 0) {
129 return false;
130 }
131
132 if (write && slot) {
133 if (slot->flags & HVF_SLOT_LOG) {
134 memory_region_set_dirty(slot->region, gpa - slot->start, 1);
135 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
136 HV_MEMORY_READ | HV_MEMORY_WRITE);
137 }
138 }
139
140 /*
141 * The EPT violation must have been caused by accessing a
142 * guest-physical address that is a translation of a guest-linear
143 * address.
144 */
145 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
146 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
147 return false;
148 }
149
150 if (!slot) {
151 return true;
152 }
153 if (!memory_region_is_ram(slot->region) &&
154 !(read && memory_region_is_romd(slot->region))) {
155 return true;
156 }
157 return false;
158 }
159
160 void hvf_arch_vcpu_destroy(CPUState *cpu)
161 {
162 X86CPU *x86_cpu = X86_CPU(cpu);
163 CPUX86State *env = &x86_cpu->env;
164
165 g_free(env->hvf_mmio_buf);
166 }
167
168 static void init_tsc_freq(CPUX86State *env)
169 {
170 size_t length;
171 uint64_t tsc_freq;
172
173 if (env->tsc_khz != 0) {
174 return;
175 }
176
177 length = sizeof(uint64_t);
178 if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
179 return;
180 }
181 env->tsc_khz = tsc_freq / 1000; /* Hz to KHz */
182 }
183
184 static void init_apic_bus_freq(CPUX86State *env)
185 {
186 size_t length;
187 uint64_t bus_freq;
188
189 if (env->apic_bus_freq != 0) {
190 return;
191 }
192
193 length = sizeof(uint64_t);
194 if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
195 return;
196 }
197 env->apic_bus_freq = bus_freq;
198 }
199
200 static inline bool tsc_is_known(CPUX86State *env)
201 {
202 return env->tsc_khz != 0;
203 }
204
205 static inline bool apic_bus_freq_is_known(CPUX86State *env)
206 {
207 return env->apic_bus_freq != 0;
208 }
209
210 void hvf_kick_vcpu_thread(CPUState *cpu)
211 {
212 cpus_kick_thread(cpu);
213 }
214
215 int hvf_arch_init(void)
216 {
217 return 0;
218 }
219
220 int hvf_arch_init_vcpu(CPUState *cpu)
221 {
222 X86CPU *x86cpu = X86_CPU(cpu);
223 CPUX86State *env = &x86cpu->env;
224
225 init_emu();
226 init_decoder();
227
228 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
229 env->hvf_mmio_buf = g_new(char, 4096);
230
231 if (x86cpu->vmware_cpuid_freq) {
232 init_tsc_freq(env);
233 init_apic_bus_freq(env);
234
235 if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
236 error_report("vmware-cpuid-freq: feature couldn't be enabled");
237 }
238 }
239
240 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
241 &hvf_state->hvf_caps->vmx_cap_pinbased)) {
242 abort();
243 }
244 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
245 &hvf_state->hvf_caps->vmx_cap_procbased)) {
246 abort();
247 }
248 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
249 &hvf_state->hvf_caps->vmx_cap_procbased2)) {
250 abort();
251 }
252 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
253 &hvf_state->hvf_caps->vmx_cap_entry)) {
254 abort();
255 }
256
257 /* set VMCS control fields */
258 wvmcs(cpu->hvf->fd, VMCS_PIN_BASED_CTLS,
259 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
260 VMCS_PIN_BASED_CTLS_EXTINT |
261 VMCS_PIN_BASED_CTLS_NMI |
262 VMCS_PIN_BASED_CTLS_VNMI));
263 wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS,
264 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
265 VMCS_PRI_PROC_BASED_CTLS_HLT |
266 VMCS_PRI_PROC_BASED_CTLS_MWAIT |
267 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
268 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
269 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
270 wvmcs(cpu->hvf->fd, VMCS_SEC_PROC_BASED_CTLS,
271 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
272 VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
273
274 wvmcs(cpu->hvf->fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
275 0));
276 wvmcs(cpu->hvf->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
277
278 wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0);
279
280 x86cpu = X86_CPU(cpu);
281 x86cpu->env.xsave_buf_len = 4096;
282 x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len);
283
284 /*
285 * The allocated storage must be large enough for all of the
286 * possible XSAVE state components.
287 */
288 assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);
289
290 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_STAR, 1);
291 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_LSTAR, 1);
292 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_CSTAR, 1);
293 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FMASK, 1);
294 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FSBASE, 1);
295 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_GSBASE, 1);
296 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_KERNELGSBASE, 1);
297 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_TSC_AUX, 1);
298 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_TSC, 1);
299 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_CS, 1);
300 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_EIP, 1);
301 hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_ESP, 1);
302
303 return 0;
304 }
305
306 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
307 {
308 X86CPU *x86_cpu = X86_CPU(cpu);
309 CPUX86State *env = &x86_cpu->env;
310
311 env->exception_nr = -1;
312 env->exception_pending = 0;
313 env->exception_injected = 0;
314 env->interrupt_injected = -1;
315 env->nmi_injected = false;
316 env->ins_len = 0;
317 env->has_error_code = false;
318 if (idtvec_info & VMCS_IDT_VEC_VALID) {
319 switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
320 case VMCS_IDT_VEC_HWINTR:
321 case VMCS_IDT_VEC_SWINTR:
322 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
323 break;
324 case VMCS_IDT_VEC_NMI:
325 env->nmi_injected = true;
326 break;
327 case VMCS_IDT_VEC_HWEXCEPTION:
328 case VMCS_IDT_VEC_SWEXCEPTION:
329 env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
330 env->exception_injected = 1;
331 break;
332 case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
333 default:
334 abort();
335 }
336 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
337 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
338 env->ins_len = ins_len;
339 }
340 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
341 env->has_error_code = true;
342 env->error_code = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_ERROR);
343 }
344 }
345 if ((rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) &
346 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
347 env->hflags2 |= HF2_NMI_MASK;
348 } else {
349 env->hflags2 &= ~HF2_NMI_MASK;
350 }
351 if (rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) &
352 (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
353 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
354 env->hflags |= HF_INHIBIT_IRQ_MASK;
355 } else {
356 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
357 }
358 }
359
360 static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
361 uint32_t *eax, uint32_t *ebx,
362 uint32_t *ecx, uint32_t *edx)
363 {
364 /*
365 * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
366 * leafs 0x40000001-0x4000000F are filled with zeros
367 * Provides vmware-cpuid-freq support to hvf
368 *
369 * Note: leaf 0x40000000 not exposes HVF,
370 * leaving hypervisor signature empty
371 */
372
373 if (index < 0x40000000 || index > 0x40000010 ||
374 !tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
375
376 cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
377 return;
378 }
379
380 switch (index) {
381 case 0x40000000:
382 *eax = 0x40000010; /* Max available cpuid leaf */
383 *ebx = 0; /* Leave signature empty */
384 *ecx = 0;
385 *edx = 0;
386 break;
387 case 0x40000010:
388 *eax = env->tsc_khz;
389 *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
390 *ecx = 0;
391 *edx = 0;
392 break;
393 default:
394 *eax = 0;
395 *ebx = 0;
396 *ecx = 0;
397 *edx = 0;
398 break;
399 }
400 }
401
402 int hvf_vcpu_exec(CPUState *cpu)
403 {
404 X86CPU *x86_cpu = X86_CPU(cpu);
405 CPUX86State *env = &x86_cpu->env;
406 int ret = 0;
407 uint64_t rip = 0;
408
409 if (hvf_process_events(cpu)) {
410 return EXCP_HLT;
411 }
412
413 do {
414 if (cpu->vcpu_dirty) {
415 hvf_put_registers(cpu);
416 cpu->vcpu_dirty = false;
417 }
418
419 if (hvf_inject_interrupts(cpu)) {
420 return EXCP_INTERRUPT;
421 }
422 vmx_update_tpr(cpu);
423
424 qemu_mutex_unlock_iothread();
425 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
426 qemu_mutex_lock_iothread();
427 return EXCP_HLT;
428 }
429
430 hv_return_t r = hv_vcpu_run(cpu->hvf->fd);
431 assert_hvf_ok(r);
432
433 /* handle VMEXIT */
434 uint64_t exit_reason = rvmcs(cpu->hvf->fd, VMCS_EXIT_REASON);
435 uint64_t exit_qual = rvmcs(cpu->hvf->fd, VMCS_EXIT_QUALIFICATION);
436 uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf->fd,
437 VMCS_EXIT_INSTRUCTION_LENGTH);
438
439 uint64_t idtvec_info = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO);
440
441 hvf_store_events(cpu, ins_len, idtvec_info);
442 rip = rreg(cpu->hvf->fd, HV_X86_RIP);
443 env->eflags = rreg(cpu->hvf->fd, HV_X86_RFLAGS);
444
445 qemu_mutex_lock_iothread();
446
447 update_apic_tpr(cpu);
448 current_cpu = cpu;
449
450 ret = 0;
451 switch (exit_reason) {
452 case EXIT_REASON_HLT: {
453 macvm_set_rip(cpu, rip + ins_len);
454 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
455 (env->eflags & IF_MASK))
456 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
457 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
458 cpu->halted = 1;
459 ret = EXCP_HLT;
460 break;
461 }
462 ret = EXCP_INTERRUPT;
463 break;
464 }
465 case EXIT_REASON_MWAIT: {
466 ret = EXCP_INTERRUPT;
467 break;
468 }
469 /* Need to check if MMIO or unmapped fault */
470 case EXIT_REASON_EPT_FAULT:
471 {
472 hvf_slot *slot;
473 uint64_t gpa = rvmcs(cpu->hvf->fd, VMCS_GUEST_PHYSICAL_ADDRESS);
474
475 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
476 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
477 vmx_set_nmi_blocking(cpu);
478 }
479
480 slot = hvf_find_overlap_slot(gpa, 1);
481 /* mmio */
482 if (ept_emulation_fault(slot, gpa, exit_qual)) {
483 struct x86_decode decode;
484
485 load_regs(cpu);
486 decode_instruction(env, &decode);
487 exec_instruction(env, &decode);
488 store_regs(cpu);
489 break;
490 }
491 break;
492 }
493 case EXIT_REASON_INOUT:
494 {
495 uint32_t in = (exit_qual & 8) != 0;
496 uint32_t size = (exit_qual & 7) + 1;
497 uint32_t string = (exit_qual & 16) != 0;
498 uint32_t port = exit_qual >> 16;
499 /*uint32_t rep = (exit_qual & 0x20) != 0;*/
500
501 if (!string && in) {
502 uint64_t val = 0;
503 load_regs(cpu);
504 hvf_handle_io(env, port, &val, 0, size, 1);
505 if (size == 1) {
506 AL(env) = val;
507 } else if (size == 2) {
508 AX(env) = val;
509 } else if (size == 4) {
510 RAX(env) = (uint32_t)val;
511 } else {
512 RAX(env) = (uint64_t)val;
513 }
514 env->eip += ins_len;
515 store_regs(cpu);
516 break;
517 } else if (!string && !in) {
518 RAX(env) = rreg(cpu->hvf->fd, HV_X86_RAX);
519 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
520 macvm_set_rip(cpu, rip + ins_len);
521 break;
522 }
523 struct x86_decode decode;
524
525 load_regs(cpu);
526 decode_instruction(env, &decode);
527 assert(ins_len == decode.len);
528 exec_instruction(env, &decode);
529 store_regs(cpu);
530
531 break;
532 }
533 case EXIT_REASON_CPUID: {
534 uint32_t rax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX);
535 uint32_t rbx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RBX);
536 uint32_t rcx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX);
537 uint32_t rdx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX);
538
539 if (rax == 1) {
540 /* CPUID1.ecx.OSXSAVE needs to know CR4 */
541 env->cr[4] = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR4);
542 }
543 hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
544
545 wreg(cpu->hvf->fd, HV_X86_RAX, rax);
546 wreg(cpu->hvf->fd, HV_X86_RBX, rbx);
547 wreg(cpu->hvf->fd, HV_X86_RCX, rcx);
548 wreg(cpu->hvf->fd, HV_X86_RDX, rdx);
549
550 macvm_set_rip(cpu, rip + ins_len);
551 break;
552 }
553 case EXIT_REASON_XSETBV: {
554 X86CPU *x86_cpu = X86_CPU(cpu);
555 CPUX86State *env = &x86_cpu->env;
556 uint32_t eax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX);
557 uint32_t ecx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX);
558 uint32_t edx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX);
559
560 if (ecx) {
561 macvm_set_rip(cpu, rip + ins_len);
562 break;
563 }
564 env->xcr0 = ((uint64_t)edx << 32) | eax;
565 wreg(cpu->hvf->fd, HV_X86_XCR0, env->xcr0 | 1);
566 macvm_set_rip(cpu, rip + ins_len);
567 break;
568 }
569 case EXIT_REASON_INTR_WINDOW:
570 vmx_clear_int_window_exiting(cpu);
571 ret = EXCP_INTERRUPT;
572 break;
573 case EXIT_REASON_NMI_WINDOW:
574 vmx_clear_nmi_window_exiting(cpu);
575 ret = EXCP_INTERRUPT;
576 break;
577 case EXIT_REASON_EXT_INTR:
578 /* force exit and allow io handling */
579 ret = EXCP_INTERRUPT;
580 break;
581 case EXIT_REASON_RDMSR:
582 case EXIT_REASON_WRMSR:
583 {
584 load_regs(cpu);
585 if (exit_reason == EXIT_REASON_RDMSR) {
586 simulate_rdmsr(cpu);
587 } else {
588 simulate_wrmsr(cpu);
589 }
590 env->eip += ins_len;
591 store_regs(cpu);
592 break;
593 }
594 case EXIT_REASON_CR_ACCESS: {
595 int cr;
596 int reg;
597
598 load_regs(cpu);
599 cr = exit_qual & 15;
600 reg = (exit_qual >> 8) & 15;
601
602 switch (cr) {
603 case 0x0: {
604 macvm_set_cr0(cpu->hvf->fd, RRX(env, reg));
605 break;
606 }
607 case 4: {
608 macvm_set_cr4(cpu->hvf->fd, RRX(env, reg));
609 break;
610 }
611 case 8: {
612 X86CPU *x86_cpu = X86_CPU(cpu);
613 if (exit_qual & 0x10) {
614 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
615 } else {
616 int tpr = RRX(env, reg);
617 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
618 ret = EXCP_INTERRUPT;
619 }
620 break;
621 }
622 default:
623 error_report("Unrecognized CR %d", cr);
624 abort();
625 }
626 env->eip += ins_len;
627 store_regs(cpu);
628 break;
629 }
630 case EXIT_REASON_APIC_ACCESS: { /* TODO */
631 struct x86_decode decode;
632
633 load_regs(cpu);
634 decode_instruction(env, &decode);
635 exec_instruction(env, &decode);
636 store_regs(cpu);
637 break;
638 }
639 case EXIT_REASON_TPR: {
640 ret = 1;
641 break;
642 }
643 case EXIT_REASON_TASK_SWITCH: {
644 uint64_t vinfo = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO);
645 x68_segment_selector sel = {.sel = exit_qual & 0xffff};
646 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
647 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
648 & VMCS_INTR_T_MASK);
649 break;
650 }
651 case EXIT_REASON_TRIPLE_FAULT: {
652 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
653 ret = EXCP_INTERRUPT;
654 break;
655 }
656 case EXIT_REASON_RDPMC:
657 wreg(cpu->hvf->fd, HV_X86_RAX, 0);
658 wreg(cpu->hvf->fd, HV_X86_RDX, 0);
659 macvm_set_rip(cpu, rip + ins_len);
660 break;
661 case VMX_REASON_VMCALL:
662 env->exception_nr = EXCP0D_GPF;
663 env->exception_injected = 1;
664 env->has_error_code = true;
665 env->error_code = 0;
666 break;
667 default:
668 error_report("%llx: unhandled exit %llx", rip, exit_reason);
669 }
670 } while (ret == 0);
671
672 return ret;
673 }