]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/hvf/hvf.c
i386: hvf: Use ins_len to advance IP
[mirror_qemu.git] / target / i386 / hvf / hvf.c
1 /* Copyright 2008 IBM Corporation
2 * 2008 Red Hat, Inc.
3 * Copyright 2011 Intel Corporation
4 * Copyright 2016 Veertu, Inc.
5 * Copyright 2017 The Android Open Source Project
6 *
7 * QEMU Hypervisor.framework support
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of version 2 of the GNU General Public
11 * License as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 *
21 * This file contain code under public domain from the hvdos project:
22 * https://github.com/mist64/hvdos
23 *
24 * Parts Copyright (c) 2011 NetApp, Inc.
25 * All rights reserved.
26 *
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
35 *
36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
47 */
48
49 #include "qemu/osdep.h"
50 #include "qemu-common.h"
51 #include "qemu/error-report.h"
52
53 #include "sysemu/hvf.h"
54 #include "sysemu/runstate.h"
55 #include "hvf-i386.h"
56 #include "vmcs.h"
57 #include "vmx.h"
58 #include "x86.h"
59 #include "x86_descr.h"
60 #include "x86_mmu.h"
61 #include "x86_decode.h"
62 #include "x86_emu.h"
63 #include "x86_task.h"
64 #include "x86hvf.h"
65
66 #include <Hypervisor/hv.h>
67 #include <Hypervisor/hv_vmx.h>
68
69 #include "exec/address-spaces.h"
70 #include "hw/i386/apic_internal.h"
71 #include "qemu/main-loop.h"
72 #include "sysemu/accel.h"
73 #include "target/i386/cpu.h"
74
75 HVFState *hvf_state;
76
77 static void assert_hvf_ok(hv_return_t ret)
78 {
79 if (ret == HV_SUCCESS) {
80 return;
81 }
82
83 switch (ret) {
84 case HV_ERROR:
85 error_report("Error: HV_ERROR");
86 break;
87 case HV_BUSY:
88 error_report("Error: HV_BUSY");
89 break;
90 case HV_BAD_ARGUMENT:
91 error_report("Error: HV_BAD_ARGUMENT");
92 break;
93 case HV_NO_RESOURCES:
94 error_report("Error: HV_NO_RESOURCES");
95 break;
96 case HV_NO_DEVICE:
97 error_report("Error: HV_NO_DEVICE");
98 break;
99 case HV_UNSUPPORTED:
100 error_report("Error: HV_UNSUPPORTED");
101 break;
102 default:
103 error_report("Unknown Error");
104 }
105
106 abort();
107 }
108
109 /* Memory slots */
110 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
111 {
112 hvf_slot *slot;
113 int x;
114 for (x = 0; x < hvf_state->num_slots; ++x) {
115 slot = &hvf_state->slots[x];
116 if (slot->size && start < (slot->start + slot->size) &&
117 (start + size) > slot->start) {
118 return slot;
119 }
120 }
121 return NULL;
122 }
123
124 struct mac_slot {
125 int present;
126 uint64_t size;
127 uint64_t gpa_start;
128 uint64_t gva;
129 };
130
131 struct mac_slot mac_slots[32];
132
133 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
134 {
135 struct mac_slot *macslot;
136 hv_return_t ret;
137
138 macslot = &mac_slots[slot->slot_id];
139
140 if (macslot->present) {
141 if (macslot->size != slot->size) {
142 macslot->present = 0;
143 ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
144 assert_hvf_ok(ret);
145 }
146 }
147
148 if (!slot->size) {
149 return 0;
150 }
151
152 macslot->present = 1;
153 macslot->gpa_start = slot->start;
154 macslot->size = slot->size;
155 ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
156 assert_hvf_ok(ret);
157 return 0;
158 }
159
160 void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
161 {
162 hvf_slot *mem;
163 MemoryRegion *area = section->mr;
164 bool writeable = !area->readonly && !area->rom_device;
165 hv_memory_flags_t flags;
166
167 if (!memory_region_is_ram(area)) {
168 if (writeable) {
169 return;
170 } else if (!memory_region_is_romd(area)) {
171 /*
172 * If the memory device is not in romd_mode, then we actually want
173 * to remove the hvf memory slot so all accesses will trap.
174 */
175 add = false;
176 }
177 }
178
179 mem = hvf_find_overlap_slot(
180 section->offset_within_address_space,
181 int128_get64(section->size));
182
183 if (mem && add) {
184 if (mem->size == int128_get64(section->size) &&
185 mem->start == section->offset_within_address_space &&
186 mem->mem == (memory_region_get_ram_ptr(area) +
187 section->offset_within_region)) {
188 return; /* Same region was attempted to register, go away. */
189 }
190 }
191
192 /* Region needs to be reset. set the size to 0 and remap it. */
193 if (mem) {
194 mem->size = 0;
195 if (do_hvf_set_memory(mem, 0)) {
196 error_report("Failed to reset overlapping slot");
197 abort();
198 }
199 }
200
201 if (!add) {
202 return;
203 }
204
205 if (area->readonly ||
206 (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
207 flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
208 } else {
209 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
210 }
211
212 /* Now make a new slot. */
213 int x;
214
215 for (x = 0; x < hvf_state->num_slots; ++x) {
216 mem = &hvf_state->slots[x];
217 if (!mem->size) {
218 break;
219 }
220 }
221
222 if (x == hvf_state->num_slots) {
223 error_report("No free slots");
224 abort();
225 }
226
227 mem->size = int128_get64(section->size);
228 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
229 mem->start = section->offset_within_address_space;
230 mem->region = area;
231
232 if (do_hvf_set_memory(mem, flags)) {
233 error_report("Error registering new memory slot");
234 abort();
235 }
236 }
237
238 void vmx_update_tpr(CPUState *cpu)
239 {
240 /* TODO: need integrate APIC handling */
241 X86CPU *x86_cpu = X86_CPU(cpu);
242 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
243 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
244
245 wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
246 if (irr == -1) {
247 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
248 } else {
249 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
250 irr >> 4);
251 }
252 }
253
254 static void update_apic_tpr(CPUState *cpu)
255 {
256 X86CPU *x86_cpu = X86_CPU(cpu);
257 int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
258 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
259 }
260
261 #define VECTORING_INFO_VECTOR_MASK 0xff
262
263 static void hvf_handle_interrupt(CPUState * cpu, int mask)
264 {
265 cpu->interrupt_request |= mask;
266 if (!qemu_cpu_is_self(cpu)) {
267 qemu_cpu_kick(cpu);
268 }
269 }
270
271 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
272 int direction, int size, int count)
273 {
274 int i;
275 uint8_t *ptr = buffer;
276
277 for (i = 0; i < count; i++) {
278 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
279 ptr, size,
280 direction);
281 ptr += size;
282 }
283 }
284
285 /* TODO: synchronize vcpu state */
286 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
287 {
288 CPUState *cpu_state = cpu;
289 if (cpu_state->vcpu_dirty == 0) {
290 hvf_get_registers(cpu_state);
291 }
292
293 cpu_state->vcpu_dirty = 1;
294 }
295
296 void hvf_cpu_synchronize_state(CPUState *cpu_state)
297 {
298 if (cpu_state->vcpu_dirty == 0) {
299 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
300 }
301 }
302
303 static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
304 {
305 CPUState *cpu_state = cpu;
306 hvf_put_registers(cpu_state);
307 cpu_state->vcpu_dirty = false;
308 }
309
310 void hvf_cpu_synchronize_post_reset(CPUState *cpu_state)
311 {
312 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
313 }
314
315 static void do_hvf_cpu_synchronize_post_init(CPUState *cpu,
316 run_on_cpu_data arg)
317 {
318 CPUState *cpu_state = cpu;
319 hvf_put_registers(cpu_state);
320 cpu_state->vcpu_dirty = false;
321 }
322
323 void hvf_cpu_synchronize_post_init(CPUState *cpu_state)
324 {
325 run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
326 }
327
328 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
329 {
330 int read, write;
331
332 /* EPT fault on an instruction fetch doesn't make sense here */
333 if (ept_qual & EPT_VIOLATION_INST_FETCH) {
334 return false;
335 }
336
337 /* EPT fault must be a read fault or a write fault */
338 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
339 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
340 if ((read | write) == 0) {
341 return false;
342 }
343
344 if (write && slot) {
345 if (slot->flags & HVF_SLOT_LOG) {
346 memory_region_set_dirty(slot->region, gpa - slot->start, 1);
347 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
348 HV_MEMORY_READ | HV_MEMORY_WRITE);
349 }
350 }
351
352 /*
353 * The EPT violation must have been caused by accessing a
354 * guest-physical address that is a translation of a guest-linear
355 * address.
356 */
357 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
358 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
359 return false;
360 }
361
362 if (!slot) {
363 return true;
364 }
365 if (!memory_region_is_ram(slot->region) &&
366 !(read && memory_region_is_romd(slot->region))) {
367 return true;
368 }
369 return false;
370 }
371
372 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
373 {
374 hvf_slot *slot;
375
376 slot = hvf_find_overlap_slot(
377 section->offset_within_address_space,
378 int128_get64(section->size));
379
380 /* protect region against writes; begin tracking it */
381 if (on) {
382 slot->flags |= HVF_SLOT_LOG;
383 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
384 HV_MEMORY_READ);
385 /* stop tracking region*/
386 } else {
387 slot->flags &= ~HVF_SLOT_LOG;
388 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
389 HV_MEMORY_READ | HV_MEMORY_WRITE);
390 }
391 }
392
393 static void hvf_log_start(MemoryListener *listener,
394 MemoryRegionSection *section, int old, int new)
395 {
396 if (old != 0) {
397 return;
398 }
399
400 hvf_set_dirty_tracking(section, 1);
401 }
402
403 static void hvf_log_stop(MemoryListener *listener,
404 MemoryRegionSection *section, int old, int new)
405 {
406 if (new != 0) {
407 return;
408 }
409
410 hvf_set_dirty_tracking(section, 0);
411 }
412
413 static void hvf_log_sync(MemoryListener *listener,
414 MemoryRegionSection *section)
415 {
416 /*
417 * sync of dirty pages is handled elsewhere; just make sure we keep
418 * tracking the region.
419 */
420 hvf_set_dirty_tracking(section, 1);
421 }
422
423 static void hvf_region_add(MemoryListener *listener,
424 MemoryRegionSection *section)
425 {
426 hvf_set_phys_mem(section, true);
427 }
428
429 static void hvf_region_del(MemoryListener *listener,
430 MemoryRegionSection *section)
431 {
432 hvf_set_phys_mem(section, false);
433 }
434
435 static MemoryListener hvf_memory_listener = {
436 .priority = 10,
437 .region_add = hvf_region_add,
438 .region_del = hvf_region_del,
439 .log_start = hvf_log_start,
440 .log_stop = hvf_log_stop,
441 .log_sync = hvf_log_sync,
442 };
443
444 void hvf_reset_vcpu(CPUState *cpu) {
445 uint64_t pdpte[4] = {0, 0, 0, 0};
446 int i;
447
448 /* TODO: this shouldn't be needed; there is already a call to
449 * cpu_synchronize_all_post_reset in vl.c
450 */
451 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0);
452 wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0);
453
454 /* Initialize PDPTE */
455 for (i = 0; i < 4; i++) {
456 wvmcs(cpu->hvf_fd, VMCS_GUEST_PDPTE0 + i * 2, pdpte[i]);
457 }
458
459 macvm_set_cr0(cpu->hvf_fd, 0x60000010);
460
461 wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK);
462 wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0);
463 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK);
464
465 /* set VMCS guest state fields */
466 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000);
467 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff);
468 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b);
469 wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000);
470
471 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0);
472 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff);
473 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93);
474 wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0);
475
476 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0);
477 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff);
478 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93);
479 wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0);
480
481 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0);
482 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff);
483 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93);
484 wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0);
485
486 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0);
487 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff);
488 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93);
489 wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0);
490
491 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0);
492 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff);
493 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93);
494 wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0);
495
496 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0);
497 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0);
498 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000);
499 wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0);
500
501 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0);
502 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0);
503 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83);
504 wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0);
505
506 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0);
507 wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0);
508
509 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0);
510 wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0);
511
512 /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/
513 wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0);
514
515 wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0);
516 wreg(cpu->hvf_fd, HV_X86_RDX, 0x623);
517 wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2);
518 wreg(cpu->hvf_fd, HV_X86_RSP, 0x0);
519 wreg(cpu->hvf_fd, HV_X86_RAX, 0x0);
520 wreg(cpu->hvf_fd, HV_X86_RBX, 0x0);
521 wreg(cpu->hvf_fd, HV_X86_RCX, 0x0);
522 wreg(cpu->hvf_fd, HV_X86_RSI, 0x0);
523 wreg(cpu->hvf_fd, HV_X86_RDI, 0x0);
524 wreg(cpu->hvf_fd, HV_X86_RBP, 0x0);
525
526 for (int i = 0; i < 8; i++) {
527 wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0);
528 }
529
530 hv_vcpu_invalidate_tlb(cpu->hvf_fd);
531 hv_vcpu_flush(cpu->hvf_fd);
532 }
533
534 void hvf_vcpu_destroy(CPUState *cpu)
535 {
536 hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
537 assert_hvf_ok(ret);
538 }
539
540 static void dummy_signal(int sig)
541 {
542 }
543
544 int hvf_init_vcpu(CPUState *cpu)
545 {
546
547 X86CPU *x86cpu = X86_CPU(cpu);
548 CPUX86State *env = &x86cpu->env;
549 int r;
550
551 /* init cpu signals */
552 sigset_t set;
553 struct sigaction sigact;
554
555 memset(&sigact, 0, sizeof(sigact));
556 sigact.sa_handler = dummy_signal;
557 sigaction(SIG_IPI, &sigact, NULL);
558
559 pthread_sigmask(SIG_BLOCK, NULL, &set);
560 sigdelset(&set, SIG_IPI);
561
562 init_emu();
563 init_decoder();
564
565 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
566 env->hvf_emul = g_new0(HVFX86EmulatorState, 1);
567
568 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
569 cpu->vcpu_dirty = 1;
570 assert_hvf_ok(r);
571
572 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
573 &hvf_state->hvf_caps->vmx_cap_pinbased)) {
574 abort();
575 }
576 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
577 &hvf_state->hvf_caps->vmx_cap_procbased)) {
578 abort();
579 }
580 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
581 &hvf_state->hvf_caps->vmx_cap_procbased2)) {
582 abort();
583 }
584 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
585 &hvf_state->hvf_caps->vmx_cap_entry)) {
586 abort();
587 }
588
589 /* set VMCS control fields */
590 wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
591 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
592 VMCS_PIN_BASED_CTLS_EXTINT |
593 VMCS_PIN_BASED_CTLS_NMI |
594 VMCS_PIN_BASED_CTLS_VNMI));
595 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
596 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
597 VMCS_PRI_PROC_BASED_CTLS_HLT |
598 VMCS_PRI_PROC_BASED_CTLS_MWAIT |
599 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
600 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
601 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
602 wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
603 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
604 VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
605
606 wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
607 0));
608 wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
609
610 wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
611
612 x86cpu = X86_CPU(cpu);
613 x86cpu->env.xsave_buf = qemu_memalign(4096, 4096);
614
615 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
616 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
617 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
618 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
619 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
620 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
621 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
622 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
623 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);
624 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
625 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
626 hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
627
628 return 0;
629 }
630
631 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
632 {
633 X86CPU *x86_cpu = X86_CPU(cpu);
634 CPUX86State *env = &x86_cpu->env;
635
636 env->exception_nr = -1;
637 env->exception_pending = 0;
638 env->exception_injected = 0;
639 env->interrupt_injected = -1;
640 env->nmi_injected = false;
641 env->ins_len = 0;
642 env->has_error_code = false;
643 if (idtvec_info & VMCS_IDT_VEC_VALID) {
644 switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
645 case VMCS_IDT_VEC_HWINTR:
646 case VMCS_IDT_VEC_SWINTR:
647 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
648 break;
649 case VMCS_IDT_VEC_NMI:
650 env->nmi_injected = true;
651 break;
652 case VMCS_IDT_VEC_HWEXCEPTION:
653 case VMCS_IDT_VEC_SWEXCEPTION:
654 env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
655 env->exception_injected = 1;
656 break;
657 case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
658 default:
659 abort();
660 }
661 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
662 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
663 env->ins_len = ins_len;
664 }
665 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
666 env->has_error_code = true;
667 env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
668 }
669 }
670 if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
671 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
672 env->hflags2 |= HF2_NMI_MASK;
673 } else {
674 env->hflags2 &= ~HF2_NMI_MASK;
675 }
676 if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
677 (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
678 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
679 env->hflags |= HF_INHIBIT_IRQ_MASK;
680 } else {
681 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
682 }
683 }
684
685 int hvf_vcpu_exec(CPUState *cpu)
686 {
687 X86CPU *x86_cpu = X86_CPU(cpu);
688 CPUX86State *env = &x86_cpu->env;
689 int ret = 0;
690 uint64_t rip = 0;
691
692 if (hvf_process_events(cpu)) {
693 return EXCP_HLT;
694 }
695
696 do {
697 if (cpu->vcpu_dirty) {
698 hvf_put_registers(cpu);
699 cpu->vcpu_dirty = false;
700 }
701
702 if (hvf_inject_interrupts(cpu)) {
703 return EXCP_INTERRUPT;
704 }
705 vmx_update_tpr(cpu);
706
707 qemu_mutex_unlock_iothread();
708 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
709 qemu_mutex_lock_iothread();
710 return EXCP_HLT;
711 }
712
713 hv_return_t r = hv_vcpu_run(cpu->hvf_fd);
714 assert_hvf_ok(r);
715
716 /* handle VMEXIT */
717 uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
718 uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
719 uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
720 VMCS_EXIT_INSTRUCTION_LENGTH);
721
722 uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
723
724 hvf_store_events(cpu, ins_len, idtvec_info);
725 rip = rreg(cpu->hvf_fd, HV_X86_RIP);
726 RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
727 env->eflags = RFLAGS(env);
728
729 qemu_mutex_lock_iothread();
730
731 update_apic_tpr(cpu);
732 current_cpu = cpu;
733
734 ret = 0;
735 switch (exit_reason) {
736 case EXIT_REASON_HLT: {
737 macvm_set_rip(cpu, rip + ins_len);
738 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
739 (EFLAGS(env) & IF_MASK))
740 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
741 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
742 cpu->halted = 1;
743 ret = EXCP_HLT;
744 break;
745 }
746 ret = EXCP_INTERRUPT;
747 break;
748 }
749 case EXIT_REASON_MWAIT: {
750 ret = EXCP_INTERRUPT;
751 break;
752 }
753 /* Need to check if MMIO or unmapped fault */
754 case EXIT_REASON_EPT_FAULT:
755 {
756 hvf_slot *slot;
757 uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
758
759 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
760 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
761 vmx_set_nmi_blocking(cpu);
762 }
763
764 slot = hvf_find_overlap_slot(gpa, 1);
765 /* mmio */
766 if (ept_emulation_fault(slot, gpa, exit_qual)) {
767 struct x86_decode decode;
768
769 load_regs(cpu);
770 env->hvf_emul->fetch_rip = rip;
771
772 decode_instruction(env, &decode);
773 exec_instruction(env, &decode);
774 store_regs(cpu);
775 break;
776 }
777 break;
778 }
779 case EXIT_REASON_INOUT:
780 {
781 uint32_t in = (exit_qual & 8) != 0;
782 uint32_t size = (exit_qual & 7) + 1;
783 uint32_t string = (exit_qual & 16) != 0;
784 uint32_t port = exit_qual >> 16;
785 /*uint32_t rep = (exit_qual & 0x20) != 0;*/
786
787 if (!string && in) {
788 uint64_t val = 0;
789 load_regs(cpu);
790 hvf_handle_io(env, port, &val, 0, size, 1);
791 if (size == 1) {
792 AL(env) = val;
793 } else if (size == 2) {
794 AX(env) = val;
795 } else if (size == 4) {
796 RAX(env) = (uint32_t)val;
797 } else {
798 RAX(env) = (uint64_t)val;
799 }
800 RIP(env) += ins_len;
801 store_regs(cpu);
802 break;
803 } else if (!string && !in) {
804 RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
805 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
806 macvm_set_rip(cpu, rip + ins_len);
807 break;
808 }
809 struct x86_decode decode;
810
811 load_regs(cpu);
812 env->hvf_emul->fetch_rip = rip;
813
814 decode_instruction(env, &decode);
815 assert(ins_len == decode.len);
816 exec_instruction(env, &decode);
817 store_regs(cpu);
818
819 break;
820 }
821 case EXIT_REASON_CPUID: {
822 uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
823 uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
824 uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
825 uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
826
827 cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
828
829 wreg(cpu->hvf_fd, HV_X86_RAX, rax);
830 wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
831 wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
832 wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
833
834 macvm_set_rip(cpu, rip + ins_len);
835 break;
836 }
837 case EXIT_REASON_XSETBV: {
838 X86CPU *x86_cpu = X86_CPU(cpu);
839 CPUX86State *env = &x86_cpu->env;
840 uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
841 uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
842 uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
843
844 if (ecx) {
845 macvm_set_rip(cpu, rip + ins_len);
846 break;
847 }
848 env->xcr0 = ((uint64_t)edx << 32) | eax;
849 wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
850 macvm_set_rip(cpu, rip + ins_len);
851 break;
852 }
853 case EXIT_REASON_INTR_WINDOW:
854 vmx_clear_int_window_exiting(cpu);
855 ret = EXCP_INTERRUPT;
856 break;
857 case EXIT_REASON_NMI_WINDOW:
858 vmx_clear_nmi_window_exiting(cpu);
859 ret = EXCP_INTERRUPT;
860 break;
861 case EXIT_REASON_EXT_INTR:
862 /* force exit and allow io handling */
863 ret = EXCP_INTERRUPT;
864 break;
865 case EXIT_REASON_RDMSR:
866 case EXIT_REASON_WRMSR:
867 {
868 load_regs(cpu);
869 if (exit_reason == EXIT_REASON_RDMSR) {
870 simulate_rdmsr(cpu);
871 } else {
872 simulate_wrmsr(cpu);
873 }
874 RIP(env) += ins_len;
875 store_regs(cpu);
876 break;
877 }
878 case EXIT_REASON_CR_ACCESS: {
879 int cr;
880 int reg;
881
882 load_regs(cpu);
883 cr = exit_qual & 15;
884 reg = (exit_qual >> 8) & 15;
885
886 switch (cr) {
887 case 0x0: {
888 macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
889 break;
890 }
891 case 4: {
892 macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
893 break;
894 }
895 case 8: {
896 X86CPU *x86_cpu = X86_CPU(cpu);
897 if (exit_qual & 0x10) {
898 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
899 } else {
900 int tpr = RRX(env, reg);
901 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
902 ret = EXCP_INTERRUPT;
903 }
904 break;
905 }
906 default:
907 error_report("Unrecognized CR %d", cr);
908 abort();
909 }
910 RIP(env) += ins_len;
911 store_regs(cpu);
912 break;
913 }
914 case EXIT_REASON_APIC_ACCESS: { /* TODO */
915 struct x86_decode decode;
916
917 load_regs(cpu);
918 env->hvf_emul->fetch_rip = rip;
919
920 decode_instruction(env, &decode);
921 exec_instruction(env, &decode);
922 store_regs(cpu);
923 break;
924 }
925 case EXIT_REASON_TPR: {
926 ret = 1;
927 break;
928 }
929 case EXIT_REASON_TASK_SWITCH: {
930 uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
931 x68_segment_selector sel = {.sel = exit_qual & 0xffff};
932 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
933 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
934 & VMCS_INTR_T_MASK);
935 break;
936 }
937 case EXIT_REASON_TRIPLE_FAULT: {
938 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
939 ret = EXCP_INTERRUPT;
940 break;
941 }
942 case EXIT_REASON_RDPMC:
943 wreg(cpu->hvf_fd, HV_X86_RAX, 0);
944 wreg(cpu->hvf_fd, HV_X86_RDX, 0);
945 macvm_set_rip(cpu, rip + ins_len);
946 break;
947 case VMX_REASON_VMCALL:
948 env->exception_nr = EXCP0D_GPF;
949 env->exception_injected = 1;
950 env->has_error_code = true;
951 env->error_code = 0;
952 break;
953 default:
954 error_report("%llx: unhandled exit %llx", rip, exit_reason);
955 }
956 } while (ret == 0);
957
958 return ret;
959 }
960
961 bool hvf_allowed;
962
963 static int hvf_accel_init(MachineState *ms)
964 {
965 int x;
966 hv_return_t ret;
967 HVFState *s;
968
969 ret = hv_vm_create(HV_VM_DEFAULT);
970 assert_hvf_ok(ret);
971
972 s = g_new0(HVFState, 1);
973
974 s->num_slots = 32;
975 for (x = 0; x < s->num_slots; ++x) {
976 s->slots[x].size = 0;
977 s->slots[x].slot_id = x;
978 }
979
980 hvf_state = s;
981 cpu_interrupt_handler = hvf_handle_interrupt;
982 memory_listener_register(&hvf_memory_listener, &address_space_memory);
983 return 0;
984 }
985
986 static void hvf_accel_class_init(ObjectClass *oc, void *data)
987 {
988 AccelClass *ac = ACCEL_CLASS(oc);
989 ac->name = "HVF";
990 ac->init_machine = hvf_accel_init;
991 ac->allowed = &hvf_allowed;
992 }
993
994 static const TypeInfo hvf_accel_type = {
995 .name = TYPE_HVF_ACCEL,
996 .parent = TYPE_ACCEL,
997 .class_init = hvf_accel_class_init,
998 };
999
1000 static void hvf_type_init(void)
1001 {
1002 type_register_static(&hvf_accel_type);
1003 }
1004
1005 type_init(hvf_type_init);