]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/hvf/hvf.c
Merge tag 'pull-maintainer-may24-160524-2' of https://gitlab.com/stsquad/qemu into...
[mirror_qemu.git] / target / i386 / hvf / hvf.c
1 /* Copyright 2008 IBM Corporation
2 * 2008 Red Hat, Inc.
3 * Copyright 2011 Intel Corporation
4 * Copyright 2016 Veertu, Inc.
5 * Copyright 2017 The Android Open Source Project
6 *
7 * QEMU Hypervisor.framework support
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of version 2 of the GNU General Public
11 * License as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 *
21 * This file contain code under public domain from the hvdos project:
22 * https://github.com/mist64/hvdos
23 *
24 * Parts Copyright (c) 2011 NetApp, Inc.
25 * All rights reserved.
26 *
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
35 *
36 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
47 */
48
49 #include "qemu/osdep.h"
50 #include "qemu/error-report.h"
51 #include "qemu/memalign.h"
52
53 #include "sysemu/hvf.h"
54 #include "sysemu/hvf_int.h"
55 #include "sysemu/runstate.h"
56 #include "sysemu/cpus.h"
57 #include "hvf-i386.h"
58 #include "vmcs.h"
59 #include "vmx.h"
60 #include "x86.h"
61 #include "x86_descr.h"
62 #include "x86_mmu.h"
63 #include "x86_decode.h"
64 #include "x86_emu.h"
65 #include "x86_task.h"
66 #include "x86hvf.h"
67
68 #include <Hypervisor/hv.h>
69 #include <Hypervisor/hv_vmx.h>
70 #include <sys/sysctl.h>
71
72 #include "hw/i386/apic_internal.h"
73 #include "qemu/main-loop.h"
74 #include "qemu/accel.h"
75 #include "target/i386/cpu.h"
76
77 void vmx_update_tpr(CPUState *cpu)
78 {
79 /* TODO: need integrate APIC handling */
80 X86CPU *x86_cpu = X86_CPU(cpu);
81 int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
82 int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
83
84 wreg(cpu->accel->fd, HV_X86_TPR, tpr);
85 if (irr == -1) {
86 wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
87 } else {
88 wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
89 irr >> 4);
90 }
91 }
92
93 static void update_apic_tpr(CPUState *cpu)
94 {
95 X86CPU *x86_cpu = X86_CPU(cpu);
96 int tpr = rreg(cpu->accel->fd, HV_X86_TPR) >> 4;
97 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
98 }
99
100 #define VECTORING_INFO_VECTOR_MASK 0xff
101
102 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
103 int direction, int size, int count)
104 {
105 int i;
106 uint8_t *ptr = buffer;
107
108 for (i = 0; i < count; i++) {
109 address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
110 ptr, size,
111 direction);
112 ptr += size;
113 }
114 }
115
116 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
117 {
118 int read, write;
119
120 /* EPT fault on an instruction fetch doesn't make sense here */
121 if (ept_qual & EPT_VIOLATION_INST_FETCH) {
122 return false;
123 }
124
125 /* EPT fault must be a read fault or a write fault */
126 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
127 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
128 if ((read | write) == 0) {
129 return false;
130 }
131
132 if (write && slot) {
133 if (slot->flags & HVF_SLOT_LOG) {
134 memory_region_set_dirty(slot->region, gpa - slot->start, 1);
135 hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
136 HV_MEMORY_READ | HV_MEMORY_WRITE);
137 }
138 }
139
140 /*
141 * The EPT violation must have been caused by accessing a
142 * guest-physical address that is a translation of a guest-linear
143 * address.
144 */
145 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
146 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
147 return false;
148 }
149
150 if (!slot) {
151 return true;
152 }
153 if (!memory_region_is_ram(slot->region) &&
154 !(read && memory_region_is_romd(slot->region))) {
155 return true;
156 }
157 return false;
158 }
159
160 void hvf_arch_vcpu_destroy(CPUState *cpu)
161 {
162 X86CPU *x86_cpu = X86_CPU(cpu);
163 CPUX86State *env = &x86_cpu->env;
164
165 g_free(env->hvf_mmio_buf);
166 }
167
168 static void init_tsc_freq(CPUX86State *env)
169 {
170 size_t length;
171 uint64_t tsc_freq;
172
173 if (env->tsc_khz != 0) {
174 return;
175 }
176
177 length = sizeof(uint64_t);
178 if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
179 return;
180 }
181 env->tsc_khz = tsc_freq / 1000; /* Hz to KHz */
182 }
183
184 static void init_apic_bus_freq(CPUX86State *env)
185 {
186 size_t length;
187 uint64_t bus_freq;
188
189 if (env->apic_bus_freq != 0) {
190 return;
191 }
192
193 length = sizeof(uint64_t);
194 if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
195 return;
196 }
197 env->apic_bus_freq = bus_freq;
198 }
199
200 static inline bool tsc_is_known(CPUX86State *env)
201 {
202 return env->tsc_khz != 0;
203 }
204
205 static inline bool apic_bus_freq_is_known(CPUX86State *env)
206 {
207 return env->apic_bus_freq != 0;
208 }
209
210 void hvf_kick_vcpu_thread(CPUState *cpu)
211 {
212 cpus_kick_thread(cpu);
213 }
214
215 int hvf_arch_init(void)
216 {
217 return 0;
218 }
219
220 int hvf_arch_init_vcpu(CPUState *cpu)
221 {
222 X86CPU *x86cpu = X86_CPU(cpu);
223 CPUX86State *env = &x86cpu->env;
224 uint64_t reqCap;
225
226 init_emu();
227 init_decoder();
228
229 hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
230 env->hvf_mmio_buf = g_new(char, 4096);
231
232 if (x86cpu->vmware_cpuid_freq) {
233 init_tsc_freq(env);
234 init_apic_bus_freq(env);
235
236 if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
237 error_report("vmware-cpuid-freq: feature couldn't be enabled");
238 }
239 }
240
241 if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
242 &hvf_state->hvf_caps->vmx_cap_pinbased)) {
243 abort();
244 }
245 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
246 &hvf_state->hvf_caps->vmx_cap_procbased)) {
247 abort();
248 }
249 if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
250 &hvf_state->hvf_caps->vmx_cap_procbased2)) {
251 abort();
252 }
253 if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
254 &hvf_state->hvf_caps->vmx_cap_entry)) {
255 abort();
256 }
257
258 /* set VMCS control fields */
259 wvmcs(cpu->accel->fd, VMCS_PIN_BASED_CTLS,
260 cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
261 VMCS_PIN_BASED_CTLS_EXTINT |
262 VMCS_PIN_BASED_CTLS_NMI |
263 VMCS_PIN_BASED_CTLS_VNMI));
264 wvmcs(cpu->accel->fd, VMCS_PRI_PROC_BASED_CTLS,
265 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
266 VMCS_PRI_PROC_BASED_CTLS_HLT |
267 VMCS_PRI_PROC_BASED_CTLS_MWAIT |
268 VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
269 VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
270 VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
271
272 reqCap = VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES;
273
274 /* Is RDTSCP support in CPUID? If so, enable it in the VMCS. */
275 if (hvf_get_supported_cpuid(0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
276 reqCap |= VMCS_PRI_PROC_BASED2_CTLS_RDTSCP;
277 }
278
279 wvmcs(cpu->accel->fd, VMCS_SEC_PROC_BASED_CTLS,
280 cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, reqCap));
281
282 wvmcs(cpu->accel->fd, VMCS_ENTRY_CTLS,
283 cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry, 0));
284 wvmcs(cpu->accel->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
285
286 wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
287
288 x86cpu = X86_CPU(cpu);
289 x86cpu->env.xsave_buf_len = 4096;
290 x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len);
291
292 /*
293 * The allocated storage must be large enough for all of the
294 * possible XSAVE state components.
295 */
296 assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);
297
298 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_STAR, 1);
299 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_LSTAR, 1);
300 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_CSTAR, 1);
301 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FMASK, 1);
302 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FSBASE, 1);
303 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_GSBASE, 1);
304 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_KERNELGSBASE, 1);
305 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_TSC_AUX, 1);
306 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_TSC, 1);
307 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_CS, 1);
308 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_EIP, 1);
309 hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_ESP, 1);
310
311 return 0;
312 }
313
314 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
315 {
316 X86CPU *x86_cpu = X86_CPU(cpu);
317 CPUX86State *env = &x86_cpu->env;
318
319 env->exception_nr = -1;
320 env->exception_pending = 0;
321 env->exception_injected = 0;
322 env->interrupt_injected = -1;
323 env->nmi_injected = false;
324 env->ins_len = 0;
325 env->has_error_code = false;
326 if (idtvec_info & VMCS_IDT_VEC_VALID) {
327 switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
328 case VMCS_IDT_VEC_HWINTR:
329 case VMCS_IDT_VEC_SWINTR:
330 env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
331 break;
332 case VMCS_IDT_VEC_NMI:
333 env->nmi_injected = true;
334 break;
335 case VMCS_IDT_VEC_HWEXCEPTION:
336 case VMCS_IDT_VEC_SWEXCEPTION:
337 env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
338 env->exception_injected = 1;
339 break;
340 case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
341 default:
342 abort();
343 }
344 if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
345 (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
346 env->ins_len = ins_len;
347 }
348 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
349 env->has_error_code = true;
350 env->error_code = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_ERROR);
351 }
352 }
353 if ((rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
354 VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
355 env->hflags2 |= HF2_NMI_MASK;
356 } else {
357 env->hflags2 &= ~HF2_NMI_MASK;
358 }
359 if (rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
360 (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
361 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
362 env->hflags |= HF_INHIBIT_IRQ_MASK;
363 } else {
364 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
365 }
366 }
367
368 static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
369 uint32_t *eax, uint32_t *ebx,
370 uint32_t *ecx, uint32_t *edx)
371 {
372 /*
373 * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
374 * leafs 0x40000001-0x4000000F are filled with zeros
375 * Provides vmware-cpuid-freq support to hvf
376 *
377 * Note: leaf 0x40000000 not exposes HVF,
378 * leaving hypervisor signature empty
379 */
380
381 if (index < 0x40000000 || index > 0x40000010 ||
382 !tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
383
384 cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
385 return;
386 }
387
388 switch (index) {
389 case 0x40000000:
390 *eax = 0x40000010; /* Max available cpuid leaf */
391 *ebx = 0; /* Leave signature empty */
392 *ecx = 0;
393 *edx = 0;
394 break;
395 case 0x40000010:
396 *eax = env->tsc_khz;
397 *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
398 *ecx = 0;
399 *edx = 0;
400 break;
401 default:
402 *eax = 0;
403 *ebx = 0;
404 *ecx = 0;
405 *edx = 0;
406 break;
407 }
408 }
409
410 int hvf_vcpu_exec(CPUState *cpu)
411 {
412 X86CPU *x86_cpu = X86_CPU(cpu);
413 CPUX86State *env = &x86_cpu->env;
414 int ret = 0;
415 uint64_t rip = 0;
416
417 if (hvf_process_events(cpu)) {
418 return EXCP_HLT;
419 }
420
421 do {
422 if (cpu->accel->dirty) {
423 hvf_put_registers(cpu);
424 cpu->accel->dirty = false;
425 }
426
427 if (hvf_inject_interrupts(cpu)) {
428 return EXCP_INTERRUPT;
429 }
430 vmx_update_tpr(cpu);
431
432 bql_unlock();
433 if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
434 bql_lock();
435 return EXCP_HLT;
436 }
437
438 hv_return_t r = hv_vcpu_run(cpu->accel->fd);
439 assert_hvf_ok(r);
440
441 /* handle VMEXIT */
442 uint64_t exit_reason = rvmcs(cpu->accel->fd, VMCS_EXIT_REASON);
443 uint64_t exit_qual = rvmcs(cpu->accel->fd, VMCS_EXIT_QUALIFICATION);
444 uint32_t ins_len = (uint32_t)rvmcs(cpu->accel->fd,
445 VMCS_EXIT_INSTRUCTION_LENGTH);
446
447 uint64_t idtvec_info = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
448
449 hvf_store_events(cpu, ins_len, idtvec_info);
450 rip = rreg(cpu->accel->fd, HV_X86_RIP);
451 env->eflags = rreg(cpu->accel->fd, HV_X86_RFLAGS);
452
453 bql_lock();
454
455 update_apic_tpr(cpu);
456 current_cpu = cpu;
457
458 ret = 0;
459 switch (exit_reason) {
460 case EXIT_REASON_HLT: {
461 macvm_set_rip(cpu, rip + ins_len);
462 if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
463 (env->eflags & IF_MASK))
464 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
465 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
466 cpu->halted = 1;
467 ret = EXCP_HLT;
468 break;
469 }
470 ret = EXCP_INTERRUPT;
471 break;
472 }
473 case EXIT_REASON_MWAIT: {
474 ret = EXCP_INTERRUPT;
475 break;
476 }
477 /* Need to check if MMIO or unmapped fault */
478 case EXIT_REASON_EPT_FAULT:
479 {
480 hvf_slot *slot;
481 uint64_t gpa = rvmcs(cpu->accel->fd, VMCS_GUEST_PHYSICAL_ADDRESS);
482
483 if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
484 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
485 vmx_set_nmi_blocking(cpu);
486 }
487
488 slot = hvf_find_overlap_slot(gpa, 1);
489 /* mmio */
490 if (ept_emulation_fault(slot, gpa, exit_qual)) {
491 struct x86_decode decode;
492
493 load_regs(cpu);
494 decode_instruction(env, &decode);
495 exec_instruction(env, &decode);
496 store_regs(cpu);
497 break;
498 }
499 break;
500 }
501 case EXIT_REASON_INOUT:
502 {
503 uint32_t in = (exit_qual & 8) != 0;
504 uint32_t size = (exit_qual & 7) + 1;
505 uint32_t string = (exit_qual & 16) != 0;
506 uint32_t port = exit_qual >> 16;
507 /*uint32_t rep = (exit_qual & 0x20) != 0;*/
508
509 if (!string && in) {
510 uint64_t val = 0;
511 load_regs(cpu);
512 hvf_handle_io(env, port, &val, 0, size, 1);
513 if (size == 1) {
514 AL(env) = val;
515 } else if (size == 2) {
516 AX(env) = val;
517 } else if (size == 4) {
518 RAX(env) = (uint32_t)val;
519 } else {
520 RAX(env) = (uint64_t)val;
521 }
522 env->eip += ins_len;
523 store_regs(cpu);
524 break;
525 } else if (!string && !in) {
526 RAX(env) = rreg(cpu->accel->fd, HV_X86_RAX);
527 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
528 macvm_set_rip(cpu, rip + ins_len);
529 break;
530 }
531 struct x86_decode decode;
532
533 load_regs(cpu);
534 decode_instruction(env, &decode);
535 assert(ins_len == decode.len);
536 exec_instruction(env, &decode);
537 store_regs(cpu);
538
539 break;
540 }
541 case EXIT_REASON_CPUID: {
542 uint32_t rax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
543 uint32_t rbx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RBX);
544 uint32_t rcx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
545 uint32_t rdx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
546
547 if (rax == 1) {
548 /* CPUID1.ecx.OSXSAVE needs to know CR4 */
549 env->cr[4] = rvmcs(cpu->accel->fd, VMCS_GUEST_CR4);
550 }
551 hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
552
553 wreg(cpu->accel->fd, HV_X86_RAX, rax);
554 wreg(cpu->accel->fd, HV_X86_RBX, rbx);
555 wreg(cpu->accel->fd, HV_X86_RCX, rcx);
556 wreg(cpu->accel->fd, HV_X86_RDX, rdx);
557
558 macvm_set_rip(cpu, rip + ins_len);
559 break;
560 }
561 case EXIT_REASON_XSETBV: {
562 X86CPU *x86_cpu = X86_CPU(cpu);
563 CPUX86State *env = &x86_cpu->env;
564 uint32_t eax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
565 uint32_t ecx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
566 uint32_t edx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
567
568 if (ecx) {
569 macvm_set_rip(cpu, rip + ins_len);
570 break;
571 }
572 env->xcr0 = ((uint64_t)edx << 32) | eax;
573 wreg(cpu->accel->fd, HV_X86_XCR0, env->xcr0 | 1);
574 macvm_set_rip(cpu, rip + ins_len);
575 break;
576 }
577 case EXIT_REASON_INTR_WINDOW:
578 vmx_clear_int_window_exiting(cpu);
579 ret = EXCP_INTERRUPT;
580 break;
581 case EXIT_REASON_NMI_WINDOW:
582 vmx_clear_nmi_window_exiting(cpu);
583 ret = EXCP_INTERRUPT;
584 break;
585 case EXIT_REASON_EXT_INTR:
586 /* force exit and allow io handling */
587 ret = EXCP_INTERRUPT;
588 break;
589 case EXIT_REASON_RDMSR:
590 case EXIT_REASON_WRMSR:
591 {
592 load_regs(cpu);
593 if (exit_reason == EXIT_REASON_RDMSR) {
594 simulate_rdmsr(env);
595 } else {
596 simulate_wrmsr(env);
597 }
598 env->eip += ins_len;
599 store_regs(cpu);
600 break;
601 }
602 case EXIT_REASON_CR_ACCESS: {
603 int cr;
604 int reg;
605
606 load_regs(cpu);
607 cr = exit_qual & 15;
608 reg = (exit_qual >> 8) & 15;
609
610 switch (cr) {
611 case 0x0: {
612 macvm_set_cr0(cpu->accel->fd, RRX(env, reg));
613 break;
614 }
615 case 4: {
616 macvm_set_cr4(cpu->accel->fd, RRX(env, reg));
617 break;
618 }
619 case 8: {
620 X86CPU *x86_cpu = X86_CPU(cpu);
621 if (exit_qual & 0x10) {
622 RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
623 } else {
624 int tpr = RRX(env, reg);
625 cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
626 ret = EXCP_INTERRUPT;
627 }
628 break;
629 }
630 default:
631 error_report("Unrecognized CR %d", cr);
632 abort();
633 }
634 env->eip += ins_len;
635 store_regs(cpu);
636 break;
637 }
638 case EXIT_REASON_APIC_ACCESS: { /* TODO */
639 struct x86_decode decode;
640
641 load_regs(cpu);
642 decode_instruction(env, &decode);
643 exec_instruction(env, &decode);
644 store_regs(cpu);
645 break;
646 }
647 case EXIT_REASON_TPR: {
648 ret = 1;
649 break;
650 }
651 case EXIT_REASON_TASK_SWITCH: {
652 uint64_t vinfo = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
653 x68_segment_selector sel = {.sel = exit_qual & 0xffff};
654 vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
655 vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
656 & VMCS_INTR_T_MASK);
657 break;
658 }
659 case EXIT_REASON_TRIPLE_FAULT: {
660 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
661 ret = EXCP_INTERRUPT;
662 break;
663 }
664 case EXIT_REASON_RDPMC:
665 wreg(cpu->accel->fd, HV_X86_RAX, 0);
666 wreg(cpu->accel->fd, HV_X86_RDX, 0);
667 macvm_set_rip(cpu, rip + ins_len);
668 break;
669 case VMX_REASON_VMCALL:
670 env->exception_nr = EXCP0D_GPF;
671 env->exception_injected = 1;
672 env->has_error_code = true;
673 env->error_code = 0;
674 break;
675 default:
676 error_report("%llx: unhandled exit %llx", rip, exit_reason);
677 }
678 } while (ret == 0);
679
680 return ret;
681 }
682
683 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
684 {
685 return -ENOSYS;
686 }
687
688 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
689 {
690 return -ENOSYS;
691 }
692
693 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
694 {
695 return -ENOSYS;
696 }
697
698 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
699 {
700 return -ENOSYS;
701 }
702
703 void hvf_arch_remove_all_hw_breakpoints(void)
704 {
705 }
706
707 void hvf_arch_update_guest_debug(CPUState *cpu)
708 {
709 }
710
711 bool hvf_arch_supports_guest_debug(void)
712 {
713 return false;
714 }