]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/hvf/x86hvf.c
28cfee4f60876ad375c5204fcb41b969fc221a74
[mirror_qemu.git] / target / i386 / hvf / x86hvf.c
1 /*
2 * Copyright (c) 2003-2008 Fabrice Bellard
3 * Copyright (C) 2016 Veertu Inc,
4 * Copyright (C) 2017 Google Inc,
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21
22 #include "qemu-common.h"
23 #include "x86hvf.h"
24 #include "vmx.h"
25 #include "vmcs.h"
26 #include "cpu.h"
27 #include "x86_descr.h"
28 #include "x86_decode.h"
29 #include "sysemu/hw_accel.h"
30
31 #include "hw/i386/apic_internal.h"
32
33 #include <Hypervisor/hv.h>
34 #include <Hypervisor/hv_vmx.h>
35
36 void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg,
37 SegmentCache *qseg, bool is_tr)
38 {
39 vmx_seg->sel = qseg->selector;
40 vmx_seg->base = qseg->base;
41 vmx_seg->limit = qseg->limit;
42
43 if (!qseg->selector && !x86_is_real(cpu) && !is_tr) {
44 /* the TR register is usable after processor reset despite
45 * having a null selector */
46 vmx_seg->ar = 1 << 16;
47 return;
48 }
49 vmx_seg->ar = (qseg->flags >> DESC_TYPE_SHIFT) & 0xf;
50 vmx_seg->ar |= ((qseg->flags >> DESC_G_SHIFT) & 1) << 15;
51 vmx_seg->ar |= ((qseg->flags >> DESC_B_SHIFT) & 1) << 14;
52 vmx_seg->ar |= ((qseg->flags >> DESC_L_SHIFT) & 1) << 13;
53 vmx_seg->ar |= ((qseg->flags >> DESC_AVL_SHIFT) & 1) << 12;
54 vmx_seg->ar |= ((qseg->flags >> DESC_P_SHIFT) & 1) << 7;
55 vmx_seg->ar |= ((qseg->flags >> DESC_DPL_SHIFT) & 3) << 5;
56 vmx_seg->ar |= ((qseg->flags >> DESC_S_SHIFT) & 1) << 4;
57 }
58
59 void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg)
60 {
61 qseg->limit = vmx_seg->limit;
62 qseg->base = vmx_seg->base;
63 qseg->selector = vmx_seg->sel;
64 qseg->flags = ((vmx_seg->ar & 0xf) << DESC_TYPE_SHIFT) |
65 (((vmx_seg->ar >> 4) & 1) << DESC_S_SHIFT) |
66 (((vmx_seg->ar >> 5) & 3) << DESC_DPL_SHIFT) |
67 (((vmx_seg->ar >> 7) & 1) << DESC_P_SHIFT) |
68 (((vmx_seg->ar >> 12) & 1) << DESC_AVL_SHIFT) |
69 (((vmx_seg->ar >> 13) & 1) << DESC_L_SHIFT) |
70 (((vmx_seg->ar >> 14) & 1) << DESC_B_SHIFT) |
71 (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT);
72 }
73
74 void hvf_put_xsave(CPUState *cpu_state)
75 {
76
77 struct X86XSaveArea *xsave;
78
79 xsave = X86_CPU(cpu_state)->env.xsave_buf;
80
81 x86_cpu_xsave_all_areas(X86_CPU(cpu_state), xsave);
82
83 if (hv_vcpu_write_fpstate(cpu_state->hvf->fd, (void*)xsave, 4096)) {
84 abort();
85 }
86 }
87
88 void hvf_put_segments(CPUState *cpu_state)
89 {
90 CPUX86State *env = &X86_CPU(cpu_state)->env;
91 struct vmx_segment seg;
92
93 wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit);
94 wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_BASE, env->idt.base);
95
96 wvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit);
97 wvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_BASE, env->gdt.base);
98
99 /* wvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR2, env->cr[2]); */
100 wvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR3, env->cr[3]);
101 vmx_update_tpr(cpu_state);
102 wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IA32_EFER, env->efer);
103
104 macvm_set_cr4(cpu_state->hvf->fd, env->cr[4]);
105 macvm_set_cr0(cpu_state->hvf->fd, env->cr[0]);
106
107 hvf_set_segment(cpu_state, &seg, &env->segs[R_CS], false);
108 vmx_write_segment_descriptor(cpu_state, &seg, R_CS);
109
110 hvf_set_segment(cpu_state, &seg, &env->segs[R_DS], false);
111 vmx_write_segment_descriptor(cpu_state, &seg, R_DS);
112
113 hvf_set_segment(cpu_state, &seg, &env->segs[R_ES], false);
114 vmx_write_segment_descriptor(cpu_state, &seg, R_ES);
115
116 hvf_set_segment(cpu_state, &seg, &env->segs[R_SS], false);
117 vmx_write_segment_descriptor(cpu_state, &seg, R_SS);
118
119 hvf_set_segment(cpu_state, &seg, &env->segs[R_FS], false);
120 vmx_write_segment_descriptor(cpu_state, &seg, R_FS);
121
122 hvf_set_segment(cpu_state, &seg, &env->segs[R_GS], false);
123 vmx_write_segment_descriptor(cpu_state, &seg, R_GS);
124
125 hvf_set_segment(cpu_state, &seg, &env->tr, true);
126 vmx_write_segment_descriptor(cpu_state, &seg, R_TR);
127
128 hvf_set_segment(cpu_state, &seg, &env->ldt, false);
129 vmx_write_segment_descriptor(cpu_state, &seg, R_LDTR);
130
131 hv_vcpu_flush(cpu_state->hvf->fd);
132 }
133
134 void hvf_put_msrs(CPUState *cpu_state)
135 {
136 CPUX86State *env = &X86_CPU(cpu_state)->env;
137
138 hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_CS,
139 env->sysenter_cs);
140 hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_ESP,
141 env->sysenter_esp);
142 hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_EIP,
143 env->sysenter_eip);
144
145 hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_STAR, env->star);
146
147 #ifdef TARGET_X86_64
148 hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_CSTAR, env->cstar);
149 hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_KERNELGSBASE, env->kernelgsbase);
150 hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_FMASK, env->fmask);
151 hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_LSTAR, env->lstar);
152 #endif
153
154 hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_GSBASE, env->segs[R_GS].base);
155 hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_FSBASE, env->segs[R_FS].base);
156 }
157
158
159 void hvf_get_xsave(CPUState *cpu_state)
160 {
161 struct X86XSaveArea *xsave;
162
163 xsave = X86_CPU(cpu_state)->env.xsave_buf;
164
165 if (hv_vcpu_read_fpstate(cpu_state->hvf->fd, (void*)xsave, 4096)) {
166 abort();
167 }
168
169 x86_cpu_xrstor_all_areas(X86_CPU(cpu_state), xsave);
170 }
171
172 void hvf_get_segments(CPUState *cpu_state)
173 {
174 CPUX86State *env = &X86_CPU(cpu_state)->env;
175
176 struct vmx_segment seg;
177
178 env->interrupt_injected = -1;
179
180 vmx_read_segment_descriptor(cpu_state, &seg, R_CS);
181 hvf_get_segment(&env->segs[R_CS], &seg);
182
183 vmx_read_segment_descriptor(cpu_state, &seg, R_DS);
184 hvf_get_segment(&env->segs[R_DS], &seg);
185
186 vmx_read_segment_descriptor(cpu_state, &seg, R_ES);
187 hvf_get_segment(&env->segs[R_ES], &seg);
188
189 vmx_read_segment_descriptor(cpu_state, &seg, R_FS);
190 hvf_get_segment(&env->segs[R_FS], &seg);
191
192 vmx_read_segment_descriptor(cpu_state, &seg, R_GS);
193 hvf_get_segment(&env->segs[R_GS], &seg);
194
195 vmx_read_segment_descriptor(cpu_state, &seg, R_SS);
196 hvf_get_segment(&env->segs[R_SS], &seg);
197
198 vmx_read_segment_descriptor(cpu_state, &seg, R_TR);
199 hvf_get_segment(&env->tr, &seg);
200
201 vmx_read_segment_descriptor(cpu_state, &seg, R_LDTR);
202 hvf_get_segment(&env->ldt, &seg);
203
204 env->idt.limit = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_LIMIT);
205 env->idt.base = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_BASE);
206 env->gdt.limit = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_LIMIT);
207 env->gdt.base = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_BASE);
208
209 env->cr[0] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR0);
210 env->cr[2] = 0;
211 env->cr[3] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR3);
212 env->cr[4] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR4);
213
214 env->efer = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IA32_EFER);
215 }
216
217 void hvf_get_msrs(CPUState *cpu_state)
218 {
219 CPUX86State *env = &X86_CPU(cpu_state)->env;
220 uint64_t tmp;
221
222 hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_CS, &tmp);
223 env->sysenter_cs = tmp;
224
225 hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_ESP, &tmp);
226 env->sysenter_esp = tmp;
227
228 hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_EIP, &tmp);
229 env->sysenter_eip = tmp;
230
231 hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_STAR, &env->star);
232
233 #ifdef TARGET_X86_64
234 hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_CSTAR, &env->cstar);
235 hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_KERNELGSBASE, &env->kernelgsbase);
236 hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_FMASK, &env->fmask);
237 hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_LSTAR, &env->lstar);
238 #endif
239
240 hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_APICBASE, &tmp);
241
242 env->tsc = rdtscp() + rvmcs(cpu_state->hvf->fd, VMCS_TSC_OFFSET);
243 }
244
245 int hvf_put_registers(CPUState *cpu_state)
246 {
247 X86CPU *x86cpu = X86_CPU(cpu_state);
248 CPUX86State *env = &x86cpu->env;
249
250 wreg(cpu_state->hvf->fd, HV_X86_RAX, env->regs[R_EAX]);
251 wreg(cpu_state->hvf->fd, HV_X86_RBX, env->regs[R_EBX]);
252 wreg(cpu_state->hvf->fd, HV_X86_RCX, env->regs[R_ECX]);
253 wreg(cpu_state->hvf->fd, HV_X86_RDX, env->regs[R_EDX]);
254 wreg(cpu_state->hvf->fd, HV_X86_RBP, env->regs[R_EBP]);
255 wreg(cpu_state->hvf->fd, HV_X86_RSP, env->regs[R_ESP]);
256 wreg(cpu_state->hvf->fd, HV_X86_RSI, env->regs[R_ESI]);
257 wreg(cpu_state->hvf->fd, HV_X86_RDI, env->regs[R_EDI]);
258 wreg(cpu_state->hvf->fd, HV_X86_R8, env->regs[8]);
259 wreg(cpu_state->hvf->fd, HV_X86_R9, env->regs[9]);
260 wreg(cpu_state->hvf->fd, HV_X86_R10, env->regs[10]);
261 wreg(cpu_state->hvf->fd, HV_X86_R11, env->regs[11]);
262 wreg(cpu_state->hvf->fd, HV_X86_R12, env->regs[12]);
263 wreg(cpu_state->hvf->fd, HV_X86_R13, env->regs[13]);
264 wreg(cpu_state->hvf->fd, HV_X86_R14, env->regs[14]);
265 wreg(cpu_state->hvf->fd, HV_X86_R15, env->regs[15]);
266 wreg(cpu_state->hvf->fd, HV_X86_RFLAGS, env->eflags);
267 wreg(cpu_state->hvf->fd, HV_X86_RIP, env->eip);
268
269 wreg(cpu_state->hvf->fd, HV_X86_XCR0, env->xcr0);
270
271 hvf_put_xsave(cpu_state);
272
273 hvf_put_segments(cpu_state);
274
275 hvf_put_msrs(cpu_state);
276
277 wreg(cpu_state->hvf->fd, HV_X86_DR0, env->dr[0]);
278 wreg(cpu_state->hvf->fd, HV_X86_DR1, env->dr[1]);
279 wreg(cpu_state->hvf->fd, HV_X86_DR2, env->dr[2]);
280 wreg(cpu_state->hvf->fd, HV_X86_DR3, env->dr[3]);
281 wreg(cpu_state->hvf->fd, HV_X86_DR4, env->dr[4]);
282 wreg(cpu_state->hvf->fd, HV_X86_DR5, env->dr[5]);
283 wreg(cpu_state->hvf->fd, HV_X86_DR6, env->dr[6]);
284 wreg(cpu_state->hvf->fd, HV_X86_DR7, env->dr[7]);
285
286 return 0;
287 }
288
289 int hvf_get_registers(CPUState *cpu_state)
290 {
291 X86CPU *x86cpu = X86_CPU(cpu_state);
292 CPUX86State *env = &x86cpu->env;
293
294 env->regs[R_EAX] = rreg(cpu_state->hvf->fd, HV_X86_RAX);
295 env->regs[R_EBX] = rreg(cpu_state->hvf->fd, HV_X86_RBX);
296 env->regs[R_ECX] = rreg(cpu_state->hvf->fd, HV_X86_RCX);
297 env->regs[R_EDX] = rreg(cpu_state->hvf->fd, HV_X86_RDX);
298 env->regs[R_EBP] = rreg(cpu_state->hvf->fd, HV_X86_RBP);
299 env->regs[R_ESP] = rreg(cpu_state->hvf->fd, HV_X86_RSP);
300 env->regs[R_ESI] = rreg(cpu_state->hvf->fd, HV_X86_RSI);
301 env->regs[R_EDI] = rreg(cpu_state->hvf->fd, HV_X86_RDI);
302 env->regs[8] = rreg(cpu_state->hvf->fd, HV_X86_R8);
303 env->regs[9] = rreg(cpu_state->hvf->fd, HV_X86_R9);
304 env->regs[10] = rreg(cpu_state->hvf->fd, HV_X86_R10);
305 env->regs[11] = rreg(cpu_state->hvf->fd, HV_X86_R11);
306 env->regs[12] = rreg(cpu_state->hvf->fd, HV_X86_R12);
307 env->regs[13] = rreg(cpu_state->hvf->fd, HV_X86_R13);
308 env->regs[14] = rreg(cpu_state->hvf->fd, HV_X86_R14);
309 env->regs[15] = rreg(cpu_state->hvf->fd, HV_X86_R15);
310
311 env->eflags = rreg(cpu_state->hvf->fd, HV_X86_RFLAGS);
312 env->eip = rreg(cpu_state->hvf->fd, HV_X86_RIP);
313
314 hvf_get_xsave(cpu_state);
315 env->xcr0 = rreg(cpu_state->hvf->fd, HV_X86_XCR0);
316
317 hvf_get_segments(cpu_state);
318 hvf_get_msrs(cpu_state);
319
320 env->dr[0] = rreg(cpu_state->hvf->fd, HV_X86_DR0);
321 env->dr[1] = rreg(cpu_state->hvf->fd, HV_X86_DR1);
322 env->dr[2] = rreg(cpu_state->hvf->fd, HV_X86_DR2);
323 env->dr[3] = rreg(cpu_state->hvf->fd, HV_X86_DR3);
324 env->dr[4] = rreg(cpu_state->hvf->fd, HV_X86_DR4);
325 env->dr[5] = rreg(cpu_state->hvf->fd, HV_X86_DR5);
326 env->dr[6] = rreg(cpu_state->hvf->fd, HV_X86_DR6);
327 env->dr[7] = rreg(cpu_state->hvf->fd, HV_X86_DR7);
328
329 x86_update_hflags(env);
330 return 0;
331 }
332
333 static void vmx_set_int_window_exiting(CPUState *cpu)
334 {
335 uint64_t val;
336 val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS);
337 wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val |
338 VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
339 }
340
341 void vmx_clear_int_window_exiting(CPUState *cpu)
342 {
343 uint64_t val;
344 val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS);
345 wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val &
346 ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
347 }
348
349 bool hvf_inject_interrupts(CPUState *cpu_state)
350 {
351 X86CPU *x86cpu = X86_CPU(cpu_state);
352 CPUX86State *env = &x86cpu->env;
353
354 uint8_t vector;
355 uint64_t intr_type;
356 bool have_event = true;
357 if (env->interrupt_injected != -1) {
358 vector = env->interrupt_injected;
359 if (env->ins_len) {
360 intr_type = VMCS_INTR_T_SWINTR;
361 } else {
362 intr_type = VMCS_INTR_T_HWINTR;
363 }
364 } else if (env->exception_nr != -1) {
365 vector = env->exception_nr;
366 if (vector == EXCP03_INT3 || vector == EXCP04_INTO) {
367 intr_type = VMCS_INTR_T_SWEXCEPTION;
368 } else {
369 intr_type = VMCS_INTR_T_HWEXCEPTION;
370 }
371 } else if (env->nmi_injected) {
372 vector = EXCP02_NMI;
373 intr_type = VMCS_INTR_T_NMI;
374 } else {
375 have_event = false;
376 }
377
378 uint64_t info = 0;
379 if (have_event) {
380 info = vector | intr_type | VMCS_INTR_VALID;
381 uint64_t reason = rvmcs(cpu_state->hvf->fd, VMCS_EXIT_REASON);
382 if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) {
383 vmx_clear_nmi_blocking(cpu_state);
384 }
385
386 if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) {
387 info &= ~(1 << 12); /* clear undefined bit */
388 if (intr_type == VMCS_INTR_T_SWINTR ||
389 intr_type == VMCS_INTR_T_SWEXCEPTION) {
390 wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INST_LENGTH, env->ins_len);
391 }
392
393 if (env->has_error_code) {
394 wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_EXCEPTION_ERROR,
395 env->error_code);
396 /* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */
397 info |= VMCS_INTR_DEL_ERRCODE;
398 }
399 /*printf("reinject %lx err %d\n", info, err);*/
400 wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, info);
401 };
402 }
403
404 if (cpu_state->interrupt_request & CPU_INTERRUPT_NMI) {
405 if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) {
406 cpu_state->interrupt_request &= ~CPU_INTERRUPT_NMI;
407 info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI;
408 wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, info);
409 } else {
410 vmx_set_nmi_window_exiting(cpu_state);
411 }
412 }
413
414 if (!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
415 (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
416 (env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) {
417 int line = cpu_get_pic_interrupt(&x86cpu->env);
418 cpu_state->interrupt_request &= ~CPU_INTERRUPT_HARD;
419 if (line >= 0) {
420 wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, line |
421 VMCS_INTR_VALID | VMCS_INTR_T_HWINTR);
422 }
423 }
424 if (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) {
425 vmx_set_int_window_exiting(cpu_state);
426 }
427 return (cpu_state->interrupt_request
428 & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR));
429 }
430
431 int hvf_process_events(CPUState *cpu_state)
432 {
433 X86CPU *cpu = X86_CPU(cpu_state);
434 CPUX86State *env = &cpu->env;
435
436 env->eflags = rreg(cpu_state->hvf->fd, HV_X86_RFLAGS);
437
438 if (cpu_state->interrupt_request & CPU_INTERRUPT_INIT) {
439 cpu_synchronize_state(cpu_state);
440 do_cpu_init(cpu);
441 }
442
443 if (cpu_state->interrupt_request & CPU_INTERRUPT_POLL) {
444 cpu_state->interrupt_request &= ~CPU_INTERRUPT_POLL;
445 apic_poll_irq(cpu->apic_state);
446 }
447 if (((cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
448 (env->eflags & IF_MASK)) ||
449 (cpu_state->interrupt_request & CPU_INTERRUPT_NMI)) {
450 cpu_state->halted = 0;
451 }
452 if (cpu_state->interrupt_request & CPU_INTERRUPT_SIPI) {
453 cpu_synchronize_state(cpu_state);
454 do_cpu_sipi(cpu);
455 }
456 if (cpu_state->interrupt_request & CPU_INTERRUPT_TPR) {
457 cpu_state->interrupt_request &= ~CPU_INTERRUPT_TPR;
458 cpu_synchronize_state(cpu_state);
459 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
460 env->tpr_access_type);
461 }
462 return cpu_state->halted;
463 }