]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/kvm/kvm.c
4ce80555b45c14fe8f683c1ee6c5bde5db216a9b
[mirror_qemu.git] / target / i386 / kvm / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <sys/ioctl.h>
20 #include <sys/utsname.h>
21 #include <sys/syscall.h>
22
23 #include <linux/kvm.h>
24 #include "standard-headers/asm-x86/kvm_para.h"
25 #include "hw/xen/interface/arch-x86/cpuid.h"
26
27 #include "cpu.h"
28 #include "host-cpu.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/hw_accel.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "kvm_i386.h"
34 #include "sev.h"
35 #include "xen-emu.h"
36 #include "hyperv.h"
37 #include "hyperv-proto.h"
38
39 #include "exec/gdbstub.h"
40 #include "qemu/host-utils.h"
41 #include "qemu/main-loop.h"
42 #include "qemu/ratelimit.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/memalign.h"
46 #include "hw/i386/x86.h"
47 #include "hw/i386/kvm/xen_evtchn.h"
48 #include "hw/i386/pc.h"
49 #include "hw/i386/apic.h"
50 #include "hw/i386/apic_internal.h"
51 #include "hw/i386/apic-msidef.h"
52 #include "hw/i386/intel_iommu.h"
53 #include "hw/i386/x86-iommu.h"
54 #include "hw/i386/e820_memory_layout.h"
55
56 #include "hw/xen/xen.h"
57
58 #include "hw/pci/pci.h"
59 #include "hw/pci/msi.h"
60 #include "hw/pci/msix.h"
61 #include "migration/blocker.h"
62 #include "exec/memattrs.h"
63 #include "trace.h"
64
65 #include CONFIG_DEVICES
66
67 //#define DEBUG_KVM
68
69 #ifdef DEBUG_KVM
70 #define DPRINTF(fmt, ...) \
71 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
72 #else
73 #define DPRINTF(fmt, ...) \
74 do { } while (0)
75 #endif
76
77 /* From arch/x86/kvm/lapic.h */
78 #define KVM_APIC_BUS_CYCLE_NS 1
79 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
80
81 #define MSR_KVM_WALL_CLOCK 0x11
82 #define MSR_KVM_SYSTEM_TIME 0x12
83
84 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
85 * 255 kvm_msr_entry structs */
86 #define MSR_BUF_SIZE 4096
87
88 static void kvm_init_msrs(X86CPU *cpu);
89
90 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
91 KVM_CAP_INFO(SET_TSS_ADDR),
92 KVM_CAP_INFO(EXT_CPUID),
93 KVM_CAP_INFO(MP_STATE),
94 KVM_CAP_INFO(SIGNAL_MSI),
95 KVM_CAP_INFO(IRQ_ROUTING),
96 KVM_CAP_INFO(DEBUGREGS),
97 KVM_CAP_INFO(XSAVE),
98 KVM_CAP_INFO(VCPU_EVENTS),
99 KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
100 KVM_CAP_INFO(MCE),
101 KVM_CAP_INFO(ADJUST_CLOCK),
102 KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
103 KVM_CAP_LAST_INFO
104 };
105
106 static bool has_msr_star;
107 static bool has_msr_hsave_pa;
108 static bool has_msr_tsc_aux;
109 static bool has_msr_tsc_adjust;
110 static bool has_msr_tsc_deadline;
111 static bool has_msr_feature_control;
112 static bool has_msr_misc_enable;
113 static bool has_msr_smbase;
114 static bool has_msr_bndcfgs;
115 static int lm_capable_kernel;
116 static bool has_msr_hv_hypercall;
117 static bool has_msr_hv_crash;
118 static bool has_msr_hv_reset;
119 static bool has_msr_hv_vpindex;
120 static bool hv_vpindex_settable;
121 static bool has_msr_hv_runtime;
122 static bool has_msr_hv_synic;
123 static bool has_msr_hv_stimer;
124 static bool has_msr_hv_frequencies;
125 static bool has_msr_hv_reenlightenment;
126 static bool has_msr_hv_syndbg_options;
127 static bool has_msr_xss;
128 static bool has_msr_umwait;
129 static bool has_msr_spec_ctrl;
130 static bool has_tsc_scale_msr;
131 static bool has_msr_tsx_ctrl;
132 static bool has_msr_virt_ssbd;
133 static bool has_msr_smi_count;
134 static bool has_msr_arch_capabs;
135 static bool has_msr_core_capabs;
136 static bool has_msr_vmx_vmfunc;
137 static bool has_msr_ucode_rev;
138 static bool has_msr_vmx_procbased_ctls2;
139 static bool has_msr_perf_capabs;
140 static bool has_msr_pkrs;
141
142 static uint32_t has_architectural_pmu_version;
143 static uint32_t num_architectural_pmu_gp_counters;
144 static uint32_t num_architectural_pmu_fixed_counters;
145
146 static int has_xsave2;
147 static int has_xcrs;
148 static int has_sregs2;
149 static int has_exception_payload;
150 static int has_triple_fault_event;
151
152 static bool has_msr_mcg_ext_ctl;
153
154 static struct kvm_cpuid2 *cpuid_cache;
155 static struct kvm_cpuid2 *hv_cpuid_cache;
156 static struct kvm_msr_list *kvm_feature_msrs;
157
158 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
159
160 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
161 static RateLimit bus_lock_ratelimit_ctrl;
162 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
163
164 bool kvm_has_smm(void)
165 {
166 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
167 }
168
169 bool kvm_has_adjust_clock_stable(void)
170 {
171 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
172
173 return (ret & KVM_CLOCK_TSC_STABLE);
174 }
175
176 bool kvm_has_exception_payload(void)
177 {
178 return has_exception_payload;
179 }
180
181 static bool kvm_x2apic_api_set_flags(uint64_t flags)
182 {
183 KVMState *s = KVM_STATE(current_accel());
184
185 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
186 }
187
188 #define MEMORIZE(fn, _result) \
189 ({ \
190 static bool _memorized; \
191 \
192 if (_memorized) { \
193 return _result; \
194 } \
195 _memorized = true; \
196 _result = fn; \
197 })
198
199 static bool has_x2apic_api;
200
201 bool kvm_has_x2apic_api(void)
202 {
203 return has_x2apic_api;
204 }
205
206 bool kvm_enable_x2apic(void)
207 {
208 return MEMORIZE(
209 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
210 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
211 has_x2apic_api);
212 }
213
214 bool kvm_hv_vpindex_settable(void)
215 {
216 return hv_vpindex_settable;
217 }
218
219 static int kvm_get_tsc(CPUState *cs)
220 {
221 X86CPU *cpu = X86_CPU(cs);
222 CPUX86State *env = &cpu->env;
223 uint64_t value;
224 int ret;
225
226 if (env->tsc_valid) {
227 return 0;
228 }
229
230 env->tsc_valid = !runstate_is_running();
231
232 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
233 if (ret < 0) {
234 return ret;
235 }
236
237 env->tsc = value;
238 return 0;
239 }
240
241 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
242 {
243 kvm_get_tsc(cpu);
244 }
245
246 void kvm_synchronize_all_tsc(void)
247 {
248 CPUState *cpu;
249
250 if (kvm_enabled()) {
251 CPU_FOREACH(cpu) {
252 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
253 }
254 }
255 }
256
257 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
258 {
259 struct kvm_cpuid2 *cpuid;
260 int r, size;
261
262 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
263 cpuid = g_malloc0(size);
264 cpuid->nent = max;
265 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
266 if (r == 0 && cpuid->nent >= max) {
267 r = -E2BIG;
268 }
269 if (r < 0) {
270 if (r == -E2BIG) {
271 g_free(cpuid);
272 return NULL;
273 } else {
274 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
275 strerror(-r));
276 exit(1);
277 }
278 }
279 return cpuid;
280 }
281
282 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
283 * for all entries.
284 */
285 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
286 {
287 struct kvm_cpuid2 *cpuid;
288 int max = 1;
289
290 if (cpuid_cache != NULL) {
291 return cpuid_cache;
292 }
293 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
294 max *= 2;
295 }
296 cpuid_cache = cpuid;
297 return cpuid;
298 }
299
300 static bool host_tsx_broken(void)
301 {
302 int family, model, stepping;\
303 char vendor[CPUID_VENDOR_SZ + 1];
304
305 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
306
307 /* Check if we are running on a Haswell host known to have broken TSX */
308 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
309 (family == 6) &&
310 ((model == 63 && stepping < 4) ||
311 model == 60 || model == 69 || model == 70);
312 }
313
314 /* Returns the value for a specific register on the cpuid entry
315 */
316 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
317 {
318 uint32_t ret = 0;
319 switch (reg) {
320 case R_EAX:
321 ret = entry->eax;
322 break;
323 case R_EBX:
324 ret = entry->ebx;
325 break;
326 case R_ECX:
327 ret = entry->ecx;
328 break;
329 case R_EDX:
330 ret = entry->edx;
331 break;
332 }
333 return ret;
334 }
335
336 /* Find matching entry for function/index on kvm_cpuid2 struct
337 */
338 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
339 uint32_t function,
340 uint32_t index)
341 {
342 int i;
343 for (i = 0; i < cpuid->nent; ++i) {
344 if (cpuid->entries[i].function == function &&
345 cpuid->entries[i].index == index) {
346 return &cpuid->entries[i];
347 }
348 }
349 /* not found: */
350 return NULL;
351 }
352
353 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
354 uint32_t index, int reg)
355 {
356 struct kvm_cpuid2 *cpuid;
357 uint32_t ret = 0;
358 uint32_t cpuid_1_edx, unused;
359 uint64_t bitmask;
360
361 cpuid = get_supported_cpuid(s);
362
363 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
364 if (entry) {
365 ret = cpuid_entry_get_reg(entry, reg);
366 }
367
368 /* Fixups for the data returned by KVM, below */
369
370 if (function == 1 && reg == R_EDX) {
371 /* KVM before 2.6.30 misreports the following features */
372 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
373 /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
374 ret |= CPUID_HT;
375 } else if (function == 1 && reg == R_ECX) {
376 /* We can set the hypervisor flag, even if KVM does not return it on
377 * GET_SUPPORTED_CPUID
378 */
379 ret |= CPUID_EXT_HYPERVISOR;
380 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
381 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
382 * and the irqchip is in the kernel.
383 */
384 if (kvm_irqchip_in_kernel() &&
385 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
386 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
387 }
388
389 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
390 * without the in-kernel irqchip
391 */
392 if (!kvm_irqchip_in_kernel()) {
393 ret &= ~CPUID_EXT_X2APIC;
394 }
395
396 if (enable_cpu_pm) {
397 int disable_exits = kvm_check_extension(s,
398 KVM_CAP_X86_DISABLE_EXITS);
399
400 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
401 ret |= CPUID_EXT_MONITOR;
402 }
403 }
404 } else if (function == 6 && reg == R_EAX) {
405 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
406 } else if (function == 7 && index == 0 && reg == R_EBX) {
407 /* Not new instructions, just an optimization. */
408 uint32_t ebx;
409 host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
410 ret |= ebx & CPUID_7_0_EBX_ERMS;
411
412 if (host_tsx_broken()) {
413 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
414 }
415 } else if (function == 7 && index == 0 && reg == R_EDX) {
416 /* Not new instructions, just an optimization. */
417 uint32_t edx;
418 host_cpuid(7, 0, &unused, &unused, &unused, &edx);
419 ret |= edx & CPUID_7_0_EDX_FSRM;
420
421 /*
422 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
423 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
424 * returned by KVM_GET_MSR_INDEX_LIST.
425 */
426 if (!has_msr_arch_capabs) {
427 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
428 }
429 } else if (function == 7 && index == 1 && reg == R_EAX) {
430 /* Not new instructions, just an optimization. */
431 uint32_t eax;
432 host_cpuid(7, 1, &eax, &unused, &unused, &unused);
433 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
434 } else if (function == 7 && index == 2 && reg == R_EDX) {
435 uint32_t edx;
436 host_cpuid(7, 2, &unused, &unused, &unused, &edx);
437 ret |= edx & CPUID_7_2_EDX_MCDT_NO;
438 } else if (function == 0xd && index == 0 &&
439 (reg == R_EAX || reg == R_EDX)) {
440 /*
441 * The value returned by KVM_GET_SUPPORTED_CPUID does not include
442 * features that still have to be enabled with the arch_prctl
443 * system call. QEMU needs the full value, which is retrieved
444 * with KVM_GET_DEVICE_ATTR.
445 */
446 struct kvm_device_attr attr = {
447 .group = 0,
448 .attr = KVM_X86_XCOMP_GUEST_SUPP,
449 .addr = (unsigned long) &bitmask
450 };
451
452 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
453 if (!sys_attr) {
454 return ret;
455 }
456
457 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
458 if (rc < 0) {
459 if (rc != -ENXIO) {
460 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
461 "error: %d", rc);
462 }
463 return ret;
464 }
465 ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
466 } else if (function == 0x80000001 && reg == R_ECX) {
467 /*
468 * It's safe to enable TOPOEXT even if it's not returned by
469 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
470 * us to keep CPU models including TOPOEXT runnable on older kernels.
471 */
472 ret |= CPUID_EXT3_TOPOEXT;
473 } else if (function == 0x80000001 && reg == R_EDX) {
474 /* On Intel, kvm returns cpuid according to the Intel spec,
475 * so add missing bits according to the AMD spec:
476 */
477 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
478 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
479 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
480 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
481 * be enabled without the in-kernel irqchip
482 */
483 if (!kvm_irqchip_in_kernel()) {
484 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
485 }
486 if (kvm_irqchip_is_split()) {
487 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
488 }
489 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
490 ret |= 1U << KVM_HINTS_REALTIME;
491 }
492
493 return ret;
494 }
495
496 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
497 {
498 struct {
499 struct kvm_msrs info;
500 struct kvm_msr_entry entries[1];
501 } msr_data = {};
502 uint64_t value;
503 uint32_t ret, can_be_one, must_be_one;
504
505 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
506 return 0;
507 }
508
509 /* Check if requested MSR is supported feature MSR */
510 int i;
511 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
512 if (kvm_feature_msrs->indices[i] == index) {
513 break;
514 }
515 if (i == kvm_feature_msrs->nmsrs) {
516 return 0; /* if the feature MSR is not supported, simply return 0 */
517 }
518
519 msr_data.info.nmsrs = 1;
520 msr_data.entries[0].index = index;
521
522 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
523 if (ret != 1) {
524 error_report("KVM get MSR (index=0x%x) feature failed, %s",
525 index, strerror(-ret));
526 exit(1);
527 }
528
529 value = msr_data.entries[0].data;
530 switch (index) {
531 case MSR_IA32_VMX_PROCBASED_CTLS2:
532 if (!has_msr_vmx_procbased_ctls2) {
533 /* KVM forgot to add these bits for some time, do this ourselves. */
534 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
535 CPUID_XSAVE_XSAVES) {
536 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
537 }
538 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
539 CPUID_EXT_RDRAND) {
540 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
541 }
542 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
543 CPUID_7_0_EBX_INVPCID) {
544 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
545 }
546 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
547 CPUID_7_0_EBX_RDSEED) {
548 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
549 }
550 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
551 CPUID_EXT2_RDTSCP) {
552 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
553 }
554 }
555 /* fall through */
556 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
557 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
558 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
559 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
560 /*
561 * Return true for bits that can be one, but do not have to be one.
562 * The SDM tells us which bits could have a "must be one" setting,
563 * so we can do the opposite transformation in make_vmx_msr_value.
564 */
565 must_be_one = (uint32_t)value;
566 can_be_one = (uint32_t)(value >> 32);
567 return can_be_one & ~must_be_one;
568
569 default:
570 return value;
571 }
572 }
573
574 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
575 int *max_banks)
576 {
577 *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
578 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
579 }
580
581 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
582 {
583 CPUState *cs = CPU(cpu);
584 CPUX86State *env = &cpu->env;
585 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
586 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
587 uint64_t mcg_status = MCG_STATUS_MCIP;
588 int flags = 0;
589
590 if (code == BUS_MCEERR_AR) {
591 status |= MCI_STATUS_AR | 0x134;
592 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
593 } else {
594 status |= 0xc0;
595 mcg_status |= MCG_STATUS_RIPV;
596 }
597
598 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
599 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
600 * guest kernel back into env->mcg_ext_ctl.
601 */
602 cpu_synchronize_state(cs);
603 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
604 mcg_status |= MCG_STATUS_LMCE;
605 flags = 0;
606 }
607
608 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
609 (MCM_ADDR_PHYS << 6) | 0xc, flags);
610 }
611
612 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
613 {
614 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
615
616 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
617 &mff);
618 }
619
620 static void hardware_memory_error(void *host_addr)
621 {
622 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
623 error_report("QEMU got Hardware memory error at addr %p", host_addr);
624 exit(1);
625 }
626
627 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
628 {
629 X86CPU *cpu = X86_CPU(c);
630 CPUX86State *env = &cpu->env;
631 ram_addr_t ram_addr;
632 hwaddr paddr;
633
634 /* If we get an action required MCE, it has been injected by KVM
635 * while the VM was running. An action optional MCE instead should
636 * be coming from the main thread, which qemu_init_sigbus identifies
637 * as the "early kill" thread.
638 */
639 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
640
641 if ((env->mcg_cap & MCG_SER_P) && addr) {
642 ram_addr = qemu_ram_addr_from_host(addr);
643 if (ram_addr != RAM_ADDR_INVALID &&
644 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
645 kvm_hwpoison_page_add(ram_addr);
646 kvm_mce_inject(cpu, paddr, code);
647
648 /*
649 * Use different logging severity based on error type.
650 * If there is additional MCE reporting on the hypervisor, QEMU VA
651 * could be another source to identify the PA and MCE details.
652 */
653 if (code == BUS_MCEERR_AR) {
654 error_report("Guest MCE Memory Error at QEMU addr %p and "
655 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
656 addr, paddr, "BUS_MCEERR_AR");
657 } else {
658 warn_report("Guest MCE Memory Error at QEMU addr %p and "
659 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
660 addr, paddr, "BUS_MCEERR_AO");
661 }
662
663 return;
664 }
665
666 if (code == BUS_MCEERR_AO) {
667 warn_report("Hardware memory error at addr %p of type %s "
668 "for memory used by QEMU itself instead of guest system!",
669 addr, "BUS_MCEERR_AO");
670 }
671 }
672
673 if (code == BUS_MCEERR_AR) {
674 hardware_memory_error(addr);
675 }
676
677 /* Hope we are lucky for AO MCE, just notify a event */
678 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
679 }
680
681 static void kvm_queue_exception(CPUX86State *env,
682 int32_t exception_nr,
683 uint8_t exception_has_payload,
684 uint64_t exception_payload)
685 {
686 assert(env->exception_nr == -1);
687 assert(!env->exception_pending);
688 assert(!env->exception_injected);
689 assert(!env->exception_has_payload);
690
691 env->exception_nr = exception_nr;
692
693 if (has_exception_payload) {
694 env->exception_pending = 1;
695
696 env->exception_has_payload = exception_has_payload;
697 env->exception_payload = exception_payload;
698 } else {
699 env->exception_injected = 1;
700
701 if (exception_nr == EXCP01_DB) {
702 assert(exception_has_payload);
703 env->dr[6] = exception_payload;
704 } else if (exception_nr == EXCP0E_PAGE) {
705 assert(exception_has_payload);
706 env->cr[2] = exception_payload;
707 } else {
708 assert(!exception_has_payload);
709 }
710 }
711 }
712
713 static void cpu_update_state(void *opaque, bool running, RunState state)
714 {
715 CPUX86State *env = opaque;
716
717 if (running) {
718 env->tsc_valid = false;
719 }
720 }
721
722 unsigned long kvm_arch_vcpu_id(CPUState *cs)
723 {
724 X86CPU *cpu = X86_CPU(cs);
725 return cpu->apic_id;
726 }
727
728 #ifndef KVM_CPUID_SIGNATURE_NEXT
729 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
730 #endif
731
732 static bool hyperv_enabled(X86CPU *cpu)
733 {
734 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
735 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
736 cpu->hyperv_features || cpu->hyperv_passthrough);
737 }
738
739 /*
740 * Check whether target_freq is within conservative
741 * ntp correctable bounds (250ppm) of freq
742 */
743 static inline bool freq_within_bounds(int freq, int target_freq)
744 {
745 int max_freq = freq + (freq * 250 / 1000000);
746 int min_freq = freq - (freq * 250 / 1000000);
747
748 if (target_freq >= min_freq && target_freq <= max_freq) {
749 return true;
750 }
751
752 return false;
753 }
754
755 static int kvm_arch_set_tsc_khz(CPUState *cs)
756 {
757 X86CPU *cpu = X86_CPU(cs);
758 CPUX86State *env = &cpu->env;
759 int r, cur_freq;
760 bool set_ioctl = false;
761
762 if (!env->tsc_khz) {
763 return 0;
764 }
765
766 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
767 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
768
769 /*
770 * If TSC scaling is supported, attempt to set TSC frequency.
771 */
772 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
773 set_ioctl = true;
774 }
775
776 /*
777 * If desired TSC frequency is within bounds of NTP correction,
778 * attempt to set TSC frequency.
779 */
780 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
781 set_ioctl = true;
782 }
783
784 r = set_ioctl ?
785 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
786 -ENOTSUP;
787
788 if (r < 0) {
789 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
790 * TSC frequency doesn't match the one we want.
791 */
792 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
793 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
794 -ENOTSUP;
795 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
796 warn_report("TSC frequency mismatch between "
797 "VM (%" PRId64 " kHz) and host (%d kHz), "
798 "and TSC scaling unavailable",
799 env->tsc_khz, cur_freq);
800 return r;
801 }
802 }
803
804 return 0;
805 }
806
807 static bool tsc_is_stable_and_known(CPUX86State *env)
808 {
809 if (!env->tsc_khz) {
810 return false;
811 }
812 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
813 || env->user_tsc_khz;
814 }
815
816 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
817
818 static struct {
819 const char *desc;
820 struct {
821 uint32_t func;
822 int reg;
823 uint32_t bits;
824 } flags[2];
825 uint64_t dependencies;
826 } kvm_hyperv_properties[] = {
827 [HYPERV_FEAT_RELAXED] = {
828 .desc = "relaxed timing (hv-relaxed)",
829 .flags = {
830 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
831 .bits = HV_RELAXED_TIMING_RECOMMENDED}
832 }
833 },
834 [HYPERV_FEAT_VAPIC] = {
835 .desc = "virtual APIC (hv-vapic)",
836 .flags = {
837 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
838 .bits = HV_APIC_ACCESS_AVAILABLE}
839 }
840 },
841 [HYPERV_FEAT_TIME] = {
842 .desc = "clocksources (hv-time)",
843 .flags = {
844 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
845 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
846 }
847 },
848 [HYPERV_FEAT_CRASH] = {
849 .desc = "crash MSRs (hv-crash)",
850 .flags = {
851 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
852 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
853 }
854 },
855 [HYPERV_FEAT_RESET] = {
856 .desc = "reset MSR (hv-reset)",
857 .flags = {
858 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
859 .bits = HV_RESET_AVAILABLE}
860 }
861 },
862 [HYPERV_FEAT_VPINDEX] = {
863 .desc = "VP_INDEX MSR (hv-vpindex)",
864 .flags = {
865 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
866 .bits = HV_VP_INDEX_AVAILABLE}
867 }
868 },
869 [HYPERV_FEAT_RUNTIME] = {
870 .desc = "VP_RUNTIME MSR (hv-runtime)",
871 .flags = {
872 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
873 .bits = HV_VP_RUNTIME_AVAILABLE}
874 }
875 },
876 [HYPERV_FEAT_SYNIC] = {
877 .desc = "synthetic interrupt controller (hv-synic)",
878 .flags = {
879 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
880 .bits = HV_SYNIC_AVAILABLE}
881 }
882 },
883 [HYPERV_FEAT_STIMER] = {
884 .desc = "synthetic timers (hv-stimer)",
885 .flags = {
886 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
887 .bits = HV_SYNTIMERS_AVAILABLE}
888 },
889 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
890 },
891 [HYPERV_FEAT_FREQUENCIES] = {
892 .desc = "frequency MSRs (hv-frequencies)",
893 .flags = {
894 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
895 .bits = HV_ACCESS_FREQUENCY_MSRS},
896 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
897 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
898 }
899 },
900 [HYPERV_FEAT_REENLIGHTENMENT] = {
901 .desc = "reenlightenment MSRs (hv-reenlightenment)",
902 .flags = {
903 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
904 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
905 }
906 },
907 [HYPERV_FEAT_TLBFLUSH] = {
908 .desc = "paravirtualized TLB flush (hv-tlbflush)",
909 .flags = {
910 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
911 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
912 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
913 },
914 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
915 },
916 [HYPERV_FEAT_EVMCS] = {
917 .desc = "enlightened VMCS (hv-evmcs)",
918 .flags = {
919 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
920 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
921 },
922 .dependencies = BIT(HYPERV_FEAT_VAPIC)
923 },
924 [HYPERV_FEAT_IPI] = {
925 .desc = "paravirtualized IPI (hv-ipi)",
926 .flags = {
927 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
928 .bits = HV_CLUSTER_IPI_RECOMMENDED |
929 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
930 },
931 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
932 },
933 [HYPERV_FEAT_STIMER_DIRECT] = {
934 .desc = "direct mode synthetic timers (hv-stimer-direct)",
935 .flags = {
936 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
937 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
938 },
939 .dependencies = BIT(HYPERV_FEAT_STIMER)
940 },
941 [HYPERV_FEAT_AVIC] = {
942 .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
943 .flags = {
944 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
945 .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
946 }
947 },
948 #ifdef CONFIG_SYNDBG
949 [HYPERV_FEAT_SYNDBG] = {
950 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
951 .flags = {
952 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
953 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
954 },
955 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
956 },
957 #endif
958 [HYPERV_FEAT_MSR_BITMAP] = {
959 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
960 .flags = {
961 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
962 .bits = HV_NESTED_MSR_BITMAP}
963 }
964 },
965 [HYPERV_FEAT_XMM_INPUT] = {
966 .desc = "XMM fast hypercall input (hv-xmm-input)",
967 .flags = {
968 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
969 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
970 }
971 },
972 [HYPERV_FEAT_TLBFLUSH_EXT] = {
973 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
974 .flags = {
975 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
976 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
977 },
978 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
979 },
980 [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
981 .desc = "direct TLB flush (hv-tlbflush-direct)",
982 .flags = {
983 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
984 .bits = HV_NESTED_DIRECT_FLUSH}
985 },
986 .dependencies = BIT(HYPERV_FEAT_VAPIC)
987 },
988 };
989
990 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
991 bool do_sys_ioctl)
992 {
993 struct kvm_cpuid2 *cpuid;
994 int r, size;
995
996 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
997 cpuid = g_malloc0(size);
998 cpuid->nent = max;
999
1000 if (do_sys_ioctl) {
1001 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1002 } else {
1003 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1004 }
1005 if (r == 0 && cpuid->nent >= max) {
1006 r = -E2BIG;
1007 }
1008 if (r < 0) {
1009 if (r == -E2BIG) {
1010 g_free(cpuid);
1011 return NULL;
1012 } else {
1013 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1014 strerror(-r));
1015 exit(1);
1016 }
1017 }
1018 return cpuid;
1019 }
1020
1021 /*
1022 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1023 * for all entries.
1024 */
1025 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1026 {
1027 struct kvm_cpuid2 *cpuid;
1028 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1029 int max = 11;
1030 int i;
1031 bool do_sys_ioctl;
1032
1033 do_sys_ioctl =
1034 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1035
1036 /*
1037 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1038 * unsupported, kvm_hyperv_expand_features() checks for that.
1039 */
1040 assert(do_sys_ioctl || cs->kvm_state);
1041
1042 /*
1043 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1044 * -E2BIG, however, it doesn't report back the right size. Keep increasing
1045 * it and re-trying until we succeed.
1046 */
1047 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1048 max++;
1049 }
1050
1051 /*
1052 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1053 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1054 * information early, just check for the capability and set the bit
1055 * manually.
1056 */
1057 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1058 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1059 for (i = 0; i < cpuid->nent; i++) {
1060 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1061 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1062 }
1063 }
1064 }
1065
1066 return cpuid;
1067 }
1068
1069 /*
1070 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1071 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1072 */
1073 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1074 {
1075 X86CPU *cpu = X86_CPU(cs);
1076 struct kvm_cpuid2 *cpuid;
1077 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1078
1079 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1080 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1081 cpuid->nent = 2;
1082
1083 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1084 entry_feat = &cpuid->entries[0];
1085 entry_feat->function = HV_CPUID_FEATURES;
1086
1087 entry_recomm = &cpuid->entries[1];
1088 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1089 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1090
1091 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1092 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1093 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1094 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1095 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1096 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1097 }
1098
1099 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1100 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1101 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1102 }
1103
1104 if (has_msr_hv_frequencies) {
1105 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1106 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1107 }
1108
1109 if (has_msr_hv_crash) {
1110 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1111 }
1112
1113 if (has_msr_hv_reenlightenment) {
1114 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1115 }
1116
1117 if (has_msr_hv_reset) {
1118 entry_feat->eax |= HV_RESET_AVAILABLE;
1119 }
1120
1121 if (has_msr_hv_vpindex) {
1122 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1123 }
1124
1125 if (has_msr_hv_runtime) {
1126 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1127 }
1128
1129 if (has_msr_hv_synic) {
1130 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1131 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1132
1133 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1134 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1135 }
1136 }
1137
1138 if (has_msr_hv_stimer) {
1139 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1140 }
1141
1142 if (has_msr_hv_syndbg_options) {
1143 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1144 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1145 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1146 }
1147
1148 if (kvm_check_extension(cs->kvm_state,
1149 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1150 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1151 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1152 }
1153
1154 if (kvm_check_extension(cs->kvm_state,
1155 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1156 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1157 }
1158
1159 if (kvm_check_extension(cs->kvm_state,
1160 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1161 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1162 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1163 }
1164
1165 return cpuid;
1166 }
1167
1168 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1169 {
1170 struct kvm_cpuid_entry2 *entry;
1171 struct kvm_cpuid2 *cpuid;
1172
1173 if (hv_cpuid_cache) {
1174 cpuid = hv_cpuid_cache;
1175 } else {
1176 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1177 cpuid = get_supported_hv_cpuid(cs);
1178 } else {
1179 /*
1180 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1181 * before KVM context is created but this is only done when
1182 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1183 * KVM_CAP_HYPERV_CPUID.
1184 */
1185 assert(cs->kvm_state);
1186
1187 cpuid = get_supported_hv_cpuid_legacy(cs);
1188 }
1189 hv_cpuid_cache = cpuid;
1190 }
1191
1192 if (!cpuid) {
1193 return 0;
1194 }
1195
1196 entry = cpuid_find_entry(cpuid, func, 0);
1197 if (!entry) {
1198 return 0;
1199 }
1200
1201 return cpuid_entry_get_reg(entry, reg);
1202 }
1203
1204 static bool hyperv_feature_supported(CPUState *cs, int feature)
1205 {
1206 uint32_t func, bits;
1207 int i, reg;
1208
1209 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1210
1211 func = kvm_hyperv_properties[feature].flags[i].func;
1212 reg = kvm_hyperv_properties[feature].flags[i].reg;
1213 bits = kvm_hyperv_properties[feature].flags[i].bits;
1214
1215 if (!func) {
1216 continue;
1217 }
1218
1219 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1220 return false;
1221 }
1222 }
1223
1224 return true;
1225 }
1226
1227 /* Checks that all feature dependencies are enabled */
1228 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1229 {
1230 uint64_t deps;
1231 int dep_feat;
1232
1233 deps = kvm_hyperv_properties[feature].dependencies;
1234 while (deps) {
1235 dep_feat = ctz64(deps);
1236 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1237 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1238 kvm_hyperv_properties[feature].desc,
1239 kvm_hyperv_properties[dep_feat].desc);
1240 return false;
1241 }
1242 deps &= ~(1ull << dep_feat);
1243 }
1244
1245 return true;
1246 }
1247
1248 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1249 {
1250 X86CPU *cpu = X86_CPU(cs);
1251 uint32_t r = 0;
1252 int i, j;
1253
1254 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1255 if (!hyperv_feat_enabled(cpu, i)) {
1256 continue;
1257 }
1258
1259 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1260 if (kvm_hyperv_properties[i].flags[j].func != func) {
1261 continue;
1262 }
1263 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1264 continue;
1265 }
1266
1267 r |= kvm_hyperv_properties[i].flags[j].bits;
1268 }
1269 }
1270
1271 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1272 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1273 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1274 r |= DEFAULT_EVMCS_VERSION;
1275 }
1276 }
1277
1278 return r;
1279 }
1280
1281 /*
1282 * Expand Hyper-V CPU features. In partucular, check that all the requested
1283 * features are supported by the host and the sanity of the configuration
1284 * (that all the required dependencies are included). Also, this takes care
1285 * of 'hv_passthrough' mode and fills the environment with all supported
1286 * Hyper-V features.
1287 */
1288 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1289 {
1290 CPUState *cs = CPU(cpu);
1291 Error *local_err = NULL;
1292 int feat;
1293
1294 if (!hyperv_enabled(cpu))
1295 return true;
1296
1297 /*
1298 * When kvm_hyperv_expand_features is called at CPU feature expansion
1299 * time per-CPU kvm_state is not available yet so we can only proceed
1300 * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1301 */
1302 if (!cs->kvm_state &&
1303 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1304 return true;
1305
1306 if (cpu->hyperv_passthrough) {
1307 cpu->hyperv_vendor_id[0] =
1308 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1309 cpu->hyperv_vendor_id[1] =
1310 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1311 cpu->hyperv_vendor_id[2] =
1312 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1313 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1314 sizeof(cpu->hyperv_vendor_id) + 1);
1315 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1316 sizeof(cpu->hyperv_vendor_id));
1317 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1318
1319 cpu->hyperv_interface_id[0] =
1320 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1321 cpu->hyperv_interface_id[1] =
1322 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1323 cpu->hyperv_interface_id[2] =
1324 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1325 cpu->hyperv_interface_id[3] =
1326 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1327
1328 cpu->hyperv_ver_id_build =
1329 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1330 cpu->hyperv_ver_id_major =
1331 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1332 cpu->hyperv_ver_id_minor =
1333 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1334 cpu->hyperv_ver_id_sp =
1335 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1336 cpu->hyperv_ver_id_sb =
1337 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1338 cpu->hyperv_ver_id_sn =
1339 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1340
1341 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1342 R_EAX);
1343 cpu->hyperv_limits[0] =
1344 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1345 cpu->hyperv_limits[1] =
1346 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1347 cpu->hyperv_limits[2] =
1348 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1349
1350 cpu->hyperv_spinlock_attempts =
1351 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1352
1353 /*
1354 * Mark feature as enabled in 'cpu->hyperv_features' as
1355 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1356 */
1357 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1358 if (hyperv_feature_supported(cs, feat)) {
1359 cpu->hyperv_features |= BIT(feat);
1360 }
1361 }
1362 } else {
1363 /* Check features availability and dependencies */
1364 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1365 /* If the feature was not requested skip it. */
1366 if (!hyperv_feat_enabled(cpu, feat)) {
1367 continue;
1368 }
1369
1370 /* Check if the feature is supported by KVM */
1371 if (!hyperv_feature_supported(cs, feat)) {
1372 error_setg(errp, "Hyper-V %s is not supported by kernel",
1373 kvm_hyperv_properties[feat].desc);
1374 return false;
1375 }
1376
1377 /* Check dependencies */
1378 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1379 error_propagate(errp, local_err);
1380 return false;
1381 }
1382 }
1383 }
1384
1385 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1386 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1387 !cpu->hyperv_synic_kvm_only &&
1388 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1389 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1390 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1391 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1392 return false;
1393 }
1394
1395 return true;
1396 }
1397
1398 /*
1399 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1400 */
1401 static int hyperv_fill_cpuids(CPUState *cs,
1402 struct kvm_cpuid_entry2 *cpuid_ent)
1403 {
1404 X86CPU *cpu = X86_CPU(cs);
1405 struct kvm_cpuid_entry2 *c;
1406 uint32_t signature[3];
1407 uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1408 uint32_t nested_eax =
1409 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1410
1411 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1412 HV_CPUID_IMPLEMENT_LIMITS;
1413
1414 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1415 max_cpuid_leaf =
1416 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1417 }
1418
1419 c = &cpuid_ent[cpuid_i++];
1420 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1421 c->eax = max_cpuid_leaf;
1422 c->ebx = cpu->hyperv_vendor_id[0];
1423 c->ecx = cpu->hyperv_vendor_id[1];
1424 c->edx = cpu->hyperv_vendor_id[2];
1425
1426 c = &cpuid_ent[cpuid_i++];
1427 c->function = HV_CPUID_INTERFACE;
1428 c->eax = cpu->hyperv_interface_id[0];
1429 c->ebx = cpu->hyperv_interface_id[1];
1430 c->ecx = cpu->hyperv_interface_id[2];
1431 c->edx = cpu->hyperv_interface_id[3];
1432
1433 c = &cpuid_ent[cpuid_i++];
1434 c->function = HV_CPUID_VERSION;
1435 c->eax = cpu->hyperv_ver_id_build;
1436 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1437 cpu->hyperv_ver_id_minor;
1438 c->ecx = cpu->hyperv_ver_id_sp;
1439 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1440 (cpu->hyperv_ver_id_sn & 0xffffff);
1441
1442 c = &cpuid_ent[cpuid_i++];
1443 c->function = HV_CPUID_FEATURES;
1444 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1445 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1446 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1447
1448 /* Unconditionally required with any Hyper-V enlightenment */
1449 c->eax |= HV_HYPERCALL_AVAILABLE;
1450
1451 /* SynIC and Vmbus devices require messages/signals hypercalls */
1452 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1453 !cpu->hyperv_synic_kvm_only) {
1454 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1455 }
1456
1457
1458 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1459 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1460
1461 c = &cpuid_ent[cpuid_i++];
1462 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1463 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1464 c->ebx = cpu->hyperv_spinlock_attempts;
1465
1466 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1467 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1468 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1469 }
1470
1471 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1472 c->eax |= HV_NO_NONARCH_CORESHARING;
1473 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1474 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1475 HV_NO_NONARCH_CORESHARING;
1476 }
1477
1478 c = &cpuid_ent[cpuid_i++];
1479 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1480 c->eax = cpu->hv_max_vps;
1481 c->ebx = cpu->hyperv_limits[0];
1482 c->ecx = cpu->hyperv_limits[1];
1483 c->edx = cpu->hyperv_limits[2];
1484
1485 if (nested_eax) {
1486 uint32_t function;
1487
1488 /* Create zeroed 0x40000006..0x40000009 leaves */
1489 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1490 function < HV_CPUID_NESTED_FEATURES; function++) {
1491 c = &cpuid_ent[cpuid_i++];
1492 c->function = function;
1493 }
1494
1495 c = &cpuid_ent[cpuid_i++];
1496 c->function = HV_CPUID_NESTED_FEATURES;
1497 c->eax = nested_eax;
1498 }
1499
1500 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1501 c = &cpuid_ent[cpuid_i++];
1502 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1503 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1504 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1505 memcpy(signature, "Microsoft VS", 12);
1506 c->eax = 0;
1507 c->ebx = signature[0];
1508 c->ecx = signature[1];
1509 c->edx = signature[2];
1510
1511 c = &cpuid_ent[cpuid_i++];
1512 c->function = HV_CPUID_SYNDBG_INTERFACE;
1513 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1514 c->eax = signature[0];
1515 c->ebx = 0;
1516 c->ecx = 0;
1517 c->edx = 0;
1518
1519 c = &cpuid_ent[cpuid_i++];
1520 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1521 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1522 c->ebx = 0;
1523 c->ecx = 0;
1524 c->edx = 0;
1525 }
1526
1527 return cpuid_i;
1528 }
1529
1530 static Error *hv_passthrough_mig_blocker;
1531 static Error *hv_no_nonarch_cs_mig_blocker;
1532
1533 /* Checks that the exposed eVMCS version range is supported by KVM */
1534 static bool evmcs_version_supported(uint16_t evmcs_version,
1535 uint16_t supported_evmcs_version)
1536 {
1537 uint8_t min_version = evmcs_version & 0xff;
1538 uint8_t max_version = evmcs_version >> 8;
1539 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1540 uint8_t max_supported_version = supported_evmcs_version >> 8;
1541
1542 return (min_version >= min_supported_version) &&
1543 (max_version <= max_supported_version);
1544 }
1545
1546 static int hyperv_init_vcpu(X86CPU *cpu)
1547 {
1548 CPUState *cs = CPU(cpu);
1549 Error *local_err = NULL;
1550 int ret;
1551
1552 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1553 error_setg(&hv_passthrough_mig_blocker,
1554 "'hv-passthrough' CPU flag prevents migration, use explicit"
1555 " set of hv-* flags instead");
1556 ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1557 if (ret < 0) {
1558 error_report_err(local_err);
1559 return ret;
1560 }
1561 }
1562
1563 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1564 hv_no_nonarch_cs_mig_blocker == NULL) {
1565 error_setg(&hv_no_nonarch_cs_mig_blocker,
1566 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1567 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1568 " make sure SMT is disabled and/or that vCPUs are properly"
1569 " pinned)");
1570 ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1571 if (ret < 0) {
1572 error_report_err(local_err);
1573 return ret;
1574 }
1575 }
1576
1577 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1578 /*
1579 * the kernel doesn't support setting vp_index; assert that its value
1580 * is in sync
1581 */
1582 uint64_t value;
1583
1584 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1585 if (ret < 0) {
1586 return ret;
1587 }
1588
1589 if (value != hyperv_vp_index(CPU(cpu))) {
1590 error_report("kernel's vp_index != QEMU's vp_index");
1591 return -ENXIO;
1592 }
1593 }
1594
1595 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1596 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1597 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1598 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1599 if (ret < 0) {
1600 error_report("failed to turn on HyperV SynIC in KVM: %s",
1601 strerror(-ret));
1602 return ret;
1603 }
1604
1605 if (!cpu->hyperv_synic_kvm_only) {
1606 ret = hyperv_x86_synic_add(cpu);
1607 if (ret < 0) {
1608 error_report("failed to create HyperV SynIC: %s",
1609 strerror(-ret));
1610 return ret;
1611 }
1612 }
1613 }
1614
1615 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1616 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1617 uint16_t supported_evmcs_version;
1618
1619 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1620 (uintptr_t)&supported_evmcs_version);
1621
1622 /*
1623 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1624 * option sets. Note: we hardcode the maximum supported eVMCS version
1625 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1626 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1627 * to be added.
1628 */
1629 if (ret < 0) {
1630 error_report("Hyper-V %s is not supported by kernel",
1631 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1632 return ret;
1633 }
1634
1635 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1636 error_report("eVMCS version range [%d..%d] is not supported by "
1637 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1638 evmcs_version >> 8, supported_evmcs_version & 0xff,
1639 supported_evmcs_version >> 8);
1640 return -ENOTSUP;
1641 }
1642 }
1643
1644 if (cpu->hyperv_enforce_cpuid) {
1645 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1646 if (ret < 0) {
1647 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1648 strerror(-ret));
1649 return ret;
1650 }
1651 }
1652
1653 return 0;
1654 }
1655
1656 static Error *invtsc_mig_blocker;
1657
1658 #define KVM_MAX_CPUID_ENTRIES 100
1659
1660 static void kvm_init_xsave(CPUX86State *env)
1661 {
1662 if (has_xsave2) {
1663 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1664 } else {
1665 env->xsave_buf_len = sizeof(struct kvm_xsave);
1666 }
1667
1668 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1669 memset(env->xsave_buf, 0, env->xsave_buf_len);
1670 /*
1671 * The allocated storage must be large enough for all of the
1672 * possible XSAVE state components.
1673 */
1674 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1675 env->xsave_buf_len);
1676 }
1677
1678 static void kvm_init_nested_state(CPUX86State *env)
1679 {
1680 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1681 uint32_t size;
1682
1683 if (!env->nested_state) {
1684 return;
1685 }
1686
1687 size = env->nested_state->size;
1688
1689 memset(env->nested_state, 0, size);
1690 env->nested_state->size = size;
1691
1692 if (cpu_has_vmx(env)) {
1693 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1694 vmx_hdr = &env->nested_state->hdr.vmx;
1695 vmx_hdr->vmxon_pa = -1ull;
1696 vmx_hdr->vmcs12_pa = -1ull;
1697 } else if (cpu_has_svm(env)) {
1698 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1699 }
1700 }
1701
1702 int kvm_arch_init_vcpu(CPUState *cs)
1703 {
1704 struct {
1705 struct kvm_cpuid2 cpuid;
1706 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1707 } cpuid_data;
1708 /*
1709 * The kernel defines these structs with padding fields so there
1710 * should be no extra padding in our cpuid_data struct.
1711 */
1712 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1713 sizeof(struct kvm_cpuid2) +
1714 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1715
1716 X86CPU *cpu = X86_CPU(cs);
1717 CPUX86State *env = &cpu->env;
1718 uint32_t limit, i, j, cpuid_i;
1719 uint32_t unused;
1720 struct kvm_cpuid_entry2 *c;
1721 uint32_t signature[3];
1722 int kvm_base = KVM_CPUID_SIGNATURE;
1723 int max_nested_state_len;
1724 int r;
1725 Error *local_err = NULL;
1726
1727 memset(&cpuid_data, 0, sizeof(cpuid_data));
1728
1729 cpuid_i = 0;
1730
1731 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1732
1733 r = kvm_arch_set_tsc_khz(cs);
1734 if (r < 0) {
1735 return r;
1736 }
1737
1738 /* vcpu's TSC frequency is either specified by user, or following
1739 * the value used by KVM if the former is not present. In the
1740 * latter case, we query it from KVM and record in env->tsc_khz,
1741 * so that vcpu's TSC frequency can be migrated later via this field.
1742 */
1743 if (!env->tsc_khz) {
1744 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1745 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1746 -ENOTSUP;
1747 if (r > 0) {
1748 env->tsc_khz = r;
1749 }
1750 }
1751
1752 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1753
1754 /*
1755 * kvm_hyperv_expand_features() is called here for the second time in case
1756 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1757 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1758 * check which Hyper-V enlightenments are supported and which are not, we
1759 * can still proceed and check/expand Hyper-V enlightenments here so legacy
1760 * behavior is preserved.
1761 */
1762 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1763 error_report_err(local_err);
1764 return -ENOSYS;
1765 }
1766
1767 if (hyperv_enabled(cpu)) {
1768 r = hyperv_init_vcpu(cpu);
1769 if (r) {
1770 return r;
1771 }
1772
1773 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1774 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1775 has_msr_hv_hypercall = true;
1776 }
1777
1778 if (cs->kvm_state->xen_version) {
1779 #ifdef CONFIG_XEN_EMU
1780 struct kvm_cpuid_entry2 *xen_max_leaf;
1781
1782 memcpy(signature, "XenVMMXenVMM", 12);
1783
1784 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
1785 c->function = kvm_base + XEN_CPUID_SIGNATURE;
1786 c->eax = kvm_base + XEN_CPUID_TIME;
1787 c->ebx = signature[0];
1788 c->ecx = signature[1];
1789 c->edx = signature[2];
1790
1791 c = &cpuid_data.entries[cpuid_i++];
1792 c->function = kvm_base + XEN_CPUID_VENDOR;
1793 c->eax = cs->kvm_state->xen_version;
1794 c->ebx = 0;
1795 c->ecx = 0;
1796 c->edx = 0;
1797
1798 c = &cpuid_data.entries[cpuid_i++];
1799 c->function = kvm_base + XEN_CPUID_HVM_MSR;
1800 /* Number of hypercall-transfer pages */
1801 c->eax = 1;
1802 /* Hypercall MSR base address */
1803 if (hyperv_enabled(cpu)) {
1804 c->ebx = XEN_HYPERCALL_MSR_HYPERV;
1805 kvm_xen_init(cs->kvm_state, c->ebx);
1806 } else {
1807 c->ebx = XEN_HYPERCALL_MSR;
1808 }
1809 c->ecx = 0;
1810 c->edx = 0;
1811
1812 c = &cpuid_data.entries[cpuid_i++];
1813 c->function = kvm_base + XEN_CPUID_TIME;
1814 c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
1815 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
1816 /* default=0 (emulate if necessary) */
1817 c->ebx = 0;
1818 /* guest tsc frequency */
1819 c->ecx = env->user_tsc_khz;
1820 /* guest tsc incarnation (migration count) */
1821 c->edx = 0;
1822
1823 c = &cpuid_data.entries[cpuid_i++];
1824 c->function = kvm_base + XEN_CPUID_HVM;
1825 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
1826 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
1827 c->function = kvm_base + XEN_CPUID_HVM;
1828
1829 if (cpu->xen_vapic) {
1830 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
1831 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
1832 }
1833
1834 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
1835
1836 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
1837 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
1838 c->ebx = cs->cpu_index;
1839 }
1840
1841 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
1842 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
1843 }
1844 }
1845
1846 r = kvm_xen_init_vcpu(cs);
1847 if (r) {
1848 return r;
1849 }
1850
1851 kvm_base += 0x100;
1852 #else /* CONFIG_XEN_EMU */
1853 /* This should never happen as kvm_arch_init() would have died first. */
1854 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
1855 abort();
1856 #endif
1857 } else if (cpu->expose_kvm) {
1858 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1859 c = &cpuid_data.entries[cpuid_i++];
1860 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1861 c->eax = KVM_CPUID_FEATURES | kvm_base;
1862 c->ebx = signature[0];
1863 c->ecx = signature[1];
1864 c->edx = signature[2];
1865
1866 c = &cpuid_data.entries[cpuid_i++];
1867 c->function = KVM_CPUID_FEATURES | kvm_base;
1868 c->eax = env->features[FEAT_KVM];
1869 c->edx = env->features[FEAT_KVM_HINTS];
1870 }
1871
1872 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1873
1874 if (cpu->kvm_pv_enforce_cpuid) {
1875 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1876 if (r < 0) {
1877 fprintf(stderr,
1878 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1879 strerror(-r));
1880 abort();
1881 }
1882 }
1883
1884 for (i = 0; i <= limit; i++) {
1885 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1886 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1887 abort();
1888 }
1889 c = &cpuid_data.entries[cpuid_i++];
1890
1891 switch (i) {
1892 case 2: {
1893 /* Keep reading function 2 till all the input is received */
1894 int times;
1895
1896 c->function = i;
1897 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1898 KVM_CPUID_FLAG_STATE_READ_NEXT;
1899 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1900 times = c->eax & 0xff;
1901
1902 for (j = 1; j < times; ++j) {
1903 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1904 fprintf(stderr, "cpuid_data is full, no space for "
1905 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1906 abort();
1907 }
1908 c = &cpuid_data.entries[cpuid_i++];
1909 c->function = i;
1910 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1911 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1912 }
1913 break;
1914 }
1915 case 0x1f:
1916 if (env->nr_dies < 2) {
1917 break;
1918 }
1919 /* fallthrough */
1920 case 4:
1921 case 0xb:
1922 case 0xd:
1923 for (j = 0; ; j++) {
1924 if (i == 0xd && j == 64) {
1925 break;
1926 }
1927
1928 if (i == 0x1f && j == 64) {
1929 break;
1930 }
1931
1932 c->function = i;
1933 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1934 c->index = j;
1935 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1936
1937 if (i == 4 && c->eax == 0) {
1938 break;
1939 }
1940 if (i == 0xb && !(c->ecx & 0xff00)) {
1941 break;
1942 }
1943 if (i == 0x1f && !(c->ecx & 0xff00)) {
1944 break;
1945 }
1946 if (i == 0xd && c->eax == 0) {
1947 continue;
1948 }
1949 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1950 fprintf(stderr, "cpuid_data is full, no space for "
1951 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1952 abort();
1953 }
1954 c = &cpuid_data.entries[cpuid_i++];
1955 }
1956 break;
1957 case 0x7:
1958 case 0x12:
1959 for (j = 0; ; j++) {
1960 c->function = i;
1961 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1962 c->index = j;
1963 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1964
1965 if (j > 1 && (c->eax & 0xf) != 1) {
1966 break;
1967 }
1968
1969 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1970 fprintf(stderr, "cpuid_data is full, no space for "
1971 "cpuid(eax:0x12,ecx:0x%x)\n", j);
1972 abort();
1973 }
1974 c = &cpuid_data.entries[cpuid_i++];
1975 }
1976 break;
1977 case 0x14:
1978 case 0x1d:
1979 case 0x1e: {
1980 uint32_t times;
1981
1982 c->function = i;
1983 c->index = 0;
1984 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1985 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1986 times = c->eax;
1987
1988 for (j = 1; j <= times; ++j) {
1989 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1990 fprintf(stderr, "cpuid_data is full, no space for "
1991 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1992 abort();
1993 }
1994 c = &cpuid_data.entries[cpuid_i++];
1995 c->function = i;
1996 c->index = j;
1997 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1998 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1999 }
2000 break;
2001 }
2002 default:
2003 c->function = i;
2004 c->flags = 0;
2005 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2006 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2007 /*
2008 * KVM already returns all zeroes if a CPUID entry is missing,
2009 * so we can omit it and avoid hitting KVM's 80-entry limit.
2010 */
2011 cpuid_i--;
2012 }
2013 break;
2014 }
2015 }
2016
2017 if (limit >= 0x0a) {
2018 uint32_t eax, edx;
2019
2020 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
2021
2022 has_architectural_pmu_version = eax & 0xff;
2023 if (has_architectural_pmu_version > 0) {
2024 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
2025
2026 /* Shouldn't be more than 32, since that's the number of bits
2027 * available in EBX to tell us _which_ counters are available.
2028 * Play it safe.
2029 */
2030 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
2031 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
2032 }
2033
2034 if (has_architectural_pmu_version > 1) {
2035 num_architectural_pmu_fixed_counters = edx & 0x1f;
2036
2037 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
2038 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
2039 }
2040 }
2041 }
2042 }
2043
2044 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
2045
2046 for (i = 0x80000000; i <= limit; i++) {
2047 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2048 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
2049 abort();
2050 }
2051 c = &cpuid_data.entries[cpuid_i++];
2052
2053 switch (i) {
2054 case 0x8000001d:
2055 /* Query for all AMD cache information leaves */
2056 for (j = 0; ; j++) {
2057 c->function = i;
2058 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2059 c->index = j;
2060 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2061
2062 if (c->eax == 0) {
2063 break;
2064 }
2065 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2066 fprintf(stderr, "cpuid_data is full, no space for "
2067 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2068 abort();
2069 }
2070 c = &cpuid_data.entries[cpuid_i++];
2071 }
2072 break;
2073 default:
2074 c->function = i;
2075 c->flags = 0;
2076 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2077 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2078 /*
2079 * KVM already returns all zeroes if a CPUID entry is missing,
2080 * so we can omit it and avoid hitting KVM's 80-entry limit.
2081 */
2082 cpuid_i--;
2083 }
2084 break;
2085 }
2086 }
2087
2088 /* Call Centaur's CPUID instructions they are supported. */
2089 if (env->cpuid_xlevel2 > 0) {
2090 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2091
2092 for (i = 0xC0000000; i <= limit; i++) {
2093 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2094 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2095 abort();
2096 }
2097 c = &cpuid_data.entries[cpuid_i++];
2098
2099 c->function = i;
2100 c->flags = 0;
2101 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2102 }
2103 }
2104
2105 cpuid_data.cpuid.nent = cpuid_i;
2106
2107 if (((env->cpuid_version >> 8)&0xF) >= 6
2108 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2109 (CPUID_MCE | CPUID_MCA)) {
2110 uint64_t mcg_cap, unsupported_caps;
2111 int banks;
2112 int ret;
2113
2114 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2115 if (ret < 0) {
2116 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2117 return ret;
2118 }
2119
2120 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2121 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2122 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2123 return -ENOTSUP;
2124 }
2125
2126 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2127 if (unsupported_caps) {
2128 if (unsupported_caps & MCG_LMCE_P) {
2129 error_report("kvm: LMCE not supported");
2130 return -ENOTSUP;
2131 }
2132 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2133 unsupported_caps);
2134 }
2135
2136 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2137 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2138 if (ret < 0) {
2139 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2140 return ret;
2141 }
2142 }
2143
2144 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2145
2146 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2147 if (c) {
2148 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2149 !!(c->ecx & CPUID_EXT_SMX);
2150 }
2151
2152 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2153 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2154 has_msr_feature_control = true;
2155 }
2156
2157 if (env->mcg_cap & MCG_LMCE_P) {
2158 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2159 }
2160
2161 if (!env->user_tsc_khz) {
2162 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2163 invtsc_mig_blocker == NULL) {
2164 error_setg(&invtsc_mig_blocker,
2165 "State blocked by non-migratable CPU device"
2166 " (invtsc flag)");
2167 r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2168 if (r < 0) {
2169 error_report_err(local_err);
2170 return r;
2171 }
2172 }
2173 }
2174
2175 if (cpu->vmware_cpuid_freq
2176 /* Guests depend on 0x40000000 to detect this feature, so only expose
2177 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2178 && cpu->expose_kvm
2179 && kvm_base == KVM_CPUID_SIGNATURE
2180 /* TSC clock must be stable and known for this feature. */
2181 && tsc_is_stable_and_known(env)) {
2182
2183 c = &cpuid_data.entries[cpuid_i++];
2184 c->function = KVM_CPUID_SIGNATURE | 0x10;
2185 c->eax = env->tsc_khz;
2186 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2187 c->ecx = c->edx = 0;
2188
2189 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2190 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2191 }
2192
2193 cpuid_data.cpuid.nent = cpuid_i;
2194
2195 cpuid_data.cpuid.padding = 0;
2196 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2197 if (r) {
2198 goto fail;
2199 }
2200 kvm_init_xsave(env);
2201
2202 max_nested_state_len = kvm_max_nested_state_length();
2203 if (max_nested_state_len > 0) {
2204 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2205
2206 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2207 env->nested_state = g_malloc0(max_nested_state_len);
2208 env->nested_state->size = max_nested_state_len;
2209
2210 kvm_init_nested_state(env);
2211 }
2212 }
2213
2214 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2215
2216 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2217 has_msr_tsc_aux = false;
2218 }
2219
2220 kvm_init_msrs(cpu);
2221
2222 return 0;
2223
2224 fail:
2225 migrate_del_blocker(&invtsc_mig_blocker);
2226
2227 return r;
2228 }
2229
2230 int kvm_arch_destroy_vcpu(CPUState *cs)
2231 {
2232 X86CPU *cpu = X86_CPU(cs);
2233 CPUX86State *env = &cpu->env;
2234
2235 g_free(env->xsave_buf);
2236
2237 g_free(cpu->kvm_msr_buf);
2238 cpu->kvm_msr_buf = NULL;
2239
2240 g_free(env->nested_state);
2241 env->nested_state = NULL;
2242
2243 qemu_del_vm_change_state_handler(cpu->vmsentry);
2244
2245 return 0;
2246 }
2247
2248 void kvm_arch_reset_vcpu(X86CPU *cpu)
2249 {
2250 CPUX86State *env = &cpu->env;
2251
2252 env->xcr0 = 1;
2253 if (kvm_irqchip_in_kernel()) {
2254 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2255 KVM_MP_STATE_UNINITIALIZED;
2256 } else {
2257 env->mp_state = KVM_MP_STATE_RUNNABLE;
2258 }
2259
2260 /* enabled by default */
2261 env->poll_control_msr = 1;
2262
2263 kvm_init_nested_state(env);
2264
2265 sev_es_set_reset_vector(CPU(cpu));
2266 }
2267
2268 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2269 {
2270 CPUX86State *env = &cpu->env;
2271 int i;
2272
2273 /*
2274 * Reset SynIC after all other devices have been reset to let them remove
2275 * their SINT routes first.
2276 */
2277 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2278 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2279 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2280 }
2281
2282 hyperv_x86_synic_reset(cpu);
2283 }
2284 }
2285
2286 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2287 {
2288 CPUX86State *env = &cpu->env;
2289
2290 /* APs get directly into wait-for-SIPI state. */
2291 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2292 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2293 }
2294 }
2295
2296 static int kvm_get_supported_feature_msrs(KVMState *s)
2297 {
2298 int ret = 0;
2299
2300 if (kvm_feature_msrs != NULL) {
2301 return 0;
2302 }
2303
2304 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2305 return 0;
2306 }
2307
2308 struct kvm_msr_list msr_list;
2309
2310 msr_list.nmsrs = 0;
2311 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2312 if (ret < 0 && ret != -E2BIG) {
2313 error_report("Fetch KVM feature MSR list failed: %s",
2314 strerror(-ret));
2315 return ret;
2316 }
2317
2318 assert(msr_list.nmsrs > 0);
2319 kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2320 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2321
2322 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2323 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2324
2325 if (ret < 0) {
2326 error_report("Fetch KVM feature MSR list failed: %s",
2327 strerror(-ret));
2328 g_free(kvm_feature_msrs);
2329 kvm_feature_msrs = NULL;
2330 return ret;
2331 }
2332
2333 return 0;
2334 }
2335
2336 static int kvm_get_supported_msrs(KVMState *s)
2337 {
2338 int ret = 0;
2339 struct kvm_msr_list msr_list, *kvm_msr_list;
2340
2341 /*
2342 * Obtain MSR list from KVM. These are the MSRs that we must
2343 * save/restore.
2344 */
2345 msr_list.nmsrs = 0;
2346 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2347 if (ret < 0 && ret != -E2BIG) {
2348 return ret;
2349 }
2350 /*
2351 * Old kernel modules had a bug and could write beyond the provided
2352 * memory. Allocate at least a safe amount of 1K.
2353 */
2354 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2355 msr_list.nmsrs *
2356 sizeof(msr_list.indices[0])));
2357
2358 kvm_msr_list->nmsrs = msr_list.nmsrs;
2359 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2360 if (ret >= 0) {
2361 int i;
2362
2363 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2364 switch (kvm_msr_list->indices[i]) {
2365 case MSR_STAR:
2366 has_msr_star = true;
2367 break;
2368 case MSR_VM_HSAVE_PA:
2369 has_msr_hsave_pa = true;
2370 break;
2371 case MSR_TSC_AUX:
2372 has_msr_tsc_aux = true;
2373 break;
2374 case MSR_TSC_ADJUST:
2375 has_msr_tsc_adjust = true;
2376 break;
2377 case MSR_IA32_TSCDEADLINE:
2378 has_msr_tsc_deadline = true;
2379 break;
2380 case MSR_IA32_SMBASE:
2381 has_msr_smbase = true;
2382 break;
2383 case MSR_SMI_COUNT:
2384 has_msr_smi_count = true;
2385 break;
2386 case MSR_IA32_MISC_ENABLE:
2387 has_msr_misc_enable = true;
2388 break;
2389 case MSR_IA32_BNDCFGS:
2390 has_msr_bndcfgs = true;
2391 break;
2392 case MSR_IA32_XSS:
2393 has_msr_xss = true;
2394 break;
2395 case MSR_IA32_UMWAIT_CONTROL:
2396 has_msr_umwait = true;
2397 break;
2398 case HV_X64_MSR_CRASH_CTL:
2399 has_msr_hv_crash = true;
2400 break;
2401 case HV_X64_MSR_RESET:
2402 has_msr_hv_reset = true;
2403 break;
2404 case HV_X64_MSR_VP_INDEX:
2405 has_msr_hv_vpindex = true;
2406 break;
2407 case HV_X64_MSR_VP_RUNTIME:
2408 has_msr_hv_runtime = true;
2409 break;
2410 case HV_X64_MSR_SCONTROL:
2411 has_msr_hv_synic = true;
2412 break;
2413 case HV_X64_MSR_STIMER0_CONFIG:
2414 has_msr_hv_stimer = true;
2415 break;
2416 case HV_X64_MSR_TSC_FREQUENCY:
2417 has_msr_hv_frequencies = true;
2418 break;
2419 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2420 has_msr_hv_reenlightenment = true;
2421 break;
2422 case HV_X64_MSR_SYNDBG_OPTIONS:
2423 has_msr_hv_syndbg_options = true;
2424 break;
2425 case MSR_IA32_SPEC_CTRL:
2426 has_msr_spec_ctrl = true;
2427 break;
2428 case MSR_AMD64_TSC_RATIO:
2429 has_tsc_scale_msr = true;
2430 break;
2431 case MSR_IA32_TSX_CTRL:
2432 has_msr_tsx_ctrl = true;
2433 break;
2434 case MSR_VIRT_SSBD:
2435 has_msr_virt_ssbd = true;
2436 break;
2437 case MSR_IA32_ARCH_CAPABILITIES:
2438 has_msr_arch_capabs = true;
2439 break;
2440 case MSR_IA32_CORE_CAPABILITY:
2441 has_msr_core_capabs = true;
2442 break;
2443 case MSR_IA32_PERF_CAPABILITIES:
2444 has_msr_perf_capabs = true;
2445 break;
2446 case MSR_IA32_VMX_VMFUNC:
2447 has_msr_vmx_vmfunc = true;
2448 break;
2449 case MSR_IA32_UCODE_REV:
2450 has_msr_ucode_rev = true;
2451 break;
2452 case MSR_IA32_VMX_PROCBASED_CTLS2:
2453 has_msr_vmx_procbased_ctls2 = true;
2454 break;
2455 case MSR_IA32_PKRS:
2456 has_msr_pkrs = true;
2457 break;
2458 }
2459 }
2460 }
2461
2462 g_free(kvm_msr_list);
2463
2464 return ret;
2465 }
2466
2467 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2468 uint64_t *val)
2469 {
2470 CPUState *cs = CPU(cpu);
2471
2472 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2473 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2474
2475 return true;
2476 }
2477
2478 static Notifier smram_machine_done;
2479 static KVMMemoryListener smram_listener;
2480 static AddressSpace smram_address_space;
2481 static MemoryRegion smram_as_root;
2482 static MemoryRegion smram_as_mem;
2483
2484 static void register_smram_listener(Notifier *n, void *unused)
2485 {
2486 MemoryRegion *smram =
2487 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2488
2489 /* Outer container... */
2490 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2491 memory_region_set_enabled(&smram_as_root, true);
2492
2493 /* ... with two regions inside: normal system memory with low
2494 * priority, and...
2495 */
2496 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2497 get_system_memory(), 0, ~0ull);
2498 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2499 memory_region_set_enabled(&smram_as_mem, true);
2500
2501 if (smram) {
2502 /* ... SMRAM with higher priority */
2503 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2504 memory_region_set_enabled(smram, true);
2505 }
2506
2507 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2508 kvm_memory_listener_register(kvm_state, &smram_listener,
2509 &smram_address_space, 1, "kvm-smram");
2510 }
2511
2512 int kvm_arch_get_default_type(MachineState *ms)
2513 {
2514 return 0;
2515 }
2516
2517 int kvm_arch_init(MachineState *ms, KVMState *s)
2518 {
2519 uint64_t identity_base = 0xfffbc000;
2520 uint64_t shadow_mem;
2521 int ret;
2522 struct utsname utsname;
2523 Error *local_err = NULL;
2524
2525 /*
2526 * Initialize SEV context, if required
2527 *
2528 * If no memory encryption is requested (ms->cgs == NULL) this is
2529 * a no-op.
2530 *
2531 * It's also a no-op if a non-SEV confidential guest support
2532 * mechanism is selected. SEV is the only mechanism available to
2533 * select on x86 at present, so this doesn't arise, but if new
2534 * mechanisms are supported in future (e.g. TDX), they'll need
2535 * their own initialization either here or elsewhere.
2536 */
2537 ret = sev_kvm_init(ms->cgs, &local_err);
2538 if (ret < 0) {
2539 error_report_err(local_err);
2540 return ret;
2541 }
2542
2543 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2544 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2545
2546 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2547
2548 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2549 if (has_exception_payload) {
2550 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2551 if (ret < 0) {
2552 error_report("kvm: Failed to enable exception payload cap: %s",
2553 strerror(-ret));
2554 return ret;
2555 }
2556 }
2557
2558 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2559 if (has_triple_fault_event) {
2560 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2561 if (ret < 0) {
2562 error_report("kvm: Failed to enable triple fault event cap: %s",
2563 strerror(-ret));
2564 return ret;
2565 }
2566 }
2567
2568 if (s->xen_version) {
2569 #ifdef CONFIG_XEN_EMU
2570 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
2571 error_report("kvm: Xen support only available in PC machine");
2572 return -ENOTSUP;
2573 }
2574 /* hyperv_enabled() doesn't work yet. */
2575 uint32_t msr = XEN_HYPERCALL_MSR;
2576 ret = kvm_xen_init(s, msr);
2577 if (ret < 0) {
2578 return ret;
2579 }
2580 #else
2581 error_report("kvm: Xen support not enabled in qemu");
2582 return -ENOTSUP;
2583 #endif
2584 }
2585
2586 ret = kvm_get_supported_msrs(s);
2587 if (ret < 0) {
2588 return ret;
2589 }
2590
2591 kvm_get_supported_feature_msrs(s);
2592
2593 uname(&utsname);
2594 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2595
2596 /*
2597 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2598 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2599 * Since these must be part of guest physical memory, we need to allocate
2600 * them, both by setting their start addresses in the kernel and by
2601 * creating a corresponding e820 entry. We need 4 pages before the BIOS,
2602 * so this value allows up to 16M BIOSes.
2603 */
2604 identity_base = 0xfeffc000;
2605 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2606 if (ret < 0) {
2607 return ret;
2608 }
2609
2610 /* Set TSS base one page after EPT identity map. */
2611 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2612 if (ret < 0) {
2613 return ret;
2614 }
2615
2616 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2617 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2618 if (ret < 0) {
2619 fprintf(stderr, "e820_add_entry() table is full\n");
2620 return ret;
2621 }
2622
2623 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2624 if (shadow_mem != -1) {
2625 shadow_mem /= 4096;
2626 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2627 if (ret < 0) {
2628 return ret;
2629 }
2630 }
2631
2632 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2633 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2634 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2635 smram_machine_done.notify = register_smram_listener;
2636 qemu_add_machine_init_done_notifier(&smram_machine_done);
2637 }
2638
2639 if (enable_cpu_pm) {
2640 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2641 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2642 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2643 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2644 #endif
2645 if (disable_exits) {
2646 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2647 KVM_X86_DISABLE_EXITS_HLT |
2648 KVM_X86_DISABLE_EXITS_PAUSE |
2649 KVM_X86_DISABLE_EXITS_CSTATE);
2650 }
2651
2652 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2653 disable_exits);
2654 if (ret < 0) {
2655 error_report("kvm: guest stopping CPU not supported: %s",
2656 strerror(-ret));
2657 }
2658 }
2659
2660 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2661 X86MachineState *x86ms = X86_MACHINE(ms);
2662
2663 if (x86ms->bus_lock_ratelimit > 0) {
2664 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2665 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2666 error_report("kvm: bus lock detection unsupported");
2667 return -ENOTSUP;
2668 }
2669 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2670 KVM_BUS_LOCK_DETECTION_EXIT);
2671 if (ret < 0) {
2672 error_report("kvm: Failed to enable bus lock detection cap: %s",
2673 strerror(-ret));
2674 return ret;
2675 }
2676 ratelimit_init(&bus_lock_ratelimit_ctrl);
2677 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2678 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2679 }
2680 }
2681
2682 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2683 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2684 uint64_t notify_window_flags =
2685 ((uint64_t)s->notify_window << 32) |
2686 KVM_X86_NOTIFY_VMEXIT_ENABLED |
2687 KVM_X86_NOTIFY_VMEXIT_USER;
2688 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2689 notify_window_flags);
2690 if (ret < 0) {
2691 error_report("kvm: Failed to enable notify vmexit cap: %s",
2692 strerror(-ret));
2693 return ret;
2694 }
2695 }
2696 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2697 bool r;
2698
2699 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2700 KVM_MSR_EXIT_REASON_FILTER);
2701 if (ret) {
2702 error_report("Could not enable user space MSRs: %s",
2703 strerror(-ret));
2704 exit(1);
2705 }
2706
2707 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2708 kvm_rdmsr_core_thread_count, NULL);
2709 if (!r) {
2710 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2711 strerror(-ret));
2712 exit(1);
2713 }
2714 }
2715
2716 return 0;
2717 }
2718
2719 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2720 {
2721 lhs->selector = rhs->selector;
2722 lhs->base = rhs->base;
2723 lhs->limit = rhs->limit;
2724 lhs->type = 3;
2725 lhs->present = 1;
2726 lhs->dpl = 3;
2727 lhs->db = 0;
2728 lhs->s = 1;
2729 lhs->l = 0;
2730 lhs->g = 0;
2731 lhs->avl = 0;
2732 lhs->unusable = 0;
2733 }
2734
2735 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2736 {
2737 unsigned flags = rhs->flags;
2738 lhs->selector = rhs->selector;
2739 lhs->base = rhs->base;
2740 lhs->limit = rhs->limit;
2741 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2742 lhs->present = (flags & DESC_P_MASK) != 0;
2743 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2744 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2745 lhs->s = (flags & DESC_S_MASK) != 0;
2746 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2747 lhs->g = (flags & DESC_G_MASK) != 0;
2748 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2749 lhs->unusable = !lhs->present;
2750 lhs->padding = 0;
2751 }
2752
2753 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2754 {
2755 lhs->selector = rhs->selector;
2756 lhs->base = rhs->base;
2757 lhs->limit = rhs->limit;
2758 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2759 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2760 (rhs->dpl << DESC_DPL_SHIFT) |
2761 (rhs->db << DESC_B_SHIFT) |
2762 (rhs->s * DESC_S_MASK) |
2763 (rhs->l << DESC_L_SHIFT) |
2764 (rhs->g * DESC_G_MASK) |
2765 (rhs->avl * DESC_AVL_MASK);
2766 }
2767
2768 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2769 {
2770 if (set) {
2771 *kvm_reg = *qemu_reg;
2772 } else {
2773 *qemu_reg = *kvm_reg;
2774 }
2775 }
2776
2777 static int kvm_getput_regs(X86CPU *cpu, int set)
2778 {
2779 CPUX86State *env = &cpu->env;
2780 struct kvm_regs regs;
2781 int ret = 0;
2782
2783 if (!set) {
2784 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2785 if (ret < 0) {
2786 return ret;
2787 }
2788 }
2789
2790 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2791 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2792 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2793 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2794 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2795 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2796 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2797 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2798 #ifdef TARGET_X86_64
2799 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2800 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2801 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2802 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2803 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2804 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2805 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2806 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2807 #endif
2808
2809 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2810 kvm_getput_reg(&regs.rip, &env->eip, set);
2811
2812 if (set) {
2813 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2814 }
2815
2816 return ret;
2817 }
2818
2819 static int kvm_put_xsave(X86CPU *cpu)
2820 {
2821 CPUX86State *env = &cpu->env;
2822 void *xsave = env->xsave_buf;
2823
2824 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2825
2826 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2827 }
2828
2829 static int kvm_put_xcrs(X86CPU *cpu)
2830 {
2831 CPUX86State *env = &cpu->env;
2832 struct kvm_xcrs xcrs = {};
2833
2834 if (!has_xcrs) {
2835 return 0;
2836 }
2837
2838 xcrs.nr_xcrs = 1;
2839 xcrs.flags = 0;
2840 xcrs.xcrs[0].xcr = 0;
2841 xcrs.xcrs[0].value = env->xcr0;
2842 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2843 }
2844
2845 static int kvm_put_sregs(X86CPU *cpu)
2846 {
2847 CPUX86State *env = &cpu->env;
2848 struct kvm_sregs sregs;
2849
2850 /*
2851 * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2852 * always followed by KVM_SET_VCPU_EVENTS.
2853 */
2854 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2855
2856 if ((env->eflags & VM_MASK)) {
2857 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2858 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2859 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2860 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2861 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2862 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2863 } else {
2864 set_seg(&sregs.cs, &env->segs[R_CS]);
2865 set_seg(&sregs.ds, &env->segs[R_DS]);
2866 set_seg(&sregs.es, &env->segs[R_ES]);
2867 set_seg(&sregs.fs, &env->segs[R_FS]);
2868 set_seg(&sregs.gs, &env->segs[R_GS]);
2869 set_seg(&sregs.ss, &env->segs[R_SS]);
2870 }
2871
2872 set_seg(&sregs.tr, &env->tr);
2873 set_seg(&sregs.ldt, &env->ldt);
2874
2875 sregs.idt.limit = env->idt.limit;
2876 sregs.idt.base = env->idt.base;
2877 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2878 sregs.gdt.limit = env->gdt.limit;
2879 sregs.gdt.base = env->gdt.base;
2880 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2881
2882 sregs.cr0 = env->cr[0];
2883 sregs.cr2 = env->cr[2];
2884 sregs.cr3 = env->cr[3];
2885 sregs.cr4 = env->cr[4];
2886
2887 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2888 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2889
2890 sregs.efer = env->efer;
2891
2892 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2893 }
2894
2895 static int kvm_put_sregs2(X86CPU *cpu)
2896 {
2897 CPUX86State *env = &cpu->env;
2898 struct kvm_sregs2 sregs;
2899 int i;
2900
2901 sregs.flags = 0;
2902
2903 if ((env->eflags & VM_MASK)) {
2904 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2905 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2906 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2907 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2908 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2909 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2910 } else {
2911 set_seg(&sregs.cs, &env->segs[R_CS]);
2912 set_seg(&sregs.ds, &env->segs[R_DS]);
2913 set_seg(&sregs.es, &env->segs[R_ES]);
2914 set_seg(&sregs.fs, &env->segs[R_FS]);
2915 set_seg(&sregs.gs, &env->segs[R_GS]);
2916 set_seg(&sregs.ss, &env->segs[R_SS]);
2917 }
2918
2919 set_seg(&sregs.tr, &env->tr);
2920 set_seg(&sregs.ldt, &env->ldt);
2921
2922 sregs.idt.limit = env->idt.limit;
2923 sregs.idt.base = env->idt.base;
2924 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2925 sregs.gdt.limit = env->gdt.limit;
2926 sregs.gdt.base = env->gdt.base;
2927 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2928
2929 sregs.cr0 = env->cr[0];
2930 sregs.cr2 = env->cr[2];
2931 sregs.cr3 = env->cr[3];
2932 sregs.cr4 = env->cr[4];
2933
2934 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2935 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2936
2937 sregs.efer = env->efer;
2938
2939 if (env->pdptrs_valid) {
2940 for (i = 0; i < 4; i++) {
2941 sregs.pdptrs[i] = env->pdptrs[i];
2942 }
2943 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
2944 }
2945
2946 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
2947 }
2948
2949
2950 static void kvm_msr_buf_reset(X86CPU *cpu)
2951 {
2952 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2953 }
2954
2955 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2956 {
2957 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2958 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2959 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2960
2961 assert((void *)(entry + 1) <= limit);
2962
2963 entry->index = index;
2964 entry->reserved = 0;
2965 entry->data = value;
2966 msrs->nmsrs++;
2967 }
2968
2969 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2970 {
2971 kvm_msr_buf_reset(cpu);
2972 kvm_msr_entry_add(cpu, index, value);
2973
2974 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2975 }
2976
2977 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
2978 {
2979 int ret;
2980 struct {
2981 struct kvm_msrs info;
2982 struct kvm_msr_entry entries[1];
2983 } msr_data = {
2984 .info.nmsrs = 1,
2985 .entries[0].index = index,
2986 };
2987
2988 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
2989 if (ret < 0) {
2990 return ret;
2991 }
2992 assert(ret == 1);
2993 *value = msr_data.entries[0].data;
2994 return ret;
2995 }
2996 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2997 {
2998 int ret;
2999
3000 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3001 assert(ret == 1);
3002 }
3003
3004 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3005 {
3006 CPUX86State *env = &cpu->env;
3007 int ret;
3008
3009 if (!has_msr_tsc_deadline) {
3010 return 0;
3011 }
3012
3013 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3014 if (ret < 0) {
3015 return ret;
3016 }
3017
3018 assert(ret == 1);
3019 return 0;
3020 }
3021
3022 /*
3023 * Provide a separate write service for the feature control MSR in order to
3024 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3025 * before writing any other state because forcibly leaving nested mode
3026 * invalidates the VCPU state.
3027 */
3028 static int kvm_put_msr_feature_control(X86CPU *cpu)
3029 {
3030 int ret;
3031
3032 if (!has_msr_feature_control) {
3033 return 0;
3034 }
3035
3036 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3037 cpu->env.msr_ia32_feature_control);
3038 if (ret < 0) {
3039 return ret;
3040 }
3041
3042 assert(ret == 1);
3043 return 0;
3044 }
3045
3046 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3047 {
3048 uint32_t default1, can_be_one, can_be_zero;
3049 uint32_t must_be_one;
3050
3051 switch (index) {
3052 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3053 default1 = 0x00000016;
3054 break;
3055 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3056 default1 = 0x0401e172;
3057 break;
3058 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3059 default1 = 0x000011ff;
3060 break;
3061 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3062 default1 = 0x00036dff;
3063 break;
3064 case MSR_IA32_VMX_PROCBASED_CTLS2:
3065 default1 = 0;
3066 break;
3067 default:
3068 abort();
3069 }
3070
3071 /* If a feature bit is set, the control can be either set or clear.
3072 * Otherwise the value is limited to either 0 or 1 by default1.
3073 */
3074 can_be_one = features | default1;
3075 can_be_zero = features | ~default1;
3076 must_be_one = ~can_be_zero;
3077
3078 /*
3079 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3080 * Bit 32:63 -> 1 if the control bit can be one.
3081 */
3082 return must_be_one | (((uint64_t)can_be_one) << 32);
3083 }
3084
3085 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3086 {
3087 uint64_t kvm_vmx_basic =
3088 kvm_arch_get_supported_msr_feature(kvm_state,
3089 MSR_IA32_VMX_BASIC);
3090
3091 if (!kvm_vmx_basic) {
3092 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3093 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3094 */
3095 return;
3096 }
3097
3098 uint64_t kvm_vmx_misc =
3099 kvm_arch_get_supported_msr_feature(kvm_state,
3100 MSR_IA32_VMX_MISC);
3101 uint64_t kvm_vmx_ept_vpid =
3102 kvm_arch_get_supported_msr_feature(kvm_state,
3103 MSR_IA32_VMX_EPT_VPID_CAP);
3104
3105 /*
3106 * If the guest is 64-bit, a value of 1 is allowed for the host address
3107 * space size vmexit control.
3108 */
3109 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3110 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3111
3112 /*
3113 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
3114 * not change them for backwards compatibility.
3115 */
3116 uint64_t fixed_vmx_basic = kvm_vmx_basic &
3117 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3118 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3119 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3120
3121 /*
3122 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
3123 * change in the future but are always zero for now, clear them to be
3124 * future proof. Bits 32-63 in theory could change, though KVM does
3125 * not support dual-monitor treatment and probably never will; mask
3126 * them out as well.
3127 */
3128 uint64_t fixed_vmx_misc = kvm_vmx_misc &
3129 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3130 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3131
3132 /*
3133 * EPT memory types should not change either, so we do not bother
3134 * adding features for them.
3135 */
3136 uint64_t fixed_vmx_ept_mask =
3137 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3138 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3139 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3140
3141 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3142 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3143 f[FEAT_VMX_PROCBASED_CTLS]));
3144 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3145 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3146 f[FEAT_VMX_PINBASED_CTLS]));
3147 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3148 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3149 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3150 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3151 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3152 f[FEAT_VMX_ENTRY_CTLS]));
3153 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3154 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3155 f[FEAT_VMX_SECONDARY_CTLS]));
3156 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3157 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3158 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3159 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3160 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3161 f[FEAT_VMX_MISC] | fixed_vmx_misc);
3162 if (has_msr_vmx_vmfunc) {
3163 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3164 }
3165
3166 /*
3167 * Just to be safe, write these with constant values. The CRn_FIXED1
3168 * MSRs are generated by KVM based on the vCPU's CPUID.
3169 */
3170 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3171 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3172 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3173 CR4_VMXE_MASK);
3174
3175 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3176 /* TSC multiplier (0x2032). */
3177 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3178 } else {
3179 /* Preemption timer (0x482E). */
3180 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3181 }
3182 }
3183
3184 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3185 {
3186 uint64_t kvm_perf_cap =
3187 kvm_arch_get_supported_msr_feature(kvm_state,
3188 MSR_IA32_PERF_CAPABILITIES);
3189
3190 if (kvm_perf_cap) {
3191 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3192 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3193 }
3194 }
3195
3196 static int kvm_buf_set_msrs(X86CPU *cpu)
3197 {
3198 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3199 if (ret < 0) {
3200 return ret;
3201 }
3202
3203 if (ret < cpu->kvm_msr_buf->nmsrs) {
3204 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3205 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3206 (uint32_t)e->index, (uint64_t)e->data);
3207 }
3208
3209 assert(ret == cpu->kvm_msr_buf->nmsrs);
3210 return 0;
3211 }
3212
3213 static void kvm_init_msrs(X86CPU *cpu)
3214 {
3215 CPUX86State *env = &cpu->env;
3216
3217 kvm_msr_buf_reset(cpu);
3218 if (has_msr_arch_capabs) {
3219 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3220 env->features[FEAT_ARCH_CAPABILITIES]);
3221 }
3222
3223 if (has_msr_core_capabs) {
3224 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3225 env->features[FEAT_CORE_CAPABILITY]);
3226 }
3227
3228 if (has_msr_perf_capabs && cpu->enable_pmu) {
3229 kvm_msr_entry_add_perf(cpu, env->features);
3230 }
3231
3232 if (has_msr_ucode_rev) {
3233 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3234 }
3235
3236 /*
3237 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3238 * all kernels with MSR features should have them.
3239 */
3240 if (kvm_feature_msrs && cpu_has_vmx(env)) {
3241 kvm_msr_entry_add_vmx(cpu, env->features);
3242 }
3243
3244 assert(kvm_buf_set_msrs(cpu) == 0);
3245 }
3246
3247 static int kvm_put_msrs(X86CPU *cpu, int level)
3248 {
3249 CPUX86State *env = &cpu->env;
3250 int i;
3251
3252 kvm_msr_buf_reset(cpu);
3253
3254 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3255 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3256 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3257 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3258 if (has_msr_star) {
3259 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3260 }
3261 if (has_msr_hsave_pa) {
3262 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3263 }
3264 if (has_msr_tsc_aux) {
3265 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3266 }
3267 if (has_msr_tsc_adjust) {
3268 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3269 }
3270 if (has_msr_misc_enable) {
3271 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3272 env->msr_ia32_misc_enable);
3273 }
3274 if (has_msr_smbase) {
3275 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3276 }
3277 if (has_msr_smi_count) {
3278 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3279 }
3280 if (has_msr_pkrs) {
3281 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3282 }
3283 if (has_msr_bndcfgs) {
3284 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3285 }
3286 if (has_msr_xss) {
3287 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3288 }
3289 if (has_msr_umwait) {
3290 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3291 }
3292 if (has_msr_spec_ctrl) {
3293 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3294 }
3295 if (has_tsc_scale_msr) {
3296 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3297 }
3298
3299 if (has_msr_tsx_ctrl) {
3300 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3301 }
3302 if (has_msr_virt_ssbd) {
3303 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3304 }
3305
3306 #ifdef TARGET_X86_64
3307 if (lm_capable_kernel) {
3308 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3309 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3310 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3311 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3312 }
3313 #endif
3314
3315 /*
3316 * The following MSRs have side effects on the guest or are too heavy
3317 * for normal writeback. Limit them to reset or full state updates.
3318 */
3319 if (level >= KVM_PUT_RESET_STATE) {
3320 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3321 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3322 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3323 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3324 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3325 }
3326 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3327 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3328 }
3329 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3330 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3331 }
3332 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3333 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3334 }
3335
3336 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3337 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3338 }
3339
3340 if (has_architectural_pmu_version > 0) {
3341 if (has_architectural_pmu_version > 1) {
3342 /* Stop the counter. */
3343 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3344 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3345 }
3346
3347 /* Set the counter values. */
3348 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3349 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3350 env->msr_fixed_counters[i]);
3351 }
3352 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3353 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3354 env->msr_gp_counters[i]);
3355 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3356 env->msr_gp_evtsel[i]);
3357 }
3358 if (has_architectural_pmu_version > 1) {
3359 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3360 env->msr_global_status);
3361 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3362 env->msr_global_ovf_ctrl);
3363
3364 /* Now start the PMU. */
3365 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3366 env->msr_fixed_ctr_ctrl);
3367 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3368 env->msr_global_ctrl);
3369 }
3370 }
3371 /*
3372 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3373 * only sync them to KVM on the first cpu
3374 */
3375 if (current_cpu == first_cpu) {
3376 if (has_msr_hv_hypercall) {
3377 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3378 env->msr_hv_guest_os_id);
3379 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3380 env->msr_hv_hypercall);
3381 }
3382 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3383 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3384 env->msr_hv_tsc);
3385 }
3386 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3387 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3388 env->msr_hv_reenlightenment_control);
3389 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3390 env->msr_hv_tsc_emulation_control);
3391 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3392 env->msr_hv_tsc_emulation_status);
3393 }
3394 #ifdef CONFIG_SYNDBG
3395 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3396 has_msr_hv_syndbg_options) {
3397 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3398 hyperv_syndbg_query_options());
3399 }
3400 #endif
3401 }
3402 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3403 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3404 env->msr_hv_vapic);
3405 }
3406 if (has_msr_hv_crash) {
3407 int j;
3408
3409 for (j = 0; j < HV_CRASH_PARAMS; j++)
3410 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3411 env->msr_hv_crash_params[j]);
3412
3413 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3414 }
3415 if (has_msr_hv_runtime) {
3416 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3417 }
3418 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3419 && hv_vpindex_settable) {
3420 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3421 hyperv_vp_index(CPU(cpu)));
3422 }
3423 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3424 int j;
3425
3426 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3427
3428 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3429 env->msr_hv_synic_control);
3430 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3431 env->msr_hv_synic_evt_page);
3432 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3433 env->msr_hv_synic_msg_page);
3434
3435 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3436 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3437 env->msr_hv_synic_sint[j]);
3438 }
3439 }
3440 if (has_msr_hv_stimer) {
3441 int j;
3442
3443 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3444 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3445 env->msr_hv_stimer_config[j]);
3446 }
3447
3448 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3449 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3450 env->msr_hv_stimer_count[j]);
3451 }
3452 }
3453 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3454 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3455
3456 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3457 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3458 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3459 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3460 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3461 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3462 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3463 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3464 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3465 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3466 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3467 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3468 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3469 /* The CPU GPs if we write to a bit above the physical limit of
3470 * the host CPU (and KVM emulates that)
3471 */
3472 uint64_t mask = env->mtrr_var[i].mask;
3473 mask &= phys_mask;
3474
3475 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3476 env->mtrr_var[i].base);
3477 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3478 }
3479 }
3480 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3481 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3482 0x14, 1, R_EAX) & 0x7;
3483
3484 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3485 env->msr_rtit_ctrl);
3486 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3487 env->msr_rtit_status);
3488 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3489 env->msr_rtit_output_base);
3490 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3491 env->msr_rtit_output_mask);
3492 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3493 env->msr_rtit_cr3_match);
3494 for (i = 0; i < addr_num; i++) {
3495 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3496 env->msr_rtit_addrs[i]);
3497 }
3498 }
3499
3500 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3501 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3502 env->msr_ia32_sgxlepubkeyhash[0]);
3503 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3504 env->msr_ia32_sgxlepubkeyhash[1]);
3505 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3506 env->msr_ia32_sgxlepubkeyhash[2]);
3507 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3508 env->msr_ia32_sgxlepubkeyhash[3]);
3509 }
3510
3511 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3512 kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3513 env->msr_xfd);
3514 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3515 env->msr_xfd_err);
3516 }
3517
3518 if (kvm_enabled() && cpu->enable_pmu &&
3519 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3520 uint64_t depth;
3521 int ret;
3522
3523 /*
3524 * Only migrate Arch LBR states when the host Arch LBR depth
3525 * equals that of source guest's, this is to avoid mismatch
3526 * of guest/host config for the msr hence avoid unexpected
3527 * misbehavior.
3528 */
3529 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3530
3531 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3532 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3533 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3534
3535 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3536 if (!env->lbr_records[i].from) {
3537 continue;
3538 }
3539 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3540 env->lbr_records[i].from);
3541 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3542 env->lbr_records[i].to);
3543 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3544 env->lbr_records[i].info);
3545 }
3546 }
3547 }
3548
3549 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3550 * kvm_put_msr_feature_control. */
3551 }
3552
3553 if (env->mcg_cap) {
3554 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3555 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3556 if (has_msr_mcg_ext_ctl) {
3557 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3558 }
3559 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3560 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3561 }
3562 }
3563
3564 return kvm_buf_set_msrs(cpu);
3565 }
3566
3567
3568 static int kvm_get_xsave(X86CPU *cpu)
3569 {
3570 CPUX86State *env = &cpu->env;
3571 void *xsave = env->xsave_buf;
3572 int type, ret;
3573
3574 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3575 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3576 if (ret < 0) {
3577 return ret;
3578 }
3579 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3580
3581 return 0;
3582 }
3583
3584 static int kvm_get_xcrs(X86CPU *cpu)
3585 {
3586 CPUX86State *env = &cpu->env;
3587 int i, ret;
3588 struct kvm_xcrs xcrs;
3589
3590 if (!has_xcrs) {
3591 return 0;
3592 }
3593
3594 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3595 if (ret < 0) {
3596 return ret;
3597 }
3598
3599 for (i = 0; i < xcrs.nr_xcrs; i++) {
3600 /* Only support xcr0 now */
3601 if (xcrs.xcrs[i].xcr == 0) {
3602 env->xcr0 = xcrs.xcrs[i].value;
3603 break;
3604 }
3605 }
3606 return 0;
3607 }
3608
3609 static int kvm_get_sregs(X86CPU *cpu)
3610 {
3611 CPUX86State *env = &cpu->env;
3612 struct kvm_sregs sregs;
3613 int ret;
3614
3615 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3616 if (ret < 0) {
3617 return ret;
3618 }
3619
3620 /*
3621 * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3622 * always preceded by KVM_GET_VCPU_EVENTS.
3623 */
3624
3625 get_seg(&env->segs[R_CS], &sregs.cs);
3626 get_seg(&env->segs[R_DS], &sregs.ds);
3627 get_seg(&env->segs[R_ES], &sregs.es);
3628 get_seg(&env->segs[R_FS], &sregs.fs);
3629 get_seg(&env->segs[R_GS], &sregs.gs);
3630 get_seg(&env->segs[R_SS], &sregs.ss);
3631
3632 get_seg(&env->tr, &sregs.tr);
3633 get_seg(&env->ldt, &sregs.ldt);
3634
3635 env->idt.limit = sregs.idt.limit;
3636 env->idt.base = sregs.idt.base;
3637 env->gdt.limit = sregs.gdt.limit;
3638 env->gdt.base = sregs.gdt.base;
3639
3640 env->cr[0] = sregs.cr0;
3641 env->cr[2] = sregs.cr2;
3642 env->cr[3] = sregs.cr3;
3643 env->cr[4] = sregs.cr4;
3644
3645 env->efer = sregs.efer;
3646 if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
3647 env->cr[0] & CR0_PG_MASK) {
3648 env->efer |= MSR_EFER_LMA;
3649 }
3650
3651 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3652 x86_update_hflags(env);
3653
3654 return 0;
3655 }
3656
3657 static int kvm_get_sregs2(X86CPU *cpu)
3658 {
3659 CPUX86State *env = &cpu->env;
3660 struct kvm_sregs2 sregs;
3661 int i, ret;
3662
3663 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3664 if (ret < 0) {
3665 return ret;
3666 }
3667
3668 get_seg(&env->segs[R_CS], &sregs.cs);
3669 get_seg(&env->segs[R_DS], &sregs.ds);
3670 get_seg(&env->segs[R_ES], &sregs.es);
3671 get_seg(&env->segs[R_FS], &sregs.fs);
3672 get_seg(&env->segs[R_GS], &sregs.gs);
3673 get_seg(&env->segs[R_SS], &sregs.ss);
3674
3675 get_seg(&env->tr, &sregs.tr);
3676 get_seg(&env->ldt, &sregs.ldt);
3677
3678 env->idt.limit = sregs.idt.limit;
3679 env->idt.base = sregs.idt.base;
3680 env->gdt.limit = sregs.gdt.limit;
3681 env->gdt.base = sregs.gdt.base;
3682
3683 env->cr[0] = sregs.cr0;
3684 env->cr[2] = sregs.cr2;
3685 env->cr[3] = sregs.cr3;
3686 env->cr[4] = sregs.cr4;
3687
3688 env->efer = sregs.efer;
3689 if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
3690 env->cr[0] & CR0_PG_MASK) {
3691 env->efer |= MSR_EFER_LMA;
3692 }
3693
3694 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3695
3696 if (env->pdptrs_valid) {
3697 for (i = 0; i < 4; i++) {
3698 env->pdptrs[i] = sregs.pdptrs[i];
3699 }
3700 }
3701
3702 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3703 x86_update_hflags(env);
3704
3705 return 0;
3706 }
3707
3708 static int kvm_get_msrs(X86CPU *cpu)
3709 {
3710 CPUX86State *env = &cpu->env;
3711 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3712 int ret, i;
3713 uint64_t mtrr_top_bits;
3714
3715 kvm_msr_buf_reset(cpu);
3716
3717 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3718 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3719 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3720 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3721 if (has_msr_star) {
3722 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3723 }
3724 if (has_msr_hsave_pa) {
3725 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3726 }
3727 if (has_msr_tsc_aux) {
3728 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3729 }
3730 if (has_msr_tsc_adjust) {
3731 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3732 }
3733 if (has_msr_tsc_deadline) {
3734 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3735 }
3736 if (has_msr_misc_enable) {
3737 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3738 }
3739 if (has_msr_smbase) {
3740 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3741 }
3742 if (has_msr_smi_count) {
3743 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3744 }
3745 if (has_msr_feature_control) {
3746 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3747 }
3748 if (has_msr_pkrs) {
3749 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3750 }
3751 if (has_msr_bndcfgs) {
3752 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3753 }
3754 if (has_msr_xss) {
3755 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3756 }
3757 if (has_msr_umwait) {
3758 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3759 }
3760 if (has_msr_spec_ctrl) {
3761 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3762 }
3763 if (has_tsc_scale_msr) {
3764 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3765 }
3766
3767 if (has_msr_tsx_ctrl) {
3768 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3769 }
3770 if (has_msr_virt_ssbd) {
3771 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3772 }
3773 if (!env->tsc_valid) {
3774 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3775 env->tsc_valid = !runstate_is_running();
3776 }
3777
3778 #ifdef TARGET_X86_64
3779 if (lm_capable_kernel) {
3780 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3781 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3782 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3783 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3784 }
3785 #endif
3786 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3787 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3788 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3789 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3790 }
3791 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3792 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3793 }
3794 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3795 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3796 }
3797 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3798 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3799 }
3800 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3801 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3802 }
3803 if (has_architectural_pmu_version > 0) {
3804 if (has_architectural_pmu_version > 1) {
3805 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3806 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3807 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3808 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3809 }
3810 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3811 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3812 }
3813 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3814 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3815 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3816 }
3817 }
3818
3819 if (env->mcg_cap) {
3820 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3821 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3822 if (has_msr_mcg_ext_ctl) {
3823 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3824 }
3825 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3826 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3827 }
3828 }
3829
3830 if (has_msr_hv_hypercall) {
3831 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3832 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3833 }
3834 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3835 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3836 }
3837 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3838 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3839 }
3840 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3841 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3842 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3843 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3844 }
3845 if (has_msr_hv_syndbg_options) {
3846 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3847 }
3848 if (has_msr_hv_crash) {
3849 int j;
3850
3851 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3852 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3853 }
3854 }
3855 if (has_msr_hv_runtime) {
3856 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3857 }
3858 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3859 uint32_t msr;
3860
3861 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3862 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3863 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3864 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3865 kvm_msr_entry_add(cpu, msr, 0);
3866 }
3867 }
3868 if (has_msr_hv_stimer) {
3869 uint32_t msr;
3870
3871 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3872 msr++) {
3873 kvm_msr_entry_add(cpu, msr, 0);
3874 }
3875 }
3876 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3877 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3878 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3879 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3880 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3881 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3882 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3883 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3884 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3885 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3886 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3887 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3888 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3889 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3890 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3891 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3892 }
3893 }
3894
3895 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3896 int addr_num =
3897 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3898
3899 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3900 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3901 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3902 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3903 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3904 for (i = 0; i < addr_num; i++) {
3905 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3906 }
3907 }
3908
3909 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3910 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
3911 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
3912 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
3913 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
3914 }
3915
3916 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3917 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
3918 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
3919 }
3920
3921 if (kvm_enabled() && cpu->enable_pmu &&
3922 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3923 uint64_t depth;
3924
3925 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3926 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
3927 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
3928 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
3929
3930 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3931 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
3932 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
3933 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
3934 }
3935 }
3936 }
3937
3938 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3939 if (ret < 0) {
3940 return ret;
3941 }
3942
3943 if (ret < cpu->kvm_msr_buf->nmsrs) {
3944 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3945 error_report("error: failed to get MSR 0x%" PRIx32,
3946 (uint32_t)e->index);
3947 }
3948
3949 assert(ret == cpu->kvm_msr_buf->nmsrs);
3950 /*
3951 * MTRR masks: Each mask consists of 5 parts
3952 * a 10..0: must be zero
3953 * b 11 : valid bit
3954 * c n-1.12: actual mask bits
3955 * d 51..n: reserved must be zero
3956 * e 63.52: reserved must be zero
3957 *
3958 * 'n' is the number of physical bits supported by the CPU and is
3959 * apparently always <= 52. We know our 'n' but don't know what
3960 * the destinations 'n' is; it might be smaller, in which case
3961 * it masks (c) on loading. It might be larger, in which case
3962 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3963 * we're migrating to.
3964 */
3965
3966 if (cpu->fill_mtrr_mask) {
3967 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3968 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3969 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3970 } else {
3971 mtrr_top_bits = 0;
3972 }
3973
3974 for (i = 0; i < ret; i++) {
3975 uint32_t index = msrs[i].index;
3976 switch (index) {
3977 case MSR_IA32_SYSENTER_CS:
3978 env->sysenter_cs = msrs[i].data;
3979 break;
3980 case MSR_IA32_SYSENTER_ESP:
3981 env->sysenter_esp = msrs[i].data;
3982 break;
3983 case MSR_IA32_SYSENTER_EIP:
3984 env->sysenter_eip = msrs[i].data;
3985 break;
3986 case MSR_PAT:
3987 env->pat = msrs[i].data;
3988 break;
3989 case MSR_STAR:
3990 env->star = msrs[i].data;
3991 break;
3992 #ifdef TARGET_X86_64
3993 case MSR_CSTAR:
3994 env->cstar = msrs[i].data;
3995 break;
3996 case MSR_KERNELGSBASE:
3997 env->kernelgsbase = msrs[i].data;
3998 break;
3999 case MSR_FMASK:
4000 env->fmask = msrs[i].data;
4001 break;
4002 case MSR_LSTAR:
4003 env->lstar = msrs[i].data;
4004 break;
4005 #endif
4006 case MSR_IA32_TSC:
4007 env->tsc = msrs[i].data;
4008 break;
4009 case MSR_TSC_AUX:
4010 env->tsc_aux = msrs[i].data;
4011 break;
4012 case MSR_TSC_ADJUST:
4013 env->tsc_adjust = msrs[i].data;
4014 break;
4015 case MSR_IA32_TSCDEADLINE:
4016 env->tsc_deadline = msrs[i].data;
4017 break;
4018 case MSR_VM_HSAVE_PA:
4019 env->vm_hsave = msrs[i].data;
4020 break;
4021 case MSR_KVM_SYSTEM_TIME:
4022 env->system_time_msr = msrs[i].data;
4023 break;
4024 case MSR_KVM_WALL_CLOCK:
4025 env->wall_clock_msr = msrs[i].data;
4026 break;
4027 case MSR_MCG_STATUS:
4028 env->mcg_status = msrs[i].data;
4029 break;
4030 case MSR_MCG_CTL:
4031 env->mcg_ctl = msrs[i].data;
4032 break;
4033 case MSR_MCG_EXT_CTL:
4034 env->mcg_ext_ctl = msrs[i].data;
4035 break;
4036 case MSR_IA32_MISC_ENABLE:
4037 env->msr_ia32_misc_enable = msrs[i].data;
4038 break;
4039 case MSR_IA32_SMBASE:
4040 env->smbase = msrs[i].data;
4041 break;
4042 case MSR_SMI_COUNT:
4043 env->msr_smi_count = msrs[i].data;
4044 break;
4045 case MSR_IA32_FEATURE_CONTROL:
4046 env->msr_ia32_feature_control = msrs[i].data;
4047 break;
4048 case MSR_IA32_BNDCFGS:
4049 env->msr_bndcfgs = msrs[i].data;
4050 break;
4051 case MSR_IA32_XSS:
4052 env->xss = msrs[i].data;
4053 break;
4054 case MSR_IA32_UMWAIT_CONTROL:
4055 env->umwait = msrs[i].data;
4056 break;
4057 case MSR_IA32_PKRS:
4058 env->pkrs = msrs[i].data;
4059 break;
4060 default:
4061 if (msrs[i].index >= MSR_MC0_CTL &&
4062 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4063 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4064 }
4065 break;
4066 case MSR_KVM_ASYNC_PF_EN:
4067 env->async_pf_en_msr = msrs[i].data;
4068 break;
4069 case MSR_KVM_ASYNC_PF_INT:
4070 env->async_pf_int_msr = msrs[i].data;
4071 break;
4072 case MSR_KVM_PV_EOI_EN:
4073 env->pv_eoi_en_msr = msrs[i].data;
4074 break;
4075 case MSR_KVM_STEAL_TIME:
4076 env->steal_time_msr = msrs[i].data;
4077 break;
4078 case MSR_KVM_POLL_CONTROL: {
4079 env->poll_control_msr = msrs[i].data;
4080 break;
4081 }
4082 case MSR_CORE_PERF_FIXED_CTR_CTRL:
4083 env->msr_fixed_ctr_ctrl = msrs[i].data;
4084 break;
4085 case MSR_CORE_PERF_GLOBAL_CTRL:
4086 env->msr_global_ctrl = msrs[i].data;
4087 break;
4088 case MSR_CORE_PERF_GLOBAL_STATUS:
4089 env->msr_global_status = msrs[i].data;
4090 break;
4091 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4092 env->msr_global_ovf_ctrl = msrs[i].data;
4093 break;
4094 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4095 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4096 break;
4097 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4098 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4099 break;
4100 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4101 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4102 break;
4103 case HV_X64_MSR_HYPERCALL:
4104 env->msr_hv_hypercall = msrs[i].data;
4105 break;
4106 case HV_X64_MSR_GUEST_OS_ID:
4107 env->msr_hv_guest_os_id = msrs[i].data;
4108 break;
4109 case HV_X64_MSR_APIC_ASSIST_PAGE:
4110 env->msr_hv_vapic = msrs[i].data;
4111 break;
4112 case HV_X64_MSR_REFERENCE_TSC:
4113 env->msr_hv_tsc = msrs[i].data;
4114 break;
4115 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4116 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4117 break;
4118 case HV_X64_MSR_VP_RUNTIME:
4119 env->msr_hv_runtime = msrs[i].data;
4120 break;
4121 case HV_X64_MSR_SCONTROL:
4122 env->msr_hv_synic_control = msrs[i].data;
4123 break;
4124 case HV_X64_MSR_SIEFP:
4125 env->msr_hv_synic_evt_page = msrs[i].data;
4126 break;
4127 case HV_X64_MSR_SIMP:
4128 env->msr_hv_synic_msg_page = msrs[i].data;
4129 break;
4130 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4131 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4132 break;
4133 case HV_X64_MSR_STIMER0_CONFIG:
4134 case HV_X64_MSR_STIMER1_CONFIG:
4135 case HV_X64_MSR_STIMER2_CONFIG:
4136 case HV_X64_MSR_STIMER3_CONFIG:
4137 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4138 msrs[i].data;
4139 break;
4140 case HV_X64_MSR_STIMER0_COUNT:
4141 case HV_X64_MSR_STIMER1_COUNT:
4142 case HV_X64_MSR_STIMER2_COUNT:
4143 case HV_X64_MSR_STIMER3_COUNT:
4144 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4145 msrs[i].data;
4146 break;
4147 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4148 env->msr_hv_reenlightenment_control = msrs[i].data;
4149 break;
4150 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4151 env->msr_hv_tsc_emulation_control = msrs[i].data;
4152 break;
4153 case HV_X64_MSR_TSC_EMULATION_STATUS:
4154 env->msr_hv_tsc_emulation_status = msrs[i].data;
4155 break;
4156 case HV_X64_MSR_SYNDBG_OPTIONS:
4157 env->msr_hv_syndbg_options = msrs[i].data;
4158 break;
4159 case MSR_MTRRdefType:
4160 env->mtrr_deftype = msrs[i].data;
4161 break;
4162 case MSR_MTRRfix64K_00000:
4163 env->mtrr_fixed[0] = msrs[i].data;
4164 break;
4165 case MSR_MTRRfix16K_80000:
4166 env->mtrr_fixed[1] = msrs[i].data;
4167 break;
4168 case MSR_MTRRfix16K_A0000:
4169 env->mtrr_fixed[2] = msrs[i].data;
4170 break;
4171 case MSR_MTRRfix4K_C0000:
4172 env->mtrr_fixed[3] = msrs[i].data;
4173 break;
4174 case MSR_MTRRfix4K_C8000:
4175 env->mtrr_fixed[4] = msrs[i].data;
4176 break;
4177 case MSR_MTRRfix4K_D0000:
4178 env->mtrr_fixed[5] = msrs[i].data;
4179 break;
4180 case MSR_MTRRfix4K_D8000:
4181 env->mtrr_fixed[6] = msrs[i].data;
4182 break;
4183 case MSR_MTRRfix4K_E0000:
4184 env->mtrr_fixed[7] = msrs[i].data;
4185 break;
4186 case MSR_MTRRfix4K_E8000:
4187 env->mtrr_fixed[8] = msrs[i].data;
4188 break;
4189 case MSR_MTRRfix4K_F0000:
4190 env->mtrr_fixed[9] = msrs[i].data;
4191 break;
4192 case MSR_MTRRfix4K_F8000:
4193 env->mtrr_fixed[10] = msrs[i].data;
4194 break;
4195 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4196 if (index & 1) {
4197 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4198 mtrr_top_bits;
4199 } else {
4200 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4201 }
4202 break;
4203 case MSR_IA32_SPEC_CTRL:
4204 env->spec_ctrl = msrs[i].data;
4205 break;
4206 case MSR_AMD64_TSC_RATIO:
4207 env->amd_tsc_scale_msr = msrs[i].data;
4208 break;
4209 case MSR_IA32_TSX_CTRL:
4210 env->tsx_ctrl = msrs[i].data;
4211 break;
4212 case MSR_VIRT_SSBD:
4213 env->virt_ssbd = msrs[i].data;
4214 break;
4215 case MSR_IA32_RTIT_CTL:
4216 env->msr_rtit_ctrl = msrs[i].data;
4217 break;
4218 case MSR_IA32_RTIT_STATUS:
4219 env->msr_rtit_status = msrs[i].data;
4220 break;
4221 case MSR_IA32_RTIT_OUTPUT_BASE:
4222 env->msr_rtit_output_base = msrs[i].data;
4223 break;
4224 case MSR_IA32_RTIT_OUTPUT_MASK:
4225 env->msr_rtit_output_mask = msrs[i].data;
4226 break;
4227 case MSR_IA32_RTIT_CR3_MATCH:
4228 env->msr_rtit_cr3_match = msrs[i].data;
4229 break;
4230 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4231 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4232 break;
4233 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4234 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4235 msrs[i].data;
4236 break;
4237 case MSR_IA32_XFD:
4238 env->msr_xfd = msrs[i].data;
4239 break;
4240 case MSR_IA32_XFD_ERR:
4241 env->msr_xfd_err = msrs[i].data;
4242 break;
4243 case MSR_ARCH_LBR_CTL:
4244 env->msr_lbr_ctl = msrs[i].data;
4245 break;
4246 case MSR_ARCH_LBR_DEPTH:
4247 env->msr_lbr_depth = msrs[i].data;
4248 break;
4249 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4250 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4251 break;
4252 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4253 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4254 break;
4255 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4256 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4257 break;
4258 }
4259 }
4260
4261 return 0;
4262 }
4263
4264 static int kvm_put_mp_state(X86CPU *cpu)
4265 {
4266 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4267
4268 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4269 }
4270
4271 static int kvm_get_mp_state(X86CPU *cpu)
4272 {
4273 CPUState *cs = CPU(cpu);
4274 CPUX86State *env = &cpu->env;
4275 struct kvm_mp_state mp_state;
4276 int ret;
4277
4278 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4279 if (ret < 0) {
4280 return ret;
4281 }
4282 env->mp_state = mp_state.mp_state;
4283 if (kvm_irqchip_in_kernel()) {
4284 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4285 }
4286 return 0;
4287 }
4288
4289 static int kvm_get_apic(X86CPU *cpu)
4290 {
4291 DeviceState *apic = cpu->apic_state;
4292 struct kvm_lapic_state kapic;
4293 int ret;
4294
4295 if (apic && kvm_irqchip_in_kernel()) {
4296 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4297 if (ret < 0) {
4298 return ret;
4299 }
4300
4301 kvm_get_apic_state(apic, &kapic);
4302 }
4303 return 0;
4304 }
4305
4306 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4307 {
4308 CPUState *cs = CPU(cpu);
4309 CPUX86State *env = &cpu->env;
4310 struct kvm_vcpu_events events = {};
4311
4312 events.flags = 0;
4313
4314 if (has_exception_payload) {
4315 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4316 events.exception.pending = env->exception_pending;
4317 events.exception_has_payload = env->exception_has_payload;
4318 events.exception_payload = env->exception_payload;
4319 }
4320 events.exception.nr = env->exception_nr;
4321 events.exception.injected = env->exception_injected;
4322 events.exception.has_error_code = env->has_error_code;
4323 events.exception.error_code = env->error_code;
4324
4325 events.interrupt.injected = (env->interrupt_injected >= 0);
4326 events.interrupt.nr = env->interrupt_injected;
4327 events.interrupt.soft = env->soft_interrupt;
4328
4329 events.nmi.injected = env->nmi_injected;
4330 events.nmi.pending = env->nmi_pending;
4331 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4332
4333 events.sipi_vector = env->sipi_vector;
4334
4335 if (has_msr_smbase) {
4336 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4337 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4338 if (kvm_irqchip_in_kernel()) {
4339 /* As soon as these are moved to the kernel, remove them
4340 * from cs->interrupt_request.
4341 */
4342 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4343 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4344 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4345 } else {
4346 /* Keep these in cs->interrupt_request. */
4347 events.smi.pending = 0;
4348 events.smi.latched_init = 0;
4349 }
4350 /* Stop SMI delivery on old machine types to avoid a reboot
4351 * on an inward migration of an old VM.
4352 */
4353 if (!cpu->kvm_no_smi_migration) {
4354 events.flags |= KVM_VCPUEVENT_VALID_SMM;
4355 }
4356 }
4357
4358 if (level >= KVM_PUT_RESET_STATE) {
4359 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4360 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4361 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4362 }
4363 }
4364
4365 if (has_triple_fault_event) {
4366 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4367 events.triple_fault.pending = env->triple_fault_pending;
4368 }
4369
4370 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4371 }
4372
4373 static int kvm_get_vcpu_events(X86CPU *cpu)
4374 {
4375 CPUX86State *env = &cpu->env;
4376 struct kvm_vcpu_events events;
4377 int ret;
4378
4379 memset(&events, 0, sizeof(events));
4380 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4381 if (ret < 0) {
4382 return ret;
4383 }
4384
4385 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4386 env->exception_pending = events.exception.pending;
4387 env->exception_has_payload = events.exception_has_payload;
4388 env->exception_payload = events.exception_payload;
4389 } else {
4390 env->exception_pending = 0;
4391 env->exception_has_payload = false;
4392 }
4393 env->exception_injected = events.exception.injected;
4394 env->exception_nr =
4395 (env->exception_pending || env->exception_injected) ?
4396 events.exception.nr : -1;
4397 env->has_error_code = events.exception.has_error_code;
4398 env->error_code = events.exception.error_code;
4399
4400 env->interrupt_injected =
4401 events.interrupt.injected ? events.interrupt.nr : -1;
4402 env->soft_interrupt = events.interrupt.soft;
4403
4404 env->nmi_injected = events.nmi.injected;
4405 env->nmi_pending = events.nmi.pending;
4406 if (events.nmi.masked) {
4407 env->hflags2 |= HF2_NMI_MASK;
4408 } else {
4409 env->hflags2 &= ~HF2_NMI_MASK;
4410 }
4411
4412 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4413 if (events.smi.smm) {
4414 env->hflags |= HF_SMM_MASK;
4415 } else {
4416 env->hflags &= ~HF_SMM_MASK;
4417 }
4418 if (events.smi.pending) {
4419 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4420 } else {
4421 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4422 }
4423 if (events.smi.smm_inside_nmi) {
4424 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4425 } else {
4426 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4427 }
4428 if (events.smi.latched_init) {
4429 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4430 } else {
4431 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4432 }
4433 }
4434
4435 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4436 env->triple_fault_pending = events.triple_fault.pending;
4437 }
4438
4439 env->sipi_vector = events.sipi_vector;
4440
4441 return 0;
4442 }
4443
4444 static int kvm_put_debugregs(X86CPU *cpu)
4445 {
4446 CPUX86State *env = &cpu->env;
4447 struct kvm_debugregs dbgregs;
4448 int i;
4449
4450 memset(&dbgregs, 0, sizeof(dbgregs));
4451 for (i = 0; i < 4; i++) {
4452 dbgregs.db[i] = env->dr[i];
4453 }
4454 dbgregs.dr6 = env->dr[6];
4455 dbgregs.dr7 = env->dr[7];
4456 dbgregs.flags = 0;
4457
4458 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4459 }
4460
4461 static int kvm_get_debugregs(X86CPU *cpu)
4462 {
4463 CPUX86State *env = &cpu->env;
4464 struct kvm_debugregs dbgregs;
4465 int i, ret;
4466
4467 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4468 if (ret < 0) {
4469 return ret;
4470 }
4471 for (i = 0; i < 4; i++) {
4472 env->dr[i] = dbgregs.db[i];
4473 }
4474 env->dr[4] = env->dr[6] = dbgregs.dr6;
4475 env->dr[5] = env->dr[7] = dbgregs.dr7;
4476
4477 return 0;
4478 }
4479
4480 static int kvm_put_nested_state(X86CPU *cpu)
4481 {
4482 CPUX86State *env = &cpu->env;
4483 int max_nested_state_len = kvm_max_nested_state_length();
4484
4485 if (!env->nested_state) {
4486 return 0;
4487 }
4488
4489 /*
4490 * Copy flags that are affected by reset from env->hflags and env->hflags2.
4491 */
4492 if (env->hflags & HF_GUEST_MASK) {
4493 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4494 } else {
4495 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4496 }
4497
4498 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4499 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4500 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4501 } else {
4502 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4503 }
4504
4505 assert(env->nested_state->size <= max_nested_state_len);
4506 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4507 }
4508
4509 static int kvm_get_nested_state(X86CPU *cpu)
4510 {
4511 CPUX86State *env = &cpu->env;
4512 int max_nested_state_len = kvm_max_nested_state_length();
4513 int ret;
4514
4515 if (!env->nested_state) {
4516 return 0;
4517 }
4518
4519 /*
4520 * It is possible that migration restored a smaller size into
4521 * nested_state->hdr.size than what our kernel support.
4522 * We preserve migration origin nested_state->hdr.size for
4523 * call to KVM_SET_NESTED_STATE but wish that our next call
4524 * to KVM_GET_NESTED_STATE will use max size our kernel support.
4525 */
4526 env->nested_state->size = max_nested_state_len;
4527
4528 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4529 if (ret < 0) {
4530 return ret;
4531 }
4532
4533 /*
4534 * Copy flags that are affected by reset to env->hflags and env->hflags2.
4535 */
4536 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4537 env->hflags |= HF_GUEST_MASK;
4538 } else {
4539 env->hflags &= ~HF_GUEST_MASK;
4540 }
4541
4542 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4543 if (cpu_has_svm(env)) {
4544 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4545 env->hflags2 |= HF2_GIF_MASK;
4546 } else {
4547 env->hflags2 &= ~HF2_GIF_MASK;
4548 }
4549 }
4550
4551 return ret;
4552 }
4553
4554 int kvm_arch_put_registers(CPUState *cpu, int level)
4555 {
4556 X86CPU *x86_cpu = X86_CPU(cpu);
4557 int ret;
4558
4559 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4560
4561 /*
4562 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4563 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4564 * precede kvm_put_nested_state() when 'real' nested state is set.
4565 */
4566 if (level >= KVM_PUT_RESET_STATE) {
4567 ret = kvm_put_msr_feature_control(x86_cpu);
4568 if (ret < 0) {
4569 return ret;
4570 }
4571 }
4572
4573 /* must be before kvm_put_nested_state so that EFER.SVME is set */
4574 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4575 if (ret < 0) {
4576 return ret;
4577 }
4578
4579 if (level >= KVM_PUT_RESET_STATE) {
4580 ret = kvm_put_nested_state(x86_cpu);
4581 if (ret < 0) {
4582 return ret;
4583 }
4584 }
4585
4586 if (level == KVM_PUT_FULL_STATE) {
4587 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4588 * because TSC frequency mismatch shouldn't abort migration,
4589 * unless the user explicitly asked for a more strict TSC
4590 * setting (e.g. using an explicit "tsc-freq" option).
4591 */
4592 kvm_arch_set_tsc_khz(cpu);
4593 }
4594
4595 #ifdef CONFIG_XEN_EMU
4596 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
4597 ret = kvm_put_xen_state(cpu);
4598 if (ret < 0) {
4599 return ret;
4600 }
4601 }
4602 #endif
4603
4604 ret = kvm_getput_regs(x86_cpu, 1);
4605 if (ret < 0) {
4606 return ret;
4607 }
4608 ret = kvm_put_xsave(x86_cpu);
4609 if (ret < 0) {
4610 return ret;
4611 }
4612 ret = kvm_put_xcrs(x86_cpu);
4613 if (ret < 0) {
4614 return ret;
4615 }
4616 ret = kvm_put_msrs(x86_cpu, level);
4617 if (ret < 0) {
4618 return ret;
4619 }
4620 ret = kvm_put_vcpu_events(x86_cpu, level);
4621 if (ret < 0) {
4622 return ret;
4623 }
4624 if (level >= KVM_PUT_RESET_STATE) {
4625 ret = kvm_put_mp_state(x86_cpu);
4626 if (ret < 0) {
4627 return ret;
4628 }
4629 }
4630
4631 ret = kvm_put_tscdeadline_msr(x86_cpu);
4632 if (ret < 0) {
4633 return ret;
4634 }
4635 ret = kvm_put_debugregs(x86_cpu);
4636 if (ret < 0) {
4637 return ret;
4638 }
4639 return 0;
4640 }
4641
4642 int kvm_arch_get_registers(CPUState *cs)
4643 {
4644 X86CPU *cpu = X86_CPU(cs);
4645 int ret;
4646
4647 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4648
4649 ret = kvm_get_vcpu_events(cpu);
4650 if (ret < 0) {
4651 goto out;
4652 }
4653 /*
4654 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4655 * KVM_GET_REGS and KVM_GET_SREGS.
4656 */
4657 ret = kvm_get_mp_state(cpu);
4658 if (ret < 0) {
4659 goto out;
4660 }
4661 ret = kvm_getput_regs(cpu, 0);
4662 if (ret < 0) {
4663 goto out;
4664 }
4665 ret = kvm_get_xsave(cpu);
4666 if (ret < 0) {
4667 goto out;
4668 }
4669 ret = kvm_get_xcrs(cpu);
4670 if (ret < 0) {
4671 goto out;
4672 }
4673 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4674 if (ret < 0) {
4675 goto out;
4676 }
4677 ret = kvm_get_msrs(cpu);
4678 if (ret < 0) {
4679 goto out;
4680 }
4681 ret = kvm_get_apic(cpu);
4682 if (ret < 0) {
4683 goto out;
4684 }
4685 ret = kvm_get_debugregs(cpu);
4686 if (ret < 0) {
4687 goto out;
4688 }
4689 ret = kvm_get_nested_state(cpu);
4690 if (ret < 0) {
4691 goto out;
4692 }
4693 #ifdef CONFIG_XEN_EMU
4694 if (xen_mode == XEN_EMULATE) {
4695 ret = kvm_get_xen_state(cs);
4696 if (ret < 0) {
4697 goto out;
4698 }
4699 }
4700 #endif
4701 ret = 0;
4702 out:
4703 cpu_sync_bndcs_hflags(&cpu->env);
4704 return ret;
4705 }
4706
4707 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4708 {
4709 X86CPU *x86_cpu = X86_CPU(cpu);
4710 CPUX86State *env = &x86_cpu->env;
4711 int ret;
4712
4713 /* Inject NMI */
4714 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4715 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4716 qemu_mutex_lock_iothread();
4717 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4718 qemu_mutex_unlock_iothread();
4719 DPRINTF("injected NMI\n");
4720 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4721 if (ret < 0) {
4722 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4723 strerror(-ret));
4724 }
4725 }
4726 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4727 qemu_mutex_lock_iothread();
4728 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4729 qemu_mutex_unlock_iothread();
4730 DPRINTF("injected SMI\n");
4731 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4732 if (ret < 0) {
4733 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4734 strerror(-ret));
4735 }
4736 }
4737 }
4738
4739 if (!kvm_pic_in_kernel()) {
4740 qemu_mutex_lock_iothread();
4741 }
4742
4743 /* Force the VCPU out of its inner loop to process any INIT requests
4744 * or (for userspace APIC, but it is cheap to combine the checks here)
4745 * pending TPR access reports.
4746 */
4747 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4748 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4749 !(env->hflags & HF_SMM_MASK)) {
4750 cpu->exit_request = 1;
4751 }
4752 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4753 cpu->exit_request = 1;
4754 }
4755 }
4756
4757 if (!kvm_pic_in_kernel()) {
4758 /* Try to inject an interrupt if the guest can accept it */
4759 if (run->ready_for_interrupt_injection &&
4760 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4761 (env->eflags & IF_MASK)) {
4762 int irq;
4763
4764 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4765 irq = cpu_get_pic_interrupt(env);
4766 if (irq >= 0) {
4767 struct kvm_interrupt intr;
4768
4769 intr.irq = irq;
4770 DPRINTF("injected interrupt %d\n", irq);
4771 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4772 if (ret < 0) {
4773 fprintf(stderr,
4774 "KVM: injection failed, interrupt lost (%s)\n",
4775 strerror(-ret));
4776 }
4777 }
4778 }
4779
4780 /* If we have an interrupt but the guest is not ready to receive an
4781 * interrupt, request an interrupt window exit. This will
4782 * cause a return to userspace as soon as the guest is ready to
4783 * receive interrupts. */
4784 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4785 run->request_interrupt_window = 1;
4786 } else {
4787 run->request_interrupt_window = 0;
4788 }
4789
4790 DPRINTF("setting tpr\n");
4791 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4792
4793 qemu_mutex_unlock_iothread();
4794 }
4795 }
4796
4797 static void kvm_rate_limit_on_bus_lock(void)
4798 {
4799 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4800
4801 if (delay_ns) {
4802 g_usleep(delay_ns / SCALE_US);
4803 }
4804 }
4805
4806 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4807 {
4808 X86CPU *x86_cpu = X86_CPU(cpu);
4809 CPUX86State *env = &x86_cpu->env;
4810
4811 if (run->flags & KVM_RUN_X86_SMM) {
4812 env->hflags |= HF_SMM_MASK;
4813 } else {
4814 env->hflags &= ~HF_SMM_MASK;
4815 }
4816 if (run->if_flag) {
4817 env->eflags |= IF_MASK;
4818 } else {
4819 env->eflags &= ~IF_MASK;
4820 }
4821 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
4822 kvm_rate_limit_on_bus_lock();
4823 }
4824
4825 #ifdef CONFIG_XEN_EMU
4826 /*
4827 * If the callback is asserted as a GSI (or PCI INTx) then check if
4828 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
4829 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
4830 * EOI and only resample then, exactly how the VFIO eventfd pairs
4831 * are designed to work for level triggered interrupts.
4832 */
4833 if (x86_cpu->env.xen_callback_asserted) {
4834 kvm_xen_maybe_deassert_callback(cpu);
4835 }
4836 #endif
4837
4838 /* We need to protect the apic state against concurrent accesses from
4839 * different threads in case the userspace irqchip is used. */
4840 if (!kvm_irqchip_in_kernel()) {
4841 qemu_mutex_lock_iothread();
4842 }
4843 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4844 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4845 if (!kvm_irqchip_in_kernel()) {
4846 qemu_mutex_unlock_iothread();
4847 }
4848 return cpu_get_mem_attrs(env);
4849 }
4850
4851 int kvm_arch_process_async_events(CPUState *cs)
4852 {
4853 X86CPU *cpu = X86_CPU(cs);
4854 CPUX86State *env = &cpu->env;
4855
4856 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4857 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4858 assert(env->mcg_cap);
4859
4860 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4861
4862 kvm_cpu_synchronize_state(cs);
4863
4864 if (env->exception_nr == EXCP08_DBLE) {
4865 /* this means triple fault */
4866 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4867 cs->exit_request = 1;
4868 return 0;
4869 }
4870 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4871 env->has_error_code = 0;
4872
4873 cs->halted = 0;
4874 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4875 env->mp_state = KVM_MP_STATE_RUNNABLE;
4876 }
4877 }
4878
4879 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4880 !(env->hflags & HF_SMM_MASK)) {
4881 kvm_cpu_synchronize_state(cs);
4882 do_cpu_init(cpu);
4883 }
4884
4885 if (kvm_irqchip_in_kernel()) {
4886 return 0;
4887 }
4888
4889 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4890 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4891 apic_poll_irq(cpu->apic_state);
4892 }
4893 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4894 (env->eflags & IF_MASK)) ||
4895 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4896 cs->halted = 0;
4897 }
4898 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4899 kvm_cpu_synchronize_state(cs);
4900 do_cpu_sipi(cpu);
4901 }
4902 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4903 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4904 kvm_cpu_synchronize_state(cs);
4905 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4906 env->tpr_access_type);
4907 }
4908
4909 return cs->halted;
4910 }
4911
4912 static int kvm_handle_halt(X86CPU *cpu)
4913 {
4914 CPUState *cs = CPU(cpu);
4915 CPUX86State *env = &cpu->env;
4916
4917 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4918 (env->eflags & IF_MASK)) &&
4919 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4920 cs->halted = 1;
4921 return EXCP_HLT;
4922 }
4923
4924 return 0;
4925 }
4926
4927 static int kvm_handle_tpr_access(X86CPU *cpu)
4928 {
4929 CPUState *cs = CPU(cpu);
4930 struct kvm_run *run = cs->kvm_run;
4931
4932 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4933 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4934 : TPR_ACCESS_READ);
4935 return 1;
4936 }
4937
4938 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4939 {
4940 static const uint8_t int3 = 0xcc;
4941
4942 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4943 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4944 return -EINVAL;
4945 }
4946 return 0;
4947 }
4948
4949 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4950 {
4951 uint8_t int3;
4952
4953 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
4954 return -EINVAL;
4955 }
4956 if (int3 != 0xcc) {
4957 return 0;
4958 }
4959 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4960 return -EINVAL;
4961 }
4962 return 0;
4963 }
4964
4965 static struct {
4966 target_ulong addr;
4967 int len;
4968 int type;
4969 } hw_breakpoint[4];
4970
4971 static int nb_hw_breakpoint;
4972
4973 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4974 {
4975 int n;
4976
4977 for (n = 0; n < nb_hw_breakpoint; n++) {
4978 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4979 (hw_breakpoint[n].len == len || len == -1)) {
4980 return n;
4981 }
4982 }
4983 return -1;
4984 }
4985
4986 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
4987 {
4988 switch (type) {
4989 case GDB_BREAKPOINT_HW:
4990 len = 1;
4991 break;
4992 case GDB_WATCHPOINT_WRITE:
4993 case GDB_WATCHPOINT_ACCESS:
4994 switch (len) {
4995 case 1:
4996 break;
4997 case 2:
4998 case 4:
4999 case 8:
5000 if (addr & (len - 1)) {
5001 return -EINVAL;
5002 }
5003 break;
5004 default:
5005 return -EINVAL;
5006 }
5007 break;
5008 default:
5009 return -ENOSYS;
5010 }
5011
5012 if (nb_hw_breakpoint == 4) {
5013 return -ENOBUFS;
5014 }
5015 if (find_hw_breakpoint(addr, len, type) >= 0) {
5016 return -EEXIST;
5017 }
5018 hw_breakpoint[nb_hw_breakpoint].addr = addr;
5019 hw_breakpoint[nb_hw_breakpoint].len = len;
5020 hw_breakpoint[nb_hw_breakpoint].type = type;
5021 nb_hw_breakpoint++;
5022
5023 return 0;
5024 }
5025
5026 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5027 {
5028 int n;
5029
5030 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5031 if (n < 0) {
5032 return -ENOENT;
5033 }
5034 nb_hw_breakpoint--;
5035 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5036
5037 return 0;
5038 }
5039
5040 void kvm_arch_remove_all_hw_breakpoints(void)
5041 {
5042 nb_hw_breakpoint = 0;
5043 }
5044
5045 static CPUWatchpoint hw_watchpoint;
5046
5047 static int kvm_handle_debug(X86CPU *cpu,
5048 struct kvm_debug_exit_arch *arch_info)
5049 {
5050 CPUState *cs = CPU(cpu);
5051 CPUX86State *env = &cpu->env;
5052 int ret = 0;
5053 int n;
5054
5055 if (arch_info->exception == EXCP01_DB) {
5056 if (arch_info->dr6 & DR6_BS) {
5057 if (cs->singlestep_enabled) {
5058 ret = EXCP_DEBUG;
5059 }
5060 } else {
5061 for (n = 0; n < 4; n++) {
5062 if (arch_info->dr6 & (1 << n)) {
5063 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5064 case 0x0:
5065 ret = EXCP_DEBUG;
5066 break;
5067 case 0x1:
5068 ret = EXCP_DEBUG;
5069 cs->watchpoint_hit = &hw_watchpoint;
5070 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5071 hw_watchpoint.flags = BP_MEM_WRITE;
5072 break;
5073 case 0x3:
5074 ret = EXCP_DEBUG;
5075 cs->watchpoint_hit = &hw_watchpoint;
5076 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5077 hw_watchpoint.flags = BP_MEM_ACCESS;
5078 break;
5079 }
5080 }
5081 }
5082 }
5083 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5084 ret = EXCP_DEBUG;
5085 }
5086 if (ret == 0) {
5087 cpu_synchronize_state(cs);
5088 assert(env->exception_nr == -1);
5089
5090 /* pass to guest */
5091 kvm_queue_exception(env, arch_info->exception,
5092 arch_info->exception == EXCP01_DB,
5093 arch_info->dr6);
5094 env->has_error_code = 0;
5095 }
5096
5097 return ret;
5098 }
5099
5100 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5101 {
5102 const uint8_t type_code[] = {
5103 [GDB_BREAKPOINT_HW] = 0x0,
5104 [GDB_WATCHPOINT_WRITE] = 0x1,
5105 [GDB_WATCHPOINT_ACCESS] = 0x3
5106 };
5107 const uint8_t len_code[] = {
5108 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5109 };
5110 int n;
5111
5112 if (kvm_sw_breakpoints_active(cpu)) {
5113 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5114 }
5115 if (nb_hw_breakpoint > 0) {
5116 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5117 dbg->arch.debugreg[7] = 0x0600;
5118 for (n = 0; n < nb_hw_breakpoint; n++) {
5119 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5120 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5121 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5122 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5123 }
5124 }
5125 }
5126
5127 static bool kvm_install_msr_filters(KVMState *s)
5128 {
5129 uint64_t zero = 0;
5130 struct kvm_msr_filter filter = {
5131 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5132 };
5133 int r, i, j = 0;
5134
5135 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5136 KVMMSRHandlers *handler = &msr_handlers[i];
5137 if (handler->msr) {
5138 struct kvm_msr_filter_range *range = &filter.ranges[j++];
5139
5140 *range = (struct kvm_msr_filter_range) {
5141 .flags = 0,
5142 .nmsrs = 1,
5143 .base = handler->msr,
5144 .bitmap = (__u8 *)&zero,
5145 };
5146
5147 if (handler->rdmsr) {
5148 range->flags |= KVM_MSR_FILTER_READ;
5149 }
5150
5151 if (handler->wrmsr) {
5152 range->flags |= KVM_MSR_FILTER_WRITE;
5153 }
5154 }
5155 }
5156
5157 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5158 if (r) {
5159 return false;
5160 }
5161
5162 return true;
5163 }
5164
5165 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5166 QEMUWRMSRHandler *wrmsr)
5167 {
5168 int i;
5169
5170 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5171 if (!msr_handlers[i].msr) {
5172 msr_handlers[i] = (KVMMSRHandlers) {
5173 .msr = msr,
5174 .rdmsr = rdmsr,
5175 .wrmsr = wrmsr,
5176 };
5177
5178 if (!kvm_install_msr_filters(s)) {
5179 msr_handlers[i] = (KVMMSRHandlers) { };
5180 return false;
5181 }
5182
5183 return true;
5184 }
5185 }
5186
5187 return false;
5188 }
5189
5190 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5191 {
5192 int i;
5193 bool r;
5194
5195 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5196 KVMMSRHandlers *handler = &msr_handlers[i];
5197 if (run->msr.index == handler->msr) {
5198 if (handler->rdmsr) {
5199 r = handler->rdmsr(cpu, handler->msr,
5200 (uint64_t *)&run->msr.data);
5201 run->msr.error = r ? 0 : 1;
5202 return 0;
5203 }
5204 }
5205 }
5206
5207 assert(false);
5208 }
5209
5210 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5211 {
5212 int i;
5213 bool r;
5214
5215 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5216 KVMMSRHandlers *handler = &msr_handlers[i];
5217 if (run->msr.index == handler->msr) {
5218 if (handler->wrmsr) {
5219 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5220 run->msr.error = r ? 0 : 1;
5221 return 0;
5222 }
5223 }
5224 }
5225
5226 assert(false);
5227 }
5228
5229 static bool has_sgx_provisioning;
5230
5231 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5232 {
5233 int fd, ret;
5234
5235 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5236 return false;
5237 }
5238
5239 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5240 if (fd < 0) {
5241 return false;
5242 }
5243
5244 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5245 if (ret) {
5246 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5247 exit(1);
5248 }
5249 close(fd);
5250 return true;
5251 }
5252
5253 bool kvm_enable_sgx_provisioning(KVMState *s)
5254 {
5255 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5256 }
5257
5258 static bool host_supports_vmx(void)
5259 {
5260 uint32_t ecx, unused;
5261
5262 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5263 return ecx & CPUID_EXT_VMX;
5264 }
5265
5266 #define VMX_INVALID_GUEST_STATE 0x80000021
5267
5268 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5269 {
5270 X86CPU *cpu = X86_CPU(cs);
5271 uint64_t code;
5272 int ret;
5273 bool ctx_invalid;
5274 char str[256];
5275 KVMState *state;
5276
5277 switch (run->exit_reason) {
5278 case KVM_EXIT_HLT:
5279 DPRINTF("handle_hlt\n");
5280 qemu_mutex_lock_iothread();
5281 ret = kvm_handle_halt(cpu);
5282 qemu_mutex_unlock_iothread();
5283 break;
5284 case KVM_EXIT_SET_TPR:
5285 ret = 0;
5286 break;
5287 case KVM_EXIT_TPR_ACCESS:
5288 qemu_mutex_lock_iothread();
5289 ret = kvm_handle_tpr_access(cpu);
5290 qemu_mutex_unlock_iothread();
5291 break;
5292 case KVM_EXIT_FAIL_ENTRY:
5293 code = run->fail_entry.hardware_entry_failure_reason;
5294 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5295 code);
5296 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5297 fprintf(stderr,
5298 "\nIf you're running a guest on an Intel machine without "
5299 "unrestricted mode\n"
5300 "support, the failure can be most likely due to the guest "
5301 "entering an invalid\n"
5302 "state for Intel VT. For example, the guest maybe running "
5303 "in big real mode\n"
5304 "which is not supported on less recent Intel processors."
5305 "\n\n");
5306 }
5307 ret = -1;
5308 break;
5309 case KVM_EXIT_EXCEPTION:
5310 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5311 run->ex.exception, run->ex.error_code);
5312 ret = -1;
5313 break;
5314 case KVM_EXIT_DEBUG:
5315 DPRINTF("kvm_exit_debug\n");
5316 qemu_mutex_lock_iothread();
5317 ret = kvm_handle_debug(cpu, &run->debug.arch);
5318 qemu_mutex_unlock_iothread();
5319 break;
5320 case KVM_EXIT_HYPERV:
5321 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5322 break;
5323 case KVM_EXIT_IOAPIC_EOI:
5324 ioapic_eoi_broadcast(run->eoi.vector);
5325 ret = 0;
5326 break;
5327 case KVM_EXIT_X86_BUS_LOCK:
5328 /* already handled in kvm_arch_post_run */
5329 ret = 0;
5330 break;
5331 case KVM_EXIT_NOTIFY:
5332 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5333 state = KVM_STATE(current_accel());
5334 sprintf(str, "Encounter a notify exit with %svalid context in"
5335 " guest. There can be possible misbehaves in guest."
5336 " Please have a look.", ctx_invalid ? "in" : "");
5337 if (ctx_invalid ||
5338 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5339 warn_report("KVM internal error: %s", str);
5340 ret = -1;
5341 } else {
5342 warn_report_once("KVM: %s", str);
5343 ret = 0;
5344 }
5345 break;
5346 case KVM_EXIT_X86_RDMSR:
5347 /* We only enable MSR filtering, any other exit is bogus */
5348 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5349 ret = kvm_handle_rdmsr(cpu, run);
5350 break;
5351 case KVM_EXIT_X86_WRMSR:
5352 /* We only enable MSR filtering, any other exit is bogus */
5353 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5354 ret = kvm_handle_wrmsr(cpu, run);
5355 break;
5356 #ifdef CONFIG_XEN_EMU
5357 case KVM_EXIT_XEN:
5358 ret = kvm_xen_handle_exit(cpu, &run->xen);
5359 break;
5360 #endif
5361 default:
5362 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5363 ret = -1;
5364 break;
5365 }
5366
5367 return ret;
5368 }
5369
5370 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5371 {
5372 X86CPU *cpu = X86_CPU(cs);
5373 CPUX86State *env = &cpu->env;
5374
5375 kvm_cpu_synchronize_state(cs);
5376 return !(env->cr[0] & CR0_PE_MASK) ||
5377 ((env->segs[R_CS].selector & 3) != 3);
5378 }
5379
5380 void kvm_arch_init_irq_routing(KVMState *s)
5381 {
5382 /* We know at this point that we're using the in-kernel
5383 * irqchip, so we can use irqfds, and on x86 we know
5384 * we can use msi via irqfd and GSI routing.
5385 */
5386 kvm_msi_via_irqfd_allowed = true;
5387 kvm_gsi_routing_allowed = true;
5388
5389 if (kvm_irqchip_is_split()) {
5390 KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5391 int i;
5392
5393 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5394 MSI routes for signaling interrupts to the local apics. */
5395 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5396 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5397 error_report("Could not enable split IRQ mode.");
5398 exit(1);
5399 }
5400 }
5401 kvm_irqchip_commit_route_changes(&c);
5402 }
5403 }
5404
5405 int kvm_arch_irqchip_create(KVMState *s)
5406 {
5407 int ret;
5408 if (kvm_kernel_irqchip_split()) {
5409 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5410 if (ret) {
5411 error_report("Could not enable split irqchip mode: %s",
5412 strerror(-ret));
5413 exit(1);
5414 } else {
5415 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5416 kvm_split_irqchip = true;
5417 return 1;
5418 }
5419 } else {
5420 return 0;
5421 }
5422 }
5423
5424 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5425 {
5426 CPUX86State *env;
5427 uint64_t ext_id;
5428
5429 if (!first_cpu) {
5430 return address;
5431 }
5432 env = &X86_CPU(first_cpu)->env;
5433 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5434 return address;
5435 }
5436
5437 /*
5438 * If the remappable format bit is set, or the upper bits are
5439 * already set in address_hi, or the low extended bits aren't
5440 * there anyway, do nothing.
5441 */
5442 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5443 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5444 return address;
5445 }
5446
5447 address &= ~ext_id;
5448 address |= ext_id << 35;
5449 return address;
5450 }
5451
5452 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5453 uint64_t address, uint32_t data, PCIDevice *dev)
5454 {
5455 X86IOMMUState *iommu = x86_iommu_get_default();
5456
5457 if (iommu) {
5458 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5459
5460 if (class->int_remap) {
5461 int ret;
5462 MSIMessage src, dst;
5463
5464 src.address = route->u.msi.address_hi;
5465 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5466 src.address |= route->u.msi.address_lo;
5467 src.data = route->u.msi.data;
5468
5469 ret = class->int_remap(iommu, &src, &dst, dev ? \
5470 pci_requester_id(dev) : \
5471 X86_IOMMU_SID_INVALID);
5472 if (ret) {
5473 trace_kvm_x86_fixup_msi_error(route->gsi);
5474 return 1;
5475 }
5476
5477 /*
5478 * Handled untranslated compatibility format interrupt with
5479 * extended destination ID in the low bits 11-5. */
5480 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5481
5482 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5483 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5484 route->u.msi.data = dst.data;
5485 return 0;
5486 }
5487 }
5488
5489 #ifdef CONFIG_XEN_EMU
5490 if (xen_mode == XEN_EMULATE) {
5491 int handled = xen_evtchn_translate_pirq_msi(route, address, data);
5492
5493 /*
5494 * If it was a PIRQ and successfully routed (handled == 0) or it was
5495 * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
5496 */
5497 if (handled <= 0) {
5498 return handled;
5499 }
5500 }
5501 #endif
5502
5503 address = kvm_swizzle_msi_ext_dest_id(address);
5504 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5505 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5506 return 0;
5507 }
5508
5509 typedef struct MSIRouteEntry MSIRouteEntry;
5510
5511 struct MSIRouteEntry {
5512 PCIDevice *dev; /* Device pointer */
5513 int vector; /* MSI/MSIX vector index */
5514 int virq; /* Virtual IRQ index */
5515 QLIST_ENTRY(MSIRouteEntry) list;
5516 };
5517
5518 /* List of used GSI routes */
5519 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5520 QLIST_HEAD_INITIALIZER(msi_route_list);
5521
5522 void kvm_update_msi_routes_all(void *private, bool global,
5523 uint32_t index, uint32_t mask)
5524 {
5525 int cnt = 0, vector;
5526 MSIRouteEntry *entry;
5527 MSIMessage msg;
5528 PCIDevice *dev;
5529
5530 /* TODO: explicit route update */
5531 QLIST_FOREACH(entry, &msi_route_list, list) {
5532 cnt++;
5533 vector = entry->vector;
5534 dev = entry->dev;
5535 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5536 msg = msix_get_message(dev, vector);
5537 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5538 msg = msi_get_message(dev, vector);
5539 } else {
5540 /*
5541 * Either MSI/MSIX is disabled for the device, or the
5542 * specific message was masked out. Skip this one.
5543 */
5544 continue;
5545 }
5546 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5547 }
5548 kvm_irqchip_commit_routes(kvm_state);
5549 trace_kvm_x86_update_msi_routes(cnt);
5550 }
5551
5552 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5553 int vector, PCIDevice *dev)
5554 {
5555 static bool notify_list_inited = false;
5556 MSIRouteEntry *entry;
5557
5558 if (!dev) {
5559 /* These are (possibly) IOAPIC routes only used for split
5560 * kernel irqchip mode, while what we are housekeeping are
5561 * PCI devices only. */
5562 return 0;
5563 }
5564
5565 entry = g_new0(MSIRouteEntry, 1);
5566 entry->dev = dev;
5567 entry->vector = vector;
5568 entry->virq = route->gsi;
5569 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5570
5571 trace_kvm_x86_add_msi_route(route->gsi);
5572
5573 if (!notify_list_inited) {
5574 /* For the first time we do add route, add ourselves into
5575 * IOMMU's IEC notify list if needed. */
5576 X86IOMMUState *iommu = x86_iommu_get_default();
5577 if (iommu) {
5578 x86_iommu_iec_register_notifier(iommu,
5579 kvm_update_msi_routes_all,
5580 NULL);
5581 }
5582 notify_list_inited = true;
5583 }
5584 return 0;
5585 }
5586
5587 int kvm_arch_release_virq_post(int virq)
5588 {
5589 MSIRouteEntry *entry, *next;
5590 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5591 if (entry->virq == virq) {
5592 trace_kvm_x86_remove_msi_route(virq);
5593 QLIST_REMOVE(entry, list);
5594 g_free(entry);
5595 break;
5596 }
5597 }
5598 return 0;
5599 }
5600
5601 int kvm_arch_msi_data_to_gsi(uint32_t data)
5602 {
5603 abort();
5604 }
5605
5606 bool kvm_has_waitpkg(void)
5607 {
5608 return has_msr_umwait;
5609 }
5610
5611 bool kvm_arch_cpu_check_are_resettable(void)
5612 {
5613 return !sev_es_enabled();
5614 }
5615
5616 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025
5617
5618 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5619 {
5620 KVMState *s = kvm_state;
5621 uint64_t supported;
5622
5623 mask &= XSTATE_DYNAMIC_MASK;
5624 if (!mask) {
5625 return;
5626 }
5627 /*
5628 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5629 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5630 * about them already because they are not supported features.
5631 */
5632 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5633 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5634 mask &= supported;
5635
5636 while (mask) {
5637 int bit = ctz64(mask);
5638 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5639 if (rc) {
5640 /*
5641 * Older kernel version (<5.17) do not support
5642 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5643 * any dynamic feature from kvm_arch_get_supported_cpuid.
5644 */
5645 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5646 "for feature bit %d", bit);
5647 }
5648 mask &= ~BIT_ULL(bit);
5649 }
5650 }
5651
5652 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5653 {
5654 KVMState *s = KVM_STATE(obj);
5655 return s->notify_vmexit;
5656 }
5657
5658 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5659 {
5660 KVMState *s = KVM_STATE(obj);
5661
5662 if (s->fd != -1) {
5663 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5664 return;
5665 }
5666
5667 s->notify_vmexit = value;
5668 }
5669
5670 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5671 const char *name, void *opaque,
5672 Error **errp)
5673 {
5674 KVMState *s = KVM_STATE(obj);
5675 uint32_t value = s->notify_window;
5676
5677 visit_type_uint32(v, name, &value, errp);
5678 }
5679
5680 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5681 const char *name, void *opaque,
5682 Error **errp)
5683 {
5684 KVMState *s = KVM_STATE(obj);
5685 uint32_t value;
5686
5687 if (s->fd != -1) {
5688 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5689 return;
5690 }
5691
5692 if (!visit_type_uint32(v, name, &value, errp)) {
5693 return;
5694 }
5695
5696 s->notify_window = value;
5697 }
5698
5699 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
5700 const char *name, void *opaque,
5701 Error **errp)
5702 {
5703 KVMState *s = KVM_STATE(obj);
5704 uint32_t value = s->xen_version;
5705
5706 visit_type_uint32(v, name, &value, errp);
5707 }
5708
5709 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
5710 const char *name, void *opaque,
5711 Error **errp)
5712 {
5713 KVMState *s = KVM_STATE(obj);
5714 Error *error = NULL;
5715 uint32_t value;
5716
5717 visit_type_uint32(v, name, &value, &error);
5718 if (error) {
5719 error_propagate(errp, error);
5720 return;
5721 }
5722
5723 s->xen_version = value;
5724 if (value && xen_mode == XEN_DISABLED) {
5725 xen_mode = XEN_EMULATE;
5726 }
5727 }
5728
5729 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
5730 const char *name, void *opaque,
5731 Error **errp)
5732 {
5733 KVMState *s = KVM_STATE(obj);
5734 uint16_t value = s->xen_gnttab_max_frames;
5735
5736 visit_type_uint16(v, name, &value, errp);
5737 }
5738
5739 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
5740 const char *name, void *opaque,
5741 Error **errp)
5742 {
5743 KVMState *s = KVM_STATE(obj);
5744 Error *error = NULL;
5745 uint16_t value;
5746
5747 visit_type_uint16(v, name, &value, &error);
5748 if (error) {
5749 error_propagate(errp, error);
5750 return;
5751 }
5752
5753 s->xen_gnttab_max_frames = value;
5754 }
5755
5756 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5757 const char *name, void *opaque,
5758 Error **errp)
5759 {
5760 KVMState *s = KVM_STATE(obj);
5761 uint16_t value = s->xen_evtchn_max_pirq;
5762
5763 visit_type_uint16(v, name, &value, errp);
5764 }
5765
5766 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5767 const char *name, void *opaque,
5768 Error **errp)
5769 {
5770 KVMState *s = KVM_STATE(obj);
5771 Error *error = NULL;
5772 uint16_t value;
5773
5774 visit_type_uint16(v, name, &value, &error);
5775 if (error) {
5776 error_propagate(errp, error);
5777 return;
5778 }
5779
5780 s->xen_evtchn_max_pirq = value;
5781 }
5782
5783 void kvm_arch_accel_class_init(ObjectClass *oc)
5784 {
5785 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5786 &NotifyVmexitOption_lookup,
5787 kvm_arch_get_notify_vmexit,
5788 kvm_arch_set_notify_vmexit);
5789 object_class_property_set_description(oc, "notify-vmexit",
5790 "Enable notify VM exit");
5791
5792 object_class_property_add(oc, "notify-window", "uint32",
5793 kvm_arch_get_notify_window,
5794 kvm_arch_set_notify_window,
5795 NULL, NULL);
5796 object_class_property_set_description(oc, "notify-window",
5797 "Clock cycles without an event window "
5798 "after which a notification VM exit occurs");
5799
5800 object_class_property_add(oc, "xen-version", "uint32",
5801 kvm_arch_get_xen_version,
5802 kvm_arch_set_xen_version,
5803 NULL, NULL);
5804 object_class_property_set_description(oc, "xen-version",
5805 "Xen version to be emulated "
5806 "(in XENVER_version form "
5807 "e.g. 0x4000a for 4.10)");
5808
5809 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
5810 kvm_arch_get_xen_gnttab_max_frames,
5811 kvm_arch_set_xen_gnttab_max_frames,
5812 NULL, NULL);
5813 object_class_property_set_description(oc, "xen-gnttab-max-frames",
5814 "Maximum number of grant table frames");
5815
5816 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
5817 kvm_arch_get_xen_evtchn_max_pirq,
5818 kvm_arch_set_xen_evtchn_max_pirq,
5819 NULL, NULL);
5820 object_class_property_set_description(oc, "xen-evtchn-max-pirq",
5821 "Maximum number of Xen PIRQs");
5822 }
5823
5824 void kvm_set_max_apic_id(uint32_t max_apic_id)
5825 {
5826 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
5827 }