]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/kvm/kvm.c
af101fcdf6ffa37505baa60bf45450b4ffed34fa
[mirror_qemu.git] / target / i386 / kvm / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <sys/ioctl.h>
20 #include <sys/utsname.h>
21 #include <sys/syscall.h>
22
23 #include <linux/kvm.h>
24 #include "standard-headers/asm-x86/kvm_para.h"
25 #include "hw/xen/interface/arch-x86/cpuid.h"
26
27 #include "cpu.h"
28 #include "host-cpu.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/hw_accel.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "kvm_i386.h"
34 #include "sev.h"
35 #include "xen-emu.h"
36 #include "hyperv.h"
37 #include "hyperv-proto.h"
38
39 #include "exec/gdbstub.h"
40 #include "qemu/host-utils.h"
41 #include "qemu/main-loop.h"
42 #include "qemu/ratelimit.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/memalign.h"
46 #include "hw/i386/x86.h"
47 #include "hw/i386/kvm/xen_evtchn.h"
48 #include "hw/i386/pc.h"
49 #include "hw/i386/apic.h"
50 #include "hw/i386/apic_internal.h"
51 #include "hw/i386/apic-msidef.h"
52 #include "hw/i386/intel_iommu.h"
53 #include "hw/i386/x86-iommu.h"
54 #include "hw/i386/e820_memory_layout.h"
55
56 #include "hw/xen/xen.h"
57
58 #include "hw/pci/pci.h"
59 #include "hw/pci/msi.h"
60 #include "hw/pci/msix.h"
61 #include "migration/blocker.h"
62 #include "exec/memattrs.h"
63 #include "trace.h"
64
65 #include CONFIG_DEVICES
66
67 //#define DEBUG_KVM
68
69 #ifdef DEBUG_KVM
70 #define DPRINTF(fmt, ...) \
71 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
72 #else
73 #define DPRINTF(fmt, ...) \
74 do { } while (0)
75 #endif
76
77 /* From arch/x86/kvm/lapic.h */
78 #define KVM_APIC_BUS_CYCLE_NS 1
79 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
80
81 #define MSR_KVM_WALL_CLOCK 0x11
82 #define MSR_KVM_SYSTEM_TIME 0x12
83
84 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
85 * 255 kvm_msr_entry structs */
86 #define MSR_BUF_SIZE 4096
87
88 static void kvm_init_msrs(X86CPU *cpu);
89
90 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
91 KVM_CAP_INFO(SET_TSS_ADDR),
92 KVM_CAP_INFO(EXT_CPUID),
93 KVM_CAP_INFO(MP_STATE),
94 KVM_CAP_LAST_INFO
95 };
96
97 static bool has_msr_star;
98 static bool has_msr_hsave_pa;
99 static bool has_msr_tsc_aux;
100 static bool has_msr_tsc_adjust;
101 static bool has_msr_tsc_deadline;
102 static bool has_msr_feature_control;
103 static bool has_msr_misc_enable;
104 static bool has_msr_smbase;
105 static bool has_msr_bndcfgs;
106 static int lm_capable_kernel;
107 static bool has_msr_hv_hypercall;
108 static bool has_msr_hv_crash;
109 static bool has_msr_hv_reset;
110 static bool has_msr_hv_vpindex;
111 static bool hv_vpindex_settable;
112 static bool has_msr_hv_runtime;
113 static bool has_msr_hv_synic;
114 static bool has_msr_hv_stimer;
115 static bool has_msr_hv_frequencies;
116 static bool has_msr_hv_reenlightenment;
117 static bool has_msr_hv_syndbg_options;
118 static bool has_msr_xss;
119 static bool has_msr_umwait;
120 static bool has_msr_spec_ctrl;
121 static bool has_tsc_scale_msr;
122 static bool has_msr_tsx_ctrl;
123 static bool has_msr_virt_ssbd;
124 static bool has_msr_smi_count;
125 static bool has_msr_arch_capabs;
126 static bool has_msr_core_capabs;
127 static bool has_msr_vmx_vmfunc;
128 static bool has_msr_ucode_rev;
129 static bool has_msr_vmx_procbased_ctls2;
130 static bool has_msr_perf_capabs;
131 static bool has_msr_pkrs;
132
133 static uint32_t has_architectural_pmu_version;
134 static uint32_t num_architectural_pmu_gp_counters;
135 static uint32_t num_architectural_pmu_fixed_counters;
136
137 static int has_xsave;
138 static int has_xsave2;
139 static int has_xcrs;
140 static int has_pit_state2;
141 static int has_sregs2;
142 static int has_exception_payload;
143 static int has_triple_fault_event;
144
145 static bool has_msr_mcg_ext_ctl;
146
147 static struct kvm_cpuid2 *cpuid_cache;
148 static struct kvm_cpuid2 *hv_cpuid_cache;
149 static struct kvm_msr_list *kvm_feature_msrs;
150
151 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
152
153 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
154 static RateLimit bus_lock_ratelimit_ctrl;
155 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
156
157 bool kvm_has_pit_state2(void)
158 {
159 return !!has_pit_state2;
160 }
161
162 bool kvm_has_smm(void)
163 {
164 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
165 }
166
167 bool kvm_has_adjust_clock_stable(void)
168 {
169 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
170
171 return (ret & KVM_CLOCK_TSC_STABLE);
172 }
173
174 bool kvm_has_adjust_clock(void)
175 {
176 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
177 }
178
179 bool kvm_has_exception_payload(void)
180 {
181 return has_exception_payload;
182 }
183
184 static bool kvm_x2apic_api_set_flags(uint64_t flags)
185 {
186 KVMState *s = KVM_STATE(current_accel());
187
188 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
189 }
190
191 #define MEMORIZE(fn, _result) \
192 ({ \
193 static bool _memorized; \
194 \
195 if (_memorized) { \
196 return _result; \
197 } \
198 _memorized = true; \
199 _result = fn; \
200 })
201
202 static bool has_x2apic_api;
203
204 bool kvm_has_x2apic_api(void)
205 {
206 return has_x2apic_api;
207 }
208
209 bool kvm_enable_x2apic(void)
210 {
211 return MEMORIZE(
212 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
213 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
214 has_x2apic_api);
215 }
216
217 bool kvm_hv_vpindex_settable(void)
218 {
219 return hv_vpindex_settable;
220 }
221
222 static int kvm_get_tsc(CPUState *cs)
223 {
224 X86CPU *cpu = X86_CPU(cs);
225 CPUX86State *env = &cpu->env;
226 uint64_t value;
227 int ret;
228
229 if (env->tsc_valid) {
230 return 0;
231 }
232
233 env->tsc_valid = !runstate_is_running();
234
235 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
236 if (ret < 0) {
237 return ret;
238 }
239
240 env->tsc = value;
241 return 0;
242 }
243
244 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
245 {
246 kvm_get_tsc(cpu);
247 }
248
249 void kvm_synchronize_all_tsc(void)
250 {
251 CPUState *cpu;
252
253 if (kvm_enabled()) {
254 CPU_FOREACH(cpu) {
255 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
256 }
257 }
258 }
259
260 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
261 {
262 struct kvm_cpuid2 *cpuid;
263 int r, size;
264
265 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
266 cpuid = g_malloc0(size);
267 cpuid->nent = max;
268 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
269 if (r == 0 && cpuid->nent >= max) {
270 r = -E2BIG;
271 }
272 if (r < 0) {
273 if (r == -E2BIG) {
274 g_free(cpuid);
275 return NULL;
276 } else {
277 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
278 strerror(-r));
279 exit(1);
280 }
281 }
282 return cpuid;
283 }
284
285 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
286 * for all entries.
287 */
288 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
289 {
290 struct kvm_cpuid2 *cpuid;
291 int max = 1;
292
293 if (cpuid_cache != NULL) {
294 return cpuid_cache;
295 }
296 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
297 max *= 2;
298 }
299 cpuid_cache = cpuid;
300 return cpuid;
301 }
302
303 static bool host_tsx_broken(void)
304 {
305 int family, model, stepping;\
306 char vendor[CPUID_VENDOR_SZ + 1];
307
308 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
309
310 /* Check if we are running on a Haswell host known to have broken TSX */
311 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
312 (family == 6) &&
313 ((model == 63 && stepping < 4) ||
314 model == 60 || model == 69 || model == 70);
315 }
316
317 /* Returns the value for a specific register on the cpuid entry
318 */
319 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
320 {
321 uint32_t ret = 0;
322 switch (reg) {
323 case R_EAX:
324 ret = entry->eax;
325 break;
326 case R_EBX:
327 ret = entry->ebx;
328 break;
329 case R_ECX:
330 ret = entry->ecx;
331 break;
332 case R_EDX:
333 ret = entry->edx;
334 break;
335 }
336 return ret;
337 }
338
339 /* Find matching entry for function/index on kvm_cpuid2 struct
340 */
341 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
342 uint32_t function,
343 uint32_t index)
344 {
345 int i;
346 for (i = 0; i < cpuid->nent; ++i) {
347 if (cpuid->entries[i].function == function &&
348 cpuid->entries[i].index == index) {
349 return &cpuid->entries[i];
350 }
351 }
352 /* not found: */
353 return NULL;
354 }
355
356 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
357 uint32_t index, int reg)
358 {
359 struct kvm_cpuid2 *cpuid;
360 uint32_t ret = 0;
361 uint32_t cpuid_1_edx, unused;
362 uint64_t bitmask;
363
364 cpuid = get_supported_cpuid(s);
365
366 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
367 if (entry) {
368 ret = cpuid_entry_get_reg(entry, reg);
369 }
370
371 /* Fixups for the data returned by KVM, below */
372
373 if (function == 1 && reg == R_EDX) {
374 /* KVM before 2.6.30 misreports the following features */
375 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
376 } else if (function == 1 && reg == R_ECX) {
377 /* We can set the hypervisor flag, even if KVM does not return it on
378 * GET_SUPPORTED_CPUID
379 */
380 ret |= CPUID_EXT_HYPERVISOR;
381 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
382 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
383 * and the irqchip is in the kernel.
384 */
385 if (kvm_irqchip_in_kernel() &&
386 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
387 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
388 }
389
390 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
391 * without the in-kernel irqchip
392 */
393 if (!kvm_irqchip_in_kernel()) {
394 ret &= ~CPUID_EXT_X2APIC;
395 }
396
397 if (enable_cpu_pm) {
398 int disable_exits = kvm_check_extension(s,
399 KVM_CAP_X86_DISABLE_EXITS);
400
401 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
402 ret |= CPUID_EXT_MONITOR;
403 }
404 }
405 } else if (function == 6 && reg == R_EAX) {
406 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
407 } else if (function == 7 && index == 0 && reg == R_EBX) {
408 /* Not new instructions, just an optimization. */
409 uint32_t ebx;
410 host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
411 ret |= ebx & CPUID_7_0_EBX_ERMS;
412
413 if (host_tsx_broken()) {
414 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
415 }
416 } else if (function == 7 && index == 0 && reg == R_EDX) {
417 /* Not new instructions, just an optimization. */
418 uint32_t edx;
419 host_cpuid(7, 0, &unused, &unused, &unused, &edx);
420 ret |= edx & CPUID_7_0_EDX_FSRM;
421
422 /*
423 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
424 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
425 * returned by KVM_GET_MSR_INDEX_LIST.
426 */
427 if (!has_msr_arch_capabs) {
428 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
429 }
430 } else if (function == 7 && index == 1 && reg == R_EAX) {
431 /* Not new instructions, just an optimization. */
432 uint32_t eax;
433 host_cpuid(7, 1, &eax, &unused, &unused, &unused);
434 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
435 } else if (function == 7 && index == 2 && reg == R_EDX) {
436 uint32_t edx;
437 host_cpuid(7, 2, &unused, &unused, &unused, &edx);
438 ret |= edx & CPUID_7_2_EDX_MCDT_NO;
439 } else if (function == 0xd && index == 0 &&
440 (reg == R_EAX || reg == R_EDX)) {
441 /*
442 * The value returned by KVM_GET_SUPPORTED_CPUID does not include
443 * features that still have to be enabled with the arch_prctl
444 * system call. QEMU needs the full value, which is retrieved
445 * with KVM_GET_DEVICE_ATTR.
446 */
447 struct kvm_device_attr attr = {
448 .group = 0,
449 .attr = KVM_X86_XCOMP_GUEST_SUPP,
450 .addr = (unsigned long) &bitmask
451 };
452
453 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
454 if (!sys_attr) {
455 return ret;
456 }
457
458 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
459 if (rc < 0) {
460 if (rc != -ENXIO) {
461 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
462 "error: %d", rc);
463 }
464 return ret;
465 }
466 ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
467 } else if (function == 0x80000001 && reg == R_ECX) {
468 /*
469 * It's safe to enable TOPOEXT even if it's not returned by
470 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
471 * us to keep CPU models including TOPOEXT runnable on older kernels.
472 */
473 ret |= CPUID_EXT3_TOPOEXT;
474 } else if (function == 0x80000001 && reg == R_EDX) {
475 /* On Intel, kvm returns cpuid according to the Intel spec,
476 * so add missing bits according to the AMD spec:
477 */
478 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
479 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
480 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
481 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
482 * be enabled without the in-kernel irqchip
483 */
484 if (!kvm_irqchip_in_kernel()) {
485 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
486 }
487 if (kvm_irqchip_is_split()) {
488 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
489 }
490 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
491 ret |= 1U << KVM_HINTS_REALTIME;
492 }
493
494 return ret;
495 }
496
497 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
498 {
499 struct {
500 struct kvm_msrs info;
501 struct kvm_msr_entry entries[1];
502 } msr_data = {};
503 uint64_t value;
504 uint32_t ret, can_be_one, must_be_one;
505
506 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
507 return 0;
508 }
509
510 /* Check if requested MSR is supported feature MSR */
511 int i;
512 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
513 if (kvm_feature_msrs->indices[i] == index) {
514 break;
515 }
516 if (i == kvm_feature_msrs->nmsrs) {
517 return 0; /* if the feature MSR is not supported, simply return 0 */
518 }
519
520 msr_data.info.nmsrs = 1;
521 msr_data.entries[0].index = index;
522
523 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
524 if (ret != 1) {
525 error_report("KVM get MSR (index=0x%x) feature failed, %s",
526 index, strerror(-ret));
527 exit(1);
528 }
529
530 value = msr_data.entries[0].data;
531 switch (index) {
532 case MSR_IA32_VMX_PROCBASED_CTLS2:
533 if (!has_msr_vmx_procbased_ctls2) {
534 /* KVM forgot to add these bits for some time, do this ourselves. */
535 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
536 CPUID_XSAVE_XSAVES) {
537 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
538 }
539 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
540 CPUID_EXT_RDRAND) {
541 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
542 }
543 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
544 CPUID_7_0_EBX_INVPCID) {
545 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
546 }
547 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
548 CPUID_7_0_EBX_RDSEED) {
549 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
550 }
551 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
552 CPUID_EXT2_RDTSCP) {
553 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
554 }
555 }
556 /* fall through */
557 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
558 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
559 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
560 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
561 /*
562 * Return true for bits that can be one, but do not have to be one.
563 * The SDM tells us which bits could have a "must be one" setting,
564 * so we can do the opposite transformation in make_vmx_msr_value.
565 */
566 must_be_one = (uint32_t)value;
567 can_be_one = (uint32_t)(value >> 32);
568 return can_be_one & ~must_be_one;
569
570 default:
571 return value;
572 }
573 }
574
575 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
576 int *max_banks)
577 {
578 int r;
579
580 r = kvm_check_extension(s, KVM_CAP_MCE);
581 if (r > 0) {
582 *max_banks = r;
583 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
584 }
585 return -ENOSYS;
586 }
587
588 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
589 {
590 CPUState *cs = CPU(cpu);
591 CPUX86State *env = &cpu->env;
592 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
593 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
594 uint64_t mcg_status = MCG_STATUS_MCIP;
595 int flags = 0;
596
597 if (code == BUS_MCEERR_AR) {
598 status |= MCI_STATUS_AR | 0x134;
599 mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
600 } else {
601 status |= 0xc0;
602 mcg_status |= MCG_STATUS_RIPV;
603 }
604
605 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
606 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
607 * guest kernel back into env->mcg_ext_ctl.
608 */
609 cpu_synchronize_state(cs);
610 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
611 mcg_status |= MCG_STATUS_LMCE;
612 flags = 0;
613 }
614
615 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
616 (MCM_ADDR_PHYS << 6) | 0xc, flags);
617 }
618
619 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
620 {
621 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
622
623 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
624 &mff);
625 }
626
627 static void hardware_memory_error(void *host_addr)
628 {
629 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
630 error_report("QEMU got Hardware memory error at addr %p", host_addr);
631 exit(1);
632 }
633
634 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
635 {
636 X86CPU *cpu = X86_CPU(c);
637 CPUX86State *env = &cpu->env;
638 ram_addr_t ram_addr;
639 hwaddr paddr;
640
641 /* If we get an action required MCE, it has been injected by KVM
642 * while the VM was running. An action optional MCE instead should
643 * be coming from the main thread, which qemu_init_sigbus identifies
644 * as the "early kill" thread.
645 */
646 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
647
648 if ((env->mcg_cap & MCG_SER_P) && addr) {
649 ram_addr = qemu_ram_addr_from_host(addr);
650 if (ram_addr != RAM_ADDR_INVALID &&
651 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
652 kvm_hwpoison_page_add(ram_addr);
653 kvm_mce_inject(cpu, paddr, code);
654
655 /*
656 * Use different logging severity based on error type.
657 * If there is additional MCE reporting on the hypervisor, QEMU VA
658 * could be another source to identify the PA and MCE details.
659 */
660 if (code == BUS_MCEERR_AR) {
661 error_report("Guest MCE Memory Error at QEMU addr %p and "
662 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
663 addr, paddr, "BUS_MCEERR_AR");
664 } else {
665 warn_report("Guest MCE Memory Error at QEMU addr %p and "
666 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
667 addr, paddr, "BUS_MCEERR_AO");
668 }
669
670 return;
671 }
672
673 if (code == BUS_MCEERR_AO) {
674 warn_report("Hardware memory error at addr %p of type %s "
675 "for memory used by QEMU itself instead of guest system!",
676 addr, "BUS_MCEERR_AO");
677 }
678 }
679
680 if (code == BUS_MCEERR_AR) {
681 hardware_memory_error(addr);
682 }
683
684 /* Hope we are lucky for AO MCE, just notify a event */
685 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
686 }
687
688 static void kvm_reset_exception(CPUX86State *env)
689 {
690 env->exception_nr = -1;
691 env->exception_pending = 0;
692 env->exception_injected = 0;
693 env->exception_has_payload = false;
694 env->exception_payload = 0;
695 }
696
697 static void kvm_queue_exception(CPUX86State *env,
698 int32_t exception_nr,
699 uint8_t exception_has_payload,
700 uint64_t exception_payload)
701 {
702 assert(env->exception_nr == -1);
703 assert(!env->exception_pending);
704 assert(!env->exception_injected);
705 assert(!env->exception_has_payload);
706
707 env->exception_nr = exception_nr;
708
709 if (has_exception_payload) {
710 env->exception_pending = 1;
711
712 env->exception_has_payload = exception_has_payload;
713 env->exception_payload = exception_payload;
714 } else {
715 env->exception_injected = 1;
716
717 if (exception_nr == EXCP01_DB) {
718 assert(exception_has_payload);
719 env->dr[6] = exception_payload;
720 } else if (exception_nr == EXCP0E_PAGE) {
721 assert(exception_has_payload);
722 env->cr[2] = exception_payload;
723 } else {
724 assert(!exception_has_payload);
725 }
726 }
727 }
728
729 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
730 {
731 CPUX86State *env = &cpu->env;
732
733 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
734 unsigned int bank, bank_num = env->mcg_cap & 0xff;
735 struct kvm_x86_mce mce;
736
737 kvm_reset_exception(env);
738
739 /*
740 * There must be at least one bank in use if an MCE is pending.
741 * Find it and use its values for the event injection.
742 */
743 for (bank = 0; bank < bank_num; bank++) {
744 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
745 break;
746 }
747 }
748 assert(bank < bank_num);
749
750 mce.bank = bank;
751 mce.status = env->mce_banks[bank * 4 + 1];
752 mce.mcg_status = env->mcg_status;
753 mce.addr = env->mce_banks[bank * 4 + 2];
754 mce.misc = env->mce_banks[bank * 4 + 3];
755
756 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
757 }
758 return 0;
759 }
760
761 static void cpu_update_state(void *opaque, bool running, RunState state)
762 {
763 CPUX86State *env = opaque;
764
765 if (running) {
766 env->tsc_valid = false;
767 }
768 }
769
770 unsigned long kvm_arch_vcpu_id(CPUState *cs)
771 {
772 X86CPU *cpu = X86_CPU(cs);
773 return cpu->apic_id;
774 }
775
776 #ifndef KVM_CPUID_SIGNATURE_NEXT
777 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
778 #endif
779
780 static bool hyperv_enabled(X86CPU *cpu)
781 {
782 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
783 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
784 cpu->hyperv_features || cpu->hyperv_passthrough);
785 }
786
787 /*
788 * Check whether target_freq is within conservative
789 * ntp correctable bounds (250ppm) of freq
790 */
791 static inline bool freq_within_bounds(int freq, int target_freq)
792 {
793 int max_freq = freq + (freq * 250 / 1000000);
794 int min_freq = freq - (freq * 250 / 1000000);
795
796 if (target_freq >= min_freq && target_freq <= max_freq) {
797 return true;
798 }
799
800 return false;
801 }
802
803 static int kvm_arch_set_tsc_khz(CPUState *cs)
804 {
805 X86CPU *cpu = X86_CPU(cs);
806 CPUX86State *env = &cpu->env;
807 int r, cur_freq;
808 bool set_ioctl = false;
809
810 if (!env->tsc_khz) {
811 return 0;
812 }
813
814 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
815 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
816
817 /*
818 * If TSC scaling is supported, attempt to set TSC frequency.
819 */
820 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
821 set_ioctl = true;
822 }
823
824 /*
825 * If desired TSC frequency is within bounds of NTP correction,
826 * attempt to set TSC frequency.
827 */
828 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
829 set_ioctl = true;
830 }
831
832 r = set_ioctl ?
833 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
834 -ENOTSUP;
835
836 if (r < 0) {
837 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
838 * TSC frequency doesn't match the one we want.
839 */
840 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
841 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
842 -ENOTSUP;
843 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
844 warn_report("TSC frequency mismatch between "
845 "VM (%" PRId64 " kHz) and host (%d kHz), "
846 "and TSC scaling unavailable",
847 env->tsc_khz, cur_freq);
848 return r;
849 }
850 }
851
852 return 0;
853 }
854
855 static bool tsc_is_stable_and_known(CPUX86State *env)
856 {
857 if (!env->tsc_khz) {
858 return false;
859 }
860 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
861 || env->user_tsc_khz;
862 }
863
864 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
865
866 static struct {
867 const char *desc;
868 struct {
869 uint32_t func;
870 int reg;
871 uint32_t bits;
872 } flags[2];
873 uint64_t dependencies;
874 } kvm_hyperv_properties[] = {
875 [HYPERV_FEAT_RELAXED] = {
876 .desc = "relaxed timing (hv-relaxed)",
877 .flags = {
878 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
879 .bits = HV_RELAXED_TIMING_RECOMMENDED}
880 }
881 },
882 [HYPERV_FEAT_VAPIC] = {
883 .desc = "virtual APIC (hv-vapic)",
884 .flags = {
885 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
886 .bits = HV_APIC_ACCESS_AVAILABLE}
887 }
888 },
889 [HYPERV_FEAT_TIME] = {
890 .desc = "clocksources (hv-time)",
891 .flags = {
892 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
893 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
894 }
895 },
896 [HYPERV_FEAT_CRASH] = {
897 .desc = "crash MSRs (hv-crash)",
898 .flags = {
899 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
900 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
901 }
902 },
903 [HYPERV_FEAT_RESET] = {
904 .desc = "reset MSR (hv-reset)",
905 .flags = {
906 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
907 .bits = HV_RESET_AVAILABLE}
908 }
909 },
910 [HYPERV_FEAT_VPINDEX] = {
911 .desc = "VP_INDEX MSR (hv-vpindex)",
912 .flags = {
913 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
914 .bits = HV_VP_INDEX_AVAILABLE}
915 }
916 },
917 [HYPERV_FEAT_RUNTIME] = {
918 .desc = "VP_RUNTIME MSR (hv-runtime)",
919 .flags = {
920 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
921 .bits = HV_VP_RUNTIME_AVAILABLE}
922 }
923 },
924 [HYPERV_FEAT_SYNIC] = {
925 .desc = "synthetic interrupt controller (hv-synic)",
926 .flags = {
927 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
928 .bits = HV_SYNIC_AVAILABLE}
929 }
930 },
931 [HYPERV_FEAT_STIMER] = {
932 .desc = "synthetic timers (hv-stimer)",
933 .flags = {
934 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
935 .bits = HV_SYNTIMERS_AVAILABLE}
936 },
937 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
938 },
939 [HYPERV_FEAT_FREQUENCIES] = {
940 .desc = "frequency MSRs (hv-frequencies)",
941 .flags = {
942 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
943 .bits = HV_ACCESS_FREQUENCY_MSRS},
944 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
945 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
946 }
947 },
948 [HYPERV_FEAT_REENLIGHTENMENT] = {
949 .desc = "reenlightenment MSRs (hv-reenlightenment)",
950 .flags = {
951 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
952 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
953 }
954 },
955 [HYPERV_FEAT_TLBFLUSH] = {
956 .desc = "paravirtualized TLB flush (hv-tlbflush)",
957 .flags = {
958 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
959 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
960 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
961 },
962 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
963 },
964 [HYPERV_FEAT_EVMCS] = {
965 .desc = "enlightened VMCS (hv-evmcs)",
966 .flags = {
967 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
968 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
969 },
970 .dependencies = BIT(HYPERV_FEAT_VAPIC)
971 },
972 [HYPERV_FEAT_IPI] = {
973 .desc = "paravirtualized IPI (hv-ipi)",
974 .flags = {
975 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
976 .bits = HV_CLUSTER_IPI_RECOMMENDED |
977 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
978 },
979 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
980 },
981 [HYPERV_FEAT_STIMER_DIRECT] = {
982 .desc = "direct mode synthetic timers (hv-stimer-direct)",
983 .flags = {
984 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
985 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
986 },
987 .dependencies = BIT(HYPERV_FEAT_STIMER)
988 },
989 [HYPERV_FEAT_AVIC] = {
990 .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
991 .flags = {
992 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
993 .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
994 }
995 },
996 #ifdef CONFIG_SYNDBG
997 [HYPERV_FEAT_SYNDBG] = {
998 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
999 .flags = {
1000 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1001 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1002 },
1003 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
1004 },
1005 #endif
1006 [HYPERV_FEAT_MSR_BITMAP] = {
1007 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1008 .flags = {
1009 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1010 .bits = HV_NESTED_MSR_BITMAP}
1011 }
1012 },
1013 [HYPERV_FEAT_XMM_INPUT] = {
1014 .desc = "XMM fast hypercall input (hv-xmm-input)",
1015 .flags = {
1016 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1017 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1018 }
1019 },
1020 [HYPERV_FEAT_TLBFLUSH_EXT] = {
1021 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1022 .flags = {
1023 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1024 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1025 },
1026 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1027 },
1028 [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1029 .desc = "direct TLB flush (hv-tlbflush-direct)",
1030 .flags = {
1031 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1032 .bits = HV_NESTED_DIRECT_FLUSH}
1033 },
1034 .dependencies = BIT(HYPERV_FEAT_VAPIC)
1035 },
1036 };
1037
1038 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1039 bool do_sys_ioctl)
1040 {
1041 struct kvm_cpuid2 *cpuid;
1042 int r, size;
1043
1044 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1045 cpuid = g_malloc0(size);
1046 cpuid->nent = max;
1047
1048 if (do_sys_ioctl) {
1049 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1050 } else {
1051 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1052 }
1053 if (r == 0 && cpuid->nent >= max) {
1054 r = -E2BIG;
1055 }
1056 if (r < 0) {
1057 if (r == -E2BIG) {
1058 g_free(cpuid);
1059 return NULL;
1060 } else {
1061 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1062 strerror(-r));
1063 exit(1);
1064 }
1065 }
1066 return cpuid;
1067 }
1068
1069 /*
1070 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1071 * for all entries.
1072 */
1073 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1074 {
1075 struct kvm_cpuid2 *cpuid;
1076 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1077 int max = 11;
1078 int i;
1079 bool do_sys_ioctl;
1080
1081 do_sys_ioctl =
1082 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1083
1084 /*
1085 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1086 * unsupported, kvm_hyperv_expand_features() checks for that.
1087 */
1088 assert(do_sys_ioctl || cs->kvm_state);
1089
1090 /*
1091 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1092 * -E2BIG, however, it doesn't report back the right size. Keep increasing
1093 * it and re-trying until we succeed.
1094 */
1095 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1096 max++;
1097 }
1098
1099 /*
1100 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1101 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1102 * information early, just check for the capability and set the bit
1103 * manually.
1104 */
1105 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1106 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1107 for (i = 0; i < cpuid->nent; i++) {
1108 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1109 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1110 }
1111 }
1112 }
1113
1114 return cpuid;
1115 }
1116
1117 /*
1118 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1119 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1120 */
1121 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1122 {
1123 X86CPU *cpu = X86_CPU(cs);
1124 struct kvm_cpuid2 *cpuid;
1125 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1126
1127 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1128 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1129 cpuid->nent = 2;
1130
1131 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1132 entry_feat = &cpuid->entries[0];
1133 entry_feat->function = HV_CPUID_FEATURES;
1134
1135 entry_recomm = &cpuid->entries[1];
1136 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1137 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1138
1139 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1140 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1141 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1142 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1143 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1144 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1145 }
1146
1147 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1148 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1149 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1150 }
1151
1152 if (has_msr_hv_frequencies) {
1153 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1154 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1155 }
1156
1157 if (has_msr_hv_crash) {
1158 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1159 }
1160
1161 if (has_msr_hv_reenlightenment) {
1162 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1163 }
1164
1165 if (has_msr_hv_reset) {
1166 entry_feat->eax |= HV_RESET_AVAILABLE;
1167 }
1168
1169 if (has_msr_hv_vpindex) {
1170 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1171 }
1172
1173 if (has_msr_hv_runtime) {
1174 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1175 }
1176
1177 if (has_msr_hv_synic) {
1178 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1179 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1180
1181 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1182 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1183 }
1184 }
1185
1186 if (has_msr_hv_stimer) {
1187 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1188 }
1189
1190 if (has_msr_hv_syndbg_options) {
1191 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1192 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1193 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1194 }
1195
1196 if (kvm_check_extension(cs->kvm_state,
1197 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1198 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1199 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1200 }
1201
1202 if (kvm_check_extension(cs->kvm_state,
1203 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1204 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1205 }
1206
1207 if (kvm_check_extension(cs->kvm_state,
1208 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1209 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1210 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1211 }
1212
1213 return cpuid;
1214 }
1215
1216 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1217 {
1218 struct kvm_cpuid_entry2 *entry;
1219 struct kvm_cpuid2 *cpuid;
1220
1221 if (hv_cpuid_cache) {
1222 cpuid = hv_cpuid_cache;
1223 } else {
1224 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1225 cpuid = get_supported_hv_cpuid(cs);
1226 } else {
1227 /*
1228 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1229 * before KVM context is created but this is only done when
1230 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1231 * KVM_CAP_HYPERV_CPUID.
1232 */
1233 assert(cs->kvm_state);
1234
1235 cpuid = get_supported_hv_cpuid_legacy(cs);
1236 }
1237 hv_cpuid_cache = cpuid;
1238 }
1239
1240 if (!cpuid) {
1241 return 0;
1242 }
1243
1244 entry = cpuid_find_entry(cpuid, func, 0);
1245 if (!entry) {
1246 return 0;
1247 }
1248
1249 return cpuid_entry_get_reg(entry, reg);
1250 }
1251
1252 static bool hyperv_feature_supported(CPUState *cs, int feature)
1253 {
1254 uint32_t func, bits;
1255 int i, reg;
1256
1257 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1258
1259 func = kvm_hyperv_properties[feature].flags[i].func;
1260 reg = kvm_hyperv_properties[feature].flags[i].reg;
1261 bits = kvm_hyperv_properties[feature].flags[i].bits;
1262
1263 if (!func) {
1264 continue;
1265 }
1266
1267 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1268 return false;
1269 }
1270 }
1271
1272 return true;
1273 }
1274
1275 /* Checks that all feature dependencies are enabled */
1276 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1277 {
1278 uint64_t deps;
1279 int dep_feat;
1280
1281 deps = kvm_hyperv_properties[feature].dependencies;
1282 while (deps) {
1283 dep_feat = ctz64(deps);
1284 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1285 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1286 kvm_hyperv_properties[feature].desc,
1287 kvm_hyperv_properties[dep_feat].desc);
1288 return false;
1289 }
1290 deps &= ~(1ull << dep_feat);
1291 }
1292
1293 return true;
1294 }
1295
1296 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1297 {
1298 X86CPU *cpu = X86_CPU(cs);
1299 uint32_t r = 0;
1300 int i, j;
1301
1302 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1303 if (!hyperv_feat_enabled(cpu, i)) {
1304 continue;
1305 }
1306
1307 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1308 if (kvm_hyperv_properties[i].flags[j].func != func) {
1309 continue;
1310 }
1311 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1312 continue;
1313 }
1314
1315 r |= kvm_hyperv_properties[i].flags[j].bits;
1316 }
1317 }
1318
1319 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1320 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1321 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1322 r |= DEFAULT_EVMCS_VERSION;
1323 }
1324 }
1325
1326 return r;
1327 }
1328
1329 /*
1330 * Expand Hyper-V CPU features. In partucular, check that all the requested
1331 * features are supported by the host and the sanity of the configuration
1332 * (that all the required dependencies are included). Also, this takes care
1333 * of 'hv_passthrough' mode and fills the environment with all supported
1334 * Hyper-V features.
1335 */
1336 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1337 {
1338 CPUState *cs = CPU(cpu);
1339 Error *local_err = NULL;
1340 int feat;
1341
1342 if (!hyperv_enabled(cpu))
1343 return true;
1344
1345 /*
1346 * When kvm_hyperv_expand_features is called at CPU feature expansion
1347 * time per-CPU kvm_state is not available yet so we can only proceed
1348 * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1349 */
1350 if (!cs->kvm_state &&
1351 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1352 return true;
1353
1354 if (cpu->hyperv_passthrough) {
1355 cpu->hyperv_vendor_id[0] =
1356 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1357 cpu->hyperv_vendor_id[1] =
1358 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1359 cpu->hyperv_vendor_id[2] =
1360 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1361 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1362 sizeof(cpu->hyperv_vendor_id) + 1);
1363 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1364 sizeof(cpu->hyperv_vendor_id));
1365 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1366
1367 cpu->hyperv_interface_id[0] =
1368 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1369 cpu->hyperv_interface_id[1] =
1370 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1371 cpu->hyperv_interface_id[2] =
1372 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1373 cpu->hyperv_interface_id[3] =
1374 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1375
1376 cpu->hyperv_ver_id_build =
1377 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1378 cpu->hyperv_ver_id_major =
1379 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1380 cpu->hyperv_ver_id_minor =
1381 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1382 cpu->hyperv_ver_id_sp =
1383 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1384 cpu->hyperv_ver_id_sb =
1385 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1386 cpu->hyperv_ver_id_sn =
1387 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1388
1389 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1390 R_EAX);
1391 cpu->hyperv_limits[0] =
1392 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1393 cpu->hyperv_limits[1] =
1394 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1395 cpu->hyperv_limits[2] =
1396 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1397
1398 cpu->hyperv_spinlock_attempts =
1399 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1400
1401 /*
1402 * Mark feature as enabled in 'cpu->hyperv_features' as
1403 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1404 */
1405 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1406 if (hyperv_feature_supported(cs, feat)) {
1407 cpu->hyperv_features |= BIT(feat);
1408 }
1409 }
1410 } else {
1411 /* Check features availability and dependencies */
1412 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1413 /* If the feature was not requested skip it. */
1414 if (!hyperv_feat_enabled(cpu, feat)) {
1415 continue;
1416 }
1417
1418 /* Check if the feature is supported by KVM */
1419 if (!hyperv_feature_supported(cs, feat)) {
1420 error_setg(errp, "Hyper-V %s is not supported by kernel",
1421 kvm_hyperv_properties[feat].desc);
1422 return false;
1423 }
1424
1425 /* Check dependencies */
1426 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1427 error_propagate(errp, local_err);
1428 return false;
1429 }
1430 }
1431 }
1432
1433 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1434 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1435 !cpu->hyperv_synic_kvm_only &&
1436 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1437 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1438 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1439 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1440 return false;
1441 }
1442
1443 return true;
1444 }
1445
1446 /*
1447 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1448 */
1449 static int hyperv_fill_cpuids(CPUState *cs,
1450 struct kvm_cpuid_entry2 *cpuid_ent)
1451 {
1452 X86CPU *cpu = X86_CPU(cs);
1453 struct kvm_cpuid_entry2 *c;
1454 uint32_t signature[3];
1455 uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1456 uint32_t nested_eax =
1457 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1458
1459 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1460 HV_CPUID_IMPLEMENT_LIMITS;
1461
1462 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1463 max_cpuid_leaf =
1464 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1465 }
1466
1467 c = &cpuid_ent[cpuid_i++];
1468 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1469 c->eax = max_cpuid_leaf;
1470 c->ebx = cpu->hyperv_vendor_id[0];
1471 c->ecx = cpu->hyperv_vendor_id[1];
1472 c->edx = cpu->hyperv_vendor_id[2];
1473
1474 c = &cpuid_ent[cpuid_i++];
1475 c->function = HV_CPUID_INTERFACE;
1476 c->eax = cpu->hyperv_interface_id[0];
1477 c->ebx = cpu->hyperv_interface_id[1];
1478 c->ecx = cpu->hyperv_interface_id[2];
1479 c->edx = cpu->hyperv_interface_id[3];
1480
1481 c = &cpuid_ent[cpuid_i++];
1482 c->function = HV_CPUID_VERSION;
1483 c->eax = cpu->hyperv_ver_id_build;
1484 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1485 cpu->hyperv_ver_id_minor;
1486 c->ecx = cpu->hyperv_ver_id_sp;
1487 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1488 (cpu->hyperv_ver_id_sn & 0xffffff);
1489
1490 c = &cpuid_ent[cpuid_i++];
1491 c->function = HV_CPUID_FEATURES;
1492 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1493 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1494 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1495
1496 /* Unconditionally required with any Hyper-V enlightenment */
1497 c->eax |= HV_HYPERCALL_AVAILABLE;
1498
1499 /* SynIC and Vmbus devices require messages/signals hypercalls */
1500 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1501 !cpu->hyperv_synic_kvm_only) {
1502 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1503 }
1504
1505
1506 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1507 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1508
1509 c = &cpuid_ent[cpuid_i++];
1510 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1511 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1512 c->ebx = cpu->hyperv_spinlock_attempts;
1513
1514 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1515 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1516 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1517 }
1518
1519 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1520 c->eax |= HV_NO_NONARCH_CORESHARING;
1521 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1522 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1523 HV_NO_NONARCH_CORESHARING;
1524 }
1525
1526 c = &cpuid_ent[cpuid_i++];
1527 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1528 c->eax = cpu->hv_max_vps;
1529 c->ebx = cpu->hyperv_limits[0];
1530 c->ecx = cpu->hyperv_limits[1];
1531 c->edx = cpu->hyperv_limits[2];
1532
1533 if (nested_eax) {
1534 uint32_t function;
1535
1536 /* Create zeroed 0x40000006..0x40000009 leaves */
1537 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1538 function < HV_CPUID_NESTED_FEATURES; function++) {
1539 c = &cpuid_ent[cpuid_i++];
1540 c->function = function;
1541 }
1542
1543 c = &cpuid_ent[cpuid_i++];
1544 c->function = HV_CPUID_NESTED_FEATURES;
1545 c->eax = nested_eax;
1546 }
1547
1548 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1549 c = &cpuid_ent[cpuid_i++];
1550 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1551 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1552 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1553 memcpy(signature, "Microsoft VS", 12);
1554 c->eax = 0;
1555 c->ebx = signature[0];
1556 c->ecx = signature[1];
1557 c->edx = signature[2];
1558
1559 c = &cpuid_ent[cpuid_i++];
1560 c->function = HV_CPUID_SYNDBG_INTERFACE;
1561 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1562 c->eax = signature[0];
1563 c->ebx = 0;
1564 c->ecx = 0;
1565 c->edx = 0;
1566
1567 c = &cpuid_ent[cpuid_i++];
1568 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1569 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1570 c->ebx = 0;
1571 c->ecx = 0;
1572 c->edx = 0;
1573 }
1574
1575 return cpuid_i;
1576 }
1577
1578 static Error *hv_passthrough_mig_blocker;
1579 static Error *hv_no_nonarch_cs_mig_blocker;
1580
1581 /* Checks that the exposed eVMCS version range is supported by KVM */
1582 static bool evmcs_version_supported(uint16_t evmcs_version,
1583 uint16_t supported_evmcs_version)
1584 {
1585 uint8_t min_version = evmcs_version & 0xff;
1586 uint8_t max_version = evmcs_version >> 8;
1587 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1588 uint8_t max_supported_version = supported_evmcs_version >> 8;
1589
1590 return (min_version >= min_supported_version) &&
1591 (max_version <= max_supported_version);
1592 }
1593
1594 static int hyperv_init_vcpu(X86CPU *cpu)
1595 {
1596 CPUState *cs = CPU(cpu);
1597 Error *local_err = NULL;
1598 int ret;
1599
1600 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1601 error_setg(&hv_passthrough_mig_blocker,
1602 "'hv-passthrough' CPU flag prevents migration, use explicit"
1603 " set of hv-* flags instead");
1604 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1605 if (ret < 0) {
1606 error_report_err(local_err);
1607 return ret;
1608 }
1609 }
1610
1611 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1612 hv_no_nonarch_cs_mig_blocker == NULL) {
1613 error_setg(&hv_no_nonarch_cs_mig_blocker,
1614 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1615 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1616 " make sure SMT is disabled and/or that vCPUs are properly"
1617 " pinned)");
1618 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1619 if (ret < 0) {
1620 error_report_err(local_err);
1621 return ret;
1622 }
1623 }
1624
1625 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1626 /*
1627 * the kernel doesn't support setting vp_index; assert that its value
1628 * is in sync
1629 */
1630 uint64_t value;
1631
1632 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1633 if (ret < 0) {
1634 return ret;
1635 }
1636
1637 if (value != hyperv_vp_index(CPU(cpu))) {
1638 error_report("kernel's vp_index != QEMU's vp_index");
1639 return -ENXIO;
1640 }
1641 }
1642
1643 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1644 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1645 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1646 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1647 if (ret < 0) {
1648 error_report("failed to turn on HyperV SynIC in KVM: %s",
1649 strerror(-ret));
1650 return ret;
1651 }
1652
1653 if (!cpu->hyperv_synic_kvm_only) {
1654 ret = hyperv_x86_synic_add(cpu);
1655 if (ret < 0) {
1656 error_report("failed to create HyperV SynIC: %s",
1657 strerror(-ret));
1658 return ret;
1659 }
1660 }
1661 }
1662
1663 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1664 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1665 uint16_t supported_evmcs_version;
1666
1667 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1668 (uintptr_t)&supported_evmcs_version);
1669
1670 /*
1671 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1672 * option sets. Note: we hardcode the maximum supported eVMCS version
1673 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1674 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1675 * to be added.
1676 */
1677 if (ret < 0) {
1678 error_report("Hyper-V %s is not supported by kernel",
1679 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1680 return ret;
1681 }
1682
1683 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1684 error_report("eVMCS version range [%d..%d] is not supported by "
1685 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1686 evmcs_version >> 8, supported_evmcs_version & 0xff,
1687 supported_evmcs_version >> 8);
1688 return -ENOTSUP;
1689 }
1690 }
1691
1692 if (cpu->hyperv_enforce_cpuid) {
1693 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1694 if (ret < 0) {
1695 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1696 strerror(-ret));
1697 return ret;
1698 }
1699 }
1700
1701 return 0;
1702 }
1703
1704 static Error *invtsc_mig_blocker;
1705
1706 #define KVM_MAX_CPUID_ENTRIES 100
1707
1708 static void kvm_init_xsave(CPUX86State *env)
1709 {
1710 if (has_xsave2) {
1711 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1712 } else if (has_xsave) {
1713 env->xsave_buf_len = sizeof(struct kvm_xsave);
1714 } else {
1715 return;
1716 }
1717
1718 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1719 memset(env->xsave_buf, 0, env->xsave_buf_len);
1720 /*
1721 * The allocated storage must be large enough for all of the
1722 * possible XSAVE state components.
1723 */
1724 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1725 env->xsave_buf_len);
1726 }
1727
1728 static void kvm_init_nested_state(CPUX86State *env)
1729 {
1730 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1731 uint32_t size;
1732
1733 if (!env->nested_state) {
1734 return;
1735 }
1736
1737 size = env->nested_state->size;
1738
1739 memset(env->nested_state, 0, size);
1740 env->nested_state->size = size;
1741
1742 if (cpu_has_vmx(env)) {
1743 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1744 vmx_hdr = &env->nested_state->hdr.vmx;
1745 vmx_hdr->vmxon_pa = -1ull;
1746 vmx_hdr->vmcs12_pa = -1ull;
1747 } else if (cpu_has_svm(env)) {
1748 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1749 }
1750 }
1751
1752 int kvm_arch_init_vcpu(CPUState *cs)
1753 {
1754 struct {
1755 struct kvm_cpuid2 cpuid;
1756 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1757 } cpuid_data;
1758 /*
1759 * The kernel defines these structs with padding fields so there
1760 * should be no extra padding in our cpuid_data struct.
1761 */
1762 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1763 sizeof(struct kvm_cpuid2) +
1764 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1765
1766 X86CPU *cpu = X86_CPU(cs);
1767 CPUX86State *env = &cpu->env;
1768 uint32_t limit, i, j, cpuid_i;
1769 uint32_t unused;
1770 struct kvm_cpuid_entry2 *c;
1771 uint32_t signature[3];
1772 int kvm_base = KVM_CPUID_SIGNATURE;
1773 int max_nested_state_len;
1774 int r;
1775 Error *local_err = NULL;
1776
1777 memset(&cpuid_data, 0, sizeof(cpuid_data));
1778
1779 cpuid_i = 0;
1780
1781 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1782
1783 r = kvm_arch_set_tsc_khz(cs);
1784 if (r < 0) {
1785 return r;
1786 }
1787
1788 /* vcpu's TSC frequency is either specified by user, or following
1789 * the value used by KVM if the former is not present. In the
1790 * latter case, we query it from KVM and record in env->tsc_khz,
1791 * so that vcpu's TSC frequency can be migrated later via this field.
1792 */
1793 if (!env->tsc_khz) {
1794 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1795 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1796 -ENOTSUP;
1797 if (r > 0) {
1798 env->tsc_khz = r;
1799 }
1800 }
1801
1802 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1803
1804 /*
1805 * kvm_hyperv_expand_features() is called here for the second time in case
1806 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1807 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1808 * check which Hyper-V enlightenments are supported and which are not, we
1809 * can still proceed and check/expand Hyper-V enlightenments here so legacy
1810 * behavior is preserved.
1811 */
1812 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1813 error_report_err(local_err);
1814 return -ENOSYS;
1815 }
1816
1817 if (hyperv_enabled(cpu)) {
1818 r = hyperv_init_vcpu(cpu);
1819 if (r) {
1820 return r;
1821 }
1822
1823 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1824 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1825 has_msr_hv_hypercall = true;
1826 }
1827
1828 if (cs->kvm_state->xen_version) {
1829 #ifdef CONFIG_XEN_EMU
1830 struct kvm_cpuid_entry2 *xen_max_leaf;
1831
1832 memcpy(signature, "XenVMMXenVMM", 12);
1833
1834 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
1835 c->function = kvm_base + XEN_CPUID_SIGNATURE;
1836 c->eax = kvm_base + XEN_CPUID_TIME;
1837 c->ebx = signature[0];
1838 c->ecx = signature[1];
1839 c->edx = signature[2];
1840
1841 c = &cpuid_data.entries[cpuid_i++];
1842 c->function = kvm_base + XEN_CPUID_VENDOR;
1843 c->eax = cs->kvm_state->xen_version;
1844 c->ebx = 0;
1845 c->ecx = 0;
1846 c->edx = 0;
1847
1848 c = &cpuid_data.entries[cpuid_i++];
1849 c->function = kvm_base + XEN_CPUID_HVM_MSR;
1850 /* Number of hypercall-transfer pages */
1851 c->eax = 1;
1852 /* Hypercall MSR base address */
1853 if (hyperv_enabled(cpu)) {
1854 c->ebx = XEN_HYPERCALL_MSR_HYPERV;
1855 kvm_xen_init(cs->kvm_state, c->ebx);
1856 } else {
1857 c->ebx = XEN_HYPERCALL_MSR;
1858 }
1859 c->ecx = 0;
1860 c->edx = 0;
1861
1862 c = &cpuid_data.entries[cpuid_i++];
1863 c->function = kvm_base + XEN_CPUID_TIME;
1864 c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
1865 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
1866 /* default=0 (emulate if necessary) */
1867 c->ebx = 0;
1868 /* guest tsc frequency */
1869 c->ecx = env->user_tsc_khz;
1870 /* guest tsc incarnation (migration count) */
1871 c->edx = 0;
1872
1873 c = &cpuid_data.entries[cpuid_i++];
1874 c->function = kvm_base + XEN_CPUID_HVM;
1875 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
1876 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
1877 c->function = kvm_base + XEN_CPUID_HVM;
1878
1879 if (cpu->xen_vapic) {
1880 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
1881 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
1882 }
1883
1884 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
1885
1886 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
1887 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
1888 c->ebx = cs->cpu_index;
1889 }
1890 }
1891
1892 r = kvm_xen_init_vcpu(cs);
1893 if (r) {
1894 return r;
1895 }
1896
1897 kvm_base += 0x100;
1898 #else /* CONFIG_XEN_EMU */
1899 /* This should never happen as kvm_arch_init() would have died first. */
1900 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
1901 abort();
1902 #endif
1903 } else if (cpu->expose_kvm) {
1904 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1905 c = &cpuid_data.entries[cpuid_i++];
1906 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1907 c->eax = KVM_CPUID_FEATURES | kvm_base;
1908 c->ebx = signature[0];
1909 c->ecx = signature[1];
1910 c->edx = signature[2];
1911
1912 c = &cpuid_data.entries[cpuid_i++];
1913 c->function = KVM_CPUID_FEATURES | kvm_base;
1914 c->eax = env->features[FEAT_KVM];
1915 c->edx = env->features[FEAT_KVM_HINTS];
1916 }
1917
1918 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1919
1920 if (cpu->kvm_pv_enforce_cpuid) {
1921 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1922 if (r < 0) {
1923 fprintf(stderr,
1924 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1925 strerror(-r));
1926 abort();
1927 }
1928 }
1929
1930 for (i = 0; i <= limit; i++) {
1931 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1932 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1933 abort();
1934 }
1935 c = &cpuid_data.entries[cpuid_i++];
1936
1937 switch (i) {
1938 case 2: {
1939 /* Keep reading function 2 till all the input is received */
1940 int times;
1941
1942 c->function = i;
1943 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1944 KVM_CPUID_FLAG_STATE_READ_NEXT;
1945 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1946 times = c->eax & 0xff;
1947
1948 for (j = 1; j < times; ++j) {
1949 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1950 fprintf(stderr, "cpuid_data is full, no space for "
1951 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1952 abort();
1953 }
1954 c = &cpuid_data.entries[cpuid_i++];
1955 c->function = i;
1956 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1957 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1958 }
1959 break;
1960 }
1961 case 0x1f:
1962 if (env->nr_dies < 2) {
1963 break;
1964 }
1965 /* fallthrough */
1966 case 4:
1967 case 0xb:
1968 case 0xd:
1969 for (j = 0; ; j++) {
1970 if (i == 0xd && j == 64) {
1971 break;
1972 }
1973
1974 if (i == 0x1f && j == 64) {
1975 break;
1976 }
1977
1978 c->function = i;
1979 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1980 c->index = j;
1981 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1982
1983 if (i == 4 && c->eax == 0) {
1984 break;
1985 }
1986 if (i == 0xb && !(c->ecx & 0xff00)) {
1987 break;
1988 }
1989 if (i == 0x1f && !(c->ecx & 0xff00)) {
1990 break;
1991 }
1992 if (i == 0xd && c->eax == 0) {
1993 continue;
1994 }
1995 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1996 fprintf(stderr, "cpuid_data is full, no space for "
1997 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1998 abort();
1999 }
2000 c = &cpuid_data.entries[cpuid_i++];
2001 }
2002 break;
2003 case 0x7:
2004 case 0x12:
2005 for (j = 0; ; j++) {
2006 c->function = i;
2007 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2008 c->index = j;
2009 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2010
2011 if (j > 1 && (c->eax & 0xf) != 1) {
2012 break;
2013 }
2014
2015 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2016 fprintf(stderr, "cpuid_data is full, no space for "
2017 "cpuid(eax:0x12,ecx:0x%x)\n", j);
2018 abort();
2019 }
2020 c = &cpuid_data.entries[cpuid_i++];
2021 }
2022 break;
2023 case 0x14:
2024 case 0x1d:
2025 case 0x1e: {
2026 uint32_t times;
2027
2028 c->function = i;
2029 c->index = 0;
2030 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2031 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2032 times = c->eax;
2033
2034 for (j = 1; j <= times; ++j) {
2035 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2036 fprintf(stderr, "cpuid_data is full, no space for "
2037 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2038 abort();
2039 }
2040 c = &cpuid_data.entries[cpuid_i++];
2041 c->function = i;
2042 c->index = j;
2043 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2044 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2045 }
2046 break;
2047 }
2048 default:
2049 c->function = i;
2050 c->flags = 0;
2051 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2052 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2053 /*
2054 * KVM already returns all zeroes if a CPUID entry is missing,
2055 * so we can omit it and avoid hitting KVM's 80-entry limit.
2056 */
2057 cpuid_i--;
2058 }
2059 break;
2060 }
2061 }
2062
2063 if (limit >= 0x0a) {
2064 uint32_t eax, edx;
2065
2066 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
2067
2068 has_architectural_pmu_version = eax & 0xff;
2069 if (has_architectural_pmu_version > 0) {
2070 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
2071
2072 /* Shouldn't be more than 32, since that's the number of bits
2073 * available in EBX to tell us _which_ counters are available.
2074 * Play it safe.
2075 */
2076 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
2077 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
2078 }
2079
2080 if (has_architectural_pmu_version > 1) {
2081 num_architectural_pmu_fixed_counters = edx & 0x1f;
2082
2083 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
2084 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
2085 }
2086 }
2087 }
2088 }
2089
2090 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
2091
2092 for (i = 0x80000000; i <= limit; i++) {
2093 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2094 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
2095 abort();
2096 }
2097 c = &cpuid_data.entries[cpuid_i++];
2098
2099 switch (i) {
2100 case 0x8000001d:
2101 /* Query for all AMD cache information leaves */
2102 for (j = 0; ; j++) {
2103 c->function = i;
2104 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2105 c->index = j;
2106 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2107
2108 if (c->eax == 0) {
2109 break;
2110 }
2111 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2112 fprintf(stderr, "cpuid_data is full, no space for "
2113 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2114 abort();
2115 }
2116 c = &cpuid_data.entries[cpuid_i++];
2117 }
2118 break;
2119 default:
2120 c->function = i;
2121 c->flags = 0;
2122 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2123 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2124 /*
2125 * KVM already returns all zeroes if a CPUID entry is missing,
2126 * so we can omit it and avoid hitting KVM's 80-entry limit.
2127 */
2128 cpuid_i--;
2129 }
2130 break;
2131 }
2132 }
2133
2134 /* Call Centaur's CPUID instructions they are supported. */
2135 if (env->cpuid_xlevel2 > 0) {
2136 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2137
2138 for (i = 0xC0000000; i <= limit; i++) {
2139 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2140 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2141 abort();
2142 }
2143 c = &cpuid_data.entries[cpuid_i++];
2144
2145 c->function = i;
2146 c->flags = 0;
2147 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2148 }
2149 }
2150
2151 cpuid_data.cpuid.nent = cpuid_i;
2152
2153 if (((env->cpuid_version >> 8)&0xF) >= 6
2154 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2155 (CPUID_MCE | CPUID_MCA)
2156 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
2157 uint64_t mcg_cap, unsupported_caps;
2158 int banks;
2159 int ret;
2160
2161 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2162 if (ret < 0) {
2163 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2164 return ret;
2165 }
2166
2167 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2168 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2169 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2170 return -ENOTSUP;
2171 }
2172
2173 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2174 if (unsupported_caps) {
2175 if (unsupported_caps & MCG_LMCE_P) {
2176 error_report("kvm: LMCE not supported");
2177 return -ENOTSUP;
2178 }
2179 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2180 unsupported_caps);
2181 }
2182
2183 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2184 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2185 if (ret < 0) {
2186 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2187 return ret;
2188 }
2189 }
2190
2191 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2192
2193 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2194 if (c) {
2195 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2196 !!(c->ecx & CPUID_EXT_SMX);
2197 }
2198
2199 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2200 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2201 has_msr_feature_control = true;
2202 }
2203
2204 if (env->mcg_cap & MCG_LMCE_P) {
2205 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2206 }
2207
2208 if (!env->user_tsc_khz) {
2209 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2210 invtsc_mig_blocker == NULL) {
2211 error_setg(&invtsc_mig_blocker,
2212 "State blocked by non-migratable CPU device"
2213 " (invtsc flag)");
2214 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2215 if (r < 0) {
2216 error_report_err(local_err);
2217 return r;
2218 }
2219 }
2220 }
2221
2222 if (cpu->vmware_cpuid_freq
2223 /* Guests depend on 0x40000000 to detect this feature, so only expose
2224 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2225 && cpu->expose_kvm
2226 && kvm_base == KVM_CPUID_SIGNATURE
2227 /* TSC clock must be stable and known for this feature. */
2228 && tsc_is_stable_and_known(env)) {
2229
2230 c = &cpuid_data.entries[cpuid_i++];
2231 c->function = KVM_CPUID_SIGNATURE | 0x10;
2232 c->eax = env->tsc_khz;
2233 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2234 c->ecx = c->edx = 0;
2235
2236 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2237 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2238 }
2239
2240 cpuid_data.cpuid.nent = cpuid_i;
2241
2242 cpuid_data.cpuid.padding = 0;
2243 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2244 if (r) {
2245 goto fail;
2246 }
2247 kvm_init_xsave(env);
2248
2249 max_nested_state_len = kvm_max_nested_state_length();
2250 if (max_nested_state_len > 0) {
2251 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2252
2253 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2254 env->nested_state = g_malloc0(max_nested_state_len);
2255 env->nested_state->size = max_nested_state_len;
2256
2257 kvm_init_nested_state(env);
2258 }
2259 }
2260
2261 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2262
2263 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2264 has_msr_tsc_aux = false;
2265 }
2266
2267 kvm_init_msrs(cpu);
2268
2269 return 0;
2270
2271 fail:
2272 migrate_del_blocker(invtsc_mig_blocker);
2273
2274 return r;
2275 }
2276
2277 int kvm_arch_destroy_vcpu(CPUState *cs)
2278 {
2279 X86CPU *cpu = X86_CPU(cs);
2280 CPUX86State *env = &cpu->env;
2281
2282 g_free(env->xsave_buf);
2283
2284 g_free(cpu->kvm_msr_buf);
2285 cpu->kvm_msr_buf = NULL;
2286
2287 g_free(env->nested_state);
2288 env->nested_state = NULL;
2289
2290 qemu_del_vm_change_state_handler(cpu->vmsentry);
2291
2292 return 0;
2293 }
2294
2295 void kvm_arch_reset_vcpu(X86CPU *cpu)
2296 {
2297 CPUX86State *env = &cpu->env;
2298
2299 env->xcr0 = 1;
2300 if (kvm_irqchip_in_kernel()) {
2301 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2302 KVM_MP_STATE_UNINITIALIZED;
2303 } else {
2304 env->mp_state = KVM_MP_STATE_RUNNABLE;
2305 }
2306
2307 /* enabled by default */
2308 env->poll_control_msr = 1;
2309
2310 kvm_init_nested_state(env);
2311
2312 sev_es_set_reset_vector(CPU(cpu));
2313 }
2314
2315 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2316 {
2317 CPUX86State *env = &cpu->env;
2318 int i;
2319
2320 /*
2321 * Reset SynIC after all other devices have been reset to let them remove
2322 * their SINT routes first.
2323 */
2324 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2325 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2326 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2327 }
2328
2329 hyperv_x86_synic_reset(cpu);
2330 }
2331 }
2332
2333 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2334 {
2335 CPUX86State *env = &cpu->env;
2336
2337 /* APs get directly into wait-for-SIPI state. */
2338 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2339 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2340 }
2341 }
2342
2343 static int kvm_get_supported_feature_msrs(KVMState *s)
2344 {
2345 int ret = 0;
2346
2347 if (kvm_feature_msrs != NULL) {
2348 return 0;
2349 }
2350
2351 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2352 return 0;
2353 }
2354
2355 struct kvm_msr_list msr_list;
2356
2357 msr_list.nmsrs = 0;
2358 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2359 if (ret < 0 && ret != -E2BIG) {
2360 error_report("Fetch KVM feature MSR list failed: %s",
2361 strerror(-ret));
2362 return ret;
2363 }
2364
2365 assert(msr_list.nmsrs > 0);
2366 kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2367 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2368
2369 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2370 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2371
2372 if (ret < 0) {
2373 error_report("Fetch KVM feature MSR list failed: %s",
2374 strerror(-ret));
2375 g_free(kvm_feature_msrs);
2376 kvm_feature_msrs = NULL;
2377 return ret;
2378 }
2379
2380 return 0;
2381 }
2382
2383 static int kvm_get_supported_msrs(KVMState *s)
2384 {
2385 int ret = 0;
2386 struct kvm_msr_list msr_list, *kvm_msr_list;
2387
2388 /*
2389 * Obtain MSR list from KVM. These are the MSRs that we must
2390 * save/restore.
2391 */
2392 msr_list.nmsrs = 0;
2393 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2394 if (ret < 0 && ret != -E2BIG) {
2395 return ret;
2396 }
2397 /*
2398 * Old kernel modules had a bug and could write beyond the provided
2399 * memory. Allocate at least a safe amount of 1K.
2400 */
2401 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2402 msr_list.nmsrs *
2403 sizeof(msr_list.indices[0])));
2404
2405 kvm_msr_list->nmsrs = msr_list.nmsrs;
2406 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2407 if (ret >= 0) {
2408 int i;
2409
2410 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2411 switch (kvm_msr_list->indices[i]) {
2412 case MSR_STAR:
2413 has_msr_star = true;
2414 break;
2415 case MSR_VM_HSAVE_PA:
2416 has_msr_hsave_pa = true;
2417 break;
2418 case MSR_TSC_AUX:
2419 has_msr_tsc_aux = true;
2420 break;
2421 case MSR_TSC_ADJUST:
2422 has_msr_tsc_adjust = true;
2423 break;
2424 case MSR_IA32_TSCDEADLINE:
2425 has_msr_tsc_deadline = true;
2426 break;
2427 case MSR_IA32_SMBASE:
2428 has_msr_smbase = true;
2429 break;
2430 case MSR_SMI_COUNT:
2431 has_msr_smi_count = true;
2432 break;
2433 case MSR_IA32_MISC_ENABLE:
2434 has_msr_misc_enable = true;
2435 break;
2436 case MSR_IA32_BNDCFGS:
2437 has_msr_bndcfgs = true;
2438 break;
2439 case MSR_IA32_XSS:
2440 has_msr_xss = true;
2441 break;
2442 case MSR_IA32_UMWAIT_CONTROL:
2443 has_msr_umwait = true;
2444 break;
2445 case HV_X64_MSR_CRASH_CTL:
2446 has_msr_hv_crash = true;
2447 break;
2448 case HV_X64_MSR_RESET:
2449 has_msr_hv_reset = true;
2450 break;
2451 case HV_X64_MSR_VP_INDEX:
2452 has_msr_hv_vpindex = true;
2453 break;
2454 case HV_X64_MSR_VP_RUNTIME:
2455 has_msr_hv_runtime = true;
2456 break;
2457 case HV_X64_MSR_SCONTROL:
2458 has_msr_hv_synic = true;
2459 break;
2460 case HV_X64_MSR_STIMER0_CONFIG:
2461 has_msr_hv_stimer = true;
2462 break;
2463 case HV_X64_MSR_TSC_FREQUENCY:
2464 has_msr_hv_frequencies = true;
2465 break;
2466 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2467 has_msr_hv_reenlightenment = true;
2468 break;
2469 case HV_X64_MSR_SYNDBG_OPTIONS:
2470 has_msr_hv_syndbg_options = true;
2471 break;
2472 case MSR_IA32_SPEC_CTRL:
2473 has_msr_spec_ctrl = true;
2474 break;
2475 case MSR_AMD64_TSC_RATIO:
2476 has_tsc_scale_msr = true;
2477 break;
2478 case MSR_IA32_TSX_CTRL:
2479 has_msr_tsx_ctrl = true;
2480 break;
2481 case MSR_VIRT_SSBD:
2482 has_msr_virt_ssbd = true;
2483 break;
2484 case MSR_IA32_ARCH_CAPABILITIES:
2485 has_msr_arch_capabs = true;
2486 break;
2487 case MSR_IA32_CORE_CAPABILITY:
2488 has_msr_core_capabs = true;
2489 break;
2490 case MSR_IA32_PERF_CAPABILITIES:
2491 has_msr_perf_capabs = true;
2492 break;
2493 case MSR_IA32_VMX_VMFUNC:
2494 has_msr_vmx_vmfunc = true;
2495 break;
2496 case MSR_IA32_UCODE_REV:
2497 has_msr_ucode_rev = true;
2498 break;
2499 case MSR_IA32_VMX_PROCBASED_CTLS2:
2500 has_msr_vmx_procbased_ctls2 = true;
2501 break;
2502 case MSR_IA32_PKRS:
2503 has_msr_pkrs = true;
2504 break;
2505 }
2506 }
2507 }
2508
2509 g_free(kvm_msr_list);
2510
2511 return ret;
2512 }
2513
2514 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2515 uint64_t *val)
2516 {
2517 CPUState *cs = CPU(cpu);
2518
2519 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2520 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2521
2522 return true;
2523 }
2524
2525 static Notifier smram_machine_done;
2526 static KVMMemoryListener smram_listener;
2527 static AddressSpace smram_address_space;
2528 static MemoryRegion smram_as_root;
2529 static MemoryRegion smram_as_mem;
2530
2531 static void register_smram_listener(Notifier *n, void *unused)
2532 {
2533 MemoryRegion *smram =
2534 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2535
2536 /* Outer container... */
2537 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2538 memory_region_set_enabled(&smram_as_root, true);
2539
2540 /* ... with two regions inside: normal system memory with low
2541 * priority, and...
2542 */
2543 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2544 get_system_memory(), 0, ~0ull);
2545 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2546 memory_region_set_enabled(&smram_as_mem, true);
2547
2548 if (smram) {
2549 /* ... SMRAM with higher priority */
2550 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2551 memory_region_set_enabled(smram, true);
2552 }
2553
2554 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2555 kvm_memory_listener_register(kvm_state, &smram_listener,
2556 &smram_address_space, 1, "kvm-smram");
2557 }
2558
2559 int kvm_arch_get_default_type(MachineState *ms)
2560 {
2561 return 0;
2562 }
2563
2564 int kvm_arch_init(MachineState *ms, KVMState *s)
2565 {
2566 uint64_t identity_base = 0xfffbc000;
2567 uint64_t shadow_mem;
2568 int ret;
2569 struct utsname utsname;
2570 Error *local_err = NULL;
2571
2572 /*
2573 * Initialize SEV context, if required
2574 *
2575 * If no memory encryption is requested (ms->cgs == NULL) this is
2576 * a no-op.
2577 *
2578 * It's also a no-op if a non-SEV confidential guest support
2579 * mechanism is selected. SEV is the only mechanism available to
2580 * select on x86 at present, so this doesn't arise, but if new
2581 * mechanisms are supported in future (e.g. TDX), they'll need
2582 * their own initialization either here or elsewhere.
2583 */
2584 ret = sev_kvm_init(ms->cgs, &local_err);
2585 if (ret < 0) {
2586 error_report_err(local_err);
2587 return ret;
2588 }
2589
2590 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2591 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2592 return -ENOTSUP;
2593 }
2594
2595 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2596 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2597 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2598 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2599
2600 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2601
2602 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2603 if (has_exception_payload) {
2604 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2605 if (ret < 0) {
2606 error_report("kvm: Failed to enable exception payload cap: %s",
2607 strerror(-ret));
2608 return ret;
2609 }
2610 }
2611
2612 has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2613 if (has_triple_fault_event) {
2614 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2615 if (ret < 0) {
2616 error_report("kvm: Failed to enable triple fault event cap: %s",
2617 strerror(-ret));
2618 return ret;
2619 }
2620 }
2621
2622 if (s->xen_version) {
2623 #ifdef CONFIG_XEN_EMU
2624 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
2625 error_report("kvm: Xen support only available in PC machine");
2626 return -ENOTSUP;
2627 }
2628 /* hyperv_enabled() doesn't work yet. */
2629 uint32_t msr = XEN_HYPERCALL_MSR;
2630 ret = kvm_xen_init(s, msr);
2631 if (ret < 0) {
2632 return ret;
2633 }
2634 #else
2635 error_report("kvm: Xen support not enabled in qemu");
2636 return -ENOTSUP;
2637 #endif
2638 }
2639
2640 ret = kvm_get_supported_msrs(s);
2641 if (ret < 0) {
2642 return ret;
2643 }
2644
2645 kvm_get_supported_feature_msrs(s);
2646
2647 uname(&utsname);
2648 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2649
2650 /*
2651 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2652 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2653 * Since these must be part of guest physical memory, we need to allocate
2654 * them, both by setting their start addresses in the kernel and by
2655 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2656 *
2657 * Older KVM versions may not support setting the identity map base. In
2658 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2659 * size.
2660 */
2661 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2662 /* Allows up to 16M BIOSes. */
2663 identity_base = 0xfeffc000;
2664
2665 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2666 if (ret < 0) {
2667 return ret;
2668 }
2669 }
2670
2671 /* Set TSS base one page after EPT identity map. */
2672 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2673 if (ret < 0) {
2674 return ret;
2675 }
2676
2677 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2678 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2679 if (ret < 0) {
2680 fprintf(stderr, "e820_add_entry() table is full\n");
2681 return ret;
2682 }
2683
2684 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2685 if (shadow_mem != -1) {
2686 shadow_mem /= 4096;
2687 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2688 if (ret < 0) {
2689 return ret;
2690 }
2691 }
2692
2693 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2694 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2695 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2696 smram_machine_done.notify = register_smram_listener;
2697 qemu_add_machine_init_done_notifier(&smram_machine_done);
2698 }
2699
2700 if (enable_cpu_pm) {
2701 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2702 int ret;
2703
2704 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2705 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2706 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2707 #endif
2708 if (disable_exits) {
2709 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2710 KVM_X86_DISABLE_EXITS_HLT |
2711 KVM_X86_DISABLE_EXITS_PAUSE |
2712 KVM_X86_DISABLE_EXITS_CSTATE);
2713 }
2714
2715 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2716 disable_exits);
2717 if (ret < 0) {
2718 error_report("kvm: guest stopping CPU not supported: %s",
2719 strerror(-ret));
2720 }
2721 }
2722
2723 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2724 X86MachineState *x86ms = X86_MACHINE(ms);
2725
2726 if (x86ms->bus_lock_ratelimit > 0) {
2727 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2728 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2729 error_report("kvm: bus lock detection unsupported");
2730 return -ENOTSUP;
2731 }
2732 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2733 KVM_BUS_LOCK_DETECTION_EXIT);
2734 if (ret < 0) {
2735 error_report("kvm: Failed to enable bus lock detection cap: %s",
2736 strerror(-ret));
2737 return ret;
2738 }
2739 ratelimit_init(&bus_lock_ratelimit_ctrl);
2740 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2741 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2742 }
2743 }
2744
2745 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2746 kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2747 uint64_t notify_window_flags =
2748 ((uint64_t)s->notify_window << 32) |
2749 KVM_X86_NOTIFY_VMEXIT_ENABLED |
2750 KVM_X86_NOTIFY_VMEXIT_USER;
2751 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2752 notify_window_flags);
2753 if (ret < 0) {
2754 error_report("kvm: Failed to enable notify vmexit cap: %s",
2755 strerror(-ret));
2756 return ret;
2757 }
2758 }
2759 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2760 bool r;
2761
2762 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2763 KVM_MSR_EXIT_REASON_FILTER);
2764 if (ret) {
2765 error_report("Could not enable user space MSRs: %s",
2766 strerror(-ret));
2767 exit(1);
2768 }
2769
2770 r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2771 kvm_rdmsr_core_thread_count, NULL);
2772 if (!r) {
2773 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2774 strerror(-ret));
2775 exit(1);
2776 }
2777 }
2778
2779 return 0;
2780 }
2781
2782 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2783 {
2784 lhs->selector = rhs->selector;
2785 lhs->base = rhs->base;
2786 lhs->limit = rhs->limit;
2787 lhs->type = 3;
2788 lhs->present = 1;
2789 lhs->dpl = 3;
2790 lhs->db = 0;
2791 lhs->s = 1;
2792 lhs->l = 0;
2793 lhs->g = 0;
2794 lhs->avl = 0;
2795 lhs->unusable = 0;
2796 }
2797
2798 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2799 {
2800 unsigned flags = rhs->flags;
2801 lhs->selector = rhs->selector;
2802 lhs->base = rhs->base;
2803 lhs->limit = rhs->limit;
2804 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2805 lhs->present = (flags & DESC_P_MASK) != 0;
2806 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2807 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2808 lhs->s = (flags & DESC_S_MASK) != 0;
2809 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2810 lhs->g = (flags & DESC_G_MASK) != 0;
2811 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2812 lhs->unusable = !lhs->present;
2813 lhs->padding = 0;
2814 }
2815
2816 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2817 {
2818 lhs->selector = rhs->selector;
2819 lhs->base = rhs->base;
2820 lhs->limit = rhs->limit;
2821 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2822 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2823 (rhs->dpl << DESC_DPL_SHIFT) |
2824 (rhs->db << DESC_B_SHIFT) |
2825 (rhs->s * DESC_S_MASK) |
2826 (rhs->l << DESC_L_SHIFT) |
2827 (rhs->g * DESC_G_MASK) |
2828 (rhs->avl * DESC_AVL_MASK);
2829 }
2830
2831 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2832 {
2833 if (set) {
2834 *kvm_reg = *qemu_reg;
2835 } else {
2836 *qemu_reg = *kvm_reg;
2837 }
2838 }
2839
2840 static int kvm_getput_regs(X86CPU *cpu, int set)
2841 {
2842 CPUX86State *env = &cpu->env;
2843 struct kvm_regs regs;
2844 int ret = 0;
2845
2846 if (!set) {
2847 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2848 if (ret < 0) {
2849 return ret;
2850 }
2851 }
2852
2853 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2854 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2855 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2856 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2857 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2858 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2859 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2860 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2861 #ifdef TARGET_X86_64
2862 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2863 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2864 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2865 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2866 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2867 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2868 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2869 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2870 #endif
2871
2872 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2873 kvm_getput_reg(&regs.rip, &env->eip, set);
2874
2875 if (set) {
2876 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2877 }
2878
2879 return ret;
2880 }
2881
2882 static int kvm_put_fpu(X86CPU *cpu)
2883 {
2884 CPUX86State *env = &cpu->env;
2885 struct kvm_fpu fpu;
2886 int i;
2887
2888 memset(&fpu, 0, sizeof fpu);
2889 fpu.fsw = env->fpus & ~(7 << 11);
2890 fpu.fsw |= (env->fpstt & 7) << 11;
2891 fpu.fcw = env->fpuc;
2892 fpu.last_opcode = env->fpop;
2893 fpu.last_ip = env->fpip;
2894 fpu.last_dp = env->fpdp;
2895 for (i = 0; i < 8; ++i) {
2896 fpu.ftwx |= (!env->fptags[i]) << i;
2897 }
2898 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2899 for (i = 0; i < CPU_NB_REGS; i++) {
2900 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2901 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2902 }
2903 fpu.mxcsr = env->mxcsr;
2904
2905 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2906 }
2907
2908 static int kvm_put_xsave(X86CPU *cpu)
2909 {
2910 CPUX86State *env = &cpu->env;
2911 void *xsave = env->xsave_buf;
2912
2913 if (!has_xsave) {
2914 return kvm_put_fpu(cpu);
2915 }
2916 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2917
2918 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2919 }
2920
2921 static int kvm_put_xcrs(X86CPU *cpu)
2922 {
2923 CPUX86State *env = &cpu->env;
2924 struct kvm_xcrs xcrs = {};
2925
2926 if (!has_xcrs) {
2927 return 0;
2928 }
2929
2930 xcrs.nr_xcrs = 1;
2931 xcrs.flags = 0;
2932 xcrs.xcrs[0].xcr = 0;
2933 xcrs.xcrs[0].value = env->xcr0;
2934 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2935 }
2936
2937 static int kvm_put_sregs(X86CPU *cpu)
2938 {
2939 CPUX86State *env = &cpu->env;
2940 struct kvm_sregs sregs;
2941
2942 /*
2943 * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2944 * always followed by KVM_SET_VCPU_EVENTS.
2945 */
2946 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2947
2948 if ((env->eflags & VM_MASK)) {
2949 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2950 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2951 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2952 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2953 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2954 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2955 } else {
2956 set_seg(&sregs.cs, &env->segs[R_CS]);
2957 set_seg(&sregs.ds, &env->segs[R_DS]);
2958 set_seg(&sregs.es, &env->segs[R_ES]);
2959 set_seg(&sregs.fs, &env->segs[R_FS]);
2960 set_seg(&sregs.gs, &env->segs[R_GS]);
2961 set_seg(&sregs.ss, &env->segs[R_SS]);
2962 }
2963
2964 set_seg(&sregs.tr, &env->tr);
2965 set_seg(&sregs.ldt, &env->ldt);
2966
2967 sregs.idt.limit = env->idt.limit;
2968 sregs.idt.base = env->idt.base;
2969 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2970 sregs.gdt.limit = env->gdt.limit;
2971 sregs.gdt.base = env->gdt.base;
2972 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2973
2974 sregs.cr0 = env->cr[0];
2975 sregs.cr2 = env->cr[2];
2976 sregs.cr3 = env->cr[3];
2977 sregs.cr4 = env->cr[4];
2978
2979 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2980 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2981
2982 sregs.efer = env->efer;
2983
2984 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2985 }
2986
2987 static int kvm_put_sregs2(X86CPU *cpu)
2988 {
2989 CPUX86State *env = &cpu->env;
2990 struct kvm_sregs2 sregs;
2991 int i;
2992
2993 sregs.flags = 0;
2994
2995 if ((env->eflags & VM_MASK)) {
2996 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2997 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2998 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2999 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3000 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3001 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3002 } else {
3003 set_seg(&sregs.cs, &env->segs[R_CS]);
3004 set_seg(&sregs.ds, &env->segs[R_DS]);
3005 set_seg(&sregs.es, &env->segs[R_ES]);
3006 set_seg(&sregs.fs, &env->segs[R_FS]);
3007 set_seg(&sregs.gs, &env->segs[R_GS]);
3008 set_seg(&sregs.ss, &env->segs[R_SS]);
3009 }
3010
3011 set_seg(&sregs.tr, &env->tr);
3012 set_seg(&sregs.ldt, &env->ldt);
3013
3014 sregs.idt.limit = env->idt.limit;
3015 sregs.idt.base = env->idt.base;
3016 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3017 sregs.gdt.limit = env->gdt.limit;
3018 sregs.gdt.base = env->gdt.base;
3019 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3020
3021 sregs.cr0 = env->cr[0];
3022 sregs.cr2 = env->cr[2];
3023 sregs.cr3 = env->cr[3];
3024 sregs.cr4 = env->cr[4];
3025
3026 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3027 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3028
3029 sregs.efer = env->efer;
3030
3031 if (env->pdptrs_valid) {
3032 for (i = 0; i < 4; i++) {
3033 sregs.pdptrs[i] = env->pdptrs[i];
3034 }
3035 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3036 }
3037
3038 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3039 }
3040
3041
3042 static void kvm_msr_buf_reset(X86CPU *cpu)
3043 {
3044 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3045 }
3046
3047 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3048 {
3049 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3050 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3051 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3052
3053 assert((void *)(entry + 1) <= limit);
3054
3055 entry->index = index;
3056 entry->reserved = 0;
3057 entry->data = value;
3058 msrs->nmsrs++;
3059 }
3060
3061 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3062 {
3063 kvm_msr_buf_reset(cpu);
3064 kvm_msr_entry_add(cpu, index, value);
3065
3066 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3067 }
3068
3069 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3070 {
3071 int ret;
3072 struct {
3073 struct kvm_msrs info;
3074 struct kvm_msr_entry entries[1];
3075 } msr_data = {
3076 .info.nmsrs = 1,
3077 .entries[0].index = index,
3078 };
3079
3080 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3081 if (ret < 0) {
3082 return ret;
3083 }
3084 assert(ret == 1);
3085 *value = msr_data.entries[0].data;
3086 return ret;
3087 }
3088 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3089 {
3090 int ret;
3091
3092 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3093 assert(ret == 1);
3094 }
3095
3096 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3097 {
3098 CPUX86State *env = &cpu->env;
3099 int ret;
3100
3101 if (!has_msr_tsc_deadline) {
3102 return 0;
3103 }
3104
3105 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3106 if (ret < 0) {
3107 return ret;
3108 }
3109
3110 assert(ret == 1);
3111 return 0;
3112 }
3113
3114 /*
3115 * Provide a separate write service for the feature control MSR in order to
3116 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3117 * before writing any other state because forcibly leaving nested mode
3118 * invalidates the VCPU state.
3119 */
3120 static int kvm_put_msr_feature_control(X86CPU *cpu)
3121 {
3122 int ret;
3123
3124 if (!has_msr_feature_control) {
3125 return 0;
3126 }
3127
3128 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3129 cpu->env.msr_ia32_feature_control);
3130 if (ret < 0) {
3131 return ret;
3132 }
3133
3134 assert(ret == 1);
3135 return 0;
3136 }
3137
3138 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3139 {
3140 uint32_t default1, can_be_one, can_be_zero;
3141 uint32_t must_be_one;
3142
3143 switch (index) {
3144 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3145 default1 = 0x00000016;
3146 break;
3147 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3148 default1 = 0x0401e172;
3149 break;
3150 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3151 default1 = 0x000011ff;
3152 break;
3153 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3154 default1 = 0x00036dff;
3155 break;
3156 case MSR_IA32_VMX_PROCBASED_CTLS2:
3157 default1 = 0;
3158 break;
3159 default:
3160 abort();
3161 }
3162
3163 /* If a feature bit is set, the control can be either set or clear.
3164 * Otherwise the value is limited to either 0 or 1 by default1.
3165 */
3166 can_be_one = features | default1;
3167 can_be_zero = features | ~default1;
3168 must_be_one = ~can_be_zero;
3169
3170 /*
3171 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3172 * Bit 32:63 -> 1 if the control bit can be one.
3173 */
3174 return must_be_one | (((uint64_t)can_be_one) << 32);
3175 }
3176
3177 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3178 {
3179 uint64_t kvm_vmx_basic =
3180 kvm_arch_get_supported_msr_feature(kvm_state,
3181 MSR_IA32_VMX_BASIC);
3182
3183 if (!kvm_vmx_basic) {
3184 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3185 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3186 */
3187 return;
3188 }
3189
3190 uint64_t kvm_vmx_misc =
3191 kvm_arch_get_supported_msr_feature(kvm_state,
3192 MSR_IA32_VMX_MISC);
3193 uint64_t kvm_vmx_ept_vpid =
3194 kvm_arch_get_supported_msr_feature(kvm_state,
3195 MSR_IA32_VMX_EPT_VPID_CAP);
3196
3197 /*
3198 * If the guest is 64-bit, a value of 1 is allowed for the host address
3199 * space size vmexit control.
3200 */
3201 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3202 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3203
3204 /*
3205 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
3206 * not change them for backwards compatibility.
3207 */
3208 uint64_t fixed_vmx_basic = kvm_vmx_basic &
3209 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3210 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3211 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3212
3213 /*
3214 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
3215 * change in the future but are always zero for now, clear them to be
3216 * future proof. Bits 32-63 in theory could change, though KVM does
3217 * not support dual-monitor treatment and probably never will; mask
3218 * them out as well.
3219 */
3220 uint64_t fixed_vmx_misc = kvm_vmx_misc &
3221 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3222 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3223
3224 /*
3225 * EPT memory types should not change either, so we do not bother
3226 * adding features for them.
3227 */
3228 uint64_t fixed_vmx_ept_mask =
3229 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3230 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3231 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3232
3233 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3234 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3235 f[FEAT_VMX_PROCBASED_CTLS]));
3236 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3237 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3238 f[FEAT_VMX_PINBASED_CTLS]));
3239 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3240 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3241 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3242 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3243 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3244 f[FEAT_VMX_ENTRY_CTLS]));
3245 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3246 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3247 f[FEAT_VMX_SECONDARY_CTLS]));
3248 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3249 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3250 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3251 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3252 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3253 f[FEAT_VMX_MISC] | fixed_vmx_misc);
3254 if (has_msr_vmx_vmfunc) {
3255 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3256 }
3257
3258 /*
3259 * Just to be safe, write these with constant values. The CRn_FIXED1
3260 * MSRs are generated by KVM based on the vCPU's CPUID.
3261 */
3262 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3263 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3264 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3265 CR4_VMXE_MASK);
3266
3267 if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3268 /* TSC multiplier (0x2032). */
3269 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3270 } else {
3271 /* Preemption timer (0x482E). */
3272 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3273 }
3274 }
3275
3276 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3277 {
3278 uint64_t kvm_perf_cap =
3279 kvm_arch_get_supported_msr_feature(kvm_state,
3280 MSR_IA32_PERF_CAPABILITIES);
3281
3282 if (kvm_perf_cap) {
3283 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3284 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3285 }
3286 }
3287
3288 static int kvm_buf_set_msrs(X86CPU *cpu)
3289 {
3290 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3291 if (ret < 0) {
3292 return ret;
3293 }
3294
3295 if (ret < cpu->kvm_msr_buf->nmsrs) {
3296 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3297 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3298 (uint32_t)e->index, (uint64_t)e->data);
3299 }
3300
3301 assert(ret == cpu->kvm_msr_buf->nmsrs);
3302 return 0;
3303 }
3304
3305 static void kvm_init_msrs(X86CPU *cpu)
3306 {
3307 CPUX86State *env = &cpu->env;
3308
3309 kvm_msr_buf_reset(cpu);
3310 if (has_msr_arch_capabs) {
3311 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3312 env->features[FEAT_ARCH_CAPABILITIES]);
3313 }
3314
3315 if (has_msr_core_capabs) {
3316 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3317 env->features[FEAT_CORE_CAPABILITY]);
3318 }
3319
3320 if (has_msr_perf_capabs && cpu->enable_pmu) {
3321 kvm_msr_entry_add_perf(cpu, env->features);
3322 }
3323
3324 if (has_msr_ucode_rev) {
3325 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3326 }
3327
3328 /*
3329 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3330 * all kernels with MSR features should have them.
3331 */
3332 if (kvm_feature_msrs && cpu_has_vmx(env)) {
3333 kvm_msr_entry_add_vmx(cpu, env->features);
3334 }
3335
3336 assert(kvm_buf_set_msrs(cpu) == 0);
3337 }
3338
3339 static int kvm_put_msrs(X86CPU *cpu, int level)
3340 {
3341 CPUX86State *env = &cpu->env;
3342 int i;
3343
3344 kvm_msr_buf_reset(cpu);
3345
3346 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3347 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3348 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3349 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3350 if (has_msr_star) {
3351 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3352 }
3353 if (has_msr_hsave_pa) {
3354 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3355 }
3356 if (has_msr_tsc_aux) {
3357 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3358 }
3359 if (has_msr_tsc_adjust) {
3360 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3361 }
3362 if (has_msr_misc_enable) {
3363 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3364 env->msr_ia32_misc_enable);
3365 }
3366 if (has_msr_smbase) {
3367 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3368 }
3369 if (has_msr_smi_count) {
3370 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3371 }
3372 if (has_msr_pkrs) {
3373 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3374 }
3375 if (has_msr_bndcfgs) {
3376 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3377 }
3378 if (has_msr_xss) {
3379 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3380 }
3381 if (has_msr_umwait) {
3382 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3383 }
3384 if (has_msr_spec_ctrl) {
3385 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3386 }
3387 if (has_tsc_scale_msr) {
3388 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3389 }
3390
3391 if (has_msr_tsx_ctrl) {
3392 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3393 }
3394 if (has_msr_virt_ssbd) {
3395 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3396 }
3397
3398 #ifdef TARGET_X86_64
3399 if (lm_capable_kernel) {
3400 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3401 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3402 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3403 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3404 }
3405 #endif
3406
3407 /*
3408 * The following MSRs have side effects on the guest or are too heavy
3409 * for normal writeback. Limit them to reset or full state updates.
3410 */
3411 if (level >= KVM_PUT_RESET_STATE) {
3412 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3413 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3414 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3415 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3416 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3417 }
3418 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3419 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3420 }
3421 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3422 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3423 }
3424 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3425 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3426 }
3427
3428 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3429 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3430 }
3431
3432 if (has_architectural_pmu_version > 0) {
3433 if (has_architectural_pmu_version > 1) {
3434 /* Stop the counter. */
3435 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3436 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3437 }
3438
3439 /* Set the counter values. */
3440 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3441 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3442 env->msr_fixed_counters[i]);
3443 }
3444 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3445 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3446 env->msr_gp_counters[i]);
3447 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3448 env->msr_gp_evtsel[i]);
3449 }
3450 if (has_architectural_pmu_version > 1) {
3451 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3452 env->msr_global_status);
3453 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3454 env->msr_global_ovf_ctrl);
3455
3456 /* Now start the PMU. */
3457 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3458 env->msr_fixed_ctr_ctrl);
3459 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3460 env->msr_global_ctrl);
3461 }
3462 }
3463 /*
3464 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3465 * only sync them to KVM on the first cpu
3466 */
3467 if (current_cpu == first_cpu) {
3468 if (has_msr_hv_hypercall) {
3469 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3470 env->msr_hv_guest_os_id);
3471 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3472 env->msr_hv_hypercall);
3473 }
3474 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3475 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3476 env->msr_hv_tsc);
3477 }
3478 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3479 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3480 env->msr_hv_reenlightenment_control);
3481 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3482 env->msr_hv_tsc_emulation_control);
3483 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3484 env->msr_hv_tsc_emulation_status);
3485 }
3486 #ifdef CONFIG_SYNDBG
3487 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3488 has_msr_hv_syndbg_options) {
3489 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3490 hyperv_syndbg_query_options());
3491 }
3492 #endif
3493 }
3494 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3495 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3496 env->msr_hv_vapic);
3497 }
3498 if (has_msr_hv_crash) {
3499 int j;
3500
3501 for (j = 0; j < HV_CRASH_PARAMS; j++)
3502 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3503 env->msr_hv_crash_params[j]);
3504
3505 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3506 }
3507 if (has_msr_hv_runtime) {
3508 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3509 }
3510 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3511 && hv_vpindex_settable) {
3512 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3513 hyperv_vp_index(CPU(cpu)));
3514 }
3515 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3516 int j;
3517
3518 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3519
3520 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3521 env->msr_hv_synic_control);
3522 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3523 env->msr_hv_synic_evt_page);
3524 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3525 env->msr_hv_synic_msg_page);
3526
3527 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3528 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3529 env->msr_hv_synic_sint[j]);
3530 }
3531 }
3532 if (has_msr_hv_stimer) {
3533 int j;
3534
3535 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3536 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3537 env->msr_hv_stimer_config[j]);
3538 }
3539
3540 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3541 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3542 env->msr_hv_stimer_count[j]);
3543 }
3544 }
3545 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3546 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3547
3548 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3549 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3550 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3551 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3552 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3553 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3554 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3555 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3556 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3557 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3558 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3559 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3560 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3561 /* The CPU GPs if we write to a bit above the physical limit of
3562 * the host CPU (and KVM emulates that)
3563 */
3564 uint64_t mask = env->mtrr_var[i].mask;
3565 mask &= phys_mask;
3566
3567 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3568 env->mtrr_var[i].base);
3569 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3570 }
3571 }
3572 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3573 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3574 0x14, 1, R_EAX) & 0x7;
3575
3576 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3577 env->msr_rtit_ctrl);
3578 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3579 env->msr_rtit_status);
3580 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3581 env->msr_rtit_output_base);
3582 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3583 env->msr_rtit_output_mask);
3584 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3585 env->msr_rtit_cr3_match);
3586 for (i = 0; i < addr_num; i++) {
3587 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3588 env->msr_rtit_addrs[i]);
3589 }
3590 }
3591
3592 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3593 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3594 env->msr_ia32_sgxlepubkeyhash[0]);
3595 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3596 env->msr_ia32_sgxlepubkeyhash[1]);
3597 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3598 env->msr_ia32_sgxlepubkeyhash[2]);
3599 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3600 env->msr_ia32_sgxlepubkeyhash[3]);
3601 }
3602
3603 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3604 kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3605 env->msr_xfd);
3606 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3607 env->msr_xfd_err);
3608 }
3609
3610 if (kvm_enabled() && cpu->enable_pmu &&
3611 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3612 uint64_t depth;
3613 int i, ret;
3614
3615 /*
3616 * Only migrate Arch LBR states when the host Arch LBR depth
3617 * equals that of source guest's, this is to avoid mismatch
3618 * of guest/host config for the msr hence avoid unexpected
3619 * misbehavior.
3620 */
3621 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3622
3623 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3624 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3625 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3626
3627 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3628 if (!env->lbr_records[i].from) {
3629 continue;
3630 }
3631 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3632 env->lbr_records[i].from);
3633 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3634 env->lbr_records[i].to);
3635 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3636 env->lbr_records[i].info);
3637 }
3638 }
3639 }
3640
3641 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3642 * kvm_put_msr_feature_control. */
3643 }
3644
3645 if (env->mcg_cap) {
3646 int i;
3647
3648 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3649 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3650 if (has_msr_mcg_ext_ctl) {
3651 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3652 }
3653 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3654 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3655 }
3656 }
3657
3658 return kvm_buf_set_msrs(cpu);
3659 }
3660
3661
3662 static int kvm_get_fpu(X86CPU *cpu)
3663 {
3664 CPUX86State *env = &cpu->env;
3665 struct kvm_fpu fpu;
3666 int i, ret;
3667
3668 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3669 if (ret < 0) {
3670 return ret;
3671 }
3672
3673 env->fpstt = (fpu.fsw >> 11) & 7;
3674 env->fpus = fpu.fsw;
3675 env->fpuc = fpu.fcw;
3676 env->fpop = fpu.last_opcode;
3677 env->fpip = fpu.last_ip;
3678 env->fpdp = fpu.last_dp;
3679 for (i = 0; i < 8; ++i) {
3680 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3681 }
3682 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3683 for (i = 0; i < CPU_NB_REGS; i++) {
3684 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3685 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3686 }
3687 env->mxcsr = fpu.mxcsr;
3688
3689 return 0;
3690 }
3691
3692 static int kvm_get_xsave(X86CPU *cpu)
3693 {
3694 CPUX86State *env = &cpu->env;
3695 void *xsave = env->xsave_buf;
3696 int type, ret;
3697
3698 if (!has_xsave) {
3699 return kvm_get_fpu(cpu);
3700 }
3701
3702 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3703 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3704 if (ret < 0) {
3705 return ret;
3706 }
3707 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3708
3709 return 0;
3710 }
3711
3712 static int kvm_get_xcrs(X86CPU *cpu)
3713 {
3714 CPUX86State *env = &cpu->env;
3715 int i, ret;
3716 struct kvm_xcrs xcrs;
3717
3718 if (!has_xcrs) {
3719 return 0;
3720 }
3721
3722 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3723 if (ret < 0) {
3724 return ret;
3725 }
3726
3727 for (i = 0; i < xcrs.nr_xcrs; i++) {
3728 /* Only support xcr0 now */
3729 if (xcrs.xcrs[i].xcr == 0) {
3730 env->xcr0 = xcrs.xcrs[i].value;
3731 break;
3732 }
3733 }
3734 return 0;
3735 }
3736
3737 static int kvm_get_sregs(X86CPU *cpu)
3738 {
3739 CPUX86State *env = &cpu->env;
3740 struct kvm_sregs sregs;
3741 int ret;
3742
3743 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3744 if (ret < 0) {
3745 return ret;
3746 }
3747
3748 /*
3749 * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3750 * always preceded by KVM_GET_VCPU_EVENTS.
3751 */
3752
3753 get_seg(&env->segs[R_CS], &sregs.cs);
3754 get_seg(&env->segs[R_DS], &sregs.ds);
3755 get_seg(&env->segs[R_ES], &sregs.es);
3756 get_seg(&env->segs[R_FS], &sregs.fs);
3757 get_seg(&env->segs[R_GS], &sregs.gs);
3758 get_seg(&env->segs[R_SS], &sregs.ss);
3759
3760 get_seg(&env->tr, &sregs.tr);
3761 get_seg(&env->ldt, &sregs.ldt);
3762
3763 env->idt.limit = sregs.idt.limit;
3764 env->idt.base = sregs.idt.base;
3765 env->gdt.limit = sregs.gdt.limit;
3766 env->gdt.base = sregs.gdt.base;
3767
3768 env->cr[0] = sregs.cr0;
3769 env->cr[2] = sregs.cr2;
3770 env->cr[3] = sregs.cr3;
3771 env->cr[4] = sregs.cr4;
3772
3773 env->efer = sregs.efer;
3774
3775 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3776 x86_update_hflags(env);
3777
3778 return 0;
3779 }
3780
3781 static int kvm_get_sregs2(X86CPU *cpu)
3782 {
3783 CPUX86State *env = &cpu->env;
3784 struct kvm_sregs2 sregs;
3785 int i, ret;
3786
3787 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3788 if (ret < 0) {
3789 return ret;
3790 }
3791
3792 get_seg(&env->segs[R_CS], &sregs.cs);
3793 get_seg(&env->segs[R_DS], &sregs.ds);
3794 get_seg(&env->segs[R_ES], &sregs.es);
3795 get_seg(&env->segs[R_FS], &sregs.fs);
3796 get_seg(&env->segs[R_GS], &sregs.gs);
3797 get_seg(&env->segs[R_SS], &sregs.ss);
3798
3799 get_seg(&env->tr, &sregs.tr);
3800 get_seg(&env->ldt, &sregs.ldt);
3801
3802 env->idt.limit = sregs.idt.limit;
3803 env->idt.base = sregs.idt.base;
3804 env->gdt.limit = sregs.gdt.limit;
3805 env->gdt.base = sregs.gdt.base;
3806
3807 env->cr[0] = sregs.cr0;
3808 env->cr[2] = sregs.cr2;
3809 env->cr[3] = sregs.cr3;
3810 env->cr[4] = sregs.cr4;
3811
3812 env->efer = sregs.efer;
3813
3814 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3815
3816 if (env->pdptrs_valid) {
3817 for (i = 0; i < 4; i++) {
3818 env->pdptrs[i] = sregs.pdptrs[i];
3819 }
3820 }
3821
3822 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3823 x86_update_hflags(env);
3824
3825 return 0;
3826 }
3827
3828 static int kvm_get_msrs(X86CPU *cpu)
3829 {
3830 CPUX86State *env = &cpu->env;
3831 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3832 int ret, i;
3833 uint64_t mtrr_top_bits;
3834
3835 kvm_msr_buf_reset(cpu);
3836
3837 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3838 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3839 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3840 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3841 if (has_msr_star) {
3842 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3843 }
3844 if (has_msr_hsave_pa) {
3845 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3846 }
3847 if (has_msr_tsc_aux) {
3848 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3849 }
3850 if (has_msr_tsc_adjust) {
3851 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3852 }
3853 if (has_msr_tsc_deadline) {
3854 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3855 }
3856 if (has_msr_misc_enable) {
3857 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3858 }
3859 if (has_msr_smbase) {
3860 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3861 }
3862 if (has_msr_smi_count) {
3863 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3864 }
3865 if (has_msr_feature_control) {
3866 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3867 }
3868 if (has_msr_pkrs) {
3869 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3870 }
3871 if (has_msr_bndcfgs) {
3872 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3873 }
3874 if (has_msr_xss) {
3875 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3876 }
3877 if (has_msr_umwait) {
3878 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3879 }
3880 if (has_msr_spec_ctrl) {
3881 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3882 }
3883 if (has_tsc_scale_msr) {
3884 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3885 }
3886
3887 if (has_msr_tsx_ctrl) {
3888 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3889 }
3890 if (has_msr_virt_ssbd) {
3891 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3892 }
3893 if (!env->tsc_valid) {
3894 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3895 env->tsc_valid = !runstate_is_running();
3896 }
3897
3898 #ifdef TARGET_X86_64
3899 if (lm_capable_kernel) {
3900 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3901 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3902 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3903 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3904 }
3905 #endif
3906 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3907 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3908 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3909 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3910 }
3911 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3912 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3913 }
3914 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3915 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3916 }
3917 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3918 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3919 }
3920 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3921 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3922 }
3923 if (has_architectural_pmu_version > 0) {
3924 if (has_architectural_pmu_version > 1) {
3925 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3926 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3927 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3928 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3929 }
3930 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3931 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3932 }
3933 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3934 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3935 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3936 }
3937 }
3938
3939 if (env->mcg_cap) {
3940 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3941 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3942 if (has_msr_mcg_ext_ctl) {
3943 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3944 }
3945 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3946 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3947 }
3948 }
3949
3950 if (has_msr_hv_hypercall) {
3951 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3952 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3953 }
3954 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3955 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3956 }
3957 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3958 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3959 }
3960 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3961 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3962 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3963 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3964 }
3965 if (has_msr_hv_syndbg_options) {
3966 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3967 }
3968 if (has_msr_hv_crash) {
3969 int j;
3970
3971 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3972 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3973 }
3974 }
3975 if (has_msr_hv_runtime) {
3976 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3977 }
3978 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3979 uint32_t msr;
3980
3981 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3982 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3983 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3984 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3985 kvm_msr_entry_add(cpu, msr, 0);
3986 }
3987 }
3988 if (has_msr_hv_stimer) {
3989 uint32_t msr;
3990
3991 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3992 msr++) {
3993 kvm_msr_entry_add(cpu, msr, 0);
3994 }
3995 }
3996 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3997 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3998 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3999 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
4000 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
4001 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
4002 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
4003 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
4004 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4005 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4006 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4007 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4008 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4009 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4010 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4011 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4012 }
4013 }
4014
4015 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4016 int addr_num =
4017 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4018
4019 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4020 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4021 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4022 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4023 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4024 for (i = 0; i < addr_num; i++) {
4025 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4026 }
4027 }
4028
4029 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4030 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4031 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4032 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4033 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4034 }
4035
4036 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4037 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4038 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4039 }
4040
4041 if (kvm_enabled() && cpu->enable_pmu &&
4042 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4043 uint64_t depth;
4044 int i, ret;
4045
4046 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4047 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4048 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4049 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4050
4051 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4052 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4053 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4054 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4055 }
4056 }
4057 }
4058
4059 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4060 if (ret < 0) {
4061 return ret;
4062 }
4063
4064 if (ret < cpu->kvm_msr_buf->nmsrs) {
4065 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4066 error_report("error: failed to get MSR 0x%" PRIx32,
4067 (uint32_t)e->index);
4068 }
4069
4070 assert(ret == cpu->kvm_msr_buf->nmsrs);
4071 /*
4072 * MTRR masks: Each mask consists of 5 parts
4073 * a 10..0: must be zero
4074 * b 11 : valid bit
4075 * c n-1.12: actual mask bits
4076 * d 51..n: reserved must be zero
4077 * e 63.52: reserved must be zero
4078 *
4079 * 'n' is the number of physical bits supported by the CPU and is
4080 * apparently always <= 52. We know our 'n' but don't know what
4081 * the destinations 'n' is; it might be smaller, in which case
4082 * it masks (c) on loading. It might be larger, in which case
4083 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4084 * we're migrating to.
4085 */
4086
4087 if (cpu->fill_mtrr_mask) {
4088 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4089 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4090 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4091 } else {
4092 mtrr_top_bits = 0;
4093 }
4094
4095 for (i = 0; i < ret; i++) {
4096 uint32_t index = msrs[i].index;
4097 switch (index) {
4098 case MSR_IA32_SYSENTER_CS:
4099 env->sysenter_cs = msrs[i].data;
4100 break;
4101 case MSR_IA32_SYSENTER_ESP:
4102 env->sysenter_esp = msrs[i].data;
4103 break;
4104 case MSR_IA32_SYSENTER_EIP:
4105 env->sysenter_eip = msrs[i].data;
4106 break;
4107 case MSR_PAT:
4108 env->pat = msrs[i].data;
4109 break;
4110 case MSR_STAR:
4111 env->star = msrs[i].data;
4112 break;
4113 #ifdef TARGET_X86_64
4114 case MSR_CSTAR:
4115 env->cstar = msrs[i].data;
4116 break;
4117 case MSR_KERNELGSBASE:
4118 env->kernelgsbase = msrs[i].data;
4119 break;
4120 case MSR_FMASK:
4121 env->fmask = msrs[i].data;
4122 break;
4123 case MSR_LSTAR:
4124 env->lstar = msrs[i].data;
4125 break;
4126 #endif
4127 case MSR_IA32_TSC:
4128 env->tsc = msrs[i].data;
4129 break;
4130 case MSR_TSC_AUX:
4131 env->tsc_aux = msrs[i].data;
4132 break;
4133 case MSR_TSC_ADJUST:
4134 env->tsc_adjust = msrs[i].data;
4135 break;
4136 case MSR_IA32_TSCDEADLINE:
4137 env->tsc_deadline = msrs[i].data;
4138 break;
4139 case MSR_VM_HSAVE_PA:
4140 env->vm_hsave = msrs[i].data;
4141 break;
4142 case MSR_KVM_SYSTEM_TIME:
4143 env->system_time_msr = msrs[i].data;
4144 break;
4145 case MSR_KVM_WALL_CLOCK:
4146 env->wall_clock_msr = msrs[i].data;
4147 break;
4148 case MSR_MCG_STATUS:
4149 env->mcg_status = msrs[i].data;
4150 break;
4151 case MSR_MCG_CTL:
4152 env->mcg_ctl = msrs[i].data;
4153 break;
4154 case MSR_MCG_EXT_CTL:
4155 env->mcg_ext_ctl = msrs[i].data;
4156 break;
4157 case MSR_IA32_MISC_ENABLE:
4158 env->msr_ia32_misc_enable = msrs[i].data;
4159 break;
4160 case MSR_IA32_SMBASE:
4161 env->smbase = msrs[i].data;
4162 break;
4163 case MSR_SMI_COUNT:
4164 env->msr_smi_count = msrs[i].data;
4165 break;
4166 case MSR_IA32_FEATURE_CONTROL:
4167 env->msr_ia32_feature_control = msrs[i].data;
4168 break;
4169 case MSR_IA32_BNDCFGS:
4170 env->msr_bndcfgs = msrs[i].data;
4171 break;
4172 case MSR_IA32_XSS:
4173 env->xss = msrs[i].data;
4174 break;
4175 case MSR_IA32_UMWAIT_CONTROL:
4176 env->umwait = msrs[i].data;
4177 break;
4178 case MSR_IA32_PKRS:
4179 env->pkrs = msrs[i].data;
4180 break;
4181 default:
4182 if (msrs[i].index >= MSR_MC0_CTL &&
4183 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4184 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4185 }
4186 break;
4187 case MSR_KVM_ASYNC_PF_EN:
4188 env->async_pf_en_msr = msrs[i].data;
4189 break;
4190 case MSR_KVM_ASYNC_PF_INT:
4191 env->async_pf_int_msr = msrs[i].data;
4192 break;
4193 case MSR_KVM_PV_EOI_EN:
4194 env->pv_eoi_en_msr = msrs[i].data;
4195 break;
4196 case MSR_KVM_STEAL_TIME:
4197 env->steal_time_msr = msrs[i].data;
4198 break;
4199 case MSR_KVM_POLL_CONTROL: {
4200 env->poll_control_msr = msrs[i].data;
4201 break;
4202 }
4203 case MSR_CORE_PERF_FIXED_CTR_CTRL:
4204 env->msr_fixed_ctr_ctrl = msrs[i].data;
4205 break;
4206 case MSR_CORE_PERF_GLOBAL_CTRL:
4207 env->msr_global_ctrl = msrs[i].data;
4208 break;
4209 case MSR_CORE_PERF_GLOBAL_STATUS:
4210 env->msr_global_status = msrs[i].data;
4211 break;
4212 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4213 env->msr_global_ovf_ctrl = msrs[i].data;
4214 break;
4215 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4216 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4217 break;
4218 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4219 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4220 break;
4221 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4222 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4223 break;
4224 case HV_X64_MSR_HYPERCALL:
4225 env->msr_hv_hypercall = msrs[i].data;
4226 break;
4227 case HV_X64_MSR_GUEST_OS_ID:
4228 env->msr_hv_guest_os_id = msrs[i].data;
4229 break;
4230 case HV_X64_MSR_APIC_ASSIST_PAGE:
4231 env->msr_hv_vapic = msrs[i].data;
4232 break;
4233 case HV_X64_MSR_REFERENCE_TSC:
4234 env->msr_hv_tsc = msrs[i].data;
4235 break;
4236 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4237 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4238 break;
4239 case HV_X64_MSR_VP_RUNTIME:
4240 env->msr_hv_runtime = msrs[i].data;
4241 break;
4242 case HV_X64_MSR_SCONTROL:
4243 env->msr_hv_synic_control = msrs[i].data;
4244 break;
4245 case HV_X64_MSR_SIEFP:
4246 env->msr_hv_synic_evt_page = msrs[i].data;
4247 break;
4248 case HV_X64_MSR_SIMP:
4249 env->msr_hv_synic_msg_page = msrs[i].data;
4250 break;
4251 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4252 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4253 break;
4254 case HV_X64_MSR_STIMER0_CONFIG:
4255 case HV_X64_MSR_STIMER1_CONFIG:
4256 case HV_X64_MSR_STIMER2_CONFIG:
4257 case HV_X64_MSR_STIMER3_CONFIG:
4258 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4259 msrs[i].data;
4260 break;
4261 case HV_X64_MSR_STIMER0_COUNT:
4262 case HV_X64_MSR_STIMER1_COUNT:
4263 case HV_X64_MSR_STIMER2_COUNT:
4264 case HV_X64_MSR_STIMER3_COUNT:
4265 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4266 msrs[i].data;
4267 break;
4268 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4269 env->msr_hv_reenlightenment_control = msrs[i].data;
4270 break;
4271 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4272 env->msr_hv_tsc_emulation_control = msrs[i].data;
4273 break;
4274 case HV_X64_MSR_TSC_EMULATION_STATUS:
4275 env->msr_hv_tsc_emulation_status = msrs[i].data;
4276 break;
4277 case HV_X64_MSR_SYNDBG_OPTIONS:
4278 env->msr_hv_syndbg_options = msrs[i].data;
4279 break;
4280 case MSR_MTRRdefType:
4281 env->mtrr_deftype = msrs[i].data;
4282 break;
4283 case MSR_MTRRfix64K_00000:
4284 env->mtrr_fixed[0] = msrs[i].data;
4285 break;
4286 case MSR_MTRRfix16K_80000:
4287 env->mtrr_fixed[1] = msrs[i].data;
4288 break;
4289 case MSR_MTRRfix16K_A0000:
4290 env->mtrr_fixed[2] = msrs[i].data;
4291 break;
4292 case MSR_MTRRfix4K_C0000:
4293 env->mtrr_fixed[3] = msrs[i].data;
4294 break;
4295 case MSR_MTRRfix4K_C8000:
4296 env->mtrr_fixed[4] = msrs[i].data;
4297 break;
4298 case MSR_MTRRfix4K_D0000:
4299 env->mtrr_fixed[5] = msrs[i].data;
4300 break;
4301 case MSR_MTRRfix4K_D8000:
4302 env->mtrr_fixed[6] = msrs[i].data;
4303 break;
4304 case MSR_MTRRfix4K_E0000:
4305 env->mtrr_fixed[7] = msrs[i].data;
4306 break;
4307 case MSR_MTRRfix4K_E8000:
4308 env->mtrr_fixed[8] = msrs[i].data;
4309 break;
4310 case MSR_MTRRfix4K_F0000:
4311 env->mtrr_fixed[9] = msrs[i].data;
4312 break;
4313 case MSR_MTRRfix4K_F8000:
4314 env->mtrr_fixed[10] = msrs[i].data;
4315 break;
4316 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4317 if (index & 1) {
4318 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4319 mtrr_top_bits;
4320 } else {
4321 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4322 }
4323 break;
4324 case MSR_IA32_SPEC_CTRL:
4325 env->spec_ctrl = msrs[i].data;
4326 break;
4327 case MSR_AMD64_TSC_RATIO:
4328 env->amd_tsc_scale_msr = msrs[i].data;
4329 break;
4330 case MSR_IA32_TSX_CTRL:
4331 env->tsx_ctrl = msrs[i].data;
4332 break;
4333 case MSR_VIRT_SSBD:
4334 env->virt_ssbd = msrs[i].data;
4335 break;
4336 case MSR_IA32_RTIT_CTL:
4337 env->msr_rtit_ctrl = msrs[i].data;
4338 break;
4339 case MSR_IA32_RTIT_STATUS:
4340 env->msr_rtit_status = msrs[i].data;
4341 break;
4342 case MSR_IA32_RTIT_OUTPUT_BASE:
4343 env->msr_rtit_output_base = msrs[i].data;
4344 break;
4345 case MSR_IA32_RTIT_OUTPUT_MASK:
4346 env->msr_rtit_output_mask = msrs[i].data;
4347 break;
4348 case MSR_IA32_RTIT_CR3_MATCH:
4349 env->msr_rtit_cr3_match = msrs[i].data;
4350 break;
4351 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4352 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4353 break;
4354 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4355 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4356 msrs[i].data;
4357 break;
4358 case MSR_IA32_XFD:
4359 env->msr_xfd = msrs[i].data;
4360 break;
4361 case MSR_IA32_XFD_ERR:
4362 env->msr_xfd_err = msrs[i].data;
4363 break;
4364 case MSR_ARCH_LBR_CTL:
4365 env->msr_lbr_ctl = msrs[i].data;
4366 break;
4367 case MSR_ARCH_LBR_DEPTH:
4368 env->msr_lbr_depth = msrs[i].data;
4369 break;
4370 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4371 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4372 break;
4373 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4374 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4375 break;
4376 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4377 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4378 break;
4379 }
4380 }
4381
4382 return 0;
4383 }
4384
4385 static int kvm_put_mp_state(X86CPU *cpu)
4386 {
4387 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4388
4389 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4390 }
4391
4392 static int kvm_get_mp_state(X86CPU *cpu)
4393 {
4394 CPUState *cs = CPU(cpu);
4395 CPUX86State *env = &cpu->env;
4396 struct kvm_mp_state mp_state;
4397 int ret;
4398
4399 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4400 if (ret < 0) {
4401 return ret;
4402 }
4403 env->mp_state = mp_state.mp_state;
4404 if (kvm_irqchip_in_kernel()) {
4405 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4406 }
4407 return 0;
4408 }
4409
4410 static int kvm_get_apic(X86CPU *cpu)
4411 {
4412 DeviceState *apic = cpu->apic_state;
4413 struct kvm_lapic_state kapic;
4414 int ret;
4415
4416 if (apic && kvm_irqchip_in_kernel()) {
4417 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4418 if (ret < 0) {
4419 return ret;
4420 }
4421
4422 kvm_get_apic_state(apic, &kapic);
4423 }
4424 return 0;
4425 }
4426
4427 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4428 {
4429 CPUState *cs = CPU(cpu);
4430 CPUX86State *env = &cpu->env;
4431 struct kvm_vcpu_events events = {};
4432
4433 if (!kvm_has_vcpu_events()) {
4434 return 0;
4435 }
4436
4437 events.flags = 0;
4438
4439 if (has_exception_payload) {
4440 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4441 events.exception.pending = env->exception_pending;
4442 events.exception_has_payload = env->exception_has_payload;
4443 events.exception_payload = env->exception_payload;
4444 }
4445 events.exception.nr = env->exception_nr;
4446 events.exception.injected = env->exception_injected;
4447 events.exception.has_error_code = env->has_error_code;
4448 events.exception.error_code = env->error_code;
4449
4450 events.interrupt.injected = (env->interrupt_injected >= 0);
4451 events.interrupt.nr = env->interrupt_injected;
4452 events.interrupt.soft = env->soft_interrupt;
4453
4454 events.nmi.injected = env->nmi_injected;
4455 events.nmi.pending = env->nmi_pending;
4456 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4457
4458 events.sipi_vector = env->sipi_vector;
4459
4460 if (has_msr_smbase) {
4461 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4462 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4463 if (kvm_irqchip_in_kernel()) {
4464 /* As soon as these are moved to the kernel, remove them
4465 * from cs->interrupt_request.
4466 */
4467 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4468 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4469 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4470 } else {
4471 /* Keep these in cs->interrupt_request. */
4472 events.smi.pending = 0;
4473 events.smi.latched_init = 0;
4474 }
4475 /* Stop SMI delivery on old machine types to avoid a reboot
4476 * on an inward migration of an old VM.
4477 */
4478 if (!cpu->kvm_no_smi_migration) {
4479 events.flags |= KVM_VCPUEVENT_VALID_SMM;
4480 }
4481 }
4482
4483 if (level >= KVM_PUT_RESET_STATE) {
4484 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4485 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4486 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4487 }
4488 }
4489
4490 if (has_triple_fault_event) {
4491 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4492 events.triple_fault.pending = env->triple_fault_pending;
4493 }
4494
4495 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4496 }
4497
4498 static int kvm_get_vcpu_events(X86CPU *cpu)
4499 {
4500 CPUX86State *env = &cpu->env;
4501 struct kvm_vcpu_events events;
4502 int ret;
4503
4504 if (!kvm_has_vcpu_events()) {
4505 return 0;
4506 }
4507
4508 memset(&events, 0, sizeof(events));
4509 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4510 if (ret < 0) {
4511 return ret;
4512 }
4513
4514 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4515 env->exception_pending = events.exception.pending;
4516 env->exception_has_payload = events.exception_has_payload;
4517 env->exception_payload = events.exception_payload;
4518 } else {
4519 env->exception_pending = 0;
4520 env->exception_has_payload = false;
4521 }
4522 env->exception_injected = events.exception.injected;
4523 env->exception_nr =
4524 (env->exception_pending || env->exception_injected) ?
4525 events.exception.nr : -1;
4526 env->has_error_code = events.exception.has_error_code;
4527 env->error_code = events.exception.error_code;
4528
4529 env->interrupt_injected =
4530 events.interrupt.injected ? events.interrupt.nr : -1;
4531 env->soft_interrupt = events.interrupt.soft;
4532
4533 env->nmi_injected = events.nmi.injected;
4534 env->nmi_pending = events.nmi.pending;
4535 if (events.nmi.masked) {
4536 env->hflags2 |= HF2_NMI_MASK;
4537 } else {
4538 env->hflags2 &= ~HF2_NMI_MASK;
4539 }
4540
4541 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4542 if (events.smi.smm) {
4543 env->hflags |= HF_SMM_MASK;
4544 } else {
4545 env->hflags &= ~HF_SMM_MASK;
4546 }
4547 if (events.smi.pending) {
4548 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4549 } else {
4550 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4551 }
4552 if (events.smi.smm_inside_nmi) {
4553 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4554 } else {
4555 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4556 }
4557 if (events.smi.latched_init) {
4558 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4559 } else {
4560 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4561 }
4562 }
4563
4564 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4565 env->triple_fault_pending = events.triple_fault.pending;
4566 }
4567
4568 env->sipi_vector = events.sipi_vector;
4569
4570 return 0;
4571 }
4572
4573 static int kvm_guest_debug_workarounds(X86CPU *cpu)
4574 {
4575 CPUState *cs = CPU(cpu);
4576 CPUX86State *env = &cpu->env;
4577 int ret = 0;
4578 unsigned long reinject_trap = 0;
4579
4580 if (!kvm_has_vcpu_events()) {
4581 if (env->exception_nr == EXCP01_DB) {
4582 reinject_trap = KVM_GUESTDBG_INJECT_DB;
4583 } else if (env->exception_injected == EXCP03_INT3) {
4584 reinject_trap = KVM_GUESTDBG_INJECT_BP;
4585 }
4586 kvm_reset_exception(env);
4587 }
4588
4589 /*
4590 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4591 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4592 * by updating the debug state once again if single-stepping is on.
4593 * Another reason to call kvm_update_guest_debug here is a pending debug
4594 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4595 * reinject them via SET_GUEST_DEBUG.
4596 */
4597 if (reinject_trap ||
4598 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4599 ret = kvm_update_guest_debug(cs, reinject_trap);
4600 }
4601 return ret;
4602 }
4603
4604 static int kvm_put_debugregs(X86CPU *cpu)
4605 {
4606 CPUX86State *env = &cpu->env;
4607 struct kvm_debugregs dbgregs;
4608 int i;
4609
4610 if (!kvm_has_debugregs()) {
4611 return 0;
4612 }
4613
4614 memset(&dbgregs, 0, sizeof(dbgregs));
4615 for (i = 0; i < 4; i++) {
4616 dbgregs.db[i] = env->dr[i];
4617 }
4618 dbgregs.dr6 = env->dr[6];
4619 dbgregs.dr7 = env->dr[7];
4620 dbgregs.flags = 0;
4621
4622 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4623 }
4624
4625 static int kvm_get_debugregs(X86CPU *cpu)
4626 {
4627 CPUX86State *env = &cpu->env;
4628 struct kvm_debugregs dbgregs;
4629 int i, ret;
4630
4631 if (!kvm_has_debugregs()) {
4632 return 0;
4633 }
4634
4635 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4636 if (ret < 0) {
4637 return ret;
4638 }
4639 for (i = 0; i < 4; i++) {
4640 env->dr[i] = dbgregs.db[i];
4641 }
4642 env->dr[4] = env->dr[6] = dbgregs.dr6;
4643 env->dr[5] = env->dr[7] = dbgregs.dr7;
4644
4645 return 0;
4646 }
4647
4648 static int kvm_put_nested_state(X86CPU *cpu)
4649 {
4650 CPUX86State *env = &cpu->env;
4651 int max_nested_state_len = kvm_max_nested_state_length();
4652
4653 if (!env->nested_state) {
4654 return 0;
4655 }
4656
4657 /*
4658 * Copy flags that are affected by reset from env->hflags and env->hflags2.
4659 */
4660 if (env->hflags & HF_GUEST_MASK) {
4661 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4662 } else {
4663 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4664 }
4665
4666 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4667 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4668 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4669 } else {
4670 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4671 }
4672
4673 assert(env->nested_state->size <= max_nested_state_len);
4674 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4675 }
4676
4677 static int kvm_get_nested_state(X86CPU *cpu)
4678 {
4679 CPUX86State *env = &cpu->env;
4680 int max_nested_state_len = kvm_max_nested_state_length();
4681 int ret;
4682
4683 if (!env->nested_state) {
4684 return 0;
4685 }
4686
4687 /*
4688 * It is possible that migration restored a smaller size into
4689 * nested_state->hdr.size than what our kernel support.
4690 * We preserve migration origin nested_state->hdr.size for
4691 * call to KVM_SET_NESTED_STATE but wish that our next call
4692 * to KVM_GET_NESTED_STATE will use max size our kernel support.
4693 */
4694 env->nested_state->size = max_nested_state_len;
4695
4696 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4697 if (ret < 0) {
4698 return ret;
4699 }
4700
4701 /*
4702 * Copy flags that are affected by reset to env->hflags and env->hflags2.
4703 */
4704 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4705 env->hflags |= HF_GUEST_MASK;
4706 } else {
4707 env->hflags &= ~HF_GUEST_MASK;
4708 }
4709
4710 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4711 if (cpu_has_svm(env)) {
4712 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4713 env->hflags2 |= HF2_GIF_MASK;
4714 } else {
4715 env->hflags2 &= ~HF2_GIF_MASK;
4716 }
4717 }
4718
4719 return ret;
4720 }
4721
4722 int kvm_arch_put_registers(CPUState *cpu, int level)
4723 {
4724 X86CPU *x86_cpu = X86_CPU(cpu);
4725 int ret;
4726
4727 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4728
4729 /*
4730 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4731 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4732 * precede kvm_put_nested_state() when 'real' nested state is set.
4733 */
4734 if (level >= KVM_PUT_RESET_STATE) {
4735 ret = kvm_put_msr_feature_control(x86_cpu);
4736 if (ret < 0) {
4737 return ret;
4738 }
4739 }
4740
4741 /* must be before kvm_put_nested_state so that EFER.SVME is set */
4742 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4743 if (ret < 0) {
4744 return ret;
4745 }
4746
4747 if (level >= KVM_PUT_RESET_STATE) {
4748 ret = kvm_put_nested_state(x86_cpu);
4749 if (ret < 0) {
4750 return ret;
4751 }
4752 }
4753
4754 if (level == KVM_PUT_FULL_STATE) {
4755 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4756 * because TSC frequency mismatch shouldn't abort migration,
4757 * unless the user explicitly asked for a more strict TSC
4758 * setting (e.g. using an explicit "tsc-freq" option).
4759 */
4760 kvm_arch_set_tsc_khz(cpu);
4761 }
4762
4763 #ifdef CONFIG_XEN_EMU
4764 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
4765 ret = kvm_put_xen_state(cpu);
4766 if (ret < 0) {
4767 return ret;
4768 }
4769 }
4770 #endif
4771
4772 ret = kvm_getput_regs(x86_cpu, 1);
4773 if (ret < 0) {
4774 return ret;
4775 }
4776 ret = kvm_put_xsave(x86_cpu);
4777 if (ret < 0) {
4778 return ret;
4779 }
4780 ret = kvm_put_xcrs(x86_cpu);
4781 if (ret < 0) {
4782 return ret;
4783 }
4784 /* must be before kvm_put_msrs */
4785 ret = kvm_inject_mce_oldstyle(x86_cpu);
4786 if (ret < 0) {
4787 return ret;
4788 }
4789 ret = kvm_put_msrs(x86_cpu, level);
4790 if (ret < 0) {
4791 return ret;
4792 }
4793 ret = kvm_put_vcpu_events(x86_cpu, level);
4794 if (ret < 0) {
4795 return ret;
4796 }
4797 if (level >= KVM_PUT_RESET_STATE) {
4798 ret = kvm_put_mp_state(x86_cpu);
4799 if (ret < 0) {
4800 return ret;
4801 }
4802 }
4803
4804 ret = kvm_put_tscdeadline_msr(x86_cpu);
4805 if (ret < 0) {
4806 return ret;
4807 }
4808 ret = kvm_put_debugregs(x86_cpu);
4809 if (ret < 0) {
4810 return ret;
4811 }
4812 /* must be last */
4813 ret = kvm_guest_debug_workarounds(x86_cpu);
4814 if (ret < 0) {
4815 return ret;
4816 }
4817 return 0;
4818 }
4819
4820 int kvm_arch_get_registers(CPUState *cs)
4821 {
4822 X86CPU *cpu = X86_CPU(cs);
4823 int ret;
4824
4825 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4826
4827 ret = kvm_get_vcpu_events(cpu);
4828 if (ret < 0) {
4829 goto out;
4830 }
4831 /*
4832 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4833 * KVM_GET_REGS and KVM_GET_SREGS.
4834 */
4835 ret = kvm_get_mp_state(cpu);
4836 if (ret < 0) {
4837 goto out;
4838 }
4839 ret = kvm_getput_regs(cpu, 0);
4840 if (ret < 0) {
4841 goto out;
4842 }
4843 ret = kvm_get_xsave(cpu);
4844 if (ret < 0) {
4845 goto out;
4846 }
4847 ret = kvm_get_xcrs(cpu);
4848 if (ret < 0) {
4849 goto out;
4850 }
4851 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4852 if (ret < 0) {
4853 goto out;
4854 }
4855 ret = kvm_get_msrs(cpu);
4856 if (ret < 0) {
4857 goto out;
4858 }
4859 ret = kvm_get_apic(cpu);
4860 if (ret < 0) {
4861 goto out;
4862 }
4863 ret = kvm_get_debugregs(cpu);
4864 if (ret < 0) {
4865 goto out;
4866 }
4867 ret = kvm_get_nested_state(cpu);
4868 if (ret < 0) {
4869 goto out;
4870 }
4871 #ifdef CONFIG_XEN_EMU
4872 if (xen_mode == XEN_EMULATE) {
4873 ret = kvm_get_xen_state(cs);
4874 if (ret < 0) {
4875 goto out;
4876 }
4877 }
4878 #endif
4879 ret = 0;
4880 out:
4881 cpu_sync_bndcs_hflags(&cpu->env);
4882 return ret;
4883 }
4884
4885 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4886 {
4887 X86CPU *x86_cpu = X86_CPU(cpu);
4888 CPUX86State *env = &x86_cpu->env;
4889 int ret;
4890
4891 /* Inject NMI */
4892 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4893 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4894 qemu_mutex_lock_iothread();
4895 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4896 qemu_mutex_unlock_iothread();
4897 DPRINTF("injected NMI\n");
4898 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4899 if (ret < 0) {
4900 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4901 strerror(-ret));
4902 }
4903 }
4904 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4905 qemu_mutex_lock_iothread();
4906 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4907 qemu_mutex_unlock_iothread();
4908 DPRINTF("injected SMI\n");
4909 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4910 if (ret < 0) {
4911 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4912 strerror(-ret));
4913 }
4914 }
4915 }
4916
4917 if (!kvm_pic_in_kernel()) {
4918 qemu_mutex_lock_iothread();
4919 }
4920
4921 /* Force the VCPU out of its inner loop to process any INIT requests
4922 * or (for userspace APIC, but it is cheap to combine the checks here)
4923 * pending TPR access reports.
4924 */
4925 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4926 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4927 !(env->hflags & HF_SMM_MASK)) {
4928 cpu->exit_request = 1;
4929 }
4930 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4931 cpu->exit_request = 1;
4932 }
4933 }
4934
4935 if (!kvm_pic_in_kernel()) {
4936 /* Try to inject an interrupt if the guest can accept it */
4937 if (run->ready_for_interrupt_injection &&
4938 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4939 (env->eflags & IF_MASK)) {
4940 int irq;
4941
4942 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4943 irq = cpu_get_pic_interrupt(env);
4944 if (irq >= 0) {
4945 struct kvm_interrupt intr;
4946
4947 intr.irq = irq;
4948 DPRINTF("injected interrupt %d\n", irq);
4949 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4950 if (ret < 0) {
4951 fprintf(stderr,
4952 "KVM: injection failed, interrupt lost (%s)\n",
4953 strerror(-ret));
4954 }
4955 }
4956 }
4957
4958 /* If we have an interrupt but the guest is not ready to receive an
4959 * interrupt, request an interrupt window exit. This will
4960 * cause a return to userspace as soon as the guest is ready to
4961 * receive interrupts. */
4962 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4963 run->request_interrupt_window = 1;
4964 } else {
4965 run->request_interrupt_window = 0;
4966 }
4967
4968 DPRINTF("setting tpr\n");
4969 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4970
4971 qemu_mutex_unlock_iothread();
4972 }
4973 }
4974
4975 static void kvm_rate_limit_on_bus_lock(void)
4976 {
4977 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4978
4979 if (delay_ns) {
4980 g_usleep(delay_ns / SCALE_US);
4981 }
4982 }
4983
4984 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4985 {
4986 X86CPU *x86_cpu = X86_CPU(cpu);
4987 CPUX86State *env = &x86_cpu->env;
4988
4989 if (run->flags & KVM_RUN_X86_SMM) {
4990 env->hflags |= HF_SMM_MASK;
4991 } else {
4992 env->hflags &= ~HF_SMM_MASK;
4993 }
4994 if (run->if_flag) {
4995 env->eflags |= IF_MASK;
4996 } else {
4997 env->eflags &= ~IF_MASK;
4998 }
4999 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
5000 kvm_rate_limit_on_bus_lock();
5001 }
5002
5003 #ifdef CONFIG_XEN_EMU
5004 /*
5005 * If the callback is asserted as a GSI (or PCI INTx) then check if
5006 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5007 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5008 * EOI and only resample then, exactly how the VFIO eventfd pairs
5009 * are designed to work for level triggered interrupts.
5010 */
5011 if (x86_cpu->env.xen_callback_asserted) {
5012 kvm_xen_maybe_deassert_callback(cpu);
5013 }
5014 #endif
5015
5016 /* We need to protect the apic state against concurrent accesses from
5017 * different threads in case the userspace irqchip is used. */
5018 if (!kvm_irqchip_in_kernel()) {
5019 qemu_mutex_lock_iothread();
5020 }
5021 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5022 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5023 if (!kvm_irqchip_in_kernel()) {
5024 qemu_mutex_unlock_iothread();
5025 }
5026 return cpu_get_mem_attrs(env);
5027 }
5028
5029 int kvm_arch_process_async_events(CPUState *cs)
5030 {
5031 X86CPU *cpu = X86_CPU(cs);
5032 CPUX86State *env = &cpu->env;
5033
5034 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5035 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5036 assert(env->mcg_cap);
5037
5038 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5039
5040 kvm_cpu_synchronize_state(cs);
5041
5042 if (env->exception_nr == EXCP08_DBLE) {
5043 /* this means triple fault */
5044 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5045 cs->exit_request = 1;
5046 return 0;
5047 }
5048 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5049 env->has_error_code = 0;
5050
5051 cs->halted = 0;
5052 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5053 env->mp_state = KVM_MP_STATE_RUNNABLE;
5054 }
5055 }
5056
5057 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5058 !(env->hflags & HF_SMM_MASK)) {
5059 kvm_cpu_synchronize_state(cs);
5060 do_cpu_init(cpu);
5061 }
5062
5063 if (kvm_irqchip_in_kernel()) {
5064 return 0;
5065 }
5066
5067 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5068 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5069 apic_poll_irq(cpu->apic_state);
5070 }
5071 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5072 (env->eflags & IF_MASK)) ||
5073 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5074 cs->halted = 0;
5075 }
5076 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5077 kvm_cpu_synchronize_state(cs);
5078 do_cpu_sipi(cpu);
5079 }
5080 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5081 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5082 kvm_cpu_synchronize_state(cs);
5083 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5084 env->tpr_access_type);
5085 }
5086
5087 return cs->halted;
5088 }
5089
5090 static int kvm_handle_halt(X86CPU *cpu)
5091 {
5092 CPUState *cs = CPU(cpu);
5093 CPUX86State *env = &cpu->env;
5094
5095 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5096 (env->eflags & IF_MASK)) &&
5097 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5098 cs->halted = 1;
5099 return EXCP_HLT;
5100 }
5101
5102 return 0;
5103 }
5104
5105 static int kvm_handle_tpr_access(X86CPU *cpu)
5106 {
5107 CPUState *cs = CPU(cpu);
5108 struct kvm_run *run = cs->kvm_run;
5109
5110 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5111 run->tpr_access.is_write ? TPR_ACCESS_WRITE
5112 : TPR_ACCESS_READ);
5113 return 1;
5114 }
5115
5116 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5117 {
5118 static const uint8_t int3 = 0xcc;
5119
5120 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5121 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5122 return -EINVAL;
5123 }
5124 return 0;
5125 }
5126
5127 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5128 {
5129 uint8_t int3;
5130
5131 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5132 return -EINVAL;
5133 }
5134 if (int3 != 0xcc) {
5135 return 0;
5136 }
5137 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5138 return -EINVAL;
5139 }
5140 return 0;
5141 }
5142
5143 static struct {
5144 target_ulong addr;
5145 int len;
5146 int type;
5147 } hw_breakpoint[4];
5148
5149 static int nb_hw_breakpoint;
5150
5151 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5152 {
5153 int n;
5154
5155 for (n = 0; n < nb_hw_breakpoint; n++) {
5156 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5157 (hw_breakpoint[n].len == len || len == -1)) {
5158 return n;
5159 }
5160 }
5161 return -1;
5162 }
5163
5164 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5165 {
5166 switch (type) {
5167 case GDB_BREAKPOINT_HW:
5168 len = 1;
5169 break;
5170 case GDB_WATCHPOINT_WRITE:
5171 case GDB_WATCHPOINT_ACCESS:
5172 switch (len) {
5173 case 1:
5174 break;
5175 case 2:
5176 case 4:
5177 case 8:
5178 if (addr & (len - 1)) {
5179 return -EINVAL;
5180 }
5181 break;
5182 default:
5183 return -EINVAL;
5184 }
5185 break;
5186 default:
5187 return -ENOSYS;
5188 }
5189
5190 if (nb_hw_breakpoint == 4) {
5191 return -ENOBUFS;
5192 }
5193 if (find_hw_breakpoint(addr, len, type) >= 0) {
5194 return -EEXIST;
5195 }
5196 hw_breakpoint[nb_hw_breakpoint].addr = addr;
5197 hw_breakpoint[nb_hw_breakpoint].len = len;
5198 hw_breakpoint[nb_hw_breakpoint].type = type;
5199 nb_hw_breakpoint++;
5200
5201 return 0;
5202 }
5203
5204 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5205 {
5206 int n;
5207
5208 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5209 if (n < 0) {
5210 return -ENOENT;
5211 }
5212 nb_hw_breakpoint--;
5213 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5214
5215 return 0;
5216 }
5217
5218 void kvm_arch_remove_all_hw_breakpoints(void)
5219 {
5220 nb_hw_breakpoint = 0;
5221 }
5222
5223 static CPUWatchpoint hw_watchpoint;
5224
5225 static int kvm_handle_debug(X86CPU *cpu,
5226 struct kvm_debug_exit_arch *arch_info)
5227 {
5228 CPUState *cs = CPU(cpu);
5229 CPUX86State *env = &cpu->env;
5230 int ret = 0;
5231 int n;
5232
5233 if (arch_info->exception == EXCP01_DB) {
5234 if (arch_info->dr6 & DR6_BS) {
5235 if (cs->singlestep_enabled) {
5236 ret = EXCP_DEBUG;
5237 }
5238 } else {
5239 for (n = 0; n < 4; n++) {
5240 if (arch_info->dr6 & (1 << n)) {
5241 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5242 case 0x0:
5243 ret = EXCP_DEBUG;
5244 break;
5245 case 0x1:
5246 ret = EXCP_DEBUG;
5247 cs->watchpoint_hit = &hw_watchpoint;
5248 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5249 hw_watchpoint.flags = BP_MEM_WRITE;
5250 break;
5251 case 0x3:
5252 ret = EXCP_DEBUG;
5253 cs->watchpoint_hit = &hw_watchpoint;
5254 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5255 hw_watchpoint.flags = BP_MEM_ACCESS;
5256 break;
5257 }
5258 }
5259 }
5260 }
5261 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5262 ret = EXCP_DEBUG;
5263 }
5264 if (ret == 0) {
5265 cpu_synchronize_state(cs);
5266 assert(env->exception_nr == -1);
5267
5268 /* pass to guest */
5269 kvm_queue_exception(env, arch_info->exception,
5270 arch_info->exception == EXCP01_DB,
5271 arch_info->dr6);
5272 env->has_error_code = 0;
5273 }
5274
5275 return ret;
5276 }
5277
5278 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5279 {
5280 const uint8_t type_code[] = {
5281 [GDB_BREAKPOINT_HW] = 0x0,
5282 [GDB_WATCHPOINT_WRITE] = 0x1,
5283 [GDB_WATCHPOINT_ACCESS] = 0x3
5284 };
5285 const uint8_t len_code[] = {
5286 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5287 };
5288 int n;
5289
5290 if (kvm_sw_breakpoints_active(cpu)) {
5291 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5292 }
5293 if (nb_hw_breakpoint > 0) {
5294 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5295 dbg->arch.debugreg[7] = 0x0600;
5296 for (n = 0; n < nb_hw_breakpoint; n++) {
5297 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5298 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5299 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5300 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5301 }
5302 }
5303 }
5304
5305 static bool kvm_install_msr_filters(KVMState *s)
5306 {
5307 uint64_t zero = 0;
5308 struct kvm_msr_filter filter = {
5309 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5310 };
5311 int r, i, j = 0;
5312
5313 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5314 KVMMSRHandlers *handler = &msr_handlers[i];
5315 if (handler->msr) {
5316 struct kvm_msr_filter_range *range = &filter.ranges[j++];
5317
5318 *range = (struct kvm_msr_filter_range) {
5319 .flags = 0,
5320 .nmsrs = 1,
5321 .base = handler->msr,
5322 .bitmap = (__u8 *)&zero,
5323 };
5324
5325 if (handler->rdmsr) {
5326 range->flags |= KVM_MSR_FILTER_READ;
5327 }
5328
5329 if (handler->wrmsr) {
5330 range->flags |= KVM_MSR_FILTER_WRITE;
5331 }
5332 }
5333 }
5334
5335 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5336 if (r) {
5337 return false;
5338 }
5339
5340 return true;
5341 }
5342
5343 bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5344 QEMUWRMSRHandler *wrmsr)
5345 {
5346 int i;
5347
5348 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5349 if (!msr_handlers[i].msr) {
5350 msr_handlers[i] = (KVMMSRHandlers) {
5351 .msr = msr,
5352 .rdmsr = rdmsr,
5353 .wrmsr = wrmsr,
5354 };
5355
5356 if (!kvm_install_msr_filters(s)) {
5357 msr_handlers[i] = (KVMMSRHandlers) { };
5358 return false;
5359 }
5360
5361 return true;
5362 }
5363 }
5364
5365 return false;
5366 }
5367
5368 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5369 {
5370 int i;
5371 bool r;
5372
5373 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5374 KVMMSRHandlers *handler = &msr_handlers[i];
5375 if (run->msr.index == handler->msr) {
5376 if (handler->rdmsr) {
5377 r = handler->rdmsr(cpu, handler->msr,
5378 (uint64_t *)&run->msr.data);
5379 run->msr.error = r ? 0 : 1;
5380 return 0;
5381 }
5382 }
5383 }
5384
5385 assert(false);
5386 }
5387
5388 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5389 {
5390 int i;
5391 bool r;
5392
5393 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5394 KVMMSRHandlers *handler = &msr_handlers[i];
5395 if (run->msr.index == handler->msr) {
5396 if (handler->wrmsr) {
5397 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5398 run->msr.error = r ? 0 : 1;
5399 return 0;
5400 }
5401 }
5402 }
5403
5404 assert(false);
5405 }
5406
5407 static bool has_sgx_provisioning;
5408
5409 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5410 {
5411 int fd, ret;
5412
5413 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5414 return false;
5415 }
5416
5417 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5418 if (fd < 0) {
5419 return false;
5420 }
5421
5422 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5423 if (ret) {
5424 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5425 exit(1);
5426 }
5427 close(fd);
5428 return true;
5429 }
5430
5431 bool kvm_enable_sgx_provisioning(KVMState *s)
5432 {
5433 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5434 }
5435
5436 static bool host_supports_vmx(void)
5437 {
5438 uint32_t ecx, unused;
5439
5440 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5441 return ecx & CPUID_EXT_VMX;
5442 }
5443
5444 #define VMX_INVALID_GUEST_STATE 0x80000021
5445
5446 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5447 {
5448 X86CPU *cpu = X86_CPU(cs);
5449 uint64_t code;
5450 int ret;
5451 bool ctx_invalid;
5452 char str[256];
5453 KVMState *state;
5454
5455 switch (run->exit_reason) {
5456 case KVM_EXIT_HLT:
5457 DPRINTF("handle_hlt\n");
5458 qemu_mutex_lock_iothread();
5459 ret = kvm_handle_halt(cpu);
5460 qemu_mutex_unlock_iothread();
5461 break;
5462 case KVM_EXIT_SET_TPR:
5463 ret = 0;
5464 break;
5465 case KVM_EXIT_TPR_ACCESS:
5466 qemu_mutex_lock_iothread();
5467 ret = kvm_handle_tpr_access(cpu);
5468 qemu_mutex_unlock_iothread();
5469 break;
5470 case KVM_EXIT_FAIL_ENTRY:
5471 code = run->fail_entry.hardware_entry_failure_reason;
5472 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5473 code);
5474 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5475 fprintf(stderr,
5476 "\nIf you're running a guest on an Intel machine without "
5477 "unrestricted mode\n"
5478 "support, the failure can be most likely due to the guest "
5479 "entering an invalid\n"
5480 "state for Intel VT. For example, the guest maybe running "
5481 "in big real mode\n"
5482 "which is not supported on less recent Intel processors."
5483 "\n\n");
5484 }
5485 ret = -1;
5486 break;
5487 case KVM_EXIT_EXCEPTION:
5488 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5489 run->ex.exception, run->ex.error_code);
5490 ret = -1;
5491 break;
5492 case KVM_EXIT_DEBUG:
5493 DPRINTF("kvm_exit_debug\n");
5494 qemu_mutex_lock_iothread();
5495 ret = kvm_handle_debug(cpu, &run->debug.arch);
5496 qemu_mutex_unlock_iothread();
5497 break;
5498 case KVM_EXIT_HYPERV:
5499 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5500 break;
5501 case KVM_EXIT_IOAPIC_EOI:
5502 ioapic_eoi_broadcast(run->eoi.vector);
5503 ret = 0;
5504 break;
5505 case KVM_EXIT_X86_BUS_LOCK:
5506 /* already handled in kvm_arch_post_run */
5507 ret = 0;
5508 break;
5509 case KVM_EXIT_NOTIFY:
5510 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5511 state = KVM_STATE(current_accel());
5512 sprintf(str, "Encounter a notify exit with %svalid context in"
5513 " guest. There can be possible misbehaves in guest."
5514 " Please have a look.", ctx_invalid ? "in" : "");
5515 if (ctx_invalid ||
5516 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5517 warn_report("KVM internal error: %s", str);
5518 ret = -1;
5519 } else {
5520 warn_report_once("KVM: %s", str);
5521 ret = 0;
5522 }
5523 break;
5524 case KVM_EXIT_X86_RDMSR:
5525 /* We only enable MSR filtering, any other exit is bogus */
5526 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5527 ret = kvm_handle_rdmsr(cpu, run);
5528 break;
5529 case KVM_EXIT_X86_WRMSR:
5530 /* We only enable MSR filtering, any other exit is bogus */
5531 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5532 ret = kvm_handle_wrmsr(cpu, run);
5533 break;
5534 #ifdef CONFIG_XEN_EMU
5535 case KVM_EXIT_XEN:
5536 ret = kvm_xen_handle_exit(cpu, &run->xen);
5537 break;
5538 #endif
5539 default:
5540 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5541 ret = -1;
5542 break;
5543 }
5544
5545 return ret;
5546 }
5547
5548 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5549 {
5550 X86CPU *cpu = X86_CPU(cs);
5551 CPUX86State *env = &cpu->env;
5552
5553 kvm_cpu_synchronize_state(cs);
5554 return !(env->cr[0] & CR0_PE_MASK) ||
5555 ((env->segs[R_CS].selector & 3) != 3);
5556 }
5557
5558 void kvm_arch_init_irq_routing(KVMState *s)
5559 {
5560 /* We know at this point that we're using the in-kernel
5561 * irqchip, so we can use irqfds, and on x86 we know
5562 * we can use msi via irqfd and GSI routing.
5563 */
5564 kvm_msi_via_irqfd_allowed = true;
5565 kvm_gsi_routing_allowed = true;
5566
5567 if (kvm_irqchip_is_split()) {
5568 KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5569 int i;
5570
5571 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5572 MSI routes for signaling interrupts to the local apics. */
5573 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5574 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5575 error_report("Could not enable split IRQ mode.");
5576 exit(1);
5577 }
5578 }
5579 kvm_irqchip_commit_route_changes(&c);
5580 }
5581 }
5582
5583 int kvm_arch_irqchip_create(KVMState *s)
5584 {
5585 int ret;
5586 if (kvm_kernel_irqchip_split()) {
5587 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5588 if (ret) {
5589 error_report("Could not enable split irqchip mode: %s",
5590 strerror(-ret));
5591 exit(1);
5592 } else {
5593 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5594 kvm_split_irqchip = true;
5595 return 1;
5596 }
5597 } else {
5598 return 0;
5599 }
5600 }
5601
5602 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5603 {
5604 CPUX86State *env;
5605 uint64_t ext_id;
5606
5607 if (!first_cpu) {
5608 return address;
5609 }
5610 env = &X86_CPU(first_cpu)->env;
5611 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5612 return address;
5613 }
5614
5615 /*
5616 * If the remappable format bit is set, or the upper bits are
5617 * already set in address_hi, or the low extended bits aren't
5618 * there anyway, do nothing.
5619 */
5620 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5621 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5622 return address;
5623 }
5624
5625 address &= ~ext_id;
5626 address |= ext_id << 35;
5627 return address;
5628 }
5629
5630 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5631 uint64_t address, uint32_t data, PCIDevice *dev)
5632 {
5633 X86IOMMUState *iommu = x86_iommu_get_default();
5634
5635 if (iommu) {
5636 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5637
5638 if (class->int_remap) {
5639 int ret;
5640 MSIMessage src, dst;
5641
5642 src.address = route->u.msi.address_hi;
5643 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5644 src.address |= route->u.msi.address_lo;
5645 src.data = route->u.msi.data;
5646
5647 ret = class->int_remap(iommu, &src, &dst, dev ? \
5648 pci_requester_id(dev) : \
5649 X86_IOMMU_SID_INVALID);
5650 if (ret) {
5651 trace_kvm_x86_fixup_msi_error(route->gsi);
5652 return 1;
5653 }
5654
5655 /*
5656 * Handled untranslated compatibility format interrupt with
5657 * extended destination ID in the low bits 11-5. */
5658 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5659
5660 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5661 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5662 route->u.msi.data = dst.data;
5663 return 0;
5664 }
5665 }
5666
5667 #ifdef CONFIG_XEN_EMU
5668 if (xen_mode == XEN_EMULATE) {
5669 int handled = xen_evtchn_translate_pirq_msi(route, address, data);
5670
5671 /*
5672 * If it was a PIRQ and successfully routed (handled == 0) or it was
5673 * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
5674 */
5675 if (handled <= 0) {
5676 return handled;
5677 }
5678 }
5679 #endif
5680
5681 address = kvm_swizzle_msi_ext_dest_id(address);
5682 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5683 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5684 return 0;
5685 }
5686
5687 typedef struct MSIRouteEntry MSIRouteEntry;
5688
5689 struct MSIRouteEntry {
5690 PCIDevice *dev; /* Device pointer */
5691 int vector; /* MSI/MSIX vector index */
5692 int virq; /* Virtual IRQ index */
5693 QLIST_ENTRY(MSIRouteEntry) list;
5694 };
5695
5696 /* List of used GSI routes */
5697 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5698 QLIST_HEAD_INITIALIZER(msi_route_list);
5699
5700 void kvm_update_msi_routes_all(void *private, bool global,
5701 uint32_t index, uint32_t mask)
5702 {
5703 int cnt = 0, vector;
5704 MSIRouteEntry *entry;
5705 MSIMessage msg;
5706 PCIDevice *dev;
5707
5708 /* TODO: explicit route update */
5709 QLIST_FOREACH(entry, &msi_route_list, list) {
5710 cnt++;
5711 vector = entry->vector;
5712 dev = entry->dev;
5713 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5714 msg = msix_get_message(dev, vector);
5715 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5716 msg = msi_get_message(dev, vector);
5717 } else {
5718 /*
5719 * Either MSI/MSIX is disabled for the device, or the
5720 * specific message was masked out. Skip this one.
5721 */
5722 continue;
5723 }
5724 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5725 }
5726 kvm_irqchip_commit_routes(kvm_state);
5727 trace_kvm_x86_update_msi_routes(cnt);
5728 }
5729
5730 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5731 int vector, PCIDevice *dev)
5732 {
5733 static bool notify_list_inited = false;
5734 MSIRouteEntry *entry;
5735
5736 if (!dev) {
5737 /* These are (possibly) IOAPIC routes only used for split
5738 * kernel irqchip mode, while what we are housekeeping are
5739 * PCI devices only. */
5740 return 0;
5741 }
5742
5743 entry = g_new0(MSIRouteEntry, 1);
5744 entry->dev = dev;
5745 entry->vector = vector;
5746 entry->virq = route->gsi;
5747 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5748
5749 trace_kvm_x86_add_msi_route(route->gsi);
5750
5751 if (!notify_list_inited) {
5752 /* For the first time we do add route, add ourselves into
5753 * IOMMU's IEC notify list if needed. */
5754 X86IOMMUState *iommu = x86_iommu_get_default();
5755 if (iommu) {
5756 x86_iommu_iec_register_notifier(iommu,
5757 kvm_update_msi_routes_all,
5758 NULL);
5759 }
5760 notify_list_inited = true;
5761 }
5762 return 0;
5763 }
5764
5765 int kvm_arch_release_virq_post(int virq)
5766 {
5767 MSIRouteEntry *entry, *next;
5768 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5769 if (entry->virq == virq) {
5770 trace_kvm_x86_remove_msi_route(virq);
5771 QLIST_REMOVE(entry, list);
5772 g_free(entry);
5773 break;
5774 }
5775 }
5776 return 0;
5777 }
5778
5779 int kvm_arch_msi_data_to_gsi(uint32_t data)
5780 {
5781 abort();
5782 }
5783
5784 bool kvm_has_waitpkg(void)
5785 {
5786 return has_msr_umwait;
5787 }
5788
5789 bool kvm_arch_cpu_check_are_resettable(void)
5790 {
5791 return !sev_es_enabled();
5792 }
5793
5794 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025
5795
5796 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5797 {
5798 KVMState *s = kvm_state;
5799 uint64_t supported;
5800
5801 mask &= XSTATE_DYNAMIC_MASK;
5802 if (!mask) {
5803 return;
5804 }
5805 /*
5806 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5807 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5808 * about them already because they are not supported features.
5809 */
5810 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5811 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5812 mask &= supported;
5813
5814 while (mask) {
5815 int bit = ctz64(mask);
5816 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5817 if (rc) {
5818 /*
5819 * Older kernel version (<5.17) do not support
5820 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5821 * any dynamic feature from kvm_arch_get_supported_cpuid.
5822 */
5823 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5824 "for feature bit %d", bit);
5825 }
5826 mask &= ~BIT_ULL(bit);
5827 }
5828 }
5829
5830 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5831 {
5832 KVMState *s = KVM_STATE(obj);
5833 return s->notify_vmexit;
5834 }
5835
5836 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5837 {
5838 KVMState *s = KVM_STATE(obj);
5839
5840 if (s->fd != -1) {
5841 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5842 return;
5843 }
5844
5845 s->notify_vmexit = value;
5846 }
5847
5848 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5849 const char *name, void *opaque,
5850 Error **errp)
5851 {
5852 KVMState *s = KVM_STATE(obj);
5853 uint32_t value = s->notify_window;
5854
5855 visit_type_uint32(v, name, &value, errp);
5856 }
5857
5858 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5859 const char *name, void *opaque,
5860 Error **errp)
5861 {
5862 KVMState *s = KVM_STATE(obj);
5863 uint32_t value;
5864
5865 if (s->fd != -1) {
5866 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5867 return;
5868 }
5869
5870 if (!visit_type_uint32(v, name, &value, errp)) {
5871 return;
5872 }
5873
5874 s->notify_window = value;
5875 }
5876
5877 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
5878 const char *name, void *opaque,
5879 Error **errp)
5880 {
5881 KVMState *s = KVM_STATE(obj);
5882 uint32_t value = s->xen_version;
5883
5884 visit_type_uint32(v, name, &value, errp);
5885 }
5886
5887 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
5888 const char *name, void *opaque,
5889 Error **errp)
5890 {
5891 KVMState *s = KVM_STATE(obj);
5892 Error *error = NULL;
5893 uint32_t value;
5894
5895 visit_type_uint32(v, name, &value, &error);
5896 if (error) {
5897 error_propagate(errp, error);
5898 return;
5899 }
5900
5901 s->xen_version = value;
5902 if (value && xen_mode == XEN_DISABLED) {
5903 xen_mode = XEN_EMULATE;
5904 }
5905 }
5906
5907 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
5908 const char *name, void *opaque,
5909 Error **errp)
5910 {
5911 KVMState *s = KVM_STATE(obj);
5912 uint16_t value = s->xen_gnttab_max_frames;
5913
5914 visit_type_uint16(v, name, &value, errp);
5915 }
5916
5917 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
5918 const char *name, void *opaque,
5919 Error **errp)
5920 {
5921 KVMState *s = KVM_STATE(obj);
5922 Error *error = NULL;
5923 uint16_t value;
5924
5925 visit_type_uint16(v, name, &value, &error);
5926 if (error) {
5927 error_propagate(errp, error);
5928 return;
5929 }
5930
5931 s->xen_gnttab_max_frames = value;
5932 }
5933
5934 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5935 const char *name, void *opaque,
5936 Error **errp)
5937 {
5938 KVMState *s = KVM_STATE(obj);
5939 uint16_t value = s->xen_evtchn_max_pirq;
5940
5941 visit_type_uint16(v, name, &value, errp);
5942 }
5943
5944 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5945 const char *name, void *opaque,
5946 Error **errp)
5947 {
5948 KVMState *s = KVM_STATE(obj);
5949 Error *error = NULL;
5950 uint16_t value;
5951
5952 visit_type_uint16(v, name, &value, &error);
5953 if (error) {
5954 error_propagate(errp, error);
5955 return;
5956 }
5957
5958 s->xen_evtchn_max_pirq = value;
5959 }
5960
5961 void kvm_arch_accel_class_init(ObjectClass *oc)
5962 {
5963 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5964 &NotifyVmexitOption_lookup,
5965 kvm_arch_get_notify_vmexit,
5966 kvm_arch_set_notify_vmexit);
5967 object_class_property_set_description(oc, "notify-vmexit",
5968 "Enable notify VM exit");
5969
5970 object_class_property_add(oc, "notify-window", "uint32",
5971 kvm_arch_get_notify_window,
5972 kvm_arch_set_notify_window,
5973 NULL, NULL);
5974 object_class_property_set_description(oc, "notify-window",
5975 "Clock cycles without an event window "
5976 "after which a notification VM exit occurs");
5977
5978 object_class_property_add(oc, "xen-version", "uint32",
5979 kvm_arch_get_xen_version,
5980 kvm_arch_set_xen_version,
5981 NULL, NULL);
5982 object_class_property_set_description(oc, "xen-version",
5983 "Xen version to be emulated "
5984 "(in XENVER_version form "
5985 "e.g. 0x4000a for 4.10)");
5986
5987 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
5988 kvm_arch_get_xen_gnttab_max_frames,
5989 kvm_arch_set_xen_gnttab_max_frames,
5990 NULL, NULL);
5991 object_class_property_set_description(oc, "xen-gnttab-max-frames",
5992 "Maximum number of grant table frames");
5993
5994 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
5995 kvm_arch_get_xen_evtchn_max_pirq,
5996 kvm_arch_set_xen_evtchn_max_pirq,
5997 NULL, NULL);
5998 object_class_property_set_description(oc, "xen-evtchn-max-pirq",
5999 "Maximum number of Xen PIRQs");
6000 }
6001
6002 void kvm_set_max_apic_id(uint32_t max_apic_id)
6003 {
6004 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
6005 }