]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/kvm.c
migration: savevm: consult migration blockers
[mirror_qemu.git] / target / i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
22
23 #include "qemu-common.h"
24 #include "cpu.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
28 #include "kvm_i386.h"
29 #include "hyperv.h"
30 #include "hyperv-proto.h"
31
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #include "qemu/config-file.h"
35 #include "qemu/error-report.h"
36 #include "hw/i386/pc.h"
37 #include "hw/i386/apic.h"
38 #include "hw/i386/apic_internal.h"
39 #include "hw/i386/apic-msidef.h"
40 #include "hw/i386/intel_iommu.h"
41 #include "hw/i386/x86-iommu.h"
42
43 #include "hw/pci/pci.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci/msix.h"
46 #include "migration/blocker.h"
47 #include "exec/memattrs.h"
48 #include "trace.h"
49
50 //#define DEBUG_KVM
51
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
59
60 #define MSR_KVM_WALL_CLOCK 0x11
61 #define MSR_KVM_SYSTEM_TIME 0x12
62
63 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
64 * 255 kvm_msr_entry structs */
65 #define MSR_BUF_SIZE 4096
66
67 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
68 KVM_CAP_INFO(SET_TSS_ADDR),
69 KVM_CAP_INFO(EXT_CPUID),
70 KVM_CAP_INFO(MP_STATE),
71 KVM_CAP_LAST_INFO
72 };
73
74 static bool has_msr_star;
75 static bool has_msr_hsave_pa;
76 static bool has_msr_tsc_aux;
77 static bool has_msr_tsc_adjust;
78 static bool has_msr_tsc_deadline;
79 static bool has_msr_feature_control;
80 static bool has_msr_misc_enable;
81 static bool has_msr_smbase;
82 static bool has_msr_bndcfgs;
83 static int lm_capable_kernel;
84 static bool has_msr_hv_hypercall;
85 static bool has_msr_hv_crash;
86 static bool has_msr_hv_reset;
87 static bool has_msr_hv_vpindex;
88 static bool hv_vpindex_settable;
89 static bool has_msr_hv_runtime;
90 static bool has_msr_hv_synic;
91 static bool has_msr_hv_stimer;
92 static bool has_msr_hv_frequencies;
93 static bool has_msr_hv_reenlightenment;
94 static bool has_msr_xss;
95 static bool has_msr_spec_ctrl;
96 static bool has_msr_virt_ssbd;
97 static bool has_msr_smi_count;
98 static bool has_msr_arch_capabs;
99
100 static uint32_t has_architectural_pmu_version;
101 static uint32_t num_architectural_pmu_gp_counters;
102 static uint32_t num_architectural_pmu_fixed_counters;
103
104 static int has_xsave;
105 static int has_xcrs;
106 static int has_pit_state2;
107
108 static bool has_msr_mcg_ext_ctl;
109
110 static struct kvm_cpuid2 *cpuid_cache;
111 static struct kvm_msr_list *kvm_feature_msrs;
112
113 int kvm_has_pit_state2(void)
114 {
115 return has_pit_state2;
116 }
117
118 bool kvm_has_smm(void)
119 {
120 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
121 }
122
123 bool kvm_has_adjust_clock_stable(void)
124 {
125 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
126
127 return (ret == KVM_CLOCK_TSC_STABLE);
128 }
129
130 bool kvm_allows_irq0_override(void)
131 {
132 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
133 }
134
135 static bool kvm_x2apic_api_set_flags(uint64_t flags)
136 {
137 KVMState *s = KVM_STATE(current_machine->accelerator);
138
139 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
140 }
141
142 #define MEMORIZE(fn, _result) \
143 ({ \
144 static bool _memorized; \
145 \
146 if (_memorized) { \
147 return _result; \
148 } \
149 _memorized = true; \
150 _result = fn; \
151 })
152
153 static bool has_x2apic_api;
154
155 bool kvm_has_x2apic_api(void)
156 {
157 return has_x2apic_api;
158 }
159
160 bool kvm_enable_x2apic(void)
161 {
162 return MEMORIZE(
163 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
164 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
165 has_x2apic_api);
166 }
167
168 bool kvm_hv_vpindex_settable(void)
169 {
170 return hv_vpindex_settable;
171 }
172
173 static int kvm_get_tsc(CPUState *cs)
174 {
175 X86CPU *cpu = X86_CPU(cs);
176 CPUX86State *env = &cpu->env;
177 struct {
178 struct kvm_msrs info;
179 struct kvm_msr_entry entries[1];
180 } msr_data;
181 int ret;
182
183 if (env->tsc_valid) {
184 return 0;
185 }
186
187 msr_data.info.nmsrs = 1;
188 msr_data.entries[0].index = MSR_IA32_TSC;
189 env->tsc_valid = !runstate_is_running();
190
191 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
192 if (ret < 0) {
193 return ret;
194 }
195
196 assert(ret == 1);
197 env->tsc = msr_data.entries[0].data;
198 return 0;
199 }
200
201 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
202 {
203 kvm_get_tsc(cpu);
204 }
205
206 void kvm_synchronize_all_tsc(void)
207 {
208 CPUState *cpu;
209
210 if (kvm_enabled()) {
211 CPU_FOREACH(cpu) {
212 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
213 }
214 }
215 }
216
217 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
218 {
219 struct kvm_cpuid2 *cpuid;
220 int r, size;
221
222 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
223 cpuid = g_malloc0(size);
224 cpuid->nent = max;
225 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
226 if (r == 0 && cpuid->nent >= max) {
227 r = -E2BIG;
228 }
229 if (r < 0) {
230 if (r == -E2BIG) {
231 g_free(cpuid);
232 return NULL;
233 } else {
234 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
235 strerror(-r));
236 exit(1);
237 }
238 }
239 return cpuid;
240 }
241
242 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
243 * for all entries.
244 */
245 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
246 {
247 struct kvm_cpuid2 *cpuid;
248 int max = 1;
249
250 if (cpuid_cache != NULL) {
251 return cpuid_cache;
252 }
253 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
254 max *= 2;
255 }
256 cpuid_cache = cpuid;
257 return cpuid;
258 }
259
260 static const struct kvm_para_features {
261 int cap;
262 int feature;
263 } para_features[] = {
264 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
265 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
266 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
267 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
268 };
269
270 static int get_para_features(KVMState *s)
271 {
272 int i, features = 0;
273
274 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
275 if (kvm_check_extension(s, para_features[i].cap)) {
276 features |= (1 << para_features[i].feature);
277 }
278 }
279
280 return features;
281 }
282
283 static bool host_tsx_blacklisted(void)
284 {
285 int family, model, stepping;\
286 char vendor[CPUID_VENDOR_SZ + 1];
287
288 host_vendor_fms(vendor, &family, &model, &stepping);
289
290 /* Check if we are running on a Haswell host known to have broken TSX */
291 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
292 (family == 6) &&
293 ((model == 63 && stepping < 4) ||
294 model == 60 || model == 69 || model == 70);
295 }
296
297 /* Returns the value for a specific register on the cpuid entry
298 */
299 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
300 {
301 uint32_t ret = 0;
302 switch (reg) {
303 case R_EAX:
304 ret = entry->eax;
305 break;
306 case R_EBX:
307 ret = entry->ebx;
308 break;
309 case R_ECX:
310 ret = entry->ecx;
311 break;
312 case R_EDX:
313 ret = entry->edx;
314 break;
315 }
316 return ret;
317 }
318
319 /* Find matching entry for function/index on kvm_cpuid2 struct
320 */
321 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
322 uint32_t function,
323 uint32_t index)
324 {
325 int i;
326 for (i = 0; i < cpuid->nent; ++i) {
327 if (cpuid->entries[i].function == function &&
328 cpuid->entries[i].index == index) {
329 return &cpuid->entries[i];
330 }
331 }
332 /* not found: */
333 return NULL;
334 }
335
336 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
337 uint32_t index, int reg)
338 {
339 struct kvm_cpuid2 *cpuid;
340 uint32_t ret = 0;
341 uint32_t cpuid_1_edx;
342 bool found = false;
343
344 cpuid = get_supported_cpuid(s);
345
346 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
347 if (entry) {
348 found = true;
349 ret = cpuid_entry_get_reg(entry, reg);
350 }
351
352 /* Fixups for the data returned by KVM, below */
353
354 if (function == 1 && reg == R_EDX) {
355 /* KVM before 2.6.30 misreports the following features */
356 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
357 } else if (function == 1 && reg == R_ECX) {
358 /* We can set the hypervisor flag, even if KVM does not return it on
359 * GET_SUPPORTED_CPUID
360 */
361 ret |= CPUID_EXT_HYPERVISOR;
362 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
363 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
364 * and the irqchip is in the kernel.
365 */
366 if (kvm_irqchip_in_kernel() &&
367 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
368 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
369 }
370
371 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
372 * without the in-kernel irqchip
373 */
374 if (!kvm_irqchip_in_kernel()) {
375 ret &= ~CPUID_EXT_X2APIC;
376 }
377
378 if (enable_cpu_pm) {
379 int disable_exits = kvm_check_extension(s,
380 KVM_CAP_X86_DISABLE_EXITS);
381
382 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
383 ret |= CPUID_EXT_MONITOR;
384 }
385 }
386 } else if (function == 6 && reg == R_EAX) {
387 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
388 } else if (function == 7 && index == 0 && reg == R_EBX) {
389 if (host_tsx_blacklisted()) {
390 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
391 }
392 } else if (function == 0x80000001 && reg == R_ECX) {
393 /*
394 * It's safe to enable TOPOEXT even if it's not returned by
395 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
396 * us to keep CPU models including TOPOEXT runnable on older kernels.
397 */
398 ret |= CPUID_EXT3_TOPOEXT;
399 } else if (function == 0x80000001 && reg == R_EDX) {
400 /* On Intel, kvm returns cpuid according to the Intel spec,
401 * so add missing bits according to the AMD spec:
402 */
403 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
404 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
405 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
406 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
407 * be enabled without the in-kernel irqchip
408 */
409 if (!kvm_irqchip_in_kernel()) {
410 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
411 }
412 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
413 ret |= 1U << KVM_HINTS_REALTIME;
414 found = 1;
415 }
416
417 /* fallback for older kernels */
418 if ((function == KVM_CPUID_FEATURES) && !found) {
419 ret = get_para_features(s);
420 }
421
422 return ret;
423 }
424
425 uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
426 {
427 struct {
428 struct kvm_msrs info;
429 struct kvm_msr_entry entries[1];
430 } msr_data;
431 uint32_t ret;
432
433 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
434 return 0;
435 }
436
437 /* Check if requested MSR is supported feature MSR */
438 int i;
439 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
440 if (kvm_feature_msrs->indices[i] == index) {
441 break;
442 }
443 if (i == kvm_feature_msrs->nmsrs) {
444 return 0; /* if the feature MSR is not supported, simply return 0 */
445 }
446
447 msr_data.info.nmsrs = 1;
448 msr_data.entries[0].index = index;
449
450 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
451 if (ret != 1) {
452 error_report("KVM get MSR (index=0x%x) feature failed, %s",
453 index, strerror(-ret));
454 exit(1);
455 }
456
457 return msr_data.entries[0].data;
458 }
459
460
461 typedef struct HWPoisonPage {
462 ram_addr_t ram_addr;
463 QLIST_ENTRY(HWPoisonPage) list;
464 } HWPoisonPage;
465
466 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
467 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
468
469 static void kvm_unpoison_all(void *param)
470 {
471 HWPoisonPage *page, *next_page;
472
473 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
474 QLIST_REMOVE(page, list);
475 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
476 g_free(page);
477 }
478 }
479
480 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
481 {
482 HWPoisonPage *page;
483
484 QLIST_FOREACH(page, &hwpoison_page_list, list) {
485 if (page->ram_addr == ram_addr) {
486 return;
487 }
488 }
489 page = g_new(HWPoisonPage, 1);
490 page->ram_addr = ram_addr;
491 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
492 }
493
494 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
495 int *max_banks)
496 {
497 int r;
498
499 r = kvm_check_extension(s, KVM_CAP_MCE);
500 if (r > 0) {
501 *max_banks = r;
502 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
503 }
504 return -ENOSYS;
505 }
506
507 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
508 {
509 CPUState *cs = CPU(cpu);
510 CPUX86State *env = &cpu->env;
511 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
512 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
513 uint64_t mcg_status = MCG_STATUS_MCIP;
514 int flags = 0;
515
516 if (code == BUS_MCEERR_AR) {
517 status |= MCI_STATUS_AR | 0x134;
518 mcg_status |= MCG_STATUS_EIPV;
519 } else {
520 status |= 0xc0;
521 mcg_status |= MCG_STATUS_RIPV;
522 }
523
524 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
525 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
526 * guest kernel back into env->mcg_ext_ctl.
527 */
528 cpu_synchronize_state(cs);
529 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
530 mcg_status |= MCG_STATUS_LMCE;
531 flags = 0;
532 }
533
534 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
535 (MCM_ADDR_PHYS << 6) | 0xc, flags);
536 }
537
538 static void hardware_memory_error(void)
539 {
540 fprintf(stderr, "Hardware memory error!\n");
541 exit(1);
542 }
543
544 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
545 {
546 X86CPU *cpu = X86_CPU(c);
547 CPUX86State *env = &cpu->env;
548 ram_addr_t ram_addr;
549 hwaddr paddr;
550
551 /* If we get an action required MCE, it has been injected by KVM
552 * while the VM was running. An action optional MCE instead should
553 * be coming from the main thread, which qemu_init_sigbus identifies
554 * as the "early kill" thread.
555 */
556 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
557
558 if ((env->mcg_cap & MCG_SER_P) && addr) {
559 ram_addr = qemu_ram_addr_from_host(addr);
560 if (ram_addr != RAM_ADDR_INVALID &&
561 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
562 kvm_hwpoison_page_add(ram_addr);
563 kvm_mce_inject(cpu, paddr, code);
564 return;
565 }
566
567 fprintf(stderr, "Hardware memory error for memory used by "
568 "QEMU itself instead of guest system!\n");
569 }
570
571 if (code == BUS_MCEERR_AR) {
572 hardware_memory_error();
573 }
574
575 /* Hope we are lucky for AO MCE */
576 }
577
578 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
579 {
580 CPUX86State *env = &cpu->env;
581
582 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
583 unsigned int bank, bank_num = env->mcg_cap & 0xff;
584 struct kvm_x86_mce mce;
585
586 env->exception_injected = -1;
587
588 /*
589 * There must be at least one bank in use if an MCE is pending.
590 * Find it and use its values for the event injection.
591 */
592 for (bank = 0; bank < bank_num; bank++) {
593 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
594 break;
595 }
596 }
597 assert(bank < bank_num);
598
599 mce.bank = bank;
600 mce.status = env->mce_banks[bank * 4 + 1];
601 mce.mcg_status = env->mcg_status;
602 mce.addr = env->mce_banks[bank * 4 + 2];
603 mce.misc = env->mce_banks[bank * 4 + 3];
604
605 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
606 }
607 return 0;
608 }
609
610 static void cpu_update_state(void *opaque, int running, RunState state)
611 {
612 CPUX86State *env = opaque;
613
614 if (running) {
615 env->tsc_valid = false;
616 }
617 }
618
619 unsigned long kvm_arch_vcpu_id(CPUState *cs)
620 {
621 X86CPU *cpu = X86_CPU(cs);
622 return cpu->apic_id;
623 }
624
625 #ifndef KVM_CPUID_SIGNATURE_NEXT
626 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
627 #endif
628
629 static bool hyperv_hypercall_available(X86CPU *cpu)
630 {
631 return cpu->hyperv_vapic ||
632 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
633 }
634
635 static bool hyperv_enabled(X86CPU *cpu)
636 {
637 CPUState *cs = CPU(cpu);
638 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
639 (hyperv_hypercall_available(cpu) ||
640 cpu->hyperv_time ||
641 cpu->hyperv_relaxed_timing ||
642 cpu->hyperv_crash ||
643 cpu->hyperv_reset ||
644 cpu->hyperv_vpindex ||
645 cpu->hyperv_runtime ||
646 cpu->hyperv_synic ||
647 cpu->hyperv_stimer ||
648 cpu->hyperv_reenlightenment ||
649 cpu->hyperv_tlbflush ||
650 cpu->hyperv_ipi);
651 }
652
653 static int kvm_arch_set_tsc_khz(CPUState *cs)
654 {
655 X86CPU *cpu = X86_CPU(cs);
656 CPUX86State *env = &cpu->env;
657 int r;
658
659 if (!env->tsc_khz) {
660 return 0;
661 }
662
663 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
664 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
665 -ENOTSUP;
666 if (r < 0) {
667 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
668 * TSC frequency doesn't match the one we want.
669 */
670 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
671 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
672 -ENOTSUP;
673 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
674 warn_report("TSC frequency mismatch between "
675 "VM (%" PRId64 " kHz) and host (%d kHz), "
676 "and TSC scaling unavailable",
677 env->tsc_khz, cur_freq);
678 return r;
679 }
680 }
681
682 return 0;
683 }
684
685 static bool tsc_is_stable_and_known(CPUX86State *env)
686 {
687 if (!env->tsc_khz) {
688 return false;
689 }
690 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
691 || env->user_tsc_khz;
692 }
693
694 static int hyperv_handle_properties(CPUState *cs)
695 {
696 X86CPU *cpu = X86_CPU(cs);
697 CPUX86State *env = &cpu->env;
698
699 if (cpu->hyperv_relaxed_timing) {
700 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
701 }
702 if (cpu->hyperv_vapic) {
703 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
704 env->features[FEAT_HYPERV_EAX] |= HV_APIC_ACCESS_AVAILABLE;
705 }
706 if (cpu->hyperv_time) {
707 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) {
708 fprintf(stderr, "Hyper-V clocksources "
709 "(requested by 'hv-time' cpu flag) "
710 "are not supported by kernel\n");
711 return -ENOSYS;
712 }
713 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
714 env->features[FEAT_HYPERV_EAX] |= HV_TIME_REF_COUNT_AVAILABLE;
715 env->features[FEAT_HYPERV_EAX] |= HV_REFERENCE_TSC_AVAILABLE;
716 }
717 if (cpu->hyperv_frequencies) {
718 if (!has_msr_hv_frequencies) {
719 fprintf(stderr, "Hyper-V frequency MSRs "
720 "(requested by 'hv-frequencies' cpu flag) "
721 "are not supported by kernel\n");
722 return -ENOSYS;
723 }
724 env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_FREQUENCY_MSRS;
725 env->features[FEAT_HYPERV_EDX] |= HV_FREQUENCY_MSRS_AVAILABLE;
726 }
727 if (cpu->hyperv_crash) {
728 if (!has_msr_hv_crash) {
729 fprintf(stderr, "Hyper-V crash MSRs "
730 "(requested by 'hv-crash' cpu flag) "
731 "are not supported by kernel\n");
732 return -ENOSYS;
733 }
734 env->features[FEAT_HYPERV_EDX] |= HV_GUEST_CRASH_MSR_AVAILABLE;
735 }
736 if (cpu->hyperv_reenlightenment) {
737 if (!has_msr_hv_reenlightenment) {
738 fprintf(stderr,
739 "Hyper-V Reenlightenment MSRs "
740 "(requested by 'hv-reenlightenment' cpu flag) "
741 "are not supported by kernel\n");
742 return -ENOSYS;
743 }
744 env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
745 }
746 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
747 if (cpu->hyperv_reset) {
748 if (!has_msr_hv_reset) {
749 fprintf(stderr, "Hyper-V reset MSR "
750 "(requested by 'hv-reset' cpu flag) "
751 "is not supported by kernel\n");
752 return -ENOSYS;
753 }
754 env->features[FEAT_HYPERV_EAX] |= HV_RESET_AVAILABLE;
755 }
756 if (cpu->hyperv_vpindex) {
757 if (!has_msr_hv_vpindex) {
758 fprintf(stderr, "Hyper-V VP_INDEX MSR "
759 "(requested by 'hv-vpindex' cpu flag) "
760 "is not supported by kernel\n");
761 return -ENOSYS;
762 }
763 env->features[FEAT_HYPERV_EAX] |= HV_VP_INDEX_AVAILABLE;
764 }
765 if (cpu->hyperv_runtime) {
766 if (!has_msr_hv_runtime) {
767 fprintf(stderr, "Hyper-V VP_RUNTIME MSR "
768 "(requested by 'hv-runtime' cpu flag) "
769 "is not supported by kernel\n");
770 return -ENOSYS;
771 }
772 env->features[FEAT_HYPERV_EAX] |= HV_VP_RUNTIME_AVAILABLE;
773 }
774 if (cpu->hyperv_synic) {
775 unsigned int cap = KVM_CAP_HYPERV_SYNIC;
776 if (!cpu->hyperv_synic_kvm_only) {
777 if (!cpu->hyperv_vpindex) {
778 fprintf(stderr, "Hyper-V SynIC "
779 "(requested by 'hv-synic' cpu flag) "
780 "requires Hyper-V VP_INDEX ('hv-vpindex')\n");
781 return -ENOSYS;
782 }
783 cap = KVM_CAP_HYPERV_SYNIC2;
784 }
785
786 if (!has_msr_hv_synic || !kvm_check_extension(cs->kvm_state, cap)) {
787 fprintf(stderr, "Hyper-V SynIC (requested by 'hv-synic' cpu flag) "
788 "is not supported by kernel\n");
789 return -ENOSYS;
790 }
791
792 env->features[FEAT_HYPERV_EAX] |= HV_SYNIC_AVAILABLE;
793 }
794 if (cpu->hyperv_stimer) {
795 if (!has_msr_hv_stimer) {
796 fprintf(stderr, "Hyper-V timers aren't supported by kernel\n");
797 return -ENOSYS;
798 }
799 env->features[FEAT_HYPERV_EAX] |= HV_SYNTIMERS_AVAILABLE;
800 }
801 return 0;
802 }
803
804 static int hyperv_init_vcpu(X86CPU *cpu)
805 {
806 CPUState *cs = CPU(cpu);
807 int ret;
808
809 if (cpu->hyperv_vpindex && !hv_vpindex_settable) {
810 /*
811 * the kernel doesn't support setting vp_index; assert that its value
812 * is in sync
813 */
814 struct {
815 struct kvm_msrs info;
816 struct kvm_msr_entry entries[1];
817 } msr_data = {
818 .info.nmsrs = 1,
819 .entries[0].index = HV_X64_MSR_VP_INDEX,
820 };
821
822 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
823 if (ret < 0) {
824 return ret;
825 }
826 assert(ret == 1);
827
828 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
829 error_report("kernel's vp_index != QEMU's vp_index");
830 return -ENXIO;
831 }
832 }
833
834 if (cpu->hyperv_synic) {
835 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
836 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
837 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
838 if (ret < 0) {
839 error_report("failed to turn on HyperV SynIC in KVM: %s",
840 strerror(-ret));
841 return ret;
842 }
843
844 if (!cpu->hyperv_synic_kvm_only) {
845 ret = hyperv_x86_synic_add(cpu);
846 if (ret < 0) {
847 error_report("failed to create HyperV SynIC: %s",
848 strerror(-ret));
849 return ret;
850 }
851 }
852 }
853
854 return 0;
855 }
856
857 static Error *invtsc_mig_blocker;
858 static Error *vmx_mig_blocker;
859
860 #define KVM_MAX_CPUID_ENTRIES 100
861
862 int kvm_arch_init_vcpu(CPUState *cs)
863 {
864 struct {
865 struct kvm_cpuid2 cpuid;
866 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
867 } QEMU_PACKED cpuid_data;
868 X86CPU *cpu = X86_CPU(cs);
869 CPUX86State *env = &cpu->env;
870 uint32_t limit, i, j, cpuid_i;
871 uint32_t unused;
872 struct kvm_cpuid_entry2 *c;
873 uint32_t signature[3];
874 uint16_t evmcs_version;
875 int kvm_base = KVM_CPUID_SIGNATURE;
876 int r;
877 Error *local_err = NULL;
878
879 memset(&cpuid_data, 0, sizeof(cpuid_data));
880
881 cpuid_i = 0;
882
883 r = kvm_arch_set_tsc_khz(cs);
884 if (r < 0) {
885 goto fail;
886 }
887
888 /* vcpu's TSC frequency is either specified by user, or following
889 * the value used by KVM if the former is not present. In the
890 * latter case, we query it from KVM and record in env->tsc_khz,
891 * so that vcpu's TSC frequency can be migrated later via this field.
892 */
893 if (!env->tsc_khz) {
894 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
895 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
896 -ENOTSUP;
897 if (r > 0) {
898 env->tsc_khz = r;
899 }
900 }
901
902 /* Paravirtualization CPUIDs */
903 if (hyperv_enabled(cpu)) {
904 c = &cpuid_data.entries[cpuid_i++];
905 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
906 if (!cpu->hyperv_vendor_id) {
907 memcpy(signature, "Microsoft Hv", 12);
908 } else {
909 size_t len = strlen(cpu->hyperv_vendor_id);
910
911 if (len > 12) {
912 error_report("hv-vendor-id truncated to 12 characters");
913 len = 12;
914 }
915 memset(signature, 0, 12);
916 memcpy(signature, cpu->hyperv_vendor_id, len);
917 }
918 c->eax = cpu->hyperv_evmcs ?
919 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
920 c->ebx = signature[0];
921 c->ecx = signature[1];
922 c->edx = signature[2];
923
924 c = &cpuid_data.entries[cpuid_i++];
925 c->function = HV_CPUID_INTERFACE;
926 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
927 c->eax = signature[0];
928 c->ebx = 0;
929 c->ecx = 0;
930 c->edx = 0;
931
932 c = &cpuid_data.entries[cpuid_i++];
933 c->function = HV_CPUID_VERSION;
934 c->eax = 0x00001bbc;
935 c->ebx = 0x00060001;
936
937 c = &cpuid_data.entries[cpuid_i++];
938 c->function = HV_CPUID_FEATURES;
939 r = hyperv_handle_properties(cs);
940 if (r) {
941 return r;
942 }
943 c->eax = env->features[FEAT_HYPERV_EAX];
944 c->ebx = env->features[FEAT_HYPERV_EBX];
945 c->edx = env->features[FEAT_HYPERV_EDX];
946
947 c = &cpuid_data.entries[cpuid_i++];
948 c->function = HV_CPUID_ENLIGHTMENT_INFO;
949 if (cpu->hyperv_relaxed_timing) {
950 c->eax |= HV_RELAXED_TIMING_RECOMMENDED;
951 }
952 if (cpu->hyperv_vapic) {
953 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
954 }
955 if (cpu->hyperv_tlbflush) {
956 if (kvm_check_extension(cs->kvm_state,
957 KVM_CAP_HYPERV_TLBFLUSH) <= 0) {
958 fprintf(stderr, "Hyper-V TLB flush support "
959 "(requested by 'hv-tlbflush' cpu flag) "
960 " is not supported by kernel\n");
961 return -ENOSYS;
962 }
963 c->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
964 c->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
965 }
966 if (cpu->hyperv_ipi) {
967 if (kvm_check_extension(cs->kvm_state,
968 KVM_CAP_HYPERV_SEND_IPI) <= 0) {
969 fprintf(stderr, "Hyper-V IPI send support "
970 "(requested by 'hv-ipi' cpu flag) "
971 " is not supported by kernel\n");
972 return -ENOSYS;
973 }
974 c->eax |= HV_CLUSTER_IPI_RECOMMENDED;
975 c->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
976 }
977 if (cpu->hyperv_evmcs) {
978 if (kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
979 (uintptr_t)&evmcs_version)) {
980 fprintf(stderr, "Hyper-V Enlightened VMCS "
981 "(requested by 'hv-evmcs' cpu flag) "
982 "is not supported by kernel\n");
983 return -ENOSYS;
984 }
985 c->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
986 }
987 c->ebx = cpu->hyperv_spinlock_attempts;
988
989 c = &cpuid_data.entries[cpuid_i++];
990 c->function = HV_CPUID_IMPLEMENT_LIMITS;
991
992 c->eax = cpu->hv_max_vps;
993 c->ebx = 0x40;
994
995 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
996 has_msr_hv_hypercall = true;
997
998 if (cpu->hyperv_evmcs) {
999 __u32 function;
1000
1001 /* Create zeroed 0x40000006..0x40000009 leaves */
1002 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1003 function < HV_CPUID_NESTED_FEATURES; function++) {
1004 c = &cpuid_data.entries[cpuid_i++];
1005 c->function = function;
1006 }
1007
1008 c = &cpuid_data.entries[cpuid_i++];
1009 c->function = HV_CPUID_NESTED_FEATURES;
1010 c->eax = evmcs_version;
1011 }
1012 }
1013
1014 if (cpu->expose_kvm) {
1015 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1016 c = &cpuid_data.entries[cpuid_i++];
1017 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1018 c->eax = KVM_CPUID_FEATURES | kvm_base;
1019 c->ebx = signature[0];
1020 c->ecx = signature[1];
1021 c->edx = signature[2];
1022
1023 c = &cpuid_data.entries[cpuid_i++];
1024 c->function = KVM_CPUID_FEATURES | kvm_base;
1025 c->eax = env->features[FEAT_KVM];
1026 c->edx = env->features[FEAT_KVM_HINTS];
1027 }
1028
1029 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1030
1031 for (i = 0; i <= limit; i++) {
1032 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1033 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1034 abort();
1035 }
1036 c = &cpuid_data.entries[cpuid_i++];
1037
1038 switch (i) {
1039 case 2: {
1040 /* Keep reading function 2 till all the input is received */
1041 int times;
1042
1043 c->function = i;
1044 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1045 KVM_CPUID_FLAG_STATE_READ_NEXT;
1046 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1047 times = c->eax & 0xff;
1048
1049 for (j = 1; j < times; ++j) {
1050 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1051 fprintf(stderr, "cpuid_data is full, no space for "
1052 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1053 abort();
1054 }
1055 c = &cpuid_data.entries[cpuid_i++];
1056 c->function = i;
1057 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1058 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1059 }
1060 break;
1061 }
1062 case 4:
1063 case 0xb:
1064 case 0xd:
1065 for (j = 0; ; j++) {
1066 if (i == 0xd && j == 64) {
1067 break;
1068 }
1069 c->function = i;
1070 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1071 c->index = j;
1072 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1073
1074 if (i == 4 && c->eax == 0) {
1075 break;
1076 }
1077 if (i == 0xb && !(c->ecx & 0xff00)) {
1078 break;
1079 }
1080 if (i == 0xd && c->eax == 0) {
1081 continue;
1082 }
1083 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1084 fprintf(stderr, "cpuid_data is full, no space for "
1085 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1086 abort();
1087 }
1088 c = &cpuid_data.entries[cpuid_i++];
1089 }
1090 break;
1091 case 0x14: {
1092 uint32_t times;
1093
1094 c->function = i;
1095 c->index = 0;
1096 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1097 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1098 times = c->eax;
1099
1100 for (j = 1; j <= times; ++j) {
1101 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1102 fprintf(stderr, "cpuid_data is full, no space for "
1103 "cpuid(eax:0x14,ecx:0x%x)\n", j);
1104 abort();
1105 }
1106 c = &cpuid_data.entries[cpuid_i++];
1107 c->function = i;
1108 c->index = j;
1109 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1110 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1111 }
1112 break;
1113 }
1114 default:
1115 c->function = i;
1116 c->flags = 0;
1117 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1118 break;
1119 }
1120 }
1121
1122 if (limit >= 0x0a) {
1123 uint32_t eax, edx;
1124
1125 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1126
1127 has_architectural_pmu_version = eax & 0xff;
1128 if (has_architectural_pmu_version > 0) {
1129 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1130
1131 /* Shouldn't be more than 32, since that's the number of bits
1132 * available in EBX to tell us _which_ counters are available.
1133 * Play it safe.
1134 */
1135 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1136 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1137 }
1138
1139 if (has_architectural_pmu_version > 1) {
1140 num_architectural_pmu_fixed_counters = edx & 0x1f;
1141
1142 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1143 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1144 }
1145 }
1146 }
1147 }
1148
1149 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1150
1151 for (i = 0x80000000; i <= limit; i++) {
1152 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1153 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1154 abort();
1155 }
1156 c = &cpuid_data.entries[cpuid_i++];
1157
1158 switch (i) {
1159 case 0x8000001d:
1160 /* Query for all AMD cache information leaves */
1161 for (j = 0; ; j++) {
1162 c->function = i;
1163 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1164 c->index = j;
1165 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1166
1167 if (c->eax == 0) {
1168 break;
1169 }
1170 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1171 fprintf(stderr, "cpuid_data is full, no space for "
1172 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1173 abort();
1174 }
1175 c = &cpuid_data.entries[cpuid_i++];
1176 }
1177 break;
1178 default:
1179 c->function = i;
1180 c->flags = 0;
1181 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1182 break;
1183 }
1184 }
1185
1186 /* Call Centaur's CPUID instructions they are supported. */
1187 if (env->cpuid_xlevel2 > 0) {
1188 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1189
1190 for (i = 0xC0000000; i <= limit; i++) {
1191 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1192 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1193 abort();
1194 }
1195 c = &cpuid_data.entries[cpuid_i++];
1196
1197 c->function = i;
1198 c->flags = 0;
1199 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1200 }
1201 }
1202
1203 cpuid_data.cpuid.nent = cpuid_i;
1204
1205 if (((env->cpuid_version >> 8)&0xF) >= 6
1206 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1207 (CPUID_MCE | CPUID_MCA)
1208 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1209 uint64_t mcg_cap, unsupported_caps;
1210 int banks;
1211 int ret;
1212
1213 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1214 if (ret < 0) {
1215 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1216 return ret;
1217 }
1218
1219 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1220 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1221 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1222 return -ENOTSUP;
1223 }
1224
1225 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1226 if (unsupported_caps) {
1227 if (unsupported_caps & MCG_LMCE_P) {
1228 error_report("kvm: LMCE not supported");
1229 return -ENOTSUP;
1230 }
1231 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1232 unsupported_caps);
1233 }
1234
1235 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1236 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1237 if (ret < 0) {
1238 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1239 return ret;
1240 }
1241 }
1242
1243 qemu_add_vm_change_state_handler(cpu_update_state, env);
1244
1245 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1246 if (c) {
1247 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1248 !!(c->ecx & CPUID_EXT_SMX);
1249 }
1250
1251 if ((env->features[FEAT_1_ECX] & CPUID_EXT_VMX) && !vmx_mig_blocker) {
1252 error_setg(&vmx_mig_blocker,
1253 "Nested VMX virtualization does not support live migration yet");
1254 r = migrate_add_blocker(vmx_mig_blocker, &local_err);
1255 if (local_err) {
1256 error_report_err(local_err);
1257 error_free(vmx_mig_blocker);
1258 return r;
1259 }
1260 }
1261
1262 if (env->mcg_cap & MCG_LMCE_P) {
1263 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1264 }
1265
1266 if (!env->user_tsc_khz) {
1267 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1268 invtsc_mig_blocker == NULL) {
1269 error_setg(&invtsc_mig_blocker,
1270 "State blocked by non-migratable CPU device"
1271 " (invtsc flag)");
1272 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1273 if (local_err) {
1274 error_report_err(local_err);
1275 error_free(invtsc_mig_blocker);
1276 return r;
1277 }
1278 }
1279 }
1280
1281 if (cpu->vmware_cpuid_freq
1282 /* Guests depend on 0x40000000 to detect this feature, so only expose
1283 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1284 && cpu->expose_kvm
1285 && kvm_base == KVM_CPUID_SIGNATURE
1286 /* TSC clock must be stable and known for this feature. */
1287 && tsc_is_stable_and_known(env)) {
1288
1289 c = &cpuid_data.entries[cpuid_i++];
1290 c->function = KVM_CPUID_SIGNATURE | 0x10;
1291 c->eax = env->tsc_khz;
1292 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1293 * APIC_BUS_CYCLE_NS */
1294 c->ebx = 1000000;
1295 c->ecx = c->edx = 0;
1296
1297 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1298 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1299 }
1300
1301 cpuid_data.cpuid.nent = cpuid_i;
1302
1303 cpuid_data.cpuid.padding = 0;
1304 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1305 if (r) {
1306 goto fail;
1307 }
1308
1309 if (has_xsave) {
1310 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1311 }
1312 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1313
1314 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1315 has_msr_tsc_aux = false;
1316 }
1317
1318 r = hyperv_init_vcpu(cpu);
1319 if (r) {
1320 goto fail;
1321 }
1322
1323 return 0;
1324
1325 fail:
1326 migrate_del_blocker(invtsc_mig_blocker);
1327 return r;
1328 }
1329
1330 void kvm_arch_reset_vcpu(X86CPU *cpu)
1331 {
1332 CPUX86State *env = &cpu->env;
1333
1334 env->xcr0 = 1;
1335 if (kvm_irqchip_in_kernel()) {
1336 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1337 KVM_MP_STATE_UNINITIALIZED;
1338 } else {
1339 env->mp_state = KVM_MP_STATE_RUNNABLE;
1340 }
1341
1342 if (cpu->hyperv_synic) {
1343 int i;
1344 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1345 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1346 }
1347
1348 hyperv_x86_synic_reset(cpu);
1349 }
1350 }
1351
1352 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1353 {
1354 CPUX86State *env = &cpu->env;
1355
1356 /* APs get directly into wait-for-SIPI state. */
1357 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1358 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1359 }
1360 }
1361
1362 static int kvm_get_supported_feature_msrs(KVMState *s)
1363 {
1364 int ret = 0;
1365
1366 if (kvm_feature_msrs != NULL) {
1367 return 0;
1368 }
1369
1370 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1371 return 0;
1372 }
1373
1374 struct kvm_msr_list msr_list;
1375
1376 msr_list.nmsrs = 0;
1377 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1378 if (ret < 0 && ret != -E2BIG) {
1379 error_report("Fetch KVM feature MSR list failed: %s",
1380 strerror(-ret));
1381 return ret;
1382 }
1383
1384 assert(msr_list.nmsrs > 0);
1385 kvm_feature_msrs = (struct kvm_msr_list *) \
1386 g_malloc0(sizeof(msr_list) +
1387 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1388
1389 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1390 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1391
1392 if (ret < 0) {
1393 error_report("Fetch KVM feature MSR list failed: %s",
1394 strerror(-ret));
1395 g_free(kvm_feature_msrs);
1396 kvm_feature_msrs = NULL;
1397 return ret;
1398 }
1399
1400 return 0;
1401 }
1402
1403 static int kvm_get_supported_msrs(KVMState *s)
1404 {
1405 static int kvm_supported_msrs;
1406 int ret = 0;
1407
1408 /* first time */
1409 if (kvm_supported_msrs == 0) {
1410 struct kvm_msr_list msr_list, *kvm_msr_list;
1411
1412 kvm_supported_msrs = -1;
1413
1414 /* Obtain MSR list from KVM. These are the MSRs that we must
1415 * save/restore */
1416 msr_list.nmsrs = 0;
1417 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1418 if (ret < 0 && ret != -E2BIG) {
1419 return ret;
1420 }
1421 /* Old kernel modules had a bug and could write beyond the provided
1422 memory. Allocate at least a safe amount of 1K. */
1423 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1424 msr_list.nmsrs *
1425 sizeof(msr_list.indices[0])));
1426
1427 kvm_msr_list->nmsrs = msr_list.nmsrs;
1428 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1429 if (ret >= 0) {
1430 int i;
1431
1432 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1433 switch (kvm_msr_list->indices[i]) {
1434 case MSR_STAR:
1435 has_msr_star = true;
1436 break;
1437 case MSR_VM_HSAVE_PA:
1438 has_msr_hsave_pa = true;
1439 break;
1440 case MSR_TSC_AUX:
1441 has_msr_tsc_aux = true;
1442 break;
1443 case MSR_TSC_ADJUST:
1444 has_msr_tsc_adjust = true;
1445 break;
1446 case MSR_IA32_TSCDEADLINE:
1447 has_msr_tsc_deadline = true;
1448 break;
1449 case MSR_IA32_SMBASE:
1450 has_msr_smbase = true;
1451 break;
1452 case MSR_SMI_COUNT:
1453 has_msr_smi_count = true;
1454 break;
1455 case MSR_IA32_MISC_ENABLE:
1456 has_msr_misc_enable = true;
1457 break;
1458 case MSR_IA32_BNDCFGS:
1459 has_msr_bndcfgs = true;
1460 break;
1461 case MSR_IA32_XSS:
1462 has_msr_xss = true;
1463 break;
1464 case HV_X64_MSR_CRASH_CTL:
1465 has_msr_hv_crash = true;
1466 break;
1467 case HV_X64_MSR_RESET:
1468 has_msr_hv_reset = true;
1469 break;
1470 case HV_X64_MSR_VP_INDEX:
1471 has_msr_hv_vpindex = true;
1472 break;
1473 case HV_X64_MSR_VP_RUNTIME:
1474 has_msr_hv_runtime = true;
1475 break;
1476 case HV_X64_MSR_SCONTROL:
1477 has_msr_hv_synic = true;
1478 break;
1479 case HV_X64_MSR_STIMER0_CONFIG:
1480 has_msr_hv_stimer = true;
1481 break;
1482 case HV_X64_MSR_TSC_FREQUENCY:
1483 has_msr_hv_frequencies = true;
1484 break;
1485 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1486 has_msr_hv_reenlightenment = true;
1487 break;
1488 case MSR_IA32_SPEC_CTRL:
1489 has_msr_spec_ctrl = true;
1490 break;
1491 case MSR_VIRT_SSBD:
1492 has_msr_virt_ssbd = true;
1493 break;
1494 case MSR_IA32_ARCH_CAPABILITIES:
1495 has_msr_arch_capabs = true;
1496 break;
1497 }
1498 }
1499 }
1500
1501 g_free(kvm_msr_list);
1502 }
1503
1504 return ret;
1505 }
1506
1507 static Notifier smram_machine_done;
1508 static KVMMemoryListener smram_listener;
1509 static AddressSpace smram_address_space;
1510 static MemoryRegion smram_as_root;
1511 static MemoryRegion smram_as_mem;
1512
1513 static void register_smram_listener(Notifier *n, void *unused)
1514 {
1515 MemoryRegion *smram =
1516 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1517
1518 /* Outer container... */
1519 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1520 memory_region_set_enabled(&smram_as_root, true);
1521
1522 /* ... with two regions inside: normal system memory with low
1523 * priority, and...
1524 */
1525 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1526 get_system_memory(), 0, ~0ull);
1527 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1528 memory_region_set_enabled(&smram_as_mem, true);
1529
1530 if (smram) {
1531 /* ... SMRAM with higher priority */
1532 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1533 memory_region_set_enabled(smram, true);
1534 }
1535
1536 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1537 kvm_memory_listener_register(kvm_state, &smram_listener,
1538 &smram_address_space, 1);
1539 }
1540
1541 int kvm_arch_init(MachineState *ms, KVMState *s)
1542 {
1543 uint64_t identity_base = 0xfffbc000;
1544 uint64_t shadow_mem;
1545 int ret;
1546 struct utsname utsname;
1547
1548 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1549 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1550 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1551
1552 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
1553
1554 ret = kvm_get_supported_msrs(s);
1555 if (ret < 0) {
1556 return ret;
1557 }
1558
1559 kvm_get_supported_feature_msrs(s);
1560
1561 uname(&utsname);
1562 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1563
1564 /*
1565 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1566 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1567 * Since these must be part of guest physical memory, we need to allocate
1568 * them, both by setting their start addresses in the kernel and by
1569 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1570 *
1571 * Older KVM versions may not support setting the identity map base. In
1572 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1573 * size.
1574 */
1575 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1576 /* Allows up to 16M BIOSes. */
1577 identity_base = 0xfeffc000;
1578
1579 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1580 if (ret < 0) {
1581 return ret;
1582 }
1583 }
1584
1585 /* Set TSS base one page after EPT identity map. */
1586 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
1587 if (ret < 0) {
1588 return ret;
1589 }
1590
1591 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1592 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
1593 if (ret < 0) {
1594 fprintf(stderr, "e820_add_entry() table is full\n");
1595 return ret;
1596 }
1597 qemu_register_reset(kvm_unpoison_all, NULL);
1598
1599 shadow_mem = machine_kvm_shadow_mem(ms);
1600 if (shadow_mem != -1) {
1601 shadow_mem /= 4096;
1602 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1603 if (ret < 0) {
1604 return ret;
1605 }
1606 }
1607
1608 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
1609 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
1610 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
1611 smram_machine_done.notify = register_smram_listener;
1612 qemu_add_machine_init_done_notifier(&smram_machine_done);
1613 }
1614
1615 if (enable_cpu_pm) {
1616 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
1617 int ret;
1618
1619 /* Work around for kernel header with a typo. TODO: fix header and drop. */
1620 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
1621 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
1622 #endif
1623 if (disable_exits) {
1624 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
1625 KVM_X86_DISABLE_EXITS_HLT |
1626 KVM_X86_DISABLE_EXITS_PAUSE);
1627 }
1628
1629 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
1630 disable_exits);
1631 if (ret < 0) {
1632 error_report("kvm: guest stopping CPU not supported: %s",
1633 strerror(-ret));
1634 }
1635 }
1636
1637 return 0;
1638 }
1639
1640 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1641 {
1642 lhs->selector = rhs->selector;
1643 lhs->base = rhs->base;
1644 lhs->limit = rhs->limit;
1645 lhs->type = 3;
1646 lhs->present = 1;
1647 lhs->dpl = 3;
1648 lhs->db = 0;
1649 lhs->s = 1;
1650 lhs->l = 0;
1651 lhs->g = 0;
1652 lhs->avl = 0;
1653 lhs->unusable = 0;
1654 }
1655
1656 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1657 {
1658 unsigned flags = rhs->flags;
1659 lhs->selector = rhs->selector;
1660 lhs->base = rhs->base;
1661 lhs->limit = rhs->limit;
1662 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1663 lhs->present = (flags & DESC_P_MASK) != 0;
1664 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
1665 lhs->db = (flags >> DESC_B_SHIFT) & 1;
1666 lhs->s = (flags & DESC_S_MASK) != 0;
1667 lhs->l = (flags >> DESC_L_SHIFT) & 1;
1668 lhs->g = (flags & DESC_G_MASK) != 0;
1669 lhs->avl = (flags & DESC_AVL_MASK) != 0;
1670 lhs->unusable = !lhs->present;
1671 lhs->padding = 0;
1672 }
1673
1674 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1675 {
1676 lhs->selector = rhs->selector;
1677 lhs->base = rhs->base;
1678 lhs->limit = rhs->limit;
1679 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1680 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
1681 (rhs->dpl << DESC_DPL_SHIFT) |
1682 (rhs->db << DESC_B_SHIFT) |
1683 (rhs->s * DESC_S_MASK) |
1684 (rhs->l << DESC_L_SHIFT) |
1685 (rhs->g * DESC_G_MASK) |
1686 (rhs->avl * DESC_AVL_MASK);
1687 }
1688
1689 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1690 {
1691 if (set) {
1692 *kvm_reg = *qemu_reg;
1693 } else {
1694 *qemu_reg = *kvm_reg;
1695 }
1696 }
1697
1698 static int kvm_getput_regs(X86CPU *cpu, int set)
1699 {
1700 CPUX86State *env = &cpu->env;
1701 struct kvm_regs regs;
1702 int ret = 0;
1703
1704 if (!set) {
1705 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
1706 if (ret < 0) {
1707 return ret;
1708 }
1709 }
1710
1711 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1712 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1713 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1714 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1715 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1716 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1717 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1718 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1719 #ifdef TARGET_X86_64
1720 kvm_getput_reg(&regs.r8, &env->regs[8], set);
1721 kvm_getput_reg(&regs.r9, &env->regs[9], set);
1722 kvm_getput_reg(&regs.r10, &env->regs[10], set);
1723 kvm_getput_reg(&regs.r11, &env->regs[11], set);
1724 kvm_getput_reg(&regs.r12, &env->regs[12], set);
1725 kvm_getput_reg(&regs.r13, &env->regs[13], set);
1726 kvm_getput_reg(&regs.r14, &env->regs[14], set);
1727 kvm_getput_reg(&regs.r15, &env->regs[15], set);
1728 #endif
1729
1730 kvm_getput_reg(&regs.rflags, &env->eflags, set);
1731 kvm_getput_reg(&regs.rip, &env->eip, set);
1732
1733 if (set) {
1734 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
1735 }
1736
1737 return ret;
1738 }
1739
1740 static int kvm_put_fpu(X86CPU *cpu)
1741 {
1742 CPUX86State *env = &cpu->env;
1743 struct kvm_fpu fpu;
1744 int i;
1745
1746 memset(&fpu, 0, sizeof fpu);
1747 fpu.fsw = env->fpus & ~(7 << 11);
1748 fpu.fsw |= (env->fpstt & 7) << 11;
1749 fpu.fcw = env->fpuc;
1750 fpu.last_opcode = env->fpop;
1751 fpu.last_ip = env->fpip;
1752 fpu.last_dp = env->fpdp;
1753 for (i = 0; i < 8; ++i) {
1754 fpu.ftwx |= (!env->fptags[i]) << i;
1755 }
1756 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1757 for (i = 0; i < CPU_NB_REGS; i++) {
1758 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
1759 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
1760 }
1761 fpu.mxcsr = env->mxcsr;
1762
1763 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
1764 }
1765
1766 #define XSAVE_FCW_FSW 0
1767 #define XSAVE_FTW_FOP 1
1768 #define XSAVE_CWD_RIP 2
1769 #define XSAVE_CWD_RDP 4
1770 #define XSAVE_MXCSR 6
1771 #define XSAVE_ST_SPACE 8
1772 #define XSAVE_XMM_SPACE 40
1773 #define XSAVE_XSTATE_BV 128
1774 #define XSAVE_YMMH_SPACE 144
1775 #define XSAVE_BNDREGS 240
1776 #define XSAVE_BNDCSR 256
1777 #define XSAVE_OPMASK 272
1778 #define XSAVE_ZMM_Hi256 288
1779 #define XSAVE_Hi16_ZMM 416
1780 #define XSAVE_PKRU 672
1781
1782 #define XSAVE_BYTE_OFFSET(word_offset) \
1783 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
1784
1785 #define ASSERT_OFFSET(word_offset, field) \
1786 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1787 offsetof(X86XSaveArea, field))
1788
1789 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
1790 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
1791 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
1792 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
1793 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
1794 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
1795 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
1796 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
1797 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
1798 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
1799 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
1800 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
1801 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
1802 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
1803 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
1804
1805 static int kvm_put_xsave(X86CPU *cpu)
1806 {
1807 CPUX86State *env = &cpu->env;
1808 X86XSaveArea *xsave = env->xsave_buf;
1809
1810 if (!has_xsave) {
1811 return kvm_put_fpu(cpu);
1812 }
1813 x86_cpu_xsave_all_areas(cpu, xsave);
1814
1815 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1816 }
1817
1818 static int kvm_put_xcrs(X86CPU *cpu)
1819 {
1820 CPUX86State *env = &cpu->env;
1821 struct kvm_xcrs xcrs = {};
1822
1823 if (!has_xcrs) {
1824 return 0;
1825 }
1826
1827 xcrs.nr_xcrs = 1;
1828 xcrs.flags = 0;
1829 xcrs.xcrs[0].xcr = 0;
1830 xcrs.xcrs[0].value = env->xcr0;
1831 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1832 }
1833
1834 static int kvm_put_sregs(X86CPU *cpu)
1835 {
1836 CPUX86State *env = &cpu->env;
1837 struct kvm_sregs sregs;
1838
1839 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1840 if (env->interrupt_injected >= 0) {
1841 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1842 (uint64_t)1 << (env->interrupt_injected % 64);
1843 }
1844
1845 if ((env->eflags & VM_MASK)) {
1846 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1847 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1848 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1849 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1850 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1851 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1852 } else {
1853 set_seg(&sregs.cs, &env->segs[R_CS]);
1854 set_seg(&sregs.ds, &env->segs[R_DS]);
1855 set_seg(&sregs.es, &env->segs[R_ES]);
1856 set_seg(&sregs.fs, &env->segs[R_FS]);
1857 set_seg(&sregs.gs, &env->segs[R_GS]);
1858 set_seg(&sregs.ss, &env->segs[R_SS]);
1859 }
1860
1861 set_seg(&sregs.tr, &env->tr);
1862 set_seg(&sregs.ldt, &env->ldt);
1863
1864 sregs.idt.limit = env->idt.limit;
1865 sregs.idt.base = env->idt.base;
1866 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1867 sregs.gdt.limit = env->gdt.limit;
1868 sregs.gdt.base = env->gdt.base;
1869 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1870
1871 sregs.cr0 = env->cr[0];
1872 sregs.cr2 = env->cr[2];
1873 sregs.cr3 = env->cr[3];
1874 sregs.cr4 = env->cr[4];
1875
1876 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1877 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1878
1879 sregs.efer = env->efer;
1880
1881 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1882 }
1883
1884 static void kvm_msr_buf_reset(X86CPU *cpu)
1885 {
1886 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
1887 }
1888
1889 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
1890 {
1891 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
1892 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
1893 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
1894
1895 assert((void *)(entry + 1) <= limit);
1896
1897 entry->index = index;
1898 entry->reserved = 0;
1899 entry->data = value;
1900 msrs->nmsrs++;
1901 }
1902
1903 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
1904 {
1905 kvm_msr_buf_reset(cpu);
1906 kvm_msr_entry_add(cpu, index, value);
1907
1908 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
1909 }
1910
1911 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
1912 {
1913 int ret;
1914
1915 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
1916 assert(ret == 1);
1917 }
1918
1919 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1920 {
1921 CPUX86State *env = &cpu->env;
1922 int ret;
1923
1924 if (!has_msr_tsc_deadline) {
1925 return 0;
1926 }
1927
1928 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1929 if (ret < 0) {
1930 return ret;
1931 }
1932
1933 assert(ret == 1);
1934 return 0;
1935 }
1936
1937 /*
1938 * Provide a separate write service for the feature control MSR in order to
1939 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1940 * before writing any other state because forcibly leaving nested mode
1941 * invalidates the VCPU state.
1942 */
1943 static int kvm_put_msr_feature_control(X86CPU *cpu)
1944 {
1945 int ret;
1946
1947 if (!has_msr_feature_control) {
1948 return 0;
1949 }
1950
1951 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
1952 cpu->env.msr_ia32_feature_control);
1953 if (ret < 0) {
1954 return ret;
1955 }
1956
1957 assert(ret == 1);
1958 return 0;
1959 }
1960
1961 static int kvm_put_msrs(X86CPU *cpu, int level)
1962 {
1963 CPUX86State *env = &cpu->env;
1964 int i;
1965 int ret;
1966
1967 kvm_msr_buf_reset(cpu);
1968
1969 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1970 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1971 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1972 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
1973 if (has_msr_star) {
1974 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
1975 }
1976 if (has_msr_hsave_pa) {
1977 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
1978 }
1979 if (has_msr_tsc_aux) {
1980 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
1981 }
1982 if (has_msr_tsc_adjust) {
1983 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
1984 }
1985 if (has_msr_misc_enable) {
1986 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
1987 env->msr_ia32_misc_enable);
1988 }
1989 if (has_msr_smbase) {
1990 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
1991 }
1992 if (has_msr_smi_count) {
1993 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
1994 }
1995 if (has_msr_bndcfgs) {
1996 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1997 }
1998 if (has_msr_xss) {
1999 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2000 }
2001 if (has_msr_spec_ctrl) {
2002 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2003 }
2004 if (has_msr_virt_ssbd) {
2005 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2006 }
2007
2008 #ifdef TARGET_X86_64
2009 if (lm_capable_kernel) {
2010 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2011 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2012 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2013 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2014 }
2015 #endif
2016
2017 /* If host supports feature MSR, write down. */
2018 if (has_msr_arch_capabs) {
2019 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2020 env->features[FEAT_ARCH_CAPABILITIES]);
2021 }
2022
2023 /*
2024 * The following MSRs have side effects on the guest or are too heavy
2025 * for normal writeback. Limit them to reset or full state updates.
2026 */
2027 if (level >= KVM_PUT_RESET_STATE) {
2028 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2029 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2030 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2031 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2032 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2033 }
2034 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2035 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2036 }
2037 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2038 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2039 }
2040 if (has_architectural_pmu_version > 0) {
2041 if (has_architectural_pmu_version > 1) {
2042 /* Stop the counter. */
2043 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2044 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2045 }
2046
2047 /* Set the counter values. */
2048 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2049 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2050 env->msr_fixed_counters[i]);
2051 }
2052 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2053 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2054 env->msr_gp_counters[i]);
2055 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2056 env->msr_gp_evtsel[i]);
2057 }
2058 if (has_architectural_pmu_version > 1) {
2059 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2060 env->msr_global_status);
2061 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2062 env->msr_global_ovf_ctrl);
2063
2064 /* Now start the PMU. */
2065 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2066 env->msr_fixed_ctr_ctrl);
2067 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2068 env->msr_global_ctrl);
2069 }
2070 }
2071 /*
2072 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2073 * only sync them to KVM on the first cpu
2074 */
2075 if (current_cpu == first_cpu) {
2076 if (has_msr_hv_hypercall) {
2077 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2078 env->msr_hv_guest_os_id);
2079 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2080 env->msr_hv_hypercall);
2081 }
2082 if (cpu->hyperv_time) {
2083 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2084 env->msr_hv_tsc);
2085 }
2086 if (cpu->hyperv_reenlightenment) {
2087 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2088 env->msr_hv_reenlightenment_control);
2089 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2090 env->msr_hv_tsc_emulation_control);
2091 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2092 env->msr_hv_tsc_emulation_status);
2093 }
2094 }
2095 if (cpu->hyperv_vapic) {
2096 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2097 env->msr_hv_vapic);
2098 }
2099 if (has_msr_hv_crash) {
2100 int j;
2101
2102 for (j = 0; j < HV_CRASH_PARAMS; j++)
2103 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2104 env->msr_hv_crash_params[j]);
2105
2106 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2107 }
2108 if (has_msr_hv_runtime) {
2109 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2110 }
2111 if (cpu->hyperv_vpindex && hv_vpindex_settable) {
2112 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2113 hyperv_vp_index(CPU(cpu)));
2114 }
2115 if (cpu->hyperv_synic) {
2116 int j;
2117
2118 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2119
2120 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2121 env->msr_hv_synic_control);
2122 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2123 env->msr_hv_synic_evt_page);
2124 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2125 env->msr_hv_synic_msg_page);
2126
2127 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2128 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2129 env->msr_hv_synic_sint[j]);
2130 }
2131 }
2132 if (has_msr_hv_stimer) {
2133 int j;
2134
2135 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2136 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2137 env->msr_hv_stimer_config[j]);
2138 }
2139
2140 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2141 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2142 env->msr_hv_stimer_count[j]);
2143 }
2144 }
2145 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2146 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2147
2148 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2149 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2150 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2151 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2152 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2153 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2154 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2155 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2156 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2157 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2158 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2159 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2160 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2161 /* The CPU GPs if we write to a bit above the physical limit of
2162 * the host CPU (and KVM emulates that)
2163 */
2164 uint64_t mask = env->mtrr_var[i].mask;
2165 mask &= phys_mask;
2166
2167 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2168 env->mtrr_var[i].base);
2169 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2170 }
2171 }
2172 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2173 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2174 0x14, 1, R_EAX) & 0x7;
2175
2176 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2177 env->msr_rtit_ctrl);
2178 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2179 env->msr_rtit_status);
2180 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2181 env->msr_rtit_output_base);
2182 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2183 env->msr_rtit_output_mask);
2184 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2185 env->msr_rtit_cr3_match);
2186 for (i = 0; i < addr_num; i++) {
2187 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2188 env->msr_rtit_addrs[i]);
2189 }
2190 }
2191
2192 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2193 * kvm_put_msr_feature_control. */
2194 }
2195 if (env->mcg_cap) {
2196 int i;
2197
2198 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2199 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2200 if (has_msr_mcg_ext_ctl) {
2201 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2202 }
2203 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2204 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2205 }
2206 }
2207
2208 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2209 if (ret < 0) {
2210 return ret;
2211 }
2212
2213 if (ret < cpu->kvm_msr_buf->nmsrs) {
2214 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2215 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2216 (uint32_t)e->index, (uint64_t)e->data);
2217 }
2218
2219 assert(ret == cpu->kvm_msr_buf->nmsrs);
2220 return 0;
2221 }
2222
2223
2224 static int kvm_get_fpu(X86CPU *cpu)
2225 {
2226 CPUX86State *env = &cpu->env;
2227 struct kvm_fpu fpu;
2228 int i, ret;
2229
2230 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2231 if (ret < 0) {
2232 return ret;
2233 }
2234
2235 env->fpstt = (fpu.fsw >> 11) & 7;
2236 env->fpus = fpu.fsw;
2237 env->fpuc = fpu.fcw;
2238 env->fpop = fpu.last_opcode;
2239 env->fpip = fpu.last_ip;
2240 env->fpdp = fpu.last_dp;
2241 for (i = 0; i < 8; ++i) {
2242 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2243 }
2244 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2245 for (i = 0; i < CPU_NB_REGS; i++) {
2246 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2247 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
2248 }
2249 env->mxcsr = fpu.mxcsr;
2250
2251 return 0;
2252 }
2253
2254 static int kvm_get_xsave(X86CPU *cpu)
2255 {
2256 CPUX86State *env = &cpu->env;
2257 X86XSaveArea *xsave = env->xsave_buf;
2258 int ret;
2259
2260 if (!has_xsave) {
2261 return kvm_get_fpu(cpu);
2262 }
2263
2264 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
2265 if (ret < 0) {
2266 return ret;
2267 }
2268 x86_cpu_xrstor_all_areas(cpu, xsave);
2269
2270 return 0;
2271 }
2272
2273 static int kvm_get_xcrs(X86CPU *cpu)
2274 {
2275 CPUX86State *env = &cpu->env;
2276 int i, ret;
2277 struct kvm_xcrs xcrs;
2278
2279 if (!has_xcrs) {
2280 return 0;
2281 }
2282
2283 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
2284 if (ret < 0) {
2285 return ret;
2286 }
2287
2288 for (i = 0; i < xcrs.nr_xcrs; i++) {
2289 /* Only support xcr0 now */
2290 if (xcrs.xcrs[i].xcr == 0) {
2291 env->xcr0 = xcrs.xcrs[i].value;
2292 break;
2293 }
2294 }
2295 return 0;
2296 }
2297
2298 static int kvm_get_sregs(X86CPU *cpu)
2299 {
2300 CPUX86State *env = &cpu->env;
2301 struct kvm_sregs sregs;
2302 int bit, i, ret;
2303
2304 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
2305 if (ret < 0) {
2306 return ret;
2307 }
2308
2309 /* There can only be one pending IRQ set in the bitmap at a time, so try
2310 to find it and save its number instead (-1 for none). */
2311 env->interrupt_injected = -1;
2312 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2313 if (sregs.interrupt_bitmap[i]) {
2314 bit = ctz64(sregs.interrupt_bitmap[i]);
2315 env->interrupt_injected = i * 64 + bit;
2316 break;
2317 }
2318 }
2319
2320 get_seg(&env->segs[R_CS], &sregs.cs);
2321 get_seg(&env->segs[R_DS], &sregs.ds);
2322 get_seg(&env->segs[R_ES], &sregs.es);
2323 get_seg(&env->segs[R_FS], &sregs.fs);
2324 get_seg(&env->segs[R_GS], &sregs.gs);
2325 get_seg(&env->segs[R_SS], &sregs.ss);
2326
2327 get_seg(&env->tr, &sregs.tr);
2328 get_seg(&env->ldt, &sregs.ldt);
2329
2330 env->idt.limit = sregs.idt.limit;
2331 env->idt.base = sregs.idt.base;
2332 env->gdt.limit = sregs.gdt.limit;
2333 env->gdt.base = sregs.gdt.base;
2334
2335 env->cr[0] = sregs.cr0;
2336 env->cr[2] = sregs.cr2;
2337 env->cr[3] = sregs.cr3;
2338 env->cr[4] = sregs.cr4;
2339
2340 env->efer = sregs.efer;
2341
2342 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2343 x86_update_hflags(env);
2344
2345 return 0;
2346 }
2347
2348 static int kvm_get_msrs(X86CPU *cpu)
2349 {
2350 CPUX86State *env = &cpu->env;
2351 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
2352 int ret, i;
2353 uint64_t mtrr_top_bits;
2354
2355 kvm_msr_buf_reset(cpu);
2356
2357 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2358 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2359 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2360 kvm_msr_entry_add(cpu, MSR_PAT, 0);
2361 if (has_msr_star) {
2362 kvm_msr_entry_add(cpu, MSR_STAR, 0);
2363 }
2364 if (has_msr_hsave_pa) {
2365 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
2366 }
2367 if (has_msr_tsc_aux) {
2368 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
2369 }
2370 if (has_msr_tsc_adjust) {
2371 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
2372 }
2373 if (has_msr_tsc_deadline) {
2374 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
2375 }
2376 if (has_msr_misc_enable) {
2377 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
2378 }
2379 if (has_msr_smbase) {
2380 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
2381 }
2382 if (has_msr_smi_count) {
2383 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
2384 }
2385 if (has_msr_feature_control) {
2386 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
2387 }
2388 if (has_msr_bndcfgs) {
2389 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
2390 }
2391 if (has_msr_xss) {
2392 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
2393 }
2394 if (has_msr_spec_ctrl) {
2395 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
2396 }
2397 if (has_msr_virt_ssbd) {
2398 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
2399 }
2400 if (!env->tsc_valid) {
2401 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
2402 env->tsc_valid = !runstate_is_running();
2403 }
2404
2405 #ifdef TARGET_X86_64
2406 if (lm_capable_kernel) {
2407 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2408 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2409 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2410 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
2411 }
2412 #endif
2413 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2414 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
2415 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2416 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
2417 }
2418 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2419 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
2420 }
2421 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2422 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
2423 }
2424 if (has_architectural_pmu_version > 0) {
2425 if (has_architectural_pmu_version > 1) {
2426 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2427 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2428 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2429 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2430 }
2431 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2432 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
2433 }
2434 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2435 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2436 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
2437 }
2438 }
2439
2440 if (env->mcg_cap) {
2441 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2442 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
2443 if (has_msr_mcg_ext_ctl) {
2444 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2445 }
2446 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2447 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
2448 }
2449 }
2450
2451 if (has_msr_hv_hypercall) {
2452 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2453 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
2454 }
2455 if (cpu->hyperv_vapic) {
2456 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
2457 }
2458 if (cpu->hyperv_time) {
2459 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
2460 }
2461 if (cpu->hyperv_reenlightenment) {
2462 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
2463 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
2464 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
2465 }
2466 if (has_msr_hv_crash) {
2467 int j;
2468
2469 for (j = 0; j < HV_CRASH_PARAMS; j++) {
2470 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
2471 }
2472 }
2473 if (has_msr_hv_runtime) {
2474 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
2475 }
2476 if (cpu->hyperv_synic) {
2477 uint32_t msr;
2478
2479 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
2480 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2481 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
2482 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2483 kvm_msr_entry_add(cpu, msr, 0);
2484 }
2485 }
2486 if (has_msr_hv_stimer) {
2487 uint32_t msr;
2488
2489 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2490 msr++) {
2491 kvm_msr_entry_add(cpu, msr, 0);
2492 }
2493 }
2494 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2495 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2496 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2497 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2498 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2499 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2500 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2501 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2502 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2503 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2504 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2505 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2506 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
2507 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2508 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2509 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
2510 }
2511 }
2512
2513 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2514 int addr_num =
2515 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
2516
2517 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
2518 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
2519 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
2520 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
2521 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
2522 for (i = 0; i < addr_num; i++) {
2523 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
2524 }
2525 }
2526
2527 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
2528 if (ret < 0) {
2529 return ret;
2530 }
2531
2532 if (ret < cpu->kvm_msr_buf->nmsrs) {
2533 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2534 error_report("error: failed to get MSR 0x%" PRIx32,
2535 (uint32_t)e->index);
2536 }
2537
2538 assert(ret == cpu->kvm_msr_buf->nmsrs);
2539 /*
2540 * MTRR masks: Each mask consists of 5 parts
2541 * a 10..0: must be zero
2542 * b 11 : valid bit
2543 * c n-1.12: actual mask bits
2544 * d 51..n: reserved must be zero
2545 * e 63.52: reserved must be zero
2546 *
2547 * 'n' is the number of physical bits supported by the CPU and is
2548 * apparently always <= 52. We know our 'n' but don't know what
2549 * the destinations 'n' is; it might be smaller, in which case
2550 * it masks (c) on loading. It might be larger, in which case
2551 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2552 * we're migrating to.
2553 */
2554
2555 if (cpu->fill_mtrr_mask) {
2556 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
2557 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
2558 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
2559 } else {
2560 mtrr_top_bits = 0;
2561 }
2562
2563 for (i = 0; i < ret; i++) {
2564 uint32_t index = msrs[i].index;
2565 switch (index) {
2566 case MSR_IA32_SYSENTER_CS:
2567 env->sysenter_cs = msrs[i].data;
2568 break;
2569 case MSR_IA32_SYSENTER_ESP:
2570 env->sysenter_esp = msrs[i].data;
2571 break;
2572 case MSR_IA32_SYSENTER_EIP:
2573 env->sysenter_eip = msrs[i].data;
2574 break;
2575 case MSR_PAT:
2576 env->pat = msrs[i].data;
2577 break;
2578 case MSR_STAR:
2579 env->star = msrs[i].data;
2580 break;
2581 #ifdef TARGET_X86_64
2582 case MSR_CSTAR:
2583 env->cstar = msrs[i].data;
2584 break;
2585 case MSR_KERNELGSBASE:
2586 env->kernelgsbase = msrs[i].data;
2587 break;
2588 case MSR_FMASK:
2589 env->fmask = msrs[i].data;
2590 break;
2591 case MSR_LSTAR:
2592 env->lstar = msrs[i].data;
2593 break;
2594 #endif
2595 case MSR_IA32_TSC:
2596 env->tsc = msrs[i].data;
2597 break;
2598 case MSR_TSC_AUX:
2599 env->tsc_aux = msrs[i].data;
2600 break;
2601 case MSR_TSC_ADJUST:
2602 env->tsc_adjust = msrs[i].data;
2603 break;
2604 case MSR_IA32_TSCDEADLINE:
2605 env->tsc_deadline = msrs[i].data;
2606 break;
2607 case MSR_VM_HSAVE_PA:
2608 env->vm_hsave = msrs[i].data;
2609 break;
2610 case MSR_KVM_SYSTEM_TIME:
2611 env->system_time_msr = msrs[i].data;
2612 break;
2613 case MSR_KVM_WALL_CLOCK:
2614 env->wall_clock_msr = msrs[i].data;
2615 break;
2616 case MSR_MCG_STATUS:
2617 env->mcg_status = msrs[i].data;
2618 break;
2619 case MSR_MCG_CTL:
2620 env->mcg_ctl = msrs[i].data;
2621 break;
2622 case MSR_MCG_EXT_CTL:
2623 env->mcg_ext_ctl = msrs[i].data;
2624 break;
2625 case MSR_IA32_MISC_ENABLE:
2626 env->msr_ia32_misc_enable = msrs[i].data;
2627 break;
2628 case MSR_IA32_SMBASE:
2629 env->smbase = msrs[i].data;
2630 break;
2631 case MSR_SMI_COUNT:
2632 env->msr_smi_count = msrs[i].data;
2633 break;
2634 case MSR_IA32_FEATURE_CONTROL:
2635 env->msr_ia32_feature_control = msrs[i].data;
2636 break;
2637 case MSR_IA32_BNDCFGS:
2638 env->msr_bndcfgs = msrs[i].data;
2639 break;
2640 case MSR_IA32_XSS:
2641 env->xss = msrs[i].data;
2642 break;
2643 default:
2644 if (msrs[i].index >= MSR_MC0_CTL &&
2645 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2646 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
2647 }
2648 break;
2649 case MSR_KVM_ASYNC_PF_EN:
2650 env->async_pf_en_msr = msrs[i].data;
2651 break;
2652 case MSR_KVM_PV_EOI_EN:
2653 env->pv_eoi_en_msr = msrs[i].data;
2654 break;
2655 case MSR_KVM_STEAL_TIME:
2656 env->steal_time_msr = msrs[i].data;
2657 break;
2658 case MSR_CORE_PERF_FIXED_CTR_CTRL:
2659 env->msr_fixed_ctr_ctrl = msrs[i].data;
2660 break;
2661 case MSR_CORE_PERF_GLOBAL_CTRL:
2662 env->msr_global_ctrl = msrs[i].data;
2663 break;
2664 case MSR_CORE_PERF_GLOBAL_STATUS:
2665 env->msr_global_status = msrs[i].data;
2666 break;
2667 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2668 env->msr_global_ovf_ctrl = msrs[i].data;
2669 break;
2670 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2671 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2672 break;
2673 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2674 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2675 break;
2676 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2677 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2678 break;
2679 case HV_X64_MSR_HYPERCALL:
2680 env->msr_hv_hypercall = msrs[i].data;
2681 break;
2682 case HV_X64_MSR_GUEST_OS_ID:
2683 env->msr_hv_guest_os_id = msrs[i].data;
2684 break;
2685 case HV_X64_MSR_APIC_ASSIST_PAGE:
2686 env->msr_hv_vapic = msrs[i].data;
2687 break;
2688 case HV_X64_MSR_REFERENCE_TSC:
2689 env->msr_hv_tsc = msrs[i].data;
2690 break;
2691 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2692 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2693 break;
2694 case HV_X64_MSR_VP_RUNTIME:
2695 env->msr_hv_runtime = msrs[i].data;
2696 break;
2697 case HV_X64_MSR_SCONTROL:
2698 env->msr_hv_synic_control = msrs[i].data;
2699 break;
2700 case HV_X64_MSR_SIEFP:
2701 env->msr_hv_synic_evt_page = msrs[i].data;
2702 break;
2703 case HV_X64_MSR_SIMP:
2704 env->msr_hv_synic_msg_page = msrs[i].data;
2705 break;
2706 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2707 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
2708 break;
2709 case HV_X64_MSR_STIMER0_CONFIG:
2710 case HV_X64_MSR_STIMER1_CONFIG:
2711 case HV_X64_MSR_STIMER2_CONFIG:
2712 case HV_X64_MSR_STIMER3_CONFIG:
2713 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
2714 msrs[i].data;
2715 break;
2716 case HV_X64_MSR_STIMER0_COUNT:
2717 case HV_X64_MSR_STIMER1_COUNT:
2718 case HV_X64_MSR_STIMER2_COUNT:
2719 case HV_X64_MSR_STIMER3_COUNT:
2720 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
2721 msrs[i].data;
2722 break;
2723 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2724 env->msr_hv_reenlightenment_control = msrs[i].data;
2725 break;
2726 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2727 env->msr_hv_tsc_emulation_control = msrs[i].data;
2728 break;
2729 case HV_X64_MSR_TSC_EMULATION_STATUS:
2730 env->msr_hv_tsc_emulation_status = msrs[i].data;
2731 break;
2732 case MSR_MTRRdefType:
2733 env->mtrr_deftype = msrs[i].data;
2734 break;
2735 case MSR_MTRRfix64K_00000:
2736 env->mtrr_fixed[0] = msrs[i].data;
2737 break;
2738 case MSR_MTRRfix16K_80000:
2739 env->mtrr_fixed[1] = msrs[i].data;
2740 break;
2741 case MSR_MTRRfix16K_A0000:
2742 env->mtrr_fixed[2] = msrs[i].data;
2743 break;
2744 case MSR_MTRRfix4K_C0000:
2745 env->mtrr_fixed[3] = msrs[i].data;
2746 break;
2747 case MSR_MTRRfix4K_C8000:
2748 env->mtrr_fixed[4] = msrs[i].data;
2749 break;
2750 case MSR_MTRRfix4K_D0000:
2751 env->mtrr_fixed[5] = msrs[i].data;
2752 break;
2753 case MSR_MTRRfix4K_D8000:
2754 env->mtrr_fixed[6] = msrs[i].data;
2755 break;
2756 case MSR_MTRRfix4K_E0000:
2757 env->mtrr_fixed[7] = msrs[i].data;
2758 break;
2759 case MSR_MTRRfix4K_E8000:
2760 env->mtrr_fixed[8] = msrs[i].data;
2761 break;
2762 case MSR_MTRRfix4K_F0000:
2763 env->mtrr_fixed[9] = msrs[i].data;
2764 break;
2765 case MSR_MTRRfix4K_F8000:
2766 env->mtrr_fixed[10] = msrs[i].data;
2767 break;
2768 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2769 if (index & 1) {
2770 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
2771 mtrr_top_bits;
2772 } else {
2773 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2774 }
2775 break;
2776 case MSR_IA32_SPEC_CTRL:
2777 env->spec_ctrl = msrs[i].data;
2778 break;
2779 case MSR_VIRT_SSBD:
2780 env->virt_ssbd = msrs[i].data;
2781 break;
2782 case MSR_IA32_RTIT_CTL:
2783 env->msr_rtit_ctrl = msrs[i].data;
2784 break;
2785 case MSR_IA32_RTIT_STATUS:
2786 env->msr_rtit_status = msrs[i].data;
2787 break;
2788 case MSR_IA32_RTIT_OUTPUT_BASE:
2789 env->msr_rtit_output_base = msrs[i].data;
2790 break;
2791 case MSR_IA32_RTIT_OUTPUT_MASK:
2792 env->msr_rtit_output_mask = msrs[i].data;
2793 break;
2794 case MSR_IA32_RTIT_CR3_MATCH:
2795 env->msr_rtit_cr3_match = msrs[i].data;
2796 break;
2797 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2798 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
2799 break;
2800 }
2801 }
2802
2803 return 0;
2804 }
2805
2806 static int kvm_put_mp_state(X86CPU *cpu)
2807 {
2808 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
2809
2810 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2811 }
2812
2813 static int kvm_get_mp_state(X86CPU *cpu)
2814 {
2815 CPUState *cs = CPU(cpu);
2816 CPUX86State *env = &cpu->env;
2817 struct kvm_mp_state mp_state;
2818 int ret;
2819
2820 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
2821 if (ret < 0) {
2822 return ret;
2823 }
2824 env->mp_state = mp_state.mp_state;
2825 if (kvm_irqchip_in_kernel()) {
2826 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
2827 }
2828 return 0;
2829 }
2830
2831 static int kvm_get_apic(X86CPU *cpu)
2832 {
2833 DeviceState *apic = cpu->apic_state;
2834 struct kvm_lapic_state kapic;
2835 int ret;
2836
2837 if (apic && kvm_irqchip_in_kernel()) {
2838 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
2839 if (ret < 0) {
2840 return ret;
2841 }
2842
2843 kvm_get_apic_state(apic, &kapic);
2844 }
2845 return 0;
2846 }
2847
2848 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
2849 {
2850 CPUState *cs = CPU(cpu);
2851 CPUX86State *env = &cpu->env;
2852 struct kvm_vcpu_events events = {};
2853
2854 if (!kvm_has_vcpu_events()) {
2855 return 0;
2856 }
2857
2858 events.exception.injected = (env->exception_injected >= 0);
2859 events.exception.nr = env->exception_injected;
2860 events.exception.has_error_code = env->has_error_code;
2861 events.exception.error_code = env->error_code;
2862
2863 events.interrupt.injected = (env->interrupt_injected >= 0);
2864 events.interrupt.nr = env->interrupt_injected;
2865 events.interrupt.soft = env->soft_interrupt;
2866
2867 events.nmi.injected = env->nmi_injected;
2868 events.nmi.pending = env->nmi_pending;
2869 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
2870
2871 events.sipi_vector = env->sipi_vector;
2872 events.flags = 0;
2873
2874 if (has_msr_smbase) {
2875 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2876 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2877 if (kvm_irqchip_in_kernel()) {
2878 /* As soon as these are moved to the kernel, remove them
2879 * from cs->interrupt_request.
2880 */
2881 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2882 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2883 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2884 } else {
2885 /* Keep these in cs->interrupt_request. */
2886 events.smi.pending = 0;
2887 events.smi.latched_init = 0;
2888 }
2889 /* Stop SMI delivery on old machine types to avoid a reboot
2890 * on an inward migration of an old VM.
2891 */
2892 if (!cpu->kvm_no_smi_migration) {
2893 events.flags |= KVM_VCPUEVENT_VALID_SMM;
2894 }
2895 }
2896
2897 if (level >= KVM_PUT_RESET_STATE) {
2898 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
2899 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
2900 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2901 }
2902 }
2903
2904 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
2905 }
2906
2907 static int kvm_get_vcpu_events(X86CPU *cpu)
2908 {
2909 CPUX86State *env = &cpu->env;
2910 struct kvm_vcpu_events events;
2911 int ret;
2912
2913 if (!kvm_has_vcpu_events()) {
2914 return 0;
2915 }
2916
2917 memset(&events, 0, sizeof(events));
2918 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
2919 if (ret < 0) {
2920 return ret;
2921 }
2922 env->exception_injected =
2923 events.exception.injected ? events.exception.nr : -1;
2924 env->has_error_code = events.exception.has_error_code;
2925 env->error_code = events.exception.error_code;
2926
2927 env->interrupt_injected =
2928 events.interrupt.injected ? events.interrupt.nr : -1;
2929 env->soft_interrupt = events.interrupt.soft;
2930
2931 env->nmi_injected = events.nmi.injected;
2932 env->nmi_pending = events.nmi.pending;
2933 if (events.nmi.masked) {
2934 env->hflags2 |= HF2_NMI_MASK;
2935 } else {
2936 env->hflags2 &= ~HF2_NMI_MASK;
2937 }
2938
2939 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2940 if (events.smi.smm) {
2941 env->hflags |= HF_SMM_MASK;
2942 } else {
2943 env->hflags &= ~HF_SMM_MASK;
2944 }
2945 if (events.smi.pending) {
2946 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2947 } else {
2948 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2949 }
2950 if (events.smi.smm_inside_nmi) {
2951 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2952 } else {
2953 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2954 }
2955 if (events.smi.latched_init) {
2956 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2957 } else {
2958 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2959 }
2960 }
2961
2962 env->sipi_vector = events.sipi_vector;
2963
2964 return 0;
2965 }
2966
2967 static int kvm_guest_debug_workarounds(X86CPU *cpu)
2968 {
2969 CPUState *cs = CPU(cpu);
2970 CPUX86State *env = &cpu->env;
2971 int ret = 0;
2972 unsigned long reinject_trap = 0;
2973
2974 if (!kvm_has_vcpu_events()) {
2975 if (env->exception_injected == 1) {
2976 reinject_trap = KVM_GUESTDBG_INJECT_DB;
2977 } else if (env->exception_injected == 3) {
2978 reinject_trap = KVM_GUESTDBG_INJECT_BP;
2979 }
2980 env->exception_injected = -1;
2981 }
2982
2983 /*
2984 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2985 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2986 * by updating the debug state once again if single-stepping is on.
2987 * Another reason to call kvm_update_guest_debug here is a pending debug
2988 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2989 * reinject them via SET_GUEST_DEBUG.
2990 */
2991 if (reinject_trap ||
2992 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
2993 ret = kvm_update_guest_debug(cs, reinject_trap);
2994 }
2995 return ret;
2996 }
2997
2998 static int kvm_put_debugregs(X86CPU *cpu)
2999 {
3000 CPUX86State *env = &cpu->env;
3001 struct kvm_debugregs dbgregs;
3002 int i;
3003
3004 if (!kvm_has_debugregs()) {
3005 return 0;
3006 }
3007
3008 for (i = 0; i < 4; i++) {
3009 dbgregs.db[i] = env->dr[i];
3010 }
3011 dbgregs.dr6 = env->dr[6];
3012 dbgregs.dr7 = env->dr[7];
3013 dbgregs.flags = 0;
3014
3015 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3016 }
3017
3018 static int kvm_get_debugregs(X86CPU *cpu)
3019 {
3020 CPUX86State *env = &cpu->env;
3021 struct kvm_debugregs dbgregs;
3022 int i, ret;
3023
3024 if (!kvm_has_debugregs()) {
3025 return 0;
3026 }
3027
3028 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3029 if (ret < 0) {
3030 return ret;
3031 }
3032 for (i = 0; i < 4; i++) {
3033 env->dr[i] = dbgregs.db[i];
3034 }
3035 env->dr[4] = env->dr[6] = dbgregs.dr6;
3036 env->dr[5] = env->dr[7] = dbgregs.dr7;
3037
3038 return 0;
3039 }
3040
3041 int kvm_arch_put_registers(CPUState *cpu, int level)
3042 {
3043 X86CPU *x86_cpu = X86_CPU(cpu);
3044 int ret;
3045
3046 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3047
3048 if (level >= KVM_PUT_RESET_STATE) {
3049 ret = kvm_put_msr_feature_control(x86_cpu);
3050 if (ret < 0) {
3051 return ret;
3052 }
3053 }
3054
3055 if (level == KVM_PUT_FULL_STATE) {
3056 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3057 * because TSC frequency mismatch shouldn't abort migration,
3058 * unless the user explicitly asked for a more strict TSC
3059 * setting (e.g. using an explicit "tsc-freq" option).
3060 */
3061 kvm_arch_set_tsc_khz(cpu);
3062 }
3063
3064 ret = kvm_getput_regs(x86_cpu, 1);
3065 if (ret < 0) {
3066 return ret;
3067 }
3068 ret = kvm_put_xsave(x86_cpu);
3069 if (ret < 0) {
3070 return ret;
3071 }
3072 ret = kvm_put_xcrs(x86_cpu);
3073 if (ret < 0) {
3074 return ret;
3075 }
3076 ret = kvm_put_sregs(x86_cpu);
3077 if (ret < 0) {
3078 return ret;
3079 }
3080 /* must be before kvm_put_msrs */
3081 ret = kvm_inject_mce_oldstyle(x86_cpu);
3082 if (ret < 0) {
3083 return ret;
3084 }
3085 ret = kvm_put_msrs(x86_cpu, level);
3086 if (ret < 0) {
3087 return ret;
3088 }
3089 ret = kvm_put_vcpu_events(x86_cpu, level);
3090 if (ret < 0) {
3091 return ret;
3092 }
3093 if (level >= KVM_PUT_RESET_STATE) {
3094 ret = kvm_put_mp_state(x86_cpu);
3095 if (ret < 0) {
3096 return ret;
3097 }
3098 }
3099
3100 ret = kvm_put_tscdeadline_msr(x86_cpu);
3101 if (ret < 0) {
3102 return ret;
3103 }
3104 ret = kvm_put_debugregs(x86_cpu);
3105 if (ret < 0) {
3106 return ret;
3107 }
3108 /* must be last */
3109 ret = kvm_guest_debug_workarounds(x86_cpu);
3110 if (ret < 0) {
3111 return ret;
3112 }
3113 return 0;
3114 }
3115
3116 int kvm_arch_get_registers(CPUState *cs)
3117 {
3118 X86CPU *cpu = X86_CPU(cs);
3119 int ret;
3120
3121 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3122
3123 ret = kvm_get_vcpu_events(cpu);
3124 if (ret < 0) {
3125 goto out;
3126 }
3127 /*
3128 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3129 * KVM_GET_REGS and KVM_GET_SREGS.
3130 */
3131 ret = kvm_get_mp_state(cpu);
3132 if (ret < 0) {
3133 goto out;
3134 }
3135 ret = kvm_getput_regs(cpu, 0);
3136 if (ret < 0) {
3137 goto out;
3138 }
3139 ret = kvm_get_xsave(cpu);
3140 if (ret < 0) {
3141 goto out;
3142 }
3143 ret = kvm_get_xcrs(cpu);
3144 if (ret < 0) {
3145 goto out;
3146 }
3147 ret = kvm_get_sregs(cpu);
3148 if (ret < 0) {
3149 goto out;
3150 }
3151 ret = kvm_get_msrs(cpu);
3152 if (ret < 0) {
3153 goto out;
3154 }
3155 ret = kvm_get_apic(cpu);
3156 if (ret < 0) {
3157 goto out;
3158 }
3159 ret = kvm_get_debugregs(cpu);
3160 if (ret < 0) {
3161 goto out;
3162 }
3163 ret = 0;
3164 out:
3165 cpu_sync_bndcs_hflags(&cpu->env);
3166 return ret;
3167 }
3168
3169 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
3170 {
3171 X86CPU *x86_cpu = X86_CPU(cpu);
3172 CPUX86State *env = &x86_cpu->env;
3173 int ret;
3174
3175 /* Inject NMI */
3176 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3177 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3178 qemu_mutex_lock_iothread();
3179 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3180 qemu_mutex_unlock_iothread();
3181 DPRINTF("injected NMI\n");
3182 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3183 if (ret < 0) {
3184 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3185 strerror(-ret));
3186 }
3187 }
3188 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3189 qemu_mutex_lock_iothread();
3190 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3191 qemu_mutex_unlock_iothread();
3192 DPRINTF("injected SMI\n");
3193 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3194 if (ret < 0) {
3195 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3196 strerror(-ret));
3197 }
3198 }
3199 }
3200
3201 if (!kvm_pic_in_kernel()) {
3202 qemu_mutex_lock_iothread();
3203 }
3204
3205 /* Force the VCPU out of its inner loop to process any INIT requests
3206 * or (for userspace APIC, but it is cheap to combine the checks here)
3207 * pending TPR access reports.
3208 */
3209 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
3210 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3211 !(env->hflags & HF_SMM_MASK)) {
3212 cpu->exit_request = 1;
3213 }
3214 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3215 cpu->exit_request = 1;
3216 }
3217 }
3218
3219 if (!kvm_pic_in_kernel()) {
3220 /* Try to inject an interrupt if the guest can accept it */
3221 if (run->ready_for_interrupt_injection &&
3222 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
3223 (env->eflags & IF_MASK)) {
3224 int irq;
3225
3226 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
3227 irq = cpu_get_pic_interrupt(env);
3228 if (irq >= 0) {
3229 struct kvm_interrupt intr;
3230
3231 intr.irq = irq;
3232 DPRINTF("injected interrupt %d\n", irq);
3233 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
3234 if (ret < 0) {
3235 fprintf(stderr,
3236 "KVM: injection failed, interrupt lost (%s)\n",
3237 strerror(-ret));
3238 }
3239 }
3240 }
3241
3242 /* If we have an interrupt but the guest is not ready to receive an
3243 * interrupt, request an interrupt window exit. This will
3244 * cause a return to userspace as soon as the guest is ready to
3245 * receive interrupts. */
3246 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
3247 run->request_interrupt_window = 1;
3248 } else {
3249 run->request_interrupt_window = 0;
3250 }
3251
3252 DPRINTF("setting tpr\n");
3253 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
3254
3255 qemu_mutex_unlock_iothread();
3256 }
3257 }
3258
3259 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
3260 {
3261 X86CPU *x86_cpu = X86_CPU(cpu);
3262 CPUX86State *env = &x86_cpu->env;
3263
3264 if (run->flags & KVM_RUN_X86_SMM) {
3265 env->hflags |= HF_SMM_MASK;
3266 } else {
3267 env->hflags &= ~HF_SMM_MASK;
3268 }
3269 if (run->if_flag) {
3270 env->eflags |= IF_MASK;
3271 } else {
3272 env->eflags &= ~IF_MASK;
3273 }
3274
3275 /* We need to protect the apic state against concurrent accesses from
3276 * different threads in case the userspace irqchip is used. */
3277 if (!kvm_irqchip_in_kernel()) {
3278 qemu_mutex_lock_iothread();
3279 }
3280 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
3281 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
3282 if (!kvm_irqchip_in_kernel()) {
3283 qemu_mutex_unlock_iothread();
3284 }
3285 return cpu_get_mem_attrs(env);
3286 }
3287
3288 int kvm_arch_process_async_events(CPUState *cs)
3289 {
3290 X86CPU *cpu = X86_CPU(cs);
3291 CPUX86State *env = &cpu->env;
3292
3293 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
3294 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3295 assert(env->mcg_cap);
3296
3297 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
3298
3299 kvm_cpu_synchronize_state(cs);
3300
3301 if (env->exception_injected == EXCP08_DBLE) {
3302 /* this means triple fault */
3303 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3304 cs->exit_request = 1;
3305 return 0;
3306 }
3307 env->exception_injected = EXCP12_MCHK;
3308 env->has_error_code = 0;
3309
3310 cs->halted = 0;
3311 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
3312 env->mp_state = KVM_MP_STATE_RUNNABLE;
3313 }
3314 }
3315
3316 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
3317 !(env->hflags & HF_SMM_MASK)) {
3318 kvm_cpu_synchronize_state(cs);
3319 do_cpu_init(cpu);
3320 }
3321
3322 if (kvm_irqchip_in_kernel()) {
3323 return 0;
3324 }
3325
3326 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
3327 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
3328 apic_poll_irq(cpu->apic_state);
3329 }
3330 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3331 (env->eflags & IF_MASK)) ||
3332 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3333 cs->halted = 0;
3334 }
3335 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
3336 kvm_cpu_synchronize_state(cs);
3337 do_cpu_sipi(cpu);
3338 }
3339 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
3340 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
3341 kvm_cpu_synchronize_state(cs);
3342 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
3343 env->tpr_access_type);
3344 }
3345
3346 return cs->halted;
3347 }
3348
3349 static int kvm_handle_halt(X86CPU *cpu)
3350 {
3351 CPUState *cs = CPU(cpu);
3352 CPUX86State *env = &cpu->env;
3353
3354 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3355 (env->eflags & IF_MASK)) &&
3356 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3357 cs->halted = 1;
3358 return EXCP_HLT;
3359 }
3360
3361 return 0;
3362 }
3363
3364 static int kvm_handle_tpr_access(X86CPU *cpu)
3365 {
3366 CPUState *cs = CPU(cpu);
3367 struct kvm_run *run = cs->kvm_run;
3368
3369 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
3370 run->tpr_access.is_write ? TPR_ACCESS_WRITE
3371 : TPR_ACCESS_READ);
3372 return 1;
3373 }
3374
3375 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3376 {
3377 static const uint8_t int3 = 0xcc;
3378
3379 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
3380 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
3381 return -EINVAL;
3382 }
3383 return 0;
3384 }
3385
3386 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3387 {
3388 uint8_t int3;
3389
3390 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
3391 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
3392 return -EINVAL;
3393 }
3394 return 0;
3395 }
3396
3397 static struct {
3398 target_ulong addr;
3399 int len;
3400 int type;
3401 } hw_breakpoint[4];
3402
3403 static int nb_hw_breakpoint;
3404
3405 static int find_hw_breakpoint(target_ulong addr, int len, int type)
3406 {
3407 int n;
3408
3409 for (n = 0; n < nb_hw_breakpoint; n++) {
3410 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
3411 (hw_breakpoint[n].len == len || len == -1)) {
3412 return n;
3413 }
3414 }
3415 return -1;
3416 }
3417
3418 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3419 target_ulong len, int type)
3420 {
3421 switch (type) {
3422 case GDB_BREAKPOINT_HW:
3423 len = 1;
3424 break;
3425 case GDB_WATCHPOINT_WRITE:
3426 case GDB_WATCHPOINT_ACCESS:
3427 switch (len) {
3428 case 1:
3429 break;
3430 case 2:
3431 case 4:
3432 case 8:
3433 if (addr & (len - 1)) {
3434 return -EINVAL;
3435 }
3436 break;
3437 default:
3438 return -EINVAL;
3439 }
3440 break;
3441 default:
3442 return -ENOSYS;
3443 }
3444
3445 if (nb_hw_breakpoint == 4) {
3446 return -ENOBUFS;
3447 }
3448 if (find_hw_breakpoint(addr, len, type) >= 0) {
3449 return -EEXIST;
3450 }
3451 hw_breakpoint[nb_hw_breakpoint].addr = addr;
3452 hw_breakpoint[nb_hw_breakpoint].len = len;
3453 hw_breakpoint[nb_hw_breakpoint].type = type;
3454 nb_hw_breakpoint++;
3455
3456 return 0;
3457 }
3458
3459 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3460 target_ulong len, int type)
3461 {
3462 int n;
3463
3464 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
3465 if (n < 0) {
3466 return -ENOENT;
3467 }
3468 nb_hw_breakpoint--;
3469 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
3470
3471 return 0;
3472 }
3473
3474 void kvm_arch_remove_all_hw_breakpoints(void)
3475 {
3476 nb_hw_breakpoint = 0;
3477 }
3478
3479 static CPUWatchpoint hw_watchpoint;
3480
3481 static int kvm_handle_debug(X86CPU *cpu,
3482 struct kvm_debug_exit_arch *arch_info)
3483 {
3484 CPUState *cs = CPU(cpu);
3485 CPUX86State *env = &cpu->env;
3486 int ret = 0;
3487 int n;
3488
3489 if (arch_info->exception == 1) {
3490 if (arch_info->dr6 & (1 << 14)) {
3491 if (cs->singlestep_enabled) {
3492 ret = EXCP_DEBUG;
3493 }
3494 } else {
3495 for (n = 0; n < 4; n++) {
3496 if (arch_info->dr6 & (1 << n)) {
3497 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
3498 case 0x0:
3499 ret = EXCP_DEBUG;
3500 break;
3501 case 0x1:
3502 ret = EXCP_DEBUG;
3503 cs->watchpoint_hit = &hw_watchpoint;
3504 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3505 hw_watchpoint.flags = BP_MEM_WRITE;
3506 break;
3507 case 0x3:
3508 ret = EXCP_DEBUG;
3509 cs->watchpoint_hit = &hw_watchpoint;
3510 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3511 hw_watchpoint.flags = BP_MEM_ACCESS;
3512 break;
3513 }
3514 }
3515 }
3516 }
3517 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
3518 ret = EXCP_DEBUG;
3519 }
3520 if (ret == 0) {
3521 cpu_synchronize_state(cs);
3522 assert(env->exception_injected == -1);
3523
3524 /* pass to guest */
3525 env->exception_injected = arch_info->exception;
3526 env->has_error_code = 0;
3527 }
3528
3529 return ret;
3530 }
3531
3532 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
3533 {
3534 const uint8_t type_code[] = {
3535 [GDB_BREAKPOINT_HW] = 0x0,
3536 [GDB_WATCHPOINT_WRITE] = 0x1,
3537 [GDB_WATCHPOINT_ACCESS] = 0x3
3538 };
3539 const uint8_t len_code[] = {
3540 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3541 };
3542 int n;
3543
3544 if (kvm_sw_breakpoints_active(cpu)) {
3545 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
3546 }
3547 if (nb_hw_breakpoint > 0) {
3548 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
3549 dbg->arch.debugreg[7] = 0x0600;
3550 for (n = 0; n < nb_hw_breakpoint; n++) {
3551 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
3552 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
3553 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
3554 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
3555 }
3556 }
3557 }
3558
3559 static bool host_supports_vmx(void)
3560 {
3561 uint32_t ecx, unused;
3562
3563 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
3564 return ecx & CPUID_EXT_VMX;
3565 }
3566
3567 #define VMX_INVALID_GUEST_STATE 0x80000021
3568
3569 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
3570 {
3571 X86CPU *cpu = X86_CPU(cs);
3572 uint64_t code;
3573 int ret;
3574
3575 switch (run->exit_reason) {
3576 case KVM_EXIT_HLT:
3577 DPRINTF("handle_hlt\n");
3578 qemu_mutex_lock_iothread();
3579 ret = kvm_handle_halt(cpu);
3580 qemu_mutex_unlock_iothread();
3581 break;
3582 case KVM_EXIT_SET_TPR:
3583 ret = 0;
3584 break;
3585 case KVM_EXIT_TPR_ACCESS:
3586 qemu_mutex_lock_iothread();
3587 ret = kvm_handle_tpr_access(cpu);
3588 qemu_mutex_unlock_iothread();
3589 break;
3590 case KVM_EXIT_FAIL_ENTRY:
3591 code = run->fail_entry.hardware_entry_failure_reason;
3592 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
3593 code);
3594 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
3595 fprintf(stderr,
3596 "\nIf you're running a guest on an Intel machine without "
3597 "unrestricted mode\n"
3598 "support, the failure can be most likely due to the guest "
3599 "entering an invalid\n"
3600 "state for Intel VT. For example, the guest maybe running "
3601 "in big real mode\n"
3602 "which is not supported on less recent Intel processors."
3603 "\n\n");
3604 }
3605 ret = -1;
3606 break;
3607 case KVM_EXIT_EXCEPTION:
3608 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
3609 run->ex.exception, run->ex.error_code);
3610 ret = -1;
3611 break;
3612 case KVM_EXIT_DEBUG:
3613 DPRINTF("kvm_exit_debug\n");
3614 qemu_mutex_lock_iothread();
3615 ret = kvm_handle_debug(cpu, &run->debug.arch);
3616 qemu_mutex_unlock_iothread();
3617 break;
3618 case KVM_EXIT_HYPERV:
3619 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
3620 break;
3621 case KVM_EXIT_IOAPIC_EOI:
3622 ioapic_eoi_broadcast(run->eoi.vector);
3623 ret = 0;
3624 break;
3625 default:
3626 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
3627 ret = -1;
3628 break;
3629 }
3630
3631 return ret;
3632 }
3633
3634 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
3635 {
3636 X86CPU *cpu = X86_CPU(cs);
3637 CPUX86State *env = &cpu->env;
3638
3639 kvm_cpu_synchronize_state(cs);
3640 return !(env->cr[0] & CR0_PE_MASK) ||
3641 ((env->segs[R_CS].selector & 3) != 3);
3642 }
3643
3644 void kvm_arch_init_irq_routing(KVMState *s)
3645 {
3646 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
3647 /* If kernel can't do irq routing, interrupt source
3648 * override 0->2 cannot be set up as required by HPET.
3649 * So we have to disable it.
3650 */
3651 no_hpet = 1;
3652 }
3653 /* We know at this point that we're using the in-kernel
3654 * irqchip, so we can use irqfds, and on x86 we know
3655 * we can use msi via irqfd and GSI routing.
3656 */
3657 kvm_msi_via_irqfd_allowed = true;
3658 kvm_gsi_routing_allowed = true;
3659
3660 if (kvm_irqchip_is_split()) {
3661 int i;
3662
3663 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3664 MSI routes for signaling interrupts to the local apics. */
3665 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
3666 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
3667 error_report("Could not enable split IRQ mode.");
3668 exit(1);
3669 }
3670 }
3671 }
3672 }
3673
3674 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
3675 {
3676 int ret;
3677 if (machine_kernel_irqchip_split(ms)) {
3678 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
3679 if (ret) {
3680 error_report("Could not enable split irqchip mode: %s",
3681 strerror(-ret));
3682 exit(1);
3683 } else {
3684 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3685 kvm_split_irqchip = true;
3686 return 1;
3687 }
3688 } else {
3689 return 0;
3690 }
3691 }
3692
3693 /* Classic KVM device assignment interface. Will remain x86 only. */
3694 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3695 uint32_t flags, uint32_t *dev_id)
3696 {
3697 struct kvm_assigned_pci_dev dev_data = {
3698 .segnr = dev_addr->domain,
3699 .busnr = dev_addr->bus,
3700 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3701 .flags = flags,
3702 };
3703 int ret;
3704
3705 dev_data.assigned_dev_id =
3706 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3707
3708 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3709 if (ret < 0) {
3710 return ret;
3711 }
3712
3713 *dev_id = dev_data.assigned_dev_id;
3714
3715 return 0;
3716 }
3717
3718 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3719 {
3720 struct kvm_assigned_pci_dev dev_data = {
3721 .assigned_dev_id = dev_id,
3722 };
3723
3724 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3725 }
3726
3727 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3728 uint32_t irq_type, uint32_t guest_irq)
3729 {
3730 struct kvm_assigned_irq assigned_irq = {
3731 .assigned_dev_id = dev_id,
3732 .guest_irq = guest_irq,
3733 .flags = irq_type,
3734 };
3735
3736 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3737 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3738 } else {
3739 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3740 }
3741 }
3742
3743 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3744 uint32_t guest_irq)
3745 {
3746 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3747 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3748
3749 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3750 }
3751
3752 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3753 {
3754 struct kvm_assigned_pci_dev dev_data = {
3755 .assigned_dev_id = dev_id,
3756 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3757 };
3758
3759 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3760 }
3761
3762 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3763 uint32_t type)
3764 {
3765 struct kvm_assigned_irq assigned_irq = {
3766 .assigned_dev_id = dev_id,
3767 .flags = type,
3768 };
3769
3770 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3771 }
3772
3773 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3774 {
3775 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3776 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3777 }
3778
3779 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3780 {
3781 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3782 KVM_DEV_IRQ_GUEST_MSI, virq);
3783 }
3784
3785 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3786 {
3787 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3788 KVM_DEV_IRQ_HOST_MSI);
3789 }
3790
3791 bool kvm_device_msix_supported(KVMState *s)
3792 {
3793 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3794 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3795 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3796 }
3797
3798 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3799 uint32_t nr_vectors)
3800 {
3801 struct kvm_assigned_msix_nr msix_nr = {
3802 .assigned_dev_id = dev_id,
3803 .entry_nr = nr_vectors,
3804 };
3805
3806 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3807 }
3808
3809 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3810 int virq)
3811 {
3812 struct kvm_assigned_msix_entry msix_entry = {
3813 .assigned_dev_id = dev_id,
3814 .gsi = virq,
3815 .entry = vector,
3816 };
3817
3818 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3819 }
3820
3821 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3822 {
3823 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3824 KVM_DEV_IRQ_GUEST_MSIX, 0);
3825 }
3826
3827 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3828 {
3829 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3830 KVM_DEV_IRQ_HOST_MSIX);
3831 }
3832
3833 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
3834 uint64_t address, uint32_t data, PCIDevice *dev)
3835 {
3836 X86IOMMUState *iommu = x86_iommu_get_default();
3837
3838 if (iommu) {
3839 int ret;
3840 MSIMessage src, dst;
3841 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
3842
3843 if (!class->int_remap) {
3844 return 0;
3845 }
3846
3847 src.address = route->u.msi.address_hi;
3848 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
3849 src.address |= route->u.msi.address_lo;
3850 src.data = route->u.msi.data;
3851
3852 ret = class->int_remap(iommu, &src, &dst, dev ? \
3853 pci_requester_id(dev) : \
3854 X86_IOMMU_SID_INVALID);
3855 if (ret) {
3856 trace_kvm_x86_fixup_msi_error(route->gsi);
3857 return 1;
3858 }
3859
3860 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
3861 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
3862 route->u.msi.data = dst.data;
3863 }
3864
3865 return 0;
3866 }
3867
3868 typedef struct MSIRouteEntry MSIRouteEntry;
3869
3870 struct MSIRouteEntry {
3871 PCIDevice *dev; /* Device pointer */
3872 int vector; /* MSI/MSIX vector index */
3873 int virq; /* Virtual IRQ index */
3874 QLIST_ENTRY(MSIRouteEntry) list;
3875 };
3876
3877 /* List of used GSI routes */
3878 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
3879 QLIST_HEAD_INITIALIZER(msi_route_list);
3880
3881 static void kvm_update_msi_routes_all(void *private, bool global,
3882 uint32_t index, uint32_t mask)
3883 {
3884 int cnt = 0;
3885 MSIRouteEntry *entry;
3886 MSIMessage msg;
3887 PCIDevice *dev;
3888
3889 /* TODO: explicit route update */
3890 QLIST_FOREACH(entry, &msi_route_list, list) {
3891 cnt++;
3892 dev = entry->dev;
3893 if (!msix_enabled(dev) && !msi_enabled(dev)) {
3894 continue;
3895 }
3896 msg = pci_get_msi_message(dev, entry->vector);
3897 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
3898 }
3899 kvm_irqchip_commit_routes(kvm_state);
3900 trace_kvm_x86_update_msi_routes(cnt);
3901 }
3902
3903 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
3904 int vector, PCIDevice *dev)
3905 {
3906 static bool notify_list_inited = false;
3907 MSIRouteEntry *entry;
3908
3909 if (!dev) {
3910 /* These are (possibly) IOAPIC routes only used for split
3911 * kernel irqchip mode, while what we are housekeeping are
3912 * PCI devices only. */
3913 return 0;
3914 }
3915
3916 entry = g_new0(MSIRouteEntry, 1);
3917 entry->dev = dev;
3918 entry->vector = vector;
3919 entry->virq = route->gsi;
3920 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
3921
3922 trace_kvm_x86_add_msi_route(route->gsi);
3923
3924 if (!notify_list_inited) {
3925 /* For the first time we do add route, add ourselves into
3926 * IOMMU's IEC notify list if needed. */
3927 X86IOMMUState *iommu = x86_iommu_get_default();
3928 if (iommu) {
3929 x86_iommu_iec_register_notifier(iommu,
3930 kvm_update_msi_routes_all,
3931 NULL);
3932 }
3933 notify_list_inited = true;
3934 }
3935 return 0;
3936 }
3937
3938 int kvm_arch_release_virq_post(int virq)
3939 {
3940 MSIRouteEntry *entry, *next;
3941 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
3942 if (entry->virq == virq) {
3943 trace_kvm_x86_remove_msi_route(virq);
3944 QLIST_REMOVE(entry, list);
3945 g_free(entry);
3946 break;
3947 }
3948 }
3949 return 0;
3950 }
3951
3952 int kvm_arch_msi_data_to_gsi(uint32_t data)
3953 {
3954 abort();
3955 }