]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/ops_sse.h
target/i386: Use aesdec_ISB_ISR_IMC_AK
[mirror_qemu.git] / target / i386 / ops_sse.h
1 /*
2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3 *
4 * Copyright (c) 2005 Fabrice Bellard
5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com>
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "crypto/aes.h"
22 #include "crypto/aes-round.h"
23
24 #if SHIFT == 0
25 #define Reg MMXReg
26 #define XMM_ONLY(...)
27 #define B(n) MMX_B(n)
28 #define W(n) MMX_W(n)
29 #define L(n) MMX_L(n)
30 #define Q(n) MMX_Q(n)
31 #define SUFFIX _mmx
32 #else
33 #define Reg ZMMReg
34 #define XMM_ONLY(...) __VA_ARGS__
35 #define B(n) ZMM_B(n)
36 #define W(n) ZMM_W(n)
37 #define L(n) ZMM_L(n)
38 #define Q(n) ZMM_Q(n)
39 #if SHIFT == 1
40 #define SUFFIX _xmm
41 #else
42 #define SUFFIX _ymm
43 #endif
44 #endif
45
46 #define LANE_WIDTH (SHIFT ? 16 : 8)
47 #define PACK_WIDTH (LANE_WIDTH / 2)
48
49 #if SHIFT == 0
50 #define FPSRL(x, c) ((x) >> shift)
51 #define FPSRAW(x, c) ((int16_t)(x) >> shift)
52 #define FPSRAL(x, c) ((int32_t)(x) >> shift)
53 #define FPSLL(x, c) ((x) << shift)
54 #endif
55
56 void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
57 {
58 int shift;
59 if (c->Q(0) > 15) {
60 for (int i = 0; i < 1 << SHIFT; i++) {
61 d->Q(i) = 0;
62 }
63 } else {
64 shift = c->B(0);
65 for (int i = 0; i < 4 << SHIFT; i++) {
66 d->W(i) = FPSRL(s->W(i), shift);
67 }
68 }
69 }
70
71 void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
72 {
73 int shift;
74 if (c->Q(0) > 15) {
75 for (int i = 0; i < 1 << SHIFT; i++) {
76 d->Q(i) = 0;
77 }
78 } else {
79 shift = c->B(0);
80 for (int i = 0; i < 4 << SHIFT; i++) {
81 d->W(i) = FPSLL(s->W(i), shift);
82 }
83 }
84 }
85
86 void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
87 {
88 int shift;
89 if (c->Q(0) > 15) {
90 shift = 15;
91 } else {
92 shift = c->B(0);
93 }
94 for (int i = 0; i < 4 << SHIFT; i++) {
95 d->W(i) = FPSRAW(s->W(i), shift);
96 }
97 }
98
99 void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
100 {
101 int shift;
102 if (c->Q(0) > 31) {
103 for (int i = 0; i < 1 << SHIFT; i++) {
104 d->Q(i) = 0;
105 }
106 } else {
107 shift = c->B(0);
108 for (int i = 0; i < 2 << SHIFT; i++) {
109 d->L(i) = FPSRL(s->L(i), shift);
110 }
111 }
112 }
113
114 void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
115 {
116 int shift;
117 if (c->Q(0) > 31) {
118 for (int i = 0; i < 1 << SHIFT; i++) {
119 d->Q(i) = 0;
120 }
121 } else {
122 shift = c->B(0);
123 for (int i = 0; i < 2 << SHIFT; i++) {
124 d->L(i) = FPSLL(s->L(i), shift);
125 }
126 }
127 }
128
129 void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
130 {
131 int shift;
132 if (c->Q(0) > 31) {
133 shift = 31;
134 } else {
135 shift = c->B(0);
136 }
137 for (int i = 0; i < 2 << SHIFT; i++) {
138 d->L(i) = FPSRAL(s->L(i), shift);
139 }
140 }
141
142 void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
143 {
144 int shift;
145 if (c->Q(0) > 63) {
146 for (int i = 0; i < 1 << SHIFT; i++) {
147 d->Q(i) = 0;
148 }
149 } else {
150 shift = c->B(0);
151 for (int i = 0; i < 1 << SHIFT; i++) {
152 d->Q(i) = FPSRL(s->Q(i), shift);
153 }
154 }
155 }
156
157 void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
158 {
159 int shift;
160 if (c->Q(0) > 63) {
161 for (int i = 0; i < 1 << SHIFT; i++) {
162 d->Q(i) = 0;
163 }
164 } else {
165 shift = c->B(0);
166 for (int i = 0; i < 1 << SHIFT; i++) {
167 d->Q(i) = FPSLL(s->Q(i), shift);
168 }
169 }
170 }
171
172 #if SHIFT >= 1
173 void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
174 {
175 int shift, i, j;
176
177 shift = c->L(0);
178 if (shift > 16) {
179 shift = 16;
180 }
181 for (j = 0; j < 8 << SHIFT; j += LANE_WIDTH) {
182 for (i = 0; i < 16 - shift; i++) {
183 d->B(j + i) = s->B(j + i + shift);
184 }
185 for (i = 16 - shift; i < 16; i++) {
186 d->B(j + i) = 0;
187 }
188 }
189 }
190
191 void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
192 {
193 int shift, i, j;
194
195 shift = c->L(0);
196 if (shift > 16) {
197 shift = 16;
198 }
199 for (j = 0; j < 8 << SHIFT; j += LANE_WIDTH) {
200 for (i = 15; i >= shift; i--) {
201 d->B(j + i) = s->B(j + i - shift);
202 }
203 for (i = 0; i < shift; i++) {
204 d->B(j + i) = 0;
205 }
206 }
207 }
208 #endif
209
210 #define SSE_HELPER_1(name, elem, num, F) \
211 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
212 { \
213 int n = num; \
214 for (int i = 0; i < n; i++) { \
215 d->elem(i) = F(s->elem(i)); \
216 } \
217 }
218
219 #define SSE_HELPER_2(name, elem, num, F) \
220 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
221 { \
222 int n = num; \
223 for (int i = 0; i < n; i++) { \
224 d->elem(i) = F(v->elem(i), s->elem(i)); \
225 } \
226 }
227
228 #define SSE_HELPER_B(name, F) \
229 SSE_HELPER_2(name, B, 8 << SHIFT, F)
230
231 #define SSE_HELPER_W(name, F) \
232 SSE_HELPER_2(name, W, 4 << SHIFT, F)
233
234 #define SSE_HELPER_L(name, F) \
235 SSE_HELPER_2(name, L, 2 << SHIFT, F)
236
237 #define SSE_HELPER_Q(name, F) \
238 SSE_HELPER_2(name, Q, 1 << SHIFT, F)
239
240 #if SHIFT == 0
241 static inline int satub(int x)
242 {
243 if (x < 0) {
244 return 0;
245 } else if (x > 255) {
246 return 255;
247 } else {
248 return x;
249 }
250 }
251
252 static inline int satuw(int x)
253 {
254 if (x < 0) {
255 return 0;
256 } else if (x > 65535) {
257 return 65535;
258 } else {
259 return x;
260 }
261 }
262
263 static inline int satsb(int x)
264 {
265 if (x < -128) {
266 return -128;
267 } else if (x > 127) {
268 return 127;
269 } else {
270 return x;
271 }
272 }
273
274 static inline int satsw(int x)
275 {
276 if (x < -32768) {
277 return -32768;
278 } else if (x > 32767) {
279 return 32767;
280 } else {
281 return x;
282 }
283 }
284
285 #define FADD(a, b) ((a) + (b))
286 #define FADDUB(a, b) satub((a) + (b))
287 #define FADDUW(a, b) satuw((a) + (b))
288 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
289 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
290
291 #define FSUB(a, b) ((a) - (b))
292 #define FSUBUB(a, b) satub((a) - (b))
293 #define FSUBUW(a, b) satuw((a) - (b))
294 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
295 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
296 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
297 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
298 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
299 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
300
301 #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16)
302 #define FMULHUW(a, b) ((a) * (b) >> 16)
303 #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16)
304
305 #define FAVG(a, b) (((a) + (b) + 1) >> 1)
306 #endif
307
308 SSE_HELPER_W(helper_pmulhuw, FMULHUW)
309 SSE_HELPER_W(helper_pmulhw, FMULHW)
310
311 #if SHIFT == 0
312 void glue(helper_pmulhrw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
313 {
314 d->W(0) = FMULHRW(d->W(0), s->W(0));
315 d->W(1) = FMULHRW(d->W(1), s->W(1));
316 d->W(2) = FMULHRW(d->W(2), s->W(2));
317 d->W(3) = FMULHRW(d->W(3), s->W(3));
318 }
319 #endif
320
321 SSE_HELPER_B(helper_pavgb, FAVG)
322 SSE_HELPER_W(helper_pavgw, FAVG)
323
324 void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
325 {
326 int i;
327
328 for (i = 0; i < (1 << SHIFT); i++) {
329 d->Q(i) = (uint64_t)s->L(i * 2) * (uint64_t)v->L(i * 2);
330 }
331 }
332
333 void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
334 {
335 int i;
336
337 for (i = 0; i < (2 << SHIFT); i++) {
338 d->L(i) = (int16_t)s->W(2 * i) * (int16_t)v->W(2 * i) +
339 (int16_t)s->W(2 * i + 1) * (int16_t)v->W(2 * i + 1);
340 }
341 }
342
343 #if SHIFT == 0
344 static inline int abs1(int a)
345 {
346 if (a < 0) {
347 return -a;
348 } else {
349 return a;
350 }
351 }
352 #endif
353 void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
354 {
355 int i;
356
357 for (i = 0; i < (1 << SHIFT); i++) {
358 unsigned int val = 0;
359 val += abs1(v->B(8 * i + 0) - s->B(8 * i + 0));
360 val += abs1(v->B(8 * i + 1) - s->B(8 * i + 1));
361 val += abs1(v->B(8 * i + 2) - s->B(8 * i + 2));
362 val += abs1(v->B(8 * i + 3) - s->B(8 * i + 3));
363 val += abs1(v->B(8 * i + 4) - s->B(8 * i + 4));
364 val += abs1(v->B(8 * i + 5) - s->B(8 * i + 5));
365 val += abs1(v->B(8 * i + 6) - s->B(8 * i + 6));
366 val += abs1(v->B(8 * i + 7) - s->B(8 * i + 7));
367 d->Q(i) = val;
368 }
369 }
370
371 #if SHIFT < 2
372 void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
373 target_ulong a0)
374 {
375 int i;
376
377 for (i = 0; i < (8 << SHIFT); i++) {
378 if (s->B(i) & 0x80) {
379 cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC());
380 }
381 }
382 }
383 #endif
384
385 #define SHUFFLE4(F, a, b, offset) do { \
386 r0 = a->F((order & 3) + offset); \
387 r1 = a->F(((order >> 2) & 3) + offset); \
388 r2 = b->F(((order >> 4) & 3) + offset); \
389 r3 = b->F(((order >> 6) & 3) + offset); \
390 d->F(offset) = r0; \
391 d->F(offset + 1) = r1; \
392 d->F(offset + 2) = r2; \
393 d->F(offset + 3) = r3; \
394 } while (0)
395
396 #if SHIFT == 0
397 void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order)
398 {
399 uint16_t r0, r1, r2, r3;
400
401 SHUFFLE4(W, s, s, 0);
402 }
403 #else
404 void glue(helper_shufps, SUFFIX)(Reg *d, Reg *v, Reg *s, int order)
405 {
406 uint32_t r0, r1, r2, r3;
407 int i;
408
409 for (i = 0; i < 2 << SHIFT; i += 4) {
410 SHUFFLE4(L, v, s, i);
411 }
412 }
413
414 void glue(helper_shufpd, SUFFIX)(Reg *d, Reg *v, Reg *s, int order)
415 {
416 uint64_t r0, r1;
417 int i;
418
419 for (i = 0; i < 1 << SHIFT; i += 2) {
420 r0 = v->Q(((order & 1) & 1) + i);
421 r1 = s->Q(((order >> 1) & 1) + i);
422 d->Q(i) = r0;
423 d->Q(i + 1) = r1;
424 order >>= 2;
425 }
426 }
427
428 void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order)
429 {
430 uint32_t r0, r1, r2, r3;
431 int i;
432
433 for (i = 0; i < 2 << SHIFT; i += 4) {
434 SHUFFLE4(L, s, s, i);
435 }
436 }
437
438 void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order)
439 {
440 uint16_t r0, r1, r2, r3;
441 int i, j;
442
443 for (i = 0, j = 1; j < 1 << SHIFT; i += 8, j += 2) {
444 SHUFFLE4(W, s, s, i);
445 d->Q(j) = s->Q(j);
446 }
447 }
448
449 void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order)
450 {
451 uint16_t r0, r1, r2, r3;
452 int i, j;
453
454 for (i = 4, j = 0; j < 1 << SHIFT; i += 8, j += 2) {
455 d->Q(j) = s->Q(j);
456 SHUFFLE4(W, s, s, i);
457 }
458 }
459 #endif
460
461 #if SHIFT >= 1
462 /* FPU ops */
463 /* XXX: not accurate */
464
465 #define SSE_HELPER_P(name, F) \
466 void glue(helper_ ## name ## ps, SUFFIX)(CPUX86State *env, \
467 Reg *d, Reg *v, Reg *s) \
468 { \
469 int i; \
470 for (i = 0; i < 2 << SHIFT; i++) { \
471 d->ZMM_S(i) = F(32, v->ZMM_S(i), s->ZMM_S(i)); \
472 } \
473 } \
474 \
475 void glue(helper_ ## name ## pd, SUFFIX)(CPUX86State *env, \
476 Reg *d, Reg *v, Reg *s) \
477 { \
478 int i; \
479 for (i = 0; i < 1 << SHIFT; i++) { \
480 d->ZMM_D(i) = F(64, v->ZMM_D(i), s->ZMM_D(i)); \
481 } \
482 }
483
484 #if SHIFT == 1
485
486 #define SSE_HELPER_S(name, F) \
487 SSE_HELPER_P(name, F) \
488 \
489 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *v, Reg *s)\
490 { \
491 int i; \
492 d->ZMM_S(0) = F(32, v->ZMM_S(0), s->ZMM_S(0)); \
493 for (i = 1; i < 2 << SHIFT; i++) { \
494 d->ZMM_L(i) = v->ZMM_L(i); \
495 } \
496 } \
497 \
498 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *v, Reg *s)\
499 { \
500 int i; \
501 d->ZMM_D(0) = F(64, v->ZMM_D(0), s->ZMM_D(0)); \
502 for (i = 1; i < 1 << SHIFT; i++) { \
503 d->ZMM_Q(i) = v->ZMM_Q(i); \
504 } \
505 }
506
507 #else
508
509 #define SSE_HELPER_S(name, F) SSE_HELPER_P(name, F)
510
511 #endif
512
513 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
514 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
515 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
516 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
517
518 /* Note that the choice of comparison op here is important to get the
519 * special cases right: for min and max Intel specifies that (-0,0),
520 * (NaN, anything) and (anything, NaN) return the second argument.
521 */
522 #define FPU_MIN(size, a, b) \
523 (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b))
524 #define FPU_MAX(size, a, b) \
525 (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b))
526
527 SSE_HELPER_S(add, FPU_ADD)
528 SSE_HELPER_S(sub, FPU_SUB)
529 SSE_HELPER_S(mul, FPU_MUL)
530 SSE_HELPER_S(div, FPU_DIV)
531 SSE_HELPER_S(min, FPU_MIN)
532 SSE_HELPER_S(max, FPU_MAX)
533
534 void glue(helper_sqrtps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
535 {
536 int i;
537 for (i = 0; i < 2 << SHIFT; i++) {
538 d->ZMM_S(i) = float32_sqrt(s->ZMM_S(i), &env->sse_status);
539 }
540 }
541
542 void glue(helper_sqrtpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
543 {
544 int i;
545 for (i = 0; i < 1 << SHIFT; i++) {
546 d->ZMM_D(i) = float64_sqrt(s->ZMM_D(i), &env->sse_status);
547 }
548 }
549
550 #if SHIFT == 1
551 void helper_sqrtss(CPUX86State *env, Reg *d, Reg *v, Reg *s)
552 {
553 int i;
554 d->ZMM_S(0) = float32_sqrt(s->ZMM_S(0), &env->sse_status);
555 for (i = 1; i < 2 << SHIFT; i++) {
556 d->ZMM_L(i) = v->ZMM_L(i);
557 }
558 }
559
560 void helper_sqrtsd(CPUX86State *env, Reg *d, Reg *v, Reg *s)
561 {
562 int i;
563 d->ZMM_D(0) = float64_sqrt(s->ZMM_D(0), &env->sse_status);
564 for (i = 1; i < 1 << SHIFT; i++) {
565 d->ZMM_Q(i) = v->ZMM_Q(i);
566 }
567 }
568 #endif
569
570 /* float to float conversions */
571 void glue(helper_cvtps2pd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
572 {
573 int i;
574 for (i = 1 << SHIFT; --i >= 0; ) {
575 d->ZMM_D(i) = float32_to_float64(s->ZMM_S(i), &env->sse_status);
576 }
577 }
578
579 void glue(helper_cvtpd2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
580 {
581 int i;
582 for (i = 0; i < 1 << SHIFT; i++) {
583 d->ZMM_S(i) = float64_to_float32(s->ZMM_D(i), &env->sse_status);
584 }
585 for (i >>= 1; i < 1 << SHIFT; i++) {
586 d->Q(i) = 0;
587 }
588 }
589
590 #if SHIFT >= 1
591 void glue(helper_cvtph2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
592 {
593 int i;
594
595 for (i = 2 << SHIFT; --i >= 0; ) {
596 d->ZMM_S(i) = float16_to_float32(s->ZMM_H(i), true, &env->sse_status);
597 }
598 }
599
600 void glue(helper_cvtps2ph, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, int mode)
601 {
602 int i;
603 FloatRoundMode prev_rounding_mode = env->sse_status.float_rounding_mode;
604 if (!(mode & (1 << 2))) {
605 set_x86_rounding_mode(mode & 3, &env->sse_status);
606 }
607
608 for (i = 0; i < 2 << SHIFT; i++) {
609 d->ZMM_H(i) = float32_to_float16(s->ZMM_S(i), true, &env->sse_status);
610 }
611 for (i >>= 2; i < 1 << SHIFT; i++) {
612 d->Q(i) = 0;
613 }
614
615 env->sse_status.float_rounding_mode = prev_rounding_mode;
616 }
617 #endif
618
619 #if SHIFT == 1
620 void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *v, Reg *s)
621 {
622 int i;
623 d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status);
624 for (i = 1; i < 1 << SHIFT; i++) {
625 d->ZMM_Q(i) = v->ZMM_Q(i);
626 }
627 }
628
629 void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *v, Reg *s)
630 {
631 int i;
632 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status);
633 for (i = 1; i < 2 << SHIFT; i++) {
634 d->ZMM_L(i) = v->ZMM_L(i);
635 }
636 }
637 #endif
638
639 /* integer to float */
640 void glue(helper_cvtdq2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
641 {
642 int i;
643 for (i = 0; i < 2 << SHIFT; i++) {
644 d->ZMM_S(i) = int32_to_float32(s->ZMM_L(i), &env->sse_status);
645 }
646 }
647
648 void glue(helper_cvtdq2pd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
649 {
650 int i;
651 for (i = 1 << SHIFT; --i >= 0; ) {
652 int32_t l = s->ZMM_L(i);
653 d->ZMM_D(i) = int32_to_float64(l, &env->sse_status);
654 }
655 }
656
657 #if SHIFT == 1
658 void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s)
659 {
660 d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
661 d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
662 }
663
664 void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s)
665 {
666 d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
667 d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
668 }
669
670 void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val)
671 {
672 d->ZMM_S(0) = int32_to_float32(val, &env->sse_status);
673 }
674
675 void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val)
676 {
677 d->ZMM_D(0) = int32_to_float64(val, &env->sse_status);
678 }
679
680 #ifdef TARGET_X86_64
681 void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val)
682 {
683 d->ZMM_S(0) = int64_to_float32(val, &env->sse_status);
684 }
685
686 void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val)
687 {
688 d->ZMM_D(0) = int64_to_float64(val, &env->sse_status);
689 }
690 #endif
691
692 #endif
693
694 /* float to integer */
695
696 #if SHIFT == 1
697 /*
698 * x86 mandates that we return the indefinite integer value for the result
699 * of any float-to-integer conversion that raises the 'invalid' exception.
700 * Wrap the softfloat functions to get this behaviour.
701 */
702 #define WRAP_FLOATCONV(RETTYPE, FN, FLOATTYPE, INDEFVALUE) \
703 static inline RETTYPE x86_##FN(FLOATTYPE a, float_status *s) \
704 { \
705 int oldflags, newflags; \
706 RETTYPE r; \
707 \
708 oldflags = get_float_exception_flags(s); \
709 set_float_exception_flags(0, s); \
710 r = FN(a, s); \
711 newflags = get_float_exception_flags(s); \
712 if (newflags & float_flag_invalid) { \
713 r = INDEFVALUE; \
714 } \
715 set_float_exception_flags(newflags | oldflags, s); \
716 return r; \
717 }
718
719 WRAP_FLOATCONV(int32_t, float32_to_int32, float32, INT32_MIN)
720 WRAP_FLOATCONV(int32_t, float32_to_int32_round_to_zero, float32, INT32_MIN)
721 WRAP_FLOATCONV(int32_t, float64_to_int32, float64, INT32_MIN)
722 WRAP_FLOATCONV(int32_t, float64_to_int32_round_to_zero, float64, INT32_MIN)
723 WRAP_FLOATCONV(int64_t, float32_to_int64, float32, INT64_MIN)
724 WRAP_FLOATCONV(int64_t, float32_to_int64_round_to_zero, float32, INT64_MIN)
725 WRAP_FLOATCONV(int64_t, float64_to_int64, float64, INT64_MIN)
726 WRAP_FLOATCONV(int64_t, float64_to_int64_round_to_zero, float64, INT64_MIN)
727 #endif
728
729 void glue(helper_cvtps2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
730 {
731 int i;
732 for (i = 0; i < 2 << SHIFT; i++) {
733 d->ZMM_L(i) = x86_float32_to_int32(s->ZMM_S(i), &env->sse_status);
734 }
735 }
736
737 void glue(helper_cvtpd2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
738 {
739 int i;
740 for (i = 0; i < 1 << SHIFT; i++) {
741 d->ZMM_L(i) = x86_float64_to_int32(s->ZMM_D(i), &env->sse_status);
742 }
743 for (i >>= 1; i < 1 << SHIFT; i++) {
744 d->Q(i) = 0;
745 }
746 }
747
748 #if SHIFT == 1
749 void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
750 {
751 d->MMX_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status);
752 d->MMX_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status);
753 }
754
755 void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
756 {
757 d->MMX_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status);
758 d->MMX_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status);
759 }
760
761 int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s)
762 {
763 return x86_float32_to_int32(s->ZMM_S(0), &env->sse_status);
764 }
765
766 int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s)
767 {
768 return x86_float64_to_int32(s->ZMM_D(0), &env->sse_status);
769 }
770
771 #ifdef TARGET_X86_64
772 int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s)
773 {
774 return x86_float32_to_int64(s->ZMM_S(0), &env->sse_status);
775 }
776
777 int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s)
778 {
779 return x86_float64_to_int64(s->ZMM_D(0), &env->sse_status);
780 }
781 #endif
782 #endif
783
784 /* float to integer truncated */
785 void glue(helper_cvttps2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
786 {
787 int i;
788 for (i = 0; i < 2 << SHIFT; i++) {
789 d->ZMM_L(i) = x86_float32_to_int32_round_to_zero(s->ZMM_S(i),
790 &env->sse_status);
791 }
792 }
793
794 void glue(helper_cvttpd2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
795 {
796 int i;
797 for (i = 0; i < 1 << SHIFT; i++) {
798 d->ZMM_L(i) = x86_float64_to_int32_round_to_zero(s->ZMM_D(i),
799 &env->sse_status);
800 }
801 for (i >>= 1; i < 1 << SHIFT; i++) {
802 d->Q(i) = 0;
803 }
804 }
805
806 #if SHIFT == 1
807 void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
808 {
809 d->MMX_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
810 d->MMX_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status);
811 }
812
813 void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
814 {
815 d->MMX_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
816 d->MMX_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status);
817 }
818
819 int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s)
820 {
821 return x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
822 }
823
824 int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s)
825 {
826 return x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
827 }
828
829 #ifdef TARGET_X86_64
830 int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s)
831 {
832 return x86_float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status);
833 }
834
835 int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s)
836 {
837 return x86_float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status);
838 }
839 #endif
840 #endif
841
842 void glue(helper_rsqrtps, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
843 {
844 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
845 int i;
846 for (i = 0; i < 2 << SHIFT; i++) {
847 d->ZMM_S(i) = float32_div(float32_one,
848 float32_sqrt(s->ZMM_S(i), &env->sse_status),
849 &env->sse_status);
850 }
851 set_float_exception_flags(old_flags, &env->sse_status);
852 }
853
854 #if SHIFT == 1
855 void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *v, ZMMReg *s)
856 {
857 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
858 int i;
859 d->ZMM_S(0) = float32_div(float32_one,
860 float32_sqrt(s->ZMM_S(0), &env->sse_status),
861 &env->sse_status);
862 set_float_exception_flags(old_flags, &env->sse_status);
863 for (i = 1; i < 2 << SHIFT; i++) {
864 d->ZMM_L(i) = v->ZMM_L(i);
865 }
866 }
867 #endif
868
869 void glue(helper_rcpps, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
870 {
871 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
872 int i;
873 for (i = 0; i < 2 << SHIFT; i++) {
874 d->ZMM_S(i) = float32_div(float32_one, s->ZMM_S(i), &env->sse_status);
875 }
876 set_float_exception_flags(old_flags, &env->sse_status);
877 }
878
879 #if SHIFT == 1
880 void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *v, ZMMReg *s)
881 {
882 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
883 int i;
884 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status);
885 for (i = 1; i < 2 << SHIFT; i++) {
886 d->ZMM_L(i) = v->ZMM_L(i);
887 }
888 set_float_exception_flags(old_flags, &env->sse_status);
889 }
890 #endif
891
892 #if SHIFT == 1
893 static inline uint64_t helper_extrq(uint64_t src, int shift, int len)
894 {
895 uint64_t mask;
896
897 if (len == 0) {
898 mask = ~0LL;
899 } else {
900 mask = (1ULL << len) - 1;
901 }
902 return (src >> shift) & mask;
903 }
904
905 void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s)
906 {
907 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1) & 63, s->ZMM_B(0) & 63);
908 }
909
910 void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length)
911 {
912 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length);
913 }
914
915 static inline uint64_t helper_insertq(uint64_t dest, uint64_t src, int shift, int len)
916 {
917 uint64_t mask;
918
919 if (len == 0) {
920 mask = ~0ULL;
921 } else {
922 mask = (1ULL << len) - 1;
923 }
924 return (dest & ~(mask << shift)) | ((src & mask) << shift);
925 }
926
927 void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s)
928 {
929 d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), s->ZMM_Q(0), s->ZMM_B(9) & 63, s->ZMM_B(8) & 63);
930 }
931
932 void helper_insertq_i(CPUX86State *env, ZMMReg *d, ZMMReg *s, int index, int length)
933 {
934 d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), s->ZMM_Q(0), index, length);
935 }
936 #endif
937
938 #define SSE_HELPER_HPS(name, F) \
939 void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
940 { \
941 float32 r[2 << SHIFT]; \
942 int i, j, k; \
943 for (k = 0; k < 2 << SHIFT; k += LANE_WIDTH / 4) { \
944 for (i = j = 0; j < 4; i++, j += 2) { \
945 r[i + k] = F(v->ZMM_S(j + k), v->ZMM_S(j + k + 1), &env->sse_status); \
946 } \
947 for (j = 0; j < 4; i++, j += 2) { \
948 r[i + k] = F(s->ZMM_S(j + k), s->ZMM_S(j + k + 1), &env->sse_status); \
949 } \
950 } \
951 for (i = 0; i < 2 << SHIFT; i++) { \
952 d->ZMM_S(i) = r[i]; \
953 } \
954 }
955
956 SSE_HELPER_HPS(haddps, float32_add)
957 SSE_HELPER_HPS(hsubps, float32_sub)
958
959 #define SSE_HELPER_HPD(name, F) \
960 void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
961 { \
962 float64 r[1 << SHIFT]; \
963 int i, j, k; \
964 for (k = 0; k < 1 << SHIFT; k += LANE_WIDTH / 8) { \
965 for (i = j = 0; j < 2; i++, j += 2) { \
966 r[i + k] = F(v->ZMM_D(j + k), v->ZMM_D(j + k + 1), &env->sse_status); \
967 } \
968 for (j = 0; j < 2; i++, j += 2) { \
969 r[i + k] = F(s->ZMM_D(j + k), s->ZMM_D(j + k + 1), &env->sse_status); \
970 } \
971 } \
972 for (i = 0; i < 1 << SHIFT; i++) { \
973 d->ZMM_D(i) = r[i]; \
974 } \
975 }
976
977 SSE_HELPER_HPD(haddpd, float64_add)
978 SSE_HELPER_HPD(hsubpd, float64_sub)
979
980 void glue(helper_addsubps, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
981 {
982 int i;
983 for (i = 0; i < 2 << SHIFT; i += 2) {
984 d->ZMM_S(i) = float32_sub(v->ZMM_S(i), s->ZMM_S(i), &env->sse_status);
985 d->ZMM_S(i+1) = float32_add(v->ZMM_S(i+1), s->ZMM_S(i+1), &env->sse_status);
986 }
987 }
988
989 void glue(helper_addsubpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
990 {
991 int i;
992 for (i = 0; i < 1 << SHIFT; i += 2) {
993 d->ZMM_D(i) = float64_sub(v->ZMM_D(i), s->ZMM_D(i), &env->sse_status);
994 d->ZMM_D(i+1) = float64_add(v->ZMM_D(i+1), s->ZMM_D(i+1), &env->sse_status);
995 }
996 }
997
998 #define SSE_HELPER_CMP_P(name, F, C) \
999 void glue(helper_ ## name ## ps, SUFFIX)(CPUX86State *env, \
1000 Reg *d, Reg *v, Reg *s) \
1001 { \
1002 int i; \
1003 for (i = 0; i < 2 << SHIFT; i++) { \
1004 d->ZMM_L(i) = C(F(32, v->ZMM_S(i), s->ZMM_S(i))) ? -1 : 0; \
1005 } \
1006 } \
1007 \
1008 void glue(helper_ ## name ## pd, SUFFIX)(CPUX86State *env, \
1009 Reg *d, Reg *v, Reg *s) \
1010 { \
1011 int i; \
1012 for (i = 0; i < 1 << SHIFT; i++) { \
1013 d->ZMM_Q(i) = C(F(64, v->ZMM_D(i), s->ZMM_D(i))) ? -1 : 0; \
1014 } \
1015 }
1016
1017 #if SHIFT == 1
1018 #define SSE_HELPER_CMP(name, F, C) \
1019 SSE_HELPER_CMP_P(name, F, C) \
1020 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
1021 { \
1022 int i; \
1023 d->ZMM_L(0) = C(F(32, v->ZMM_S(0), s->ZMM_S(0))) ? -1 : 0; \
1024 for (i = 1; i < 2 << SHIFT; i++) { \
1025 d->ZMM_L(i) = v->ZMM_L(i); \
1026 } \
1027 } \
1028 \
1029 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
1030 { \
1031 int i; \
1032 d->ZMM_Q(0) = C(F(64, v->ZMM_D(0), s->ZMM_D(0))) ? -1 : 0; \
1033 for (i = 1; i < 1 << SHIFT; i++) { \
1034 d->ZMM_Q(i) = v->ZMM_Q(i); \
1035 } \
1036 }
1037
1038 static inline bool FPU_EQU(FloatRelation x)
1039 {
1040 return (x == float_relation_equal || x == float_relation_unordered);
1041 }
1042 static inline bool FPU_GE(FloatRelation x)
1043 {
1044 return (x == float_relation_equal || x == float_relation_greater);
1045 }
1046 #define FPU_EQ(x) (x == float_relation_equal)
1047 #define FPU_LT(x) (x == float_relation_less)
1048 #define FPU_LE(x) (x <= float_relation_equal)
1049 #define FPU_GT(x) (x == float_relation_greater)
1050 #define FPU_UNORD(x) (x == float_relation_unordered)
1051 /* We must make sure we evaluate the argument in case it is a signalling NAN */
1052 #define FPU_FALSE(x) (x == float_relation_equal && 0)
1053
1054 #define FPU_CMPQ(size, a, b) \
1055 float ## size ## _compare_quiet(a, b, &env->sse_status)
1056 #define FPU_CMPS(size, a, b) \
1057 float ## size ## _compare(a, b, &env->sse_status)
1058
1059 #else
1060 #define SSE_HELPER_CMP(name, F, C) SSE_HELPER_CMP_P(name, F, C)
1061 #endif
1062
1063 SSE_HELPER_CMP(cmpeq, FPU_CMPQ, FPU_EQ)
1064 SSE_HELPER_CMP(cmplt, FPU_CMPS, FPU_LT)
1065 SSE_HELPER_CMP(cmple, FPU_CMPS, FPU_LE)
1066 SSE_HELPER_CMP(cmpunord, FPU_CMPQ, FPU_UNORD)
1067 SSE_HELPER_CMP(cmpneq, FPU_CMPQ, !FPU_EQ)
1068 SSE_HELPER_CMP(cmpnlt, FPU_CMPS, !FPU_LT)
1069 SSE_HELPER_CMP(cmpnle, FPU_CMPS, !FPU_LE)
1070 SSE_HELPER_CMP(cmpord, FPU_CMPQ, !FPU_UNORD)
1071
1072 SSE_HELPER_CMP(cmpequ, FPU_CMPQ, FPU_EQU)
1073 SSE_HELPER_CMP(cmpnge, FPU_CMPS, !FPU_GE)
1074 SSE_HELPER_CMP(cmpngt, FPU_CMPS, !FPU_GT)
1075 SSE_HELPER_CMP(cmpfalse, FPU_CMPQ, FPU_FALSE)
1076 SSE_HELPER_CMP(cmpnequ, FPU_CMPQ, !FPU_EQU)
1077 SSE_HELPER_CMP(cmpge, FPU_CMPS, FPU_GE)
1078 SSE_HELPER_CMP(cmpgt, FPU_CMPS, FPU_GT)
1079 SSE_HELPER_CMP(cmptrue, FPU_CMPQ, !FPU_FALSE)
1080
1081 SSE_HELPER_CMP(cmpeqs, FPU_CMPS, FPU_EQ)
1082 SSE_HELPER_CMP(cmpltq, FPU_CMPQ, FPU_LT)
1083 SSE_HELPER_CMP(cmpleq, FPU_CMPQ, FPU_LE)
1084 SSE_HELPER_CMP(cmpunords, FPU_CMPS, FPU_UNORD)
1085 SSE_HELPER_CMP(cmpneqq, FPU_CMPS, !FPU_EQ)
1086 SSE_HELPER_CMP(cmpnltq, FPU_CMPQ, !FPU_LT)
1087 SSE_HELPER_CMP(cmpnleq, FPU_CMPQ, !FPU_LE)
1088 SSE_HELPER_CMP(cmpords, FPU_CMPS, !FPU_UNORD)
1089
1090 SSE_HELPER_CMP(cmpequs, FPU_CMPS, FPU_EQU)
1091 SSE_HELPER_CMP(cmpngeq, FPU_CMPQ, !FPU_GE)
1092 SSE_HELPER_CMP(cmpngtq, FPU_CMPQ, !FPU_GT)
1093 SSE_HELPER_CMP(cmpfalses, FPU_CMPS, FPU_FALSE)
1094 SSE_HELPER_CMP(cmpnequs, FPU_CMPS, !FPU_EQU)
1095 SSE_HELPER_CMP(cmpgeq, FPU_CMPQ, FPU_GE)
1096 SSE_HELPER_CMP(cmpgtq, FPU_CMPQ, FPU_GT)
1097 SSE_HELPER_CMP(cmptrues, FPU_CMPS, !FPU_FALSE)
1098
1099 #undef SSE_HELPER_CMP
1100
1101 #if SHIFT == 1
1102 static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
1103
1104 void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s)
1105 {
1106 FloatRelation ret;
1107 float32 s0, s1;
1108
1109 s0 = d->ZMM_S(0);
1110 s1 = s->ZMM_S(0);
1111 ret = float32_compare_quiet(s0, s1, &env->sse_status);
1112 CC_SRC = comis_eflags[ret + 1];
1113 }
1114
1115 void helper_comiss(CPUX86State *env, Reg *d, Reg *s)
1116 {
1117 FloatRelation ret;
1118 float32 s0, s1;
1119
1120 s0 = d->ZMM_S(0);
1121 s1 = s->ZMM_S(0);
1122 ret = float32_compare(s0, s1, &env->sse_status);
1123 CC_SRC = comis_eflags[ret + 1];
1124 }
1125
1126 void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s)
1127 {
1128 FloatRelation ret;
1129 float64 d0, d1;
1130
1131 d0 = d->ZMM_D(0);
1132 d1 = s->ZMM_D(0);
1133 ret = float64_compare_quiet(d0, d1, &env->sse_status);
1134 CC_SRC = comis_eflags[ret + 1];
1135 }
1136
1137 void helper_comisd(CPUX86State *env, Reg *d, Reg *s)
1138 {
1139 FloatRelation ret;
1140 float64 d0, d1;
1141
1142 d0 = d->ZMM_D(0);
1143 d1 = s->ZMM_D(0);
1144 ret = float64_compare(d0, d1, &env->sse_status);
1145 CC_SRC = comis_eflags[ret + 1];
1146 }
1147 #endif
1148
1149 uint32_t glue(helper_movmskps, SUFFIX)(CPUX86State *env, Reg *s)
1150 {
1151 uint32_t mask;
1152 int i;
1153
1154 mask = 0;
1155 for (i = 0; i < 2 << SHIFT; i++) {
1156 mask |= (s->ZMM_L(i) >> (31 - i)) & (1 << i);
1157 }
1158 return mask;
1159 }
1160
1161 uint32_t glue(helper_movmskpd, SUFFIX)(CPUX86State *env, Reg *s)
1162 {
1163 uint32_t mask;
1164 int i;
1165
1166 mask = 0;
1167 for (i = 0; i < 1 << SHIFT; i++) {
1168 mask |= (s->ZMM_Q(i) >> (63 - i)) & (1 << i);
1169 }
1170 return mask;
1171 }
1172
1173 #endif
1174
1175 #define PACK_HELPER_B(name, F) \
1176 void glue(helper_pack ## name, SUFFIX)(CPUX86State *env, \
1177 Reg *d, Reg *v, Reg *s) \
1178 { \
1179 uint8_t r[PACK_WIDTH * 2]; \
1180 int j, k; \
1181 for (j = 0; j < 4 << SHIFT; j += PACK_WIDTH) { \
1182 for (k = 0; k < PACK_WIDTH; k++) { \
1183 r[k] = F((int16_t)v->W(j + k)); \
1184 } \
1185 for (k = 0; k < PACK_WIDTH; k++) { \
1186 r[PACK_WIDTH + k] = F((int16_t)s->W(j + k)); \
1187 } \
1188 for (k = 0; k < PACK_WIDTH * 2; k++) { \
1189 d->B(2 * j + k) = r[k]; \
1190 } \
1191 } \
1192 }
1193
1194 PACK_HELPER_B(sswb, satsb)
1195 PACK_HELPER_B(uswb, satub)
1196
1197 void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1198 {
1199 uint16_t r[PACK_WIDTH];
1200 int j, k;
1201
1202 for (j = 0; j < 2 << SHIFT; j += PACK_WIDTH / 2) {
1203 for (k = 0; k < PACK_WIDTH / 2; k++) {
1204 r[k] = satsw(v->L(j + k));
1205 }
1206 for (k = 0; k < PACK_WIDTH / 2; k++) {
1207 r[PACK_WIDTH / 2 + k] = satsw(s->L(j + k));
1208 }
1209 for (k = 0; k < PACK_WIDTH; k++) {
1210 d->W(2 * j + k) = r[k];
1211 }
1212 }
1213 }
1214
1215 #define UNPCK_OP(base_name, base) \
1216 \
1217 void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\
1218 Reg *d, Reg *v, Reg *s) \
1219 { \
1220 uint8_t r[PACK_WIDTH * 2]; \
1221 int j, i; \
1222 \
1223 for (j = 0; j < 8 << SHIFT; ) { \
1224 int k = j + base * PACK_WIDTH; \
1225 for (i = 0; i < PACK_WIDTH; i++) { \
1226 r[2 * i] = v->B(k + i); \
1227 r[2 * i + 1] = s->B(k + i); \
1228 } \
1229 for (i = 0; i < PACK_WIDTH * 2; i++, j++) { \
1230 d->B(j) = r[i]; \
1231 } \
1232 } \
1233 } \
1234 \
1235 void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\
1236 Reg *d, Reg *v, Reg *s) \
1237 { \
1238 uint16_t r[PACK_WIDTH]; \
1239 int j, i; \
1240 \
1241 for (j = 0; j < 4 << SHIFT; ) { \
1242 int k = j + base * PACK_WIDTH / 2; \
1243 for (i = 0; i < PACK_WIDTH / 2; i++) { \
1244 r[2 * i] = v->W(k + i); \
1245 r[2 * i + 1] = s->W(k + i); \
1246 } \
1247 for (i = 0; i < PACK_WIDTH; i++, j++) { \
1248 d->W(j) = r[i]; \
1249 } \
1250 } \
1251 } \
1252 \
1253 void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\
1254 Reg *d, Reg *v, Reg *s) \
1255 { \
1256 uint32_t r[PACK_WIDTH / 2]; \
1257 int j, i; \
1258 \
1259 for (j = 0; j < 2 << SHIFT; ) { \
1260 int k = j + base * PACK_WIDTH / 4; \
1261 for (i = 0; i < PACK_WIDTH / 4; i++) { \
1262 r[2 * i] = v->L(k + i); \
1263 r[2 * i + 1] = s->L(k + i); \
1264 } \
1265 for (i = 0; i < PACK_WIDTH / 2; i++, j++) { \
1266 d->L(j) = r[i]; \
1267 } \
1268 } \
1269 } \
1270 \
1271 XMM_ONLY( \
1272 void glue(helper_punpck ## base_name ## qdq, SUFFIX)( \
1273 CPUX86State *env, Reg *d, Reg *v, Reg *s) \
1274 { \
1275 uint64_t r[2]; \
1276 int i; \
1277 \
1278 for (i = 0; i < 1 << SHIFT; i += 2) { \
1279 r[0] = v->Q(base + i); \
1280 r[1] = s->Q(base + i); \
1281 d->Q(i) = r[0]; \
1282 d->Q(i + 1) = r[1]; \
1283 } \
1284 } \
1285 )
1286
1287 UNPCK_OP(l, 0)
1288 UNPCK_OP(h, 1)
1289
1290 #undef PACK_WIDTH
1291 #undef PACK_HELPER_B
1292 #undef UNPCK_OP
1293
1294
1295 /* 3DNow! float ops */
1296 #if SHIFT == 0
1297 void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s)
1298 {
1299 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1300 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1301 }
1302
1303 void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s)
1304 {
1305 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1306 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1307 }
1308
1309 void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s)
1310 {
1311 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1312 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1313 }
1314
1315 void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s)
1316 {
1317 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0),
1318 &env->mmx_status));
1319 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1),
1320 &env->mmx_status));
1321 }
1322
1323 void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1324 {
1325 float32 r;
1326
1327 r = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1328 d->MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1329 d->MMX_S(0) = r;
1330 }
1331
1332 void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s)
1333 {
1334 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1335 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1336 }
1337
1338 void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s)
1339 {
1340 d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0),
1341 &env->mmx_status) ? -1 : 0;
1342 d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1),
1343 &env->mmx_status) ? -1 : 0;
1344 }
1345
1346 void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s)
1347 {
1348 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0),
1349 &env->mmx_status) ? -1 : 0;
1350 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1),
1351 &env->mmx_status) ? -1 : 0;
1352 }
1353
1354 void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s)
1355 {
1356 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0),
1357 &env->mmx_status) ? -1 : 0;
1358 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1),
1359 &env->mmx_status) ? -1 : 0;
1360 }
1361
1362 void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s)
1363 {
1364 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) {
1365 d->MMX_S(0) = s->MMX_S(0);
1366 }
1367 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) {
1368 d->MMX_S(1) = s->MMX_S(1);
1369 }
1370 }
1371
1372 void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s)
1373 {
1374 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) {
1375 d->MMX_S(0) = s->MMX_S(0);
1376 }
1377 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) {
1378 d->MMX_S(1) = s->MMX_S(1);
1379 }
1380 }
1381
1382 void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s)
1383 {
1384 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1385 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1386 }
1387
1388 void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1389 {
1390 float32 r;
1391
1392 r = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1393 d->MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1394 d->MMX_S(0) = r;
1395 }
1396
1397 void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1398 {
1399 float32 r;
1400
1401 r = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1402 d->MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1403 d->MMX_S(0) = r;
1404 }
1405
1406 void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s)
1407 {
1408 d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status);
1409 d->MMX_S(1) = d->MMX_S(0);
1410 }
1411
1412 void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s)
1413 {
1414 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1415 d->MMX_S(1) = float32_div(float32_one,
1416 float32_sqrt(d->MMX_S(1), &env->mmx_status),
1417 &env->mmx_status);
1418 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1419 d->MMX_L(0) = d->MMX_L(1);
1420 }
1421
1422 void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s)
1423 {
1424 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1425 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1426 }
1427
1428 void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s)
1429 {
1430 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1431 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1432 }
1433
1434 void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s)
1435 {
1436 uint32_t r;
1437
1438 r = s->MMX_L(0);
1439 d->MMX_L(0) = s->MMX_L(1);
1440 d->MMX_L(1) = r;
1441 }
1442 #endif
1443
1444 /* SSSE3 op helpers */
1445 void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1446 {
1447 int i;
1448 #if SHIFT == 0
1449 uint8_t r[8];
1450
1451 for (i = 0; i < 8; i++) {
1452 r[i] = (s->B(i) & 0x80) ? 0 : (v->B(s->B(i) & 7));
1453 }
1454 for (i = 0; i < 8; i++) {
1455 d->B(i) = r[i];
1456 }
1457 #else
1458 uint8_t r[8 << SHIFT];
1459
1460 for (i = 0; i < 8 << SHIFT; i++) {
1461 int j = i & ~0xf;
1462 r[i] = (s->B(i) & 0x80) ? 0 : v->B(j | (s->B(i) & 0xf));
1463 }
1464 for (i = 0; i < 8 << SHIFT; i++) {
1465 d->B(i) = r[i];
1466 }
1467 #endif
1468 }
1469
1470 #define SSE_HELPER_HW(name, F) \
1471 void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
1472 { \
1473 uint16_t r[4 << SHIFT]; \
1474 int i, j, k; \
1475 for (k = 0; k < 4 << SHIFT; k += LANE_WIDTH / 2) { \
1476 for (i = j = 0; j < LANE_WIDTH / 2; i++, j += 2) { \
1477 r[i + k] = F(v->W(j + k), v->W(j + k + 1)); \
1478 } \
1479 for (j = 0; j < LANE_WIDTH / 2; i++, j += 2) { \
1480 r[i + k] = F(s->W(j + k), s->W(j + k + 1)); \
1481 } \
1482 } \
1483 for (i = 0; i < 4 << SHIFT; i++) { \
1484 d->W(i) = r[i]; \
1485 } \
1486 }
1487
1488 #define SSE_HELPER_HL(name, F) \
1489 void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
1490 { \
1491 uint32_t r[2 << SHIFT]; \
1492 int i, j, k; \
1493 for (k = 0; k < 2 << SHIFT; k += LANE_WIDTH / 4) { \
1494 for (i = j = 0; j < LANE_WIDTH / 4; i++, j += 2) { \
1495 r[i + k] = F(v->L(j + k), v->L(j + k + 1)); \
1496 } \
1497 for (j = 0; j < LANE_WIDTH / 4; i++, j += 2) { \
1498 r[i + k] = F(s->L(j + k), s->L(j + k + 1)); \
1499 } \
1500 } \
1501 for (i = 0; i < 2 << SHIFT; i++) { \
1502 d->L(i) = r[i]; \
1503 } \
1504 }
1505
1506 SSE_HELPER_HW(phaddw, FADD)
1507 SSE_HELPER_HW(phsubw, FSUB)
1508 SSE_HELPER_HW(phaddsw, FADDSW)
1509 SSE_HELPER_HW(phsubsw, FSUBSW)
1510 SSE_HELPER_HL(phaddd, FADD)
1511 SSE_HELPER_HL(phsubd, FSUB)
1512
1513 #undef SSE_HELPER_HW
1514 #undef SSE_HELPER_HL
1515
1516 void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1517 {
1518 int i;
1519 for (i = 0; i < 4 << SHIFT; i++) {
1520 d->W(i) = satsw((int8_t)s->B(i * 2) * (uint8_t)v->B(i * 2) +
1521 (int8_t)s->B(i * 2 + 1) * (uint8_t)v->B(i * 2 + 1));
1522 }
1523 }
1524
1525 #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15)
1526 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1527
1528 #define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d)
1529 #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d)
1530 #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d)
1531 SSE_HELPER_B(helper_psignb, FSIGNB)
1532 SSE_HELPER_W(helper_psignw, FSIGNW)
1533 SSE_HELPER_L(helper_psignd, FSIGNL)
1534
1535 void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1536 uint32_t imm)
1537 {
1538 int i;
1539
1540 /* XXX could be checked during translation */
1541 if (imm >= (SHIFT ? 32 : 16)) {
1542 for (i = 0; i < (1 << SHIFT); i++) {
1543 d->Q(i) = 0;
1544 }
1545 } else {
1546 int shift = imm * 8;
1547 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1548 #if SHIFT == 0
1549 d->Q(0) = SHR(s->Q(0), shift - 0) |
1550 SHR(v->Q(0), shift - 64);
1551 #else
1552 for (i = 0; i < (1 << SHIFT); i += 2) {
1553 uint64_t r0, r1;
1554
1555 r0 = SHR(s->Q(i), shift - 0) |
1556 SHR(s->Q(i + 1), shift - 64) |
1557 SHR(v->Q(i), shift - 128) |
1558 SHR(v->Q(i + 1), shift - 192);
1559 r1 = SHR(s->Q(i), shift + 64) |
1560 SHR(s->Q(i + 1), shift - 0) |
1561 SHR(v->Q(i), shift - 64) |
1562 SHR(v->Q(i + 1), shift - 128);
1563 d->Q(i) = r0;
1564 d->Q(i + 1) = r1;
1565 }
1566 #endif
1567 #undef SHR
1568 }
1569 }
1570
1571 #if SHIFT >= 1
1572
1573 #define SSE_HELPER_V(name, elem, num, F) \
1574 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s, \
1575 Reg *m) \
1576 { \
1577 int i; \
1578 for (i = 0; i < num; i++) { \
1579 d->elem(i) = F(v->elem(i), s->elem(i), m->elem(i)); \
1580 } \
1581 }
1582
1583 #define SSE_HELPER_I(name, elem, num, F) \
1584 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s, \
1585 uint32_t imm) \
1586 { \
1587 int i; \
1588 for (i = 0; i < num; i++) { \
1589 int j = i & 7; \
1590 d->elem(i) = F(v->elem(i), s->elem(i), (imm >> j) & 1); \
1591 } \
1592 }
1593
1594 /* SSE4.1 op helpers */
1595 #define FBLENDVB(v, s, m) ((m & 0x80) ? s : v)
1596 #define FBLENDVPS(v, s, m) ((m & 0x80000000) ? s : v)
1597 #define FBLENDVPD(v, s, m) ((m & 0x8000000000000000LL) ? s : v)
1598 SSE_HELPER_V(helper_pblendvb, B, 8 << SHIFT, FBLENDVB)
1599 SSE_HELPER_V(helper_blendvps, L, 2 << SHIFT, FBLENDVPS)
1600 SSE_HELPER_V(helper_blendvpd, Q, 1 << SHIFT, FBLENDVPD)
1601
1602 void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1603 {
1604 uint64_t zf = 0, cf = 0;
1605 int i;
1606
1607 for (i = 0; i < 1 << SHIFT; i++) {
1608 zf |= (s->Q(i) & d->Q(i));
1609 cf |= (s->Q(i) & ~d->Q(i));
1610 }
1611 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1612 }
1613
1614 #define FMOVSLDUP(i) s->L((i) & ~1)
1615 #define FMOVSHDUP(i) s->L((i) | 1)
1616 #define FMOVDLDUP(i) s->Q((i) & ~1)
1617
1618 #define SSE_HELPER_F(name, elem, num, F) \
1619 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \
1620 { \
1621 int n = num; \
1622 for (int i = n; --i >= 0; ) { \
1623 d->elem(i) = F(i); \
1624 } \
1625 }
1626
1627 #if SHIFT > 0
1628 SSE_HELPER_F(helper_pmovsxbw, W, 4 << SHIFT, (int8_t) s->B)
1629 SSE_HELPER_F(helper_pmovsxbd, L, 2 << SHIFT, (int8_t) s->B)
1630 SSE_HELPER_F(helper_pmovsxbq, Q, 1 << SHIFT, (int8_t) s->B)
1631 SSE_HELPER_F(helper_pmovsxwd, L, 2 << SHIFT, (int16_t) s->W)
1632 SSE_HELPER_F(helper_pmovsxwq, Q, 1 << SHIFT, (int16_t) s->W)
1633 SSE_HELPER_F(helper_pmovsxdq, Q, 1 << SHIFT, (int32_t) s->L)
1634 SSE_HELPER_F(helper_pmovzxbw, W, 4 << SHIFT, s->B)
1635 SSE_HELPER_F(helper_pmovzxbd, L, 2 << SHIFT, s->B)
1636 SSE_HELPER_F(helper_pmovzxbq, Q, 1 << SHIFT, s->B)
1637 SSE_HELPER_F(helper_pmovzxwd, L, 2 << SHIFT, s->W)
1638 SSE_HELPER_F(helper_pmovzxwq, Q, 1 << SHIFT, s->W)
1639 SSE_HELPER_F(helper_pmovzxdq, Q, 1 << SHIFT, s->L)
1640 SSE_HELPER_F(helper_pmovsldup, L, 2 << SHIFT, FMOVSLDUP)
1641 SSE_HELPER_F(helper_pmovshdup, L, 2 << SHIFT, FMOVSHDUP)
1642 SSE_HELPER_F(helper_pmovdldup, Q, 1 << SHIFT, FMOVDLDUP)
1643 #endif
1644
1645 void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1646 {
1647 int i;
1648
1649 for (i = 0; i < 1 << SHIFT; i++) {
1650 d->Q(i) = (int64_t)(int32_t) v->L(2 * i) * (int32_t) s->L(2 * i);
1651 }
1652 }
1653
1654 void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1655 {
1656 uint16_t r[8];
1657 int i, j, k;
1658
1659 for (i = 0, j = 0; i <= 2 << SHIFT; i += 8, j += 4) {
1660 r[0] = satuw(v->L(j));
1661 r[1] = satuw(v->L(j + 1));
1662 r[2] = satuw(v->L(j + 2));
1663 r[3] = satuw(v->L(j + 3));
1664 r[4] = satuw(s->L(j));
1665 r[5] = satuw(s->L(j + 1));
1666 r[6] = satuw(s->L(j + 2));
1667 r[7] = satuw(s->L(j + 3));
1668 for (k = 0; k < 8; k++) {
1669 d->W(i + k) = r[k];
1670 }
1671 }
1672 }
1673
1674 #if SHIFT == 1
1675 void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1676 {
1677 int idx = 0;
1678
1679 if (s->W(1) < s->W(idx)) {
1680 idx = 1;
1681 }
1682 if (s->W(2) < s->W(idx)) {
1683 idx = 2;
1684 }
1685 if (s->W(3) < s->W(idx)) {
1686 idx = 3;
1687 }
1688 if (s->W(4) < s->W(idx)) {
1689 idx = 4;
1690 }
1691 if (s->W(5) < s->W(idx)) {
1692 idx = 5;
1693 }
1694 if (s->W(6) < s->W(idx)) {
1695 idx = 6;
1696 }
1697 if (s->W(7) < s->W(idx)) {
1698 idx = 7;
1699 }
1700
1701 d->W(0) = s->W(idx);
1702 d->W(1) = idx;
1703 d->L(1) = 0;
1704 d->Q(1) = 0;
1705 }
1706 #endif
1707
1708 void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1709 uint32_t mode)
1710 {
1711 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1712 signed char prev_rounding_mode;
1713 int i;
1714
1715 prev_rounding_mode = env->sse_status.float_rounding_mode;
1716 if (!(mode & (1 << 2))) {
1717 set_x86_rounding_mode(mode & 3, &env->sse_status);
1718 }
1719
1720 for (i = 0; i < 2 << SHIFT; i++) {
1721 d->ZMM_S(i) = float32_round_to_int(s->ZMM_S(i), &env->sse_status);
1722 }
1723
1724 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1725 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1726 ~float_flag_inexact,
1727 &env->sse_status);
1728 }
1729 env->sse_status.float_rounding_mode = prev_rounding_mode;
1730 }
1731
1732 void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1733 uint32_t mode)
1734 {
1735 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1736 signed char prev_rounding_mode;
1737 int i;
1738
1739 prev_rounding_mode = env->sse_status.float_rounding_mode;
1740 if (!(mode & (1 << 2))) {
1741 set_x86_rounding_mode(mode & 3, &env->sse_status);
1742 }
1743
1744 for (i = 0; i < 1 << SHIFT; i++) {
1745 d->ZMM_D(i) = float64_round_to_int(s->ZMM_D(i), &env->sse_status);
1746 }
1747
1748 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1749 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1750 ~float_flag_inexact,
1751 &env->sse_status);
1752 }
1753 env->sse_status.float_rounding_mode = prev_rounding_mode;
1754 }
1755
1756 #if SHIFT == 1
1757 void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1758 uint32_t mode)
1759 {
1760 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1761 signed char prev_rounding_mode;
1762 int i;
1763
1764 prev_rounding_mode = env->sse_status.float_rounding_mode;
1765 if (!(mode & (1 << 2))) {
1766 set_x86_rounding_mode(mode & 3, &env->sse_status);
1767 }
1768
1769 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status);
1770 for (i = 1; i < 2 << SHIFT; i++) {
1771 d->ZMM_L(i) = v->ZMM_L(i);
1772 }
1773
1774 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1775 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1776 ~float_flag_inexact,
1777 &env->sse_status);
1778 }
1779 env->sse_status.float_rounding_mode = prev_rounding_mode;
1780 }
1781
1782 void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1783 uint32_t mode)
1784 {
1785 uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1786 signed char prev_rounding_mode;
1787 int i;
1788
1789 prev_rounding_mode = env->sse_status.float_rounding_mode;
1790 if (!(mode & (1 << 2))) {
1791 set_x86_rounding_mode(mode & 3, &env->sse_status);
1792 }
1793
1794 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status);
1795 for (i = 1; i < 1 << SHIFT; i++) {
1796 d->ZMM_Q(i) = v->ZMM_Q(i);
1797 }
1798
1799 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1800 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1801 ~float_flag_inexact,
1802 &env->sse_status);
1803 }
1804 env->sse_status.float_rounding_mode = prev_rounding_mode;
1805 }
1806 #endif
1807
1808 #define FBLENDP(v, s, m) (m ? s : v)
1809 SSE_HELPER_I(helper_blendps, L, 2 << SHIFT, FBLENDP)
1810 SSE_HELPER_I(helper_blendpd, Q, 1 << SHIFT, FBLENDP)
1811 SSE_HELPER_I(helper_pblendw, W, 4 << SHIFT, FBLENDP)
1812
1813 void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1814 uint32_t mask)
1815 {
1816 float32 prod1, prod2, temp2, temp3, temp4;
1817 int i;
1818
1819 for (i = 0; i < 2 << SHIFT; i += 4) {
1820 /*
1821 * We must evaluate (A+B)+(C+D), not ((A+B)+C)+D
1822 * to correctly round the intermediate results
1823 */
1824 if (mask & (1 << 4)) {
1825 prod1 = float32_mul(v->ZMM_S(i), s->ZMM_S(i), &env->sse_status);
1826 } else {
1827 prod1 = float32_zero;
1828 }
1829 if (mask & (1 << 5)) {
1830 prod2 = float32_mul(v->ZMM_S(i+1), s->ZMM_S(i+1), &env->sse_status);
1831 } else {
1832 prod2 = float32_zero;
1833 }
1834 temp2 = float32_add(prod1, prod2, &env->sse_status);
1835 if (mask & (1 << 6)) {
1836 prod1 = float32_mul(v->ZMM_S(i+2), s->ZMM_S(i+2), &env->sse_status);
1837 } else {
1838 prod1 = float32_zero;
1839 }
1840 if (mask & (1 << 7)) {
1841 prod2 = float32_mul(v->ZMM_S(i+3), s->ZMM_S(i+3), &env->sse_status);
1842 } else {
1843 prod2 = float32_zero;
1844 }
1845 temp3 = float32_add(prod1, prod2, &env->sse_status);
1846 temp4 = float32_add(temp2, temp3, &env->sse_status);
1847
1848 d->ZMM_S(i) = (mask & (1 << 0)) ? temp4 : float32_zero;
1849 d->ZMM_S(i+1) = (mask & (1 << 1)) ? temp4 : float32_zero;
1850 d->ZMM_S(i+2) = (mask & (1 << 2)) ? temp4 : float32_zero;
1851 d->ZMM_S(i+3) = (mask & (1 << 3)) ? temp4 : float32_zero;
1852 }
1853 }
1854
1855 #if SHIFT == 1
1856 /* Oddly, there is no ymm version of dppd */
1857 void glue(helper_dppd, SUFFIX)(CPUX86State *env,
1858 Reg *d, Reg *v, Reg *s, uint32_t mask)
1859 {
1860 float64 prod1, prod2, temp2;
1861
1862 if (mask & (1 << 4)) {
1863 prod1 = float64_mul(v->ZMM_D(0), s->ZMM_D(0), &env->sse_status);
1864 } else {
1865 prod1 = float64_zero;
1866 }
1867 if (mask & (1 << 5)) {
1868 prod2 = float64_mul(v->ZMM_D(1), s->ZMM_D(1), &env->sse_status);
1869 } else {
1870 prod2 = float64_zero;
1871 }
1872 temp2 = float64_add(prod1, prod2, &env->sse_status);
1873 d->ZMM_D(0) = (mask & (1 << 0)) ? temp2 : float64_zero;
1874 d->ZMM_D(1) = (mask & (1 << 1)) ? temp2 : float64_zero;
1875 }
1876 #endif
1877
1878 void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1879 uint32_t offset)
1880 {
1881 int i, j;
1882 uint16_t r[8];
1883
1884 for (j = 0; j < 4 << SHIFT; ) {
1885 int s0 = (j * 2) + ((offset & 3) << 2);
1886 int d0 = (j * 2) + ((offset & 4) << 0);
1887 for (i = 0; i < LANE_WIDTH / 2; i++, d0++) {
1888 r[i] = 0;
1889 r[i] += abs1(v->B(d0 + 0) - s->B(s0 + 0));
1890 r[i] += abs1(v->B(d0 + 1) - s->B(s0 + 1));
1891 r[i] += abs1(v->B(d0 + 2) - s->B(s0 + 2));
1892 r[i] += abs1(v->B(d0 + 3) - s->B(s0 + 3));
1893 }
1894 for (i = 0; i < LANE_WIDTH / 2; i++, j++) {
1895 d->W(j) = r[i];
1896 }
1897 offset >>= 3;
1898 }
1899 }
1900
1901 /* SSE4.2 op helpers */
1902 #if SHIFT == 1
1903 static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl)
1904 {
1905 target_long val, limit;
1906
1907 /* Presence of REX.W is indicated by a bit higher than 7 set */
1908 if (ctrl >> 8) {
1909 val = (target_long)env->regs[reg];
1910 } else {
1911 val = (int32_t)env->regs[reg];
1912 }
1913 if (ctrl & 1) {
1914 limit = 8;
1915 } else {
1916 limit = 16;
1917 }
1918 if ((val > limit) || (val < -limit)) {
1919 return limit;
1920 }
1921 return abs1(val);
1922 }
1923
1924 static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1925 {
1926 int val = 0;
1927
1928 if (ctrl & 1) {
1929 while (val < 8 && r->W(val)) {
1930 val++;
1931 }
1932 } else {
1933 while (val < 16 && r->B(val)) {
1934 val++;
1935 }
1936 }
1937
1938 return val;
1939 }
1940
1941 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1942 {
1943 switch ((ctrl >> 0) & 3) {
1944 case 0:
1945 return r->B(i);
1946 case 1:
1947 return r->W(i);
1948 case 2:
1949 return (int8_t)r->B(i);
1950 case 3:
1951 default:
1952 return (int16_t)r->W(i);
1953 }
1954 }
1955
1956 static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s,
1957 uint8_t ctrl, int valids, int validd)
1958 {
1959 unsigned int res = 0;
1960 int v;
1961 int j, i;
1962 int upper = (ctrl & 1) ? 7 : 15;
1963
1964 valids--;
1965 validd--;
1966
1967 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1968
1969 switch ((ctrl >> 2) & 3) {
1970 case 0:
1971 for (j = valids; j >= 0; j--) {
1972 res <<= 1;
1973 v = pcmp_val(s, ctrl, j);
1974 for (i = validd; i >= 0; i--) {
1975 res |= (v == pcmp_val(d, ctrl, i));
1976 }
1977 }
1978 break;
1979 case 1:
1980 for (j = valids; j >= 0; j--) {
1981 res <<= 1;
1982 v = pcmp_val(s, ctrl, j);
1983 for (i = ((validd - 1) | 1); i >= 0; i -= 2) {
1984 res |= (pcmp_val(d, ctrl, i - 0) >= v &&
1985 pcmp_val(d, ctrl, i - 1) <= v);
1986 }
1987 }
1988 break;
1989 case 2:
1990 res = (1 << (upper - MAX(valids, validd))) - 1;
1991 res <<= MAX(valids, validd) - MIN(valids, validd);
1992 for (i = MIN(valids, validd); i >= 0; i--) {
1993 res <<= 1;
1994 v = pcmp_val(s, ctrl, i);
1995 res |= (v == pcmp_val(d, ctrl, i));
1996 }
1997 break;
1998 case 3:
1999 if (validd == -1) {
2000 res = (2 << upper) - 1;
2001 break;
2002 }
2003 for (j = valids == upper ? valids : valids - validd; j >= 0; j--) {
2004 res <<= 1;
2005 v = 1;
2006 for (i = MIN(valids - j, validd); i >= 0; i--) {
2007 v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
2008 }
2009 res |= v;
2010 }
2011 break;
2012 }
2013
2014 switch ((ctrl >> 4) & 3) {
2015 case 1:
2016 res ^= (2 << upper) - 1;
2017 break;
2018 case 3:
2019 res ^= (1 << (valids + 1)) - 1;
2020 break;
2021 }
2022
2023 if (res) {
2024 CC_SRC |= CC_C;
2025 }
2026 if (res & 1) {
2027 CC_SRC |= CC_O;
2028 }
2029
2030 return res;
2031 }
2032
2033 void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2034 uint32_t ctrl)
2035 {
2036 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2037 pcmp_elen(env, R_EDX, ctrl),
2038 pcmp_elen(env, R_EAX, ctrl));
2039
2040 if (res) {
2041 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res);
2042 } else {
2043 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2044 }
2045 }
2046
2047 void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2048 uint32_t ctrl)
2049 {
2050 int i;
2051 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2052 pcmp_elen(env, R_EDX, ctrl),
2053 pcmp_elen(env, R_EAX, ctrl));
2054
2055 if ((ctrl >> 6) & 1) {
2056 if (ctrl & 1) {
2057 for (i = 0; i < 8; i++, res >>= 1) {
2058 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0;
2059 }
2060 } else {
2061 for (i = 0; i < 16; i++, res >>= 1) {
2062 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0;
2063 }
2064 }
2065 } else {
2066 env->xmm_regs[0].Q(1) = 0;
2067 env->xmm_regs[0].Q(0) = res;
2068 }
2069 }
2070
2071 void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2072 uint32_t ctrl)
2073 {
2074 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2075 pcmp_ilen(s, ctrl),
2076 pcmp_ilen(d, ctrl));
2077
2078 if (res) {
2079 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res);
2080 } else {
2081 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2082 }
2083 }
2084
2085 void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2086 uint32_t ctrl)
2087 {
2088 int i;
2089 unsigned int res = pcmpxstrx(env, d, s, ctrl,
2090 pcmp_ilen(s, ctrl),
2091 pcmp_ilen(d, ctrl));
2092
2093 if ((ctrl >> 6) & 1) {
2094 if (ctrl & 1) {
2095 for (i = 0; i < 8; i++, res >>= 1) {
2096 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0;
2097 }
2098 } else {
2099 for (i = 0; i < 16; i++, res >>= 1) {
2100 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0;
2101 }
2102 }
2103 } else {
2104 env->xmm_regs[0].Q(1) = 0;
2105 env->xmm_regs[0].Q(0) = res;
2106 }
2107 }
2108
2109 #define CRCPOLY 0x1edc6f41
2110 #define CRCPOLY_BITREV 0x82f63b78
2111 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2112 {
2113 target_ulong crc = (msg & ((target_ulong) -1 >>
2114 (TARGET_LONG_BITS - len))) ^ crc1;
2115
2116 while (len--) {
2117 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2118 }
2119
2120 return crc;
2121 }
2122
2123 #endif
2124
2125 #if SHIFT == 1
2126 static void clmulq(uint64_t *dest_l, uint64_t *dest_h,
2127 uint64_t a, uint64_t b)
2128 {
2129 uint64_t al, ah, resh, resl;
2130
2131 ah = 0;
2132 al = a;
2133 resh = resl = 0;
2134
2135 while (b) {
2136 if (b & 1) {
2137 resl ^= al;
2138 resh ^= ah;
2139 }
2140 ah = (ah << 1) | (al >> 63);
2141 al <<= 1;
2142 b >>= 1;
2143 }
2144
2145 *dest_l = resl;
2146 *dest_h = resh;
2147 }
2148 #endif
2149
2150 void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
2151 uint32_t ctrl)
2152 {
2153 uint64_t a, b;
2154 int i;
2155
2156 for (i = 0; i < 1 << SHIFT; i += 2) {
2157 a = v->Q(((ctrl & 1) != 0) + i);
2158 b = s->Q(((ctrl & 16) != 0) + i);
2159 clmulq(&d->Q(i), &d->Q(i + 1), a, b);
2160 }
2161 }
2162
2163 void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2164 {
2165 for (int i = 0; i < SHIFT; i++) {
2166 AESState *ad = (AESState *)&d->ZMM_X(i);
2167 AESState *st = (AESState *)&v->ZMM_X(i);
2168 AESState *rk = (AESState *)&s->ZMM_X(i);
2169
2170 aesdec_ISB_ISR_IMC_AK(ad, st, rk, false);
2171 }
2172 }
2173
2174 void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2175 {
2176 for (int i = 0; i < SHIFT; i++) {
2177 AESState *ad = (AESState *)&d->ZMM_X(i);
2178 AESState *st = (AESState *)&v->ZMM_X(i);
2179 AESState *rk = (AESState *)&s->ZMM_X(i);
2180
2181 aesdec_ISB_ISR_AK(ad, st, rk, false);
2182 }
2183 }
2184
2185 void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2186 {
2187 for (int i = 0; i < SHIFT; i++) {
2188 AESState *ad = (AESState *)&d->ZMM_X(i);
2189 AESState *st = (AESState *)&v->ZMM_X(i);
2190 AESState *rk = (AESState *)&s->ZMM_X(i);
2191
2192 aesenc_SB_SR_MC_AK(ad, st, rk, false);
2193 }
2194 }
2195
2196 void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2197 {
2198 for (int i = 0; i < SHIFT; i++) {
2199 AESState *ad = (AESState *)&d->ZMM_X(i);
2200 AESState *st = (AESState *)&v->ZMM_X(i);
2201 AESState *rk = (AESState *)&s->ZMM_X(i);
2202
2203 aesenc_SB_SR_AK(ad, st, rk, false);
2204 }
2205 }
2206
2207 #if SHIFT == 1
2208 void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2209 {
2210 AESState *ad = (AESState *)&d->ZMM_X(0);
2211 AESState *st = (AESState *)&s->ZMM_X(0);
2212
2213 aesdec_IMC(ad, st, false);
2214 }
2215
2216 void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2217 uint32_t ctrl)
2218 {
2219 int i;
2220 Reg tmp = *s;
2221
2222 for (i = 0 ; i < 4 ; i++) {
2223 d->B(i) = AES_sbox[tmp.B(i + 4)];
2224 d->B(i + 8) = AES_sbox[tmp.B(i + 12)];
2225 }
2226 d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl;
2227 d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl;
2228 }
2229 #endif
2230 #endif
2231
2232 #if SHIFT >= 1
2233 void glue(helper_vpermilpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2234 {
2235 uint64_t r0, r1;
2236 int i;
2237
2238 for (i = 0; i < 1 << SHIFT; i += 2) {
2239 r0 = v->Q(i + ((s->Q(i) >> 1) & 1));
2240 r1 = v->Q(i + ((s->Q(i+1) >> 1) & 1));
2241 d->Q(i) = r0;
2242 d->Q(i+1) = r1;
2243 }
2244 }
2245
2246 void glue(helper_vpermilps, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2247 {
2248 uint32_t r0, r1, r2, r3;
2249 int i;
2250
2251 for (i = 0; i < 2 << SHIFT; i += 4) {
2252 r0 = v->L(i + (s->L(i) & 3));
2253 r1 = v->L(i + (s->L(i+1) & 3));
2254 r2 = v->L(i + (s->L(i+2) & 3));
2255 r3 = v->L(i + (s->L(i+3) & 3));
2256 d->L(i) = r0;
2257 d->L(i+1) = r1;
2258 d->L(i+2) = r2;
2259 d->L(i+3) = r3;
2260 }
2261 }
2262
2263 void glue(helper_vpermilpd_imm, SUFFIX)(Reg *d, Reg *s, uint32_t order)
2264 {
2265 uint64_t r0, r1;
2266 int i;
2267
2268 for (i = 0; i < 1 << SHIFT; i += 2) {
2269 r0 = s->Q(i + ((order >> 0) & 1));
2270 r1 = s->Q(i + ((order >> 1) & 1));
2271 d->Q(i) = r0;
2272 d->Q(i+1) = r1;
2273
2274 order >>= 2;
2275 }
2276 }
2277
2278 void glue(helper_vpermilps_imm, SUFFIX)(Reg *d, Reg *s, uint32_t order)
2279 {
2280 uint32_t r0, r1, r2, r3;
2281 int i;
2282
2283 for (i = 0; i < 2 << SHIFT; i += 4) {
2284 r0 = s->L(i + ((order >> 0) & 3));
2285 r1 = s->L(i + ((order >> 2) & 3));
2286 r2 = s->L(i + ((order >> 4) & 3));
2287 r3 = s->L(i + ((order >> 6) & 3));
2288 d->L(i) = r0;
2289 d->L(i+1) = r1;
2290 d->L(i+2) = r2;
2291 d->L(i+3) = r3;
2292 }
2293 }
2294
2295 #if SHIFT == 1
2296 #define FPSRLVD(x, c) (c < 32 ? ((x) >> c) : 0)
2297 #define FPSRLVQ(x, c) (c < 64 ? ((x) >> c) : 0)
2298 #define FPSRAVD(x, c) ((int32_t)(x) >> (c < 32 ? c : 31))
2299 #define FPSRAVQ(x, c) ((int64_t)(x) >> (c < 64 ? c : 63))
2300 #define FPSLLVD(x, c) (c < 32 ? ((x) << c) : 0)
2301 #define FPSLLVQ(x, c) (c < 64 ? ((x) << c) : 0)
2302 #endif
2303
2304 SSE_HELPER_L(helper_vpsrlvd, FPSRLVD)
2305 SSE_HELPER_L(helper_vpsravd, FPSRAVD)
2306 SSE_HELPER_L(helper_vpsllvd, FPSLLVD)
2307
2308 SSE_HELPER_Q(helper_vpsrlvq, FPSRLVQ)
2309 SSE_HELPER_Q(helper_vpsravq, FPSRAVQ)
2310 SSE_HELPER_Q(helper_vpsllvq, FPSLLVQ)
2311
2312 void glue(helper_vtestps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2313 {
2314 uint32_t zf = 0, cf = 0;
2315 int i;
2316
2317 for (i = 0; i < 2 << SHIFT; i++) {
2318 zf |= (s->L(i) & d->L(i));
2319 cf |= (s->L(i) & ~d->L(i));
2320 }
2321 CC_SRC = ((zf >> 31) ? 0 : CC_Z) | ((cf >> 31) ? 0 : CC_C);
2322 }
2323
2324 void glue(helper_vtestpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2325 {
2326 uint64_t zf = 0, cf = 0;
2327 int i;
2328
2329 for (i = 0; i < 1 << SHIFT; i++) {
2330 zf |= (s->Q(i) & d->Q(i));
2331 cf |= (s->Q(i) & ~d->Q(i));
2332 }
2333 CC_SRC = ((zf >> 63) ? 0 : CC_Z) | ((cf >> 63) ? 0 : CC_C);
2334 }
2335
2336 void glue(helper_vpmaskmovd_st, SUFFIX)(CPUX86State *env,
2337 Reg *v, Reg *s, target_ulong a0)
2338 {
2339 int i;
2340
2341 for (i = 0; i < (2 << SHIFT); i++) {
2342 if (v->L(i) >> 31) {
2343 cpu_stl_data_ra(env, a0 + i * 4, s->L(i), GETPC());
2344 }
2345 }
2346 }
2347
2348 void glue(helper_vpmaskmovq_st, SUFFIX)(CPUX86State *env,
2349 Reg *v, Reg *s, target_ulong a0)
2350 {
2351 int i;
2352
2353 for (i = 0; i < (1 << SHIFT); i++) {
2354 if (v->Q(i) >> 63) {
2355 cpu_stq_data_ra(env, a0 + i * 8, s->Q(i), GETPC());
2356 }
2357 }
2358 }
2359
2360 void glue(helper_vpmaskmovd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2361 {
2362 int i;
2363
2364 for (i = 0; i < (2 << SHIFT); i++) {
2365 d->L(i) = (v->L(i) >> 31) ? s->L(i) : 0;
2366 }
2367 }
2368
2369 void glue(helper_vpmaskmovq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2370 {
2371 int i;
2372
2373 for (i = 0; i < (1 << SHIFT); i++) {
2374 d->Q(i) = (v->Q(i) >> 63) ? s->Q(i) : 0;
2375 }
2376 }
2377
2378 void glue(helper_vpgatherdd, SUFFIX)(CPUX86State *env,
2379 Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale)
2380 {
2381 int i;
2382 for (i = 0; i < (2 << SHIFT); i++) {
2383 if (v->L(i) >> 31) {
2384 target_ulong addr = a0
2385 + ((target_ulong)(int32_t)s->L(i) << scale);
2386 d->L(i) = cpu_ldl_data_ra(env, addr, GETPC());
2387 }
2388 v->L(i) = 0;
2389 }
2390 }
2391
2392 void glue(helper_vpgatherdq, SUFFIX)(CPUX86State *env,
2393 Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale)
2394 {
2395 int i;
2396 for (i = 0; i < (1 << SHIFT); i++) {
2397 if (v->Q(i) >> 63) {
2398 target_ulong addr = a0
2399 + ((target_ulong)(int32_t)s->L(i) << scale);
2400 d->Q(i) = cpu_ldq_data_ra(env, addr, GETPC());
2401 }
2402 v->Q(i) = 0;
2403 }
2404 }
2405
2406 void glue(helper_vpgatherqd, SUFFIX)(CPUX86State *env,
2407 Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale)
2408 {
2409 int i;
2410 for (i = 0; i < (1 << SHIFT); i++) {
2411 if (v->L(i) >> 31) {
2412 target_ulong addr = a0
2413 + ((target_ulong)(int64_t)s->Q(i) << scale);
2414 d->L(i) = cpu_ldl_data_ra(env, addr, GETPC());
2415 }
2416 v->L(i) = 0;
2417 }
2418 for (i /= 2; i < 1 << SHIFT; i++) {
2419 d->Q(i) = 0;
2420 v->Q(i) = 0;
2421 }
2422 }
2423
2424 void glue(helper_vpgatherqq, SUFFIX)(CPUX86State *env,
2425 Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale)
2426 {
2427 int i;
2428 for (i = 0; i < (1 << SHIFT); i++) {
2429 if (v->Q(i) >> 63) {
2430 target_ulong addr = a0
2431 + ((target_ulong)(int64_t)s->Q(i) << scale);
2432 d->Q(i) = cpu_ldq_data_ra(env, addr, GETPC());
2433 }
2434 v->Q(i) = 0;
2435 }
2436 }
2437 #endif
2438
2439 #if SHIFT >= 2
2440 void helper_vpermdq_ymm(Reg *d, Reg *v, Reg *s, uint32_t order)
2441 {
2442 uint64_t r0, r1, r2, r3;
2443
2444 switch (order & 3) {
2445 case 0:
2446 r0 = v->Q(0);
2447 r1 = v->Q(1);
2448 break;
2449 case 1:
2450 r0 = v->Q(2);
2451 r1 = v->Q(3);
2452 break;
2453 case 2:
2454 r0 = s->Q(0);
2455 r1 = s->Q(1);
2456 break;
2457 case 3:
2458 r0 = s->Q(2);
2459 r1 = s->Q(3);
2460 break;
2461 default: /* default case added to help the compiler to avoid warnings */
2462 g_assert_not_reached();
2463 }
2464 switch ((order >> 4) & 3) {
2465 case 0:
2466 r2 = v->Q(0);
2467 r3 = v->Q(1);
2468 break;
2469 case 1:
2470 r2 = v->Q(2);
2471 r3 = v->Q(3);
2472 break;
2473 case 2:
2474 r2 = s->Q(0);
2475 r3 = s->Q(1);
2476 break;
2477 case 3:
2478 r2 = s->Q(2);
2479 r3 = s->Q(3);
2480 break;
2481 default: /* default case added to help the compiler to avoid warnings */
2482 g_assert_not_reached();
2483 }
2484 d->Q(0) = r0;
2485 d->Q(1) = r1;
2486 d->Q(2) = r2;
2487 d->Q(3) = r3;
2488 if (order & 0x8) {
2489 d->Q(0) = 0;
2490 d->Q(1) = 0;
2491 }
2492 if (order & 0x80) {
2493 d->Q(2) = 0;
2494 d->Q(3) = 0;
2495 }
2496 }
2497
2498 void helper_vpermq_ymm(Reg *d, Reg *s, uint32_t order)
2499 {
2500 uint64_t r0, r1, r2, r3;
2501 r0 = s->Q(order & 3);
2502 r1 = s->Q((order >> 2) & 3);
2503 r2 = s->Q((order >> 4) & 3);
2504 r3 = s->Q((order >> 6) & 3);
2505 d->Q(0) = r0;
2506 d->Q(1) = r1;
2507 d->Q(2) = r2;
2508 d->Q(3) = r3;
2509 }
2510
2511 void helper_vpermd_ymm(Reg *d, Reg *v, Reg *s)
2512 {
2513 uint32_t r[8];
2514 int i;
2515
2516 for (i = 0; i < 8; i++) {
2517 r[i] = s->L(v->L(i) & 7);
2518 }
2519 for (i = 0; i < 8; i++) {
2520 d->L(i) = r[i];
2521 }
2522 }
2523 #endif
2524
2525 /* FMA3 op helpers */
2526 #if SHIFT == 1
2527 #define SSE_HELPER_FMAS(name, elem, F) \
2528 void name(CPUX86State *env, Reg *d, Reg *a, Reg *b, Reg *c, int flags) \
2529 { \
2530 d->elem(0) = F(a->elem(0), b->elem(0), c->elem(0), flags, &env->sse_status); \
2531 }
2532 #define SSE_HELPER_FMAP(name, elem, num, F) \
2533 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *a, Reg *b, Reg *c, \
2534 int flags, int flip) \
2535 { \
2536 int i; \
2537 for (i = 0; i < num; i++) { \
2538 d->elem(i) = F(a->elem(i), b->elem(i), c->elem(i), flags, &env->sse_status); \
2539 flags ^= flip; \
2540 } \
2541 }
2542
2543 SSE_HELPER_FMAS(helper_fma4ss, ZMM_S, float32_muladd)
2544 SSE_HELPER_FMAS(helper_fma4sd, ZMM_D, float64_muladd)
2545 #endif
2546
2547 #if SHIFT >= 1
2548 SSE_HELPER_FMAP(helper_fma4ps, ZMM_S, 2 << SHIFT, float32_muladd)
2549 SSE_HELPER_FMAP(helper_fma4pd, ZMM_D, 1 << SHIFT, float64_muladd)
2550 #endif
2551
2552 #undef SSE_HELPER_S
2553
2554 #undef LANE_WIDTH
2555 #undef SHIFT
2556 #undef XMM_ONLY
2557 #undef Reg
2558 #undef B
2559 #undef W
2560 #undef L
2561 #undef Q
2562 #undef SUFFIX