]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/tcg/decode-new.h
25220fc43623ce84f59393015e754031b36a7f3d
[mirror_qemu.git] / target / i386 / tcg / decode-new.h
1 /*
2 * Decode table flags, mostly based on Intel SDM.
3 *
4 * Copyright (c) 2022 Red Hat, Inc.
5 *
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 typedef enum X86OpType {
23 X86_TYPE_None,
24
25 X86_TYPE_A, /* Implicit */
26 X86_TYPE_B, /* VEX.vvvv selects a GPR */
27 X86_TYPE_C, /* REG in the modrm byte selects a control register */
28 X86_TYPE_D, /* REG in the modrm byte selects a debug register */
29 X86_TYPE_E, /* ALU modrm operand */
30 X86_TYPE_F, /* EFLAGS/RFLAGS */
31 X86_TYPE_G, /* REG in the modrm byte selects a GPR */
32 X86_TYPE_H, /* For AVX, VEX.vvvv selects an XMM/YMM register */
33 X86_TYPE_I, /* Immediate */
34 X86_TYPE_J, /* Relative offset for a jump */
35 X86_TYPE_L, /* The upper 4 bits of the immediate select a 128-bit register */
36 X86_TYPE_M, /* modrm byte selects a memory operand */
37 X86_TYPE_N, /* R/M in the modrm byte selects an MMX register */
38 X86_TYPE_O, /* Absolute address encoded in the instruction */
39 X86_TYPE_P, /* reg in the modrm byte selects an MMX register */
40 X86_TYPE_Q, /* MMX modrm operand */
41 X86_TYPE_R, /* R/M in the modrm byte selects a register */
42 X86_TYPE_S, /* reg selects a segment register */
43 X86_TYPE_U, /* R/M in the modrm byte selects an XMM/YMM register */
44 X86_TYPE_V, /* reg in the modrm byte selects an XMM/YMM register */
45 X86_TYPE_W, /* XMM/YMM modrm operand */
46 X86_TYPE_X, /* string source */
47 X86_TYPE_Y, /* string destination */
48
49 /* Custom */
50 X86_TYPE_WM, /* modrm byte selects an XMM/YMM memory operand */
51 X86_TYPE_2op, /* 2-operand RMW instruction */
52 X86_TYPE_LoBits, /* encoded in bits 0-2 of the operand + REX.B */
53 X86_TYPE_0, /* Hard-coded GPRs (RAX..RDI) */
54 X86_TYPE_1,
55 X86_TYPE_2,
56 X86_TYPE_3,
57 X86_TYPE_4,
58 X86_TYPE_5,
59 X86_TYPE_6,
60 X86_TYPE_7,
61 X86_TYPE_ES, /* Hard-coded segment registers */
62 X86_TYPE_CS,
63 X86_TYPE_SS,
64 X86_TYPE_DS,
65 X86_TYPE_FS,
66 X86_TYPE_GS,
67 } X86OpType;
68
69 typedef enum X86OpSize {
70 X86_SIZE_None,
71
72 X86_SIZE_a, /* BOUND operand */
73 X86_SIZE_b, /* byte */
74 X86_SIZE_d, /* 32-bit */
75 X86_SIZE_dq, /* SSE/AVX 128-bit */
76 X86_SIZE_p, /* Far pointer */
77 X86_SIZE_pd, /* SSE/AVX packed double precision */
78 X86_SIZE_pi, /* MMX */
79 X86_SIZE_ps, /* SSE/AVX packed single precision */
80 X86_SIZE_q, /* 64-bit */
81 X86_SIZE_qq, /* AVX 256-bit */
82 X86_SIZE_s, /* Descriptor */
83 X86_SIZE_sd, /* SSE/AVX scalar double precision */
84 X86_SIZE_ss, /* SSE/AVX scalar single precision */
85 X86_SIZE_si, /* 32-bit GPR */
86 X86_SIZE_v, /* 16/32/64-bit, based on operand size */
87 X86_SIZE_w, /* 16-bit */
88 X86_SIZE_x, /* 128/256-bit, based on operand size */
89 X86_SIZE_y, /* 32/64-bit, based on operand size */
90 X86_SIZE_z, /* 16-bit for 16-bit operand size, else 32-bit */
91
92 /* Custom */
93 X86_SIZE_d64,
94 X86_SIZE_f64,
95 X86_SIZE_xh, /* SSE/AVX packed half register */
96 } X86OpSize;
97
98 typedef enum X86CPUIDFeature {
99 X86_FEAT_None,
100 X86_FEAT_3DNOW,
101 X86_FEAT_ADX,
102 X86_FEAT_AES,
103 X86_FEAT_AVX,
104 X86_FEAT_AVX2,
105 X86_FEAT_BMI1,
106 X86_FEAT_BMI2,
107 X86_FEAT_F16C,
108 X86_FEAT_FMA,
109 X86_FEAT_MOVBE,
110 X86_FEAT_PCLMULQDQ,
111 X86_FEAT_SHA_NI,
112 X86_FEAT_SSE,
113 X86_FEAT_SSE2,
114 X86_FEAT_SSE3,
115 X86_FEAT_SSSE3,
116 X86_FEAT_SSE41,
117 X86_FEAT_SSE42,
118 X86_FEAT_SSE4A,
119 } X86CPUIDFeature;
120
121 /* Execution flags */
122
123 typedef enum X86OpUnit {
124 X86_OP_SKIP, /* not valid or managed by emission function */
125 X86_OP_SEG, /* segment selector */
126 X86_OP_CR, /* control register */
127 X86_OP_DR, /* debug register */
128 X86_OP_INT, /* loaded into/stored from s->T0/T1 */
129 X86_OP_IMM, /* immediate */
130 X86_OP_SSE, /* address in either s->ptrX or s->A0 depending on has_ea */
131 X86_OP_MMX, /* address in either s->ptrX or s->A0 depending on has_ea */
132 } X86OpUnit;
133
134 typedef enum X86InsnCheck {
135 /* Illegal or exclusive to 64-bit mode */
136 X86_CHECK_i64 = 1,
137 X86_CHECK_o64 = 2,
138
139 /* Fault outside protected mode */
140 X86_CHECK_prot = 4,
141
142 /* Privileged instruction checks */
143 X86_CHECK_cpl0 = 8,
144 X86_CHECK_vm86_iopl = 16,
145 X86_CHECK_cpl_iopl = 32,
146 X86_CHECK_iopl = X86_CHECK_cpl_iopl | X86_CHECK_vm86_iopl,
147
148 /* Fault if VEX.L=1 */
149 X86_CHECK_VEX128 = 64,
150
151 /* Fault if VEX.W=1 */
152 X86_CHECK_W0 = 128,
153
154 /* Fault if VEX.W=0 */
155 X86_CHECK_W1 = 256,
156 } X86InsnCheck;
157
158 typedef enum X86InsnSpecial {
159 X86_SPECIAL_None,
160
161 /* Accepts LOCK prefix; LOCKed operations do not load or writeback operand 0 */
162 X86_SPECIAL_HasLock,
163
164 /* Always locked if it has a memory operand (XCHG) */
165 X86_SPECIAL_Locked,
166
167 /*
168 * Rd/Mb or Rd/Mw in the manual: register operand 0 is treated as 32 bits
169 * (and writeback zero-extends it to 64 bits if applicable). PREFIX_DATA
170 * does not trigger 16-bit writeback and, as a side effect, high-byte
171 * registers are never used.
172 */
173 X86_SPECIAL_Op0_Rd,
174
175 /*
176 * Ry/Mb in the manual (PINSRB). However, the high bits are never used by
177 * the instruction in either the register or memory cases; the *real* effect
178 * of this modifier is that high-byte registers are never used, even without
179 * a REX prefix. Therefore, PINSRW does not need it despite having Ry/Mw.
180 */
181 X86_SPECIAL_Op2_Ry,
182
183 /*
184 * Register operand 2 is extended to full width, while a memory operand
185 * is doubled in size if VEX.L=1.
186 */
187 X86_SPECIAL_AVXExtMov,
188
189 /*
190 * MMX instruction exists with no prefix; if there is no prefix, V/H/W/U operands
191 * become P/P/Q/N, and size "x" becomes "q".
192 */
193 X86_SPECIAL_MMX,
194
195 /* When loaded into s->T0, register operand 1 is zero/sign extended. */
196 X86_SPECIAL_SExtT0,
197 X86_SPECIAL_ZExtT0,
198 } X86InsnSpecial;
199
200 /*
201 * Special cases for instructions that operate on XMM/YMM registers. Intel
202 * retconned all of them to have VEX exception classes other than 0 and 13, so
203 * all these only matter for instructions that have a VEX exception class.
204 * Based on tables in the "AVX and SSE Instruction Exception Specification"
205 * section of the manual.
206 */
207 typedef enum X86VEXSpecial {
208 /* Legacy SSE instructions that allow unaligned operands */
209 X86_VEX_SSEUnaligned,
210
211 /*
212 * Used for instructions that distinguish the XMM operand type with an
213 * instruction prefix; legacy SSE encodings will allow unaligned operands
214 * for scalar operands only (identified by a REP prefix). In this case,
215 * the decoding table uses "x" for the vector operands instead of specifying
216 * pd/ps/sd/ss individually.
217 */
218 X86_VEX_REPScalar,
219
220 /*
221 * VEX instructions that only support 256-bit operands with AVX2 (Table 2-17
222 * column 3). Columns 2 and 4 (instructions limited to 256- and 127-bit
223 * operands respectively) are implicit in the presence of dq and qq
224 * operands, and thus handled by decode_op_size.
225 */
226 X86_VEX_AVX2_256,
227 } X86VEXSpecial;
228
229
230 typedef struct X86OpEntry X86OpEntry;
231 typedef struct X86DecodedInsn X86DecodedInsn;
232
233 /* Decode function for multibyte opcodes. */
234 typedef void (*X86DecodeFunc)(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b);
235
236 /* Code generation function. */
237 typedef void (*X86GenFunc)(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode);
238
239 struct X86OpEntry {
240 /* Based on the is_decode flags. */
241 union {
242 X86GenFunc gen;
243 X86DecodeFunc decode;
244 };
245 /* op0 is always written, op1 and op2 are always read. */
246 X86OpType op0:8;
247 X86OpSize s0:8;
248 X86OpType op1:8;
249 X86OpSize s1:8;
250 X86OpType op2:8;
251 X86OpSize s2:8;
252 /* Must be I and b respectively if present. */
253 X86OpType op3:8;
254 X86OpSize s3:8;
255
256 X86InsnSpecial special:8;
257 X86CPUIDFeature cpuid:8;
258 unsigned vex_class:8;
259 X86VEXSpecial vex_special:8;
260 unsigned valid_prefix:16;
261 unsigned check:16;
262 unsigned intercept:8;
263 bool is_decode:1;
264 };
265
266 typedef struct X86DecodedOp {
267 int8_t n;
268 MemOp ot; /* For b/c/d/p/s/q/v/w/y/z */
269 X86OpUnit unit;
270 bool has_ea;
271 int offset; /* For MMX and SSE */
272
273 /*
274 * This field is used internally by macros OP0_PTR/OP1_PTR/OP2_PTR,
275 * do not access directly!
276 */
277 TCGv_ptr v_ptr;
278 } X86DecodedOp;
279
280 struct X86DecodedInsn {
281 X86OpEntry e;
282 X86DecodedOp op[3];
283 target_ulong immediate;
284 AddressParts mem;
285
286 TCGv cc_dst, cc_src, cc_src2;
287 TCGv_i32 cc_op_dynamic;
288 int8_t cc_op;
289
290 uint8_t b;
291 };
292