]> git.proxmox.com Git - mirror_qemu.git/blob - target/i386/tcg/emit.c.inc
88793ba988d1316da139352cbeaf08441a7a7b1a
[mirror_qemu.git] / target / i386 / tcg / emit.c.inc
1 /*
2 * New-style TCG opcode generator for i386 instructions
3 *
4 * Copyright (c) 2022 Red Hat, Inc.
5 *
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #define ZMM_OFFSET(reg) offsetof(CPUX86State, xmm_regs[reg])
23
24 typedef void (*SSEFunc_i_ep)(TCGv_i32 val, TCGv_ptr env, TCGv_ptr reg);
25 typedef void (*SSEFunc_l_ep)(TCGv_i64 val, TCGv_ptr env, TCGv_ptr reg);
26 typedef void (*SSEFunc_0_epp)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b);
27 typedef void (*SSEFunc_0_eppp)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
28 TCGv_ptr reg_c);
29 typedef void (*SSEFunc_0_epppp)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
30 TCGv_ptr reg_c, TCGv_ptr reg_d);
31 typedef void (*SSEFunc_0_eppi)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
32 TCGv_i32 val);
33 typedef void (*SSEFunc_0_epppi)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
34 TCGv_ptr reg_c, TCGv_i32 val);
35 typedef void (*SSEFunc_0_ppi)(TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_i32 val);
36 typedef void (*SSEFunc_0_pppi)(TCGv_ptr reg_a, TCGv_ptr reg_b, TCGv_ptr reg_c,
37 TCGv_i32 val);
38 typedef void (*SSEFunc_0_eppt)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
39 TCGv val);
40 typedef void (*SSEFunc_0_epppti)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
41 TCGv_ptr reg_c, TCGv a0, TCGv_i32 scale);
42 typedef void (*SSEFunc_0_eppppi)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
43 TCGv_ptr reg_c, TCGv_ptr reg_d, TCGv_i32 flags);
44 typedef void (*SSEFunc_0_eppppii)(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b,
45 TCGv_ptr reg_c, TCGv_ptr reg_d, TCGv_i32 even,
46 TCGv_i32 odd);
47
48 static inline TCGv_i32 tcg_constant8u_i32(uint8_t val)
49 {
50 return tcg_constant_i32(val);
51 }
52
53 static void gen_NM_exception(DisasContext *s)
54 {
55 gen_exception(s, EXCP07_PREX);
56 }
57
58 static void gen_illegal(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
59 {
60 gen_illegal_opcode(s);
61 }
62
63 static void gen_load_ea(DisasContext *s, AddressParts *mem, bool is_vsib)
64 {
65 TCGv ea = gen_lea_modrm_1(s, *mem, is_vsib);
66 gen_lea_v_seg(s, s->aflag, ea, mem->def_seg, s->override);
67 }
68
69 static inline int mmx_offset(MemOp ot)
70 {
71 switch (ot) {
72 case MO_8:
73 return offsetof(MMXReg, MMX_B(0));
74 case MO_16:
75 return offsetof(MMXReg, MMX_W(0));
76 case MO_32:
77 return offsetof(MMXReg, MMX_L(0));
78 case MO_64:
79 return offsetof(MMXReg, MMX_Q(0));
80 default:
81 g_assert_not_reached();
82 }
83 }
84
85 static inline int xmm_offset(MemOp ot)
86 {
87 switch (ot) {
88 case MO_8:
89 return offsetof(ZMMReg, ZMM_B(0));
90 case MO_16:
91 return offsetof(ZMMReg, ZMM_W(0));
92 case MO_32:
93 return offsetof(ZMMReg, ZMM_L(0));
94 case MO_64:
95 return offsetof(ZMMReg, ZMM_Q(0));
96 case MO_128:
97 return offsetof(ZMMReg, ZMM_X(0));
98 case MO_256:
99 return offsetof(ZMMReg, ZMM_Y(0));
100 default:
101 g_assert_not_reached();
102 }
103 }
104
105 static int vector_reg_offset(X86DecodedOp *op)
106 {
107 assert(op->unit == X86_OP_MMX || op->unit == X86_OP_SSE);
108
109 if (op->unit == X86_OP_MMX) {
110 return op->offset - mmx_offset(op->ot);
111 } else {
112 return op->offset - xmm_offset(op->ot);
113 }
114 }
115
116 static int vector_elem_offset(X86DecodedOp *op, MemOp ot, int n)
117 {
118 int base_ofs = vector_reg_offset(op);
119 switch(ot) {
120 case MO_8:
121 if (op->unit == X86_OP_MMX) {
122 return base_ofs + offsetof(MMXReg, MMX_B(n));
123 } else {
124 return base_ofs + offsetof(ZMMReg, ZMM_B(n));
125 }
126 case MO_16:
127 if (op->unit == X86_OP_MMX) {
128 return base_ofs + offsetof(MMXReg, MMX_W(n));
129 } else {
130 return base_ofs + offsetof(ZMMReg, ZMM_W(n));
131 }
132 case MO_32:
133 if (op->unit == X86_OP_MMX) {
134 return base_ofs + offsetof(MMXReg, MMX_L(n));
135 } else {
136 return base_ofs + offsetof(ZMMReg, ZMM_L(n));
137 }
138 case MO_64:
139 if (op->unit == X86_OP_MMX) {
140 return base_ofs;
141 } else {
142 return base_ofs + offsetof(ZMMReg, ZMM_Q(n));
143 }
144 case MO_128:
145 assert(op->unit == X86_OP_SSE);
146 return base_ofs + offsetof(ZMMReg, ZMM_X(n));
147 case MO_256:
148 assert(op->unit == X86_OP_SSE);
149 return base_ofs + offsetof(ZMMReg, ZMM_Y(n));
150 default:
151 g_assert_not_reached();
152 }
153 }
154
155 static void compute_mmx_offset(X86DecodedOp *op)
156 {
157 if (!op->has_ea) {
158 op->offset = offsetof(CPUX86State, fpregs[op->n].mmx) + mmx_offset(op->ot);
159 } else {
160 op->offset = offsetof(CPUX86State, mmx_t0) + mmx_offset(op->ot);
161 }
162 }
163
164 static void compute_xmm_offset(X86DecodedOp *op)
165 {
166 if (!op->has_ea) {
167 op->offset = ZMM_OFFSET(op->n) + xmm_offset(op->ot);
168 } else {
169 op->offset = offsetof(CPUX86State, xmm_t0) + xmm_offset(op->ot);
170 }
171 }
172
173 static void gen_load_sse(DisasContext *s, TCGv temp, MemOp ot, int dest_ofs, bool aligned)
174 {
175 switch(ot) {
176 case MO_8:
177 gen_op_ld_v(s, MO_8, temp, s->A0);
178 tcg_gen_st8_tl(temp, tcg_env, dest_ofs);
179 break;
180 case MO_16:
181 gen_op_ld_v(s, MO_16, temp, s->A0);
182 tcg_gen_st16_tl(temp, tcg_env, dest_ofs);
183 break;
184 case MO_32:
185 gen_op_ld_v(s, MO_32, temp, s->A0);
186 tcg_gen_st32_tl(temp, tcg_env, dest_ofs);
187 break;
188 case MO_64:
189 gen_ldq_env_A0(s, dest_ofs);
190 break;
191 case MO_128:
192 gen_ldo_env_A0(s, dest_ofs, aligned);
193 break;
194 case MO_256:
195 gen_ldy_env_A0(s, dest_ofs, aligned);
196 break;
197 default:
198 g_assert_not_reached();
199 }
200 }
201
202 static bool sse_needs_alignment(DisasContext *s, X86DecodedInsn *decode, MemOp ot)
203 {
204 switch (decode->e.vex_class) {
205 case 2:
206 case 4:
207 if ((s->prefix & PREFIX_VEX) ||
208 decode->e.vex_special == X86_VEX_SSEUnaligned) {
209 /* MOST legacy SSE instructions require aligned memory operands, but not all. */
210 return false;
211 }
212 /* fall through */
213 case 1:
214 return ot >= MO_128;
215
216 default:
217 return false;
218 }
219 }
220
221 static void gen_load(DisasContext *s, X86DecodedInsn *decode, int opn, TCGv v)
222 {
223 X86DecodedOp *op = &decode->op[opn];
224
225 switch (op->unit) {
226 case X86_OP_SKIP:
227 return;
228 case X86_OP_SEG:
229 tcg_gen_ld32u_tl(v, tcg_env,
230 offsetof(CPUX86State,segs[op->n].selector));
231 break;
232 case X86_OP_CR:
233 tcg_gen_ld_tl(v, tcg_env, offsetof(CPUX86State, cr[op->n]));
234 break;
235 case X86_OP_DR:
236 tcg_gen_ld_tl(v, tcg_env, offsetof(CPUX86State, dr[op->n]));
237 break;
238 case X86_OP_INT:
239 if (op->has_ea) {
240 gen_op_ld_v(s, op->ot, v, s->A0);
241 } else {
242 gen_op_mov_v_reg(s, op->ot, v, op->n);
243 }
244 break;
245 case X86_OP_IMM:
246 tcg_gen_movi_tl(v, decode->immediate);
247 break;
248
249 case X86_OP_MMX:
250 compute_mmx_offset(op);
251 goto load_vector;
252
253 case X86_OP_SSE:
254 compute_xmm_offset(op);
255 load_vector:
256 if (op->has_ea) {
257 bool aligned = sse_needs_alignment(s, decode, op->ot);
258 gen_load_sse(s, v, op->ot, op->offset, aligned);
259 }
260 break;
261
262 default:
263 g_assert_not_reached();
264 }
265 }
266
267 static TCGv_ptr op_ptr(X86DecodedInsn *decode, int opn)
268 {
269 X86DecodedOp *op = &decode->op[opn];
270 if (op->v_ptr) {
271 return op->v_ptr;
272 }
273 op->v_ptr = tcg_temp_new_ptr();
274
275 /* The temporary points to the MMXReg or ZMMReg. */
276 tcg_gen_addi_ptr(op->v_ptr, tcg_env, vector_reg_offset(op));
277 return op->v_ptr;
278 }
279
280 #define OP_PTR0 op_ptr(decode, 0)
281 #define OP_PTR1 op_ptr(decode, 1)
282 #define OP_PTR2 op_ptr(decode, 2)
283
284 static void gen_writeback(DisasContext *s, X86DecodedInsn *decode, int opn, TCGv v)
285 {
286 X86DecodedOp *op = &decode->op[opn];
287 switch (op->unit) {
288 case X86_OP_SKIP:
289 break;
290 case X86_OP_SEG:
291 /* Note that gen_movl_seg_T0 takes care of interrupt shadow and TF. */
292 gen_movl_seg_T0(s, op->n);
293 break;
294 case X86_OP_INT:
295 if (op->has_ea) {
296 gen_op_st_v(s, op->ot, v, s->A0);
297 } else {
298 gen_op_mov_reg_v(s, op->ot, op->n, v);
299 }
300 break;
301 case X86_OP_MMX:
302 break;
303 case X86_OP_SSE:
304 if (!op->has_ea && (s->prefix & PREFIX_VEX) && op->ot <= MO_128) {
305 tcg_gen_gvec_dup_imm(MO_64,
306 offsetof(CPUX86State, xmm_regs[op->n].ZMM_X(1)),
307 16, 16, 0);
308 }
309 break;
310 case X86_OP_CR:
311 case X86_OP_DR:
312 default:
313 g_assert_not_reached();
314 }
315 }
316
317 static inline int vector_len(DisasContext *s, X86DecodedInsn *decode)
318 {
319 if (decode->e.special == X86_SPECIAL_MMX &&
320 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
321 return 8;
322 }
323 return s->vex_l ? 32 : 16;
324 }
325
326 static void gen_store_sse(DisasContext *s, X86DecodedInsn *decode, int src_ofs)
327 {
328 MemOp ot = decode->op[0].ot;
329 int vec_len = vector_len(s, decode);
330 bool aligned = sse_needs_alignment(s, decode, ot);
331
332 if (!decode->op[0].has_ea) {
333 tcg_gen_gvec_mov(MO_64, decode->op[0].offset, src_ofs, vec_len, vec_len);
334 return;
335 }
336
337 switch (ot) {
338 case MO_64:
339 gen_stq_env_A0(s, src_ofs);
340 break;
341 case MO_128:
342 gen_sto_env_A0(s, src_ofs, aligned);
343 break;
344 case MO_256:
345 gen_sty_env_A0(s, src_ofs, aligned);
346 break;
347 default:
348 g_assert_not_reached();
349 }
350 }
351
352 static void gen_helper_pavgusb(TCGv_ptr env, TCGv_ptr reg_a, TCGv_ptr reg_b)
353 {
354 gen_helper_pavgb_mmx(env, reg_a, reg_a, reg_b);
355 }
356
357 #define FN_3DNOW_MOVE ((SSEFunc_0_epp) (uintptr_t) 1)
358 static const SSEFunc_0_epp fns_3dnow[] = {
359 [0x0c] = gen_helper_pi2fw,
360 [0x0d] = gen_helper_pi2fd,
361 [0x1c] = gen_helper_pf2iw,
362 [0x1d] = gen_helper_pf2id,
363 [0x8a] = gen_helper_pfnacc,
364 [0x8e] = gen_helper_pfpnacc,
365 [0x90] = gen_helper_pfcmpge,
366 [0x94] = gen_helper_pfmin,
367 [0x96] = gen_helper_pfrcp,
368 [0x97] = gen_helper_pfrsqrt,
369 [0x9a] = gen_helper_pfsub,
370 [0x9e] = gen_helper_pfadd,
371 [0xa0] = gen_helper_pfcmpgt,
372 [0xa4] = gen_helper_pfmax,
373 [0xa6] = FN_3DNOW_MOVE, /* PFRCPIT1; no need to actually increase precision */
374 [0xa7] = FN_3DNOW_MOVE, /* PFRSQIT1 */
375 [0xb6] = FN_3DNOW_MOVE, /* PFRCPIT2 */
376 [0xaa] = gen_helper_pfsubr,
377 [0xae] = gen_helper_pfacc,
378 [0xb0] = gen_helper_pfcmpeq,
379 [0xb4] = gen_helper_pfmul,
380 [0xb7] = gen_helper_pmulhrw_mmx,
381 [0xbb] = gen_helper_pswapd,
382 [0xbf] = gen_helper_pavgusb,
383 };
384
385 static void gen_3dnow(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
386 {
387 uint8_t b = decode->immediate;
388 SSEFunc_0_epp fn = b < ARRAY_SIZE(fns_3dnow) ? fns_3dnow[b] : NULL;
389
390 if (!fn) {
391 gen_illegal_opcode(s);
392 return;
393 }
394 if (s->flags & HF_TS_MASK) {
395 gen_NM_exception(s);
396 return;
397 }
398 if (s->flags & HF_EM_MASK) {
399 gen_illegal_opcode(s);
400 return;
401 }
402
403 gen_helper_enter_mmx(tcg_env);
404 if (fn == FN_3DNOW_MOVE) {
405 tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset);
406 tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset);
407 } else {
408 fn(tcg_env, OP_PTR0, OP_PTR1);
409 }
410 }
411
412 /*
413 * 00 = v*ps Vps, Hps, Wpd
414 * 66 = v*pd Vpd, Hpd, Wps
415 * f3 = v*ss Vss, Hss, Wps
416 * f2 = v*sd Vsd, Hsd, Wps
417 */
418 static inline void gen_unary_fp_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
419 SSEFunc_0_epp pd_xmm, SSEFunc_0_epp ps_xmm,
420 SSEFunc_0_epp pd_ymm, SSEFunc_0_epp ps_ymm,
421 SSEFunc_0_eppp sd, SSEFunc_0_eppp ss)
422 {
423 if ((s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) != 0) {
424 SSEFunc_0_eppp fn = s->prefix & PREFIX_REPZ ? ss : sd;
425 if (!fn) {
426 gen_illegal_opcode(s);
427 return;
428 }
429 fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
430 } else {
431 SSEFunc_0_epp ps, pd, fn;
432 ps = s->vex_l ? ps_ymm : ps_xmm;
433 pd = s->vex_l ? pd_ymm : pd_xmm;
434 fn = s->prefix & PREFIX_DATA ? pd : ps;
435 if (!fn) {
436 gen_illegal_opcode(s);
437 return;
438 }
439 fn(tcg_env, OP_PTR0, OP_PTR2);
440 }
441 }
442 #define UNARY_FP_SSE(uname, lname) \
443 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
444 { \
445 gen_unary_fp_sse(s, env, decode, \
446 gen_helper_##lname##pd_xmm, \
447 gen_helper_##lname##ps_xmm, \
448 gen_helper_##lname##pd_ymm, \
449 gen_helper_##lname##ps_ymm, \
450 gen_helper_##lname##sd, \
451 gen_helper_##lname##ss); \
452 }
453 UNARY_FP_SSE(VSQRT, sqrt)
454
455 /*
456 * 00 = v*ps Vps, Hps, Wpd
457 * 66 = v*pd Vpd, Hpd, Wps
458 * f3 = v*ss Vss, Hss, Wps
459 * f2 = v*sd Vsd, Hsd, Wps
460 */
461 static inline void gen_fp_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
462 SSEFunc_0_eppp pd_xmm, SSEFunc_0_eppp ps_xmm,
463 SSEFunc_0_eppp pd_ymm, SSEFunc_0_eppp ps_ymm,
464 SSEFunc_0_eppp sd, SSEFunc_0_eppp ss)
465 {
466 SSEFunc_0_eppp ps, pd, fn;
467 if ((s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) != 0) {
468 fn = s->prefix & PREFIX_REPZ ? ss : sd;
469 } else {
470 ps = s->vex_l ? ps_ymm : ps_xmm;
471 pd = s->vex_l ? pd_ymm : pd_xmm;
472 fn = s->prefix & PREFIX_DATA ? pd : ps;
473 }
474 if (fn) {
475 fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
476 } else {
477 gen_illegal_opcode(s);
478 }
479 }
480
481 #define FP_SSE(uname, lname) \
482 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
483 { \
484 gen_fp_sse(s, env, decode, \
485 gen_helper_##lname##pd_xmm, \
486 gen_helper_##lname##ps_xmm, \
487 gen_helper_##lname##pd_ymm, \
488 gen_helper_##lname##ps_ymm, \
489 gen_helper_##lname##sd, \
490 gen_helper_##lname##ss); \
491 }
492 FP_SSE(VADD, add)
493 FP_SSE(VMUL, mul)
494 FP_SSE(VSUB, sub)
495 FP_SSE(VMIN, min)
496 FP_SSE(VDIV, div)
497 FP_SSE(VMAX, max)
498
499 #define FMA_SSE_PACKED(uname, ptr0, ptr1, ptr2, even, odd) \
500 static void gen_##uname##Px(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
501 { \
502 SSEFunc_0_eppppii xmm = s->vex_w ? gen_helper_fma4pd_xmm : gen_helper_fma4ps_xmm; \
503 SSEFunc_0_eppppii ymm = s->vex_w ? gen_helper_fma4pd_ymm : gen_helper_fma4ps_ymm; \
504 SSEFunc_0_eppppii fn = s->vex_l ? ymm : xmm; \
505 \
506 fn(tcg_env, OP_PTR0, ptr0, ptr1, ptr2, \
507 tcg_constant_i32(even), \
508 tcg_constant_i32((even) ^ (odd))); \
509 }
510
511 #define FMA_SSE(uname, ptr0, ptr1, ptr2, flags) \
512 FMA_SSE_PACKED(uname, ptr0, ptr1, ptr2, flags, flags) \
513 static void gen_##uname##Sx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
514 { \
515 SSEFunc_0_eppppi fn = s->vex_w ? gen_helper_fma4sd : gen_helper_fma4ss; \
516 \
517 fn(tcg_env, OP_PTR0, ptr0, ptr1, ptr2, \
518 tcg_constant_i32(flags)); \
519 } \
520
521 FMA_SSE(VFMADD231, OP_PTR1, OP_PTR2, OP_PTR0, 0)
522 FMA_SSE(VFMADD213, OP_PTR1, OP_PTR0, OP_PTR2, 0)
523 FMA_SSE(VFMADD132, OP_PTR0, OP_PTR2, OP_PTR1, 0)
524
525 FMA_SSE(VFNMADD231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_product)
526 FMA_SSE(VFNMADD213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_product)
527 FMA_SSE(VFNMADD132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_product)
528
529 FMA_SSE(VFMSUB231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_c)
530 FMA_SSE(VFMSUB213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_c)
531 FMA_SSE(VFMSUB132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_c)
532
533 FMA_SSE(VFNMSUB231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_c|float_muladd_negate_product)
534 FMA_SSE(VFNMSUB213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_c|float_muladd_negate_product)
535 FMA_SSE(VFNMSUB132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_c|float_muladd_negate_product)
536
537 FMA_SSE_PACKED(VFMADDSUB231, OP_PTR1, OP_PTR2, OP_PTR0, float_muladd_negate_c, 0)
538 FMA_SSE_PACKED(VFMADDSUB213, OP_PTR1, OP_PTR0, OP_PTR2, float_muladd_negate_c, 0)
539 FMA_SSE_PACKED(VFMADDSUB132, OP_PTR0, OP_PTR2, OP_PTR1, float_muladd_negate_c, 0)
540
541 FMA_SSE_PACKED(VFMSUBADD231, OP_PTR1, OP_PTR2, OP_PTR0, 0, float_muladd_negate_c)
542 FMA_SSE_PACKED(VFMSUBADD213, OP_PTR1, OP_PTR0, OP_PTR2, 0, float_muladd_negate_c)
543 FMA_SSE_PACKED(VFMSUBADD132, OP_PTR0, OP_PTR2, OP_PTR1, 0, float_muladd_negate_c)
544
545 #define FP_UNPACK_SSE(uname, lname) \
546 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
547 { \
548 /* PS maps to the DQ integer instruction, PD maps to QDQ. */ \
549 gen_fp_sse(s, env, decode, \
550 gen_helper_##lname##qdq_xmm, \
551 gen_helper_##lname##dq_xmm, \
552 gen_helper_##lname##qdq_ymm, \
553 gen_helper_##lname##dq_ymm, \
554 NULL, NULL); \
555 }
556 FP_UNPACK_SSE(VUNPCKLPx, punpckl)
557 FP_UNPACK_SSE(VUNPCKHPx, punpckh)
558
559 /*
560 * 00 = v*ps Vps, Wpd
561 * f3 = v*ss Vss, Wps
562 */
563 static inline void gen_unary_fp32_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
564 SSEFunc_0_epp ps_xmm,
565 SSEFunc_0_epp ps_ymm,
566 SSEFunc_0_eppp ss)
567 {
568 if ((s->prefix & (PREFIX_DATA | PREFIX_REPNZ)) != 0) {
569 goto illegal_op;
570 } else if (s->prefix & PREFIX_REPZ) {
571 if (!ss) {
572 goto illegal_op;
573 }
574 ss(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
575 } else {
576 SSEFunc_0_epp fn = s->vex_l ? ps_ymm : ps_xmm;
577 if (!fn) {
578 goto illegal_op;
579 }
580 fn(tcg_env, OP_PTR0, OP_PTR2);
581 }
582 return;
583
584 illegal_op:
585 gen_illegal_opcode(s);
586 }
587 #define UNARY_FP32_SSE(uname, lname) \
588 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
589 { \
590 gen_unary_fp32_sse(s, env, decode, \
591 gen_helper_##lname##ps_xmm, \
592 gen_helper_##lname##ps_ymm, \
593 gen_helper_##lname##ss); \
594 }
595 UNARY_FP32_SSE(VRSQRT, rsqrt)
596 UNARY_FP32_SSE(VRCP, rcp)
597
598 /*
599 * 66 = v*pd Vpd, Hpd, Wpd
600 * f2 = v*ps Vps, Hps, Wps
601 */
602 static inline void gen_horizontal_fp_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
603 SSEFunc_0_eppp pd_xmm, SSEFunc_0_eppp ps_xmm,
604 SSEFunc_0_eppp pd_ymm, SSEFunc_0_eppp ps_ymm)
605 {
606 SSEFunc_0_eppp ps, pd, fn;
607 ps = s->vex_l ? ps_ymm : ps_xmm;
608 pd = s->vex_l ? pd_ymm : pd_xmm;
609 fn = s->prefix & PREFIX_DATA ? pd : ps;
610 fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
611 }
612 #define HORIZONTAL_FP_SSE(uname, lname) \
613 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
614 { \
615 gen_horizontal_fp_sse(s, env, decode, \
616 gen_helper_##lname##pd_xmm, gen_helper_##lname##ps_xmm, \
617 gen_helper_##lname##pd_ymm, gen_helper_##lname##ps_ymm); \
618 }
619 HORIZONTAL_FP_SSE(VHADD, hadd)
620 HORIZONTAL_FP_SSE(VHSUB, hsub)
621 HORIZONTAL_FP_SSE(VADDSUB, addsub)
622
623 static inline void gen_ternary_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
624 int op3, SSEFunc_0_epppp xmm, SSEFunc_0_epppp ymm)
625 {
626 SSEFunc_0_epppp fn = s->vex_l ? ymm : xmm;
627 TCGv_ptr ptr3 = tcg_temp_new_ptr();
628
629 /* The format of the fourth input is Lx */
630 tcg_gen_addi_ptr(ptr3, tcg_env, ZMM_OFFSET(op3));
631 fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, ptr3);
632 }
633 #define TERNARY_SSE(uname, uvname, lname) \
634 static void gen_##uvname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
635 { \
636 gen_ternary_sse(s, env, decode, (uint8_t)decode->immediate >> 4, \
637 gen_helper_##lname##_xmm, gen_helper_##lname##_ymm); \
638 } \
639 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
640 { \
641 gen_ternary_sse(s, env, decode, 0, \
642 gen_helper_##lname##_xmm, gen_helper_##lname##_ymm); \
643 }
644 TERNARY_SSE(BLENDVPS, VBLENDVPS, blendvps)
645 TERNARY_SSE(BLENDVPD, VBLENDVPD, blendvpd)
646 TERNARY_SSE(PBLENDVB, VPBLENDVB, pblendvb)
647
648 static inline void gen_binary_imm_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
649 SSEFunc_0_epppi xmm, SSEFunc_0_epppi ymm)
650 {
651 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
652 if (!s->vex_l) {
653 xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
654 } else {
655 ymm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
656 }
657 }
658
659 #define BINARY_IMM_SSE(uname, lname) \
660 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
661 { \
662 gen_binary_imm_sse(s, env, decode, \
663 gen_helper_##lname##_xmm, \
664 gen_helper_##lname##_ymm); \
665 }
666
667 BINARY_IMM_SSE(VBLENDPD, blendpd)
668 BINARY_IMM_SSE(VBLENDPS, blendps)
669 BINARY_IMM_SSE(VPBLENDW, pblendw)
670 BINARY_IMM_SSE(VDDPS, dpps)
671 #define gen_helper_dppd_ymm NULL
672 BINARY_IMM_SSE(VDDPD, dppd)
673 BINARY_IMM_SSE(VMPSADBW, mpsadbw)
674 BINARY_IMM_SSE(PCLMULQDQ, pclmulqdq)
675
676
677 #define UNARY_INT_GVEC(uname, func, ...) \
678 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
679 { \
680 int vec_len = vector_len(s, decode); \
681 \
682 func(__VA_ARGS__, decode->op[0].offset, \
683 decode->op[2].offset, vec_len, vec_len); \
684 }
685 UNARY_INT_GVEC(PABSB, tcg_gen_gvec_abs, MO_8)
686 UNARY_INT_GVEC(PABSW, tcg_gen_gvec_abs, MO_16)
687 UNARY_INT_GVEC(PABSD, tcg_gen_gvec_abs, MO_32)
688 UNARY_INT_GVEC(VBROADCASTx128, tcg_gen_gvec_dup_mem, MO_128)
689 UNARY_INT_GVEC(VPBROADCASTB, tcg_gen_gvec_dup_mem, MO_8)
690 UNARY_INT_GVEC(VPBROADCASTW, tcg_gen_gvec_dup_mem, MO_16)
691 UNARY_INT_GVEC(VPBROADCASTD, tcg_gen_gvec_dup_mem, MO_32)
692 UNARY_INT_GVEC(VPBROADCASTQ, tcg_gen_gvec_dup_mem, MO_64)
693
694
695 #define BINARY_INT_GVEC(uname, func, ...) \
696 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
697 { \
698 int vec_len = vector_len(s, decode); \
699 \
700 func(__VA_ARGS__, \
701 decode->op[0].offset, decode->op[1].offset, \
702 decode->op[2].offset, vec_len, vec_len); \
703 }
704
705 BINARY_INT_GVEC(PADDB, tcg_gen_gvec_add, MO_8)
706 BINARY_INT_GVEC(PADDW, tcg_gen_gvec_add, MO_16)
707 BINARY_INT_GVEC(PADDD, tcg_gen_gvec_add, MO_32)
708 BINARY_INT_GVEC(PADDQ, tcg_gen_gvec_add, MO_64)
709 BINARY_INT_GVEC(PADDSB, tcg_gen_gvec_ssadd, MO_8)
710 BINARY_INT_GVEC(PADDSW, tcg_gen_gvec_ssadd, MO_16)
711 BINARY_INT_GVEC(PADDUSB, tcg_gen_gvec_usadd, MO_8)
712 BINARY_INT_GVEC(PADDUSW, tcg_gen_gvec_usadd, MO_16)
713 BINARY_INT_GVEC(PAND, tcg_gen_gvec_and, MO_64)
714 BINARY_INT_GVEC(PCMPEQB, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_8)
715 BINARY_INT_GVEC(PCMPEQD, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_32)
716 BINARY_INT_GVEC(PCMPEQW, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_16)
717 BINARY_INT_GVEC(PCMPEQQ, tcg_gen_gvec_cmp, TCG_COND_EQ, MO_64)
718 BINARY_INT_GVEC(PCMPGTB, tcg_gen_gvec_cmp, TCG_COND_GT, MO_8)
719 BINARY_INT_GVEC(PCMPGTW, tcg_gen_gvec_cmp, TCG_COND_GT, MO_16)
720 BINARY_INT_GVEC(PCMPGTD, tcg_gen_gvec_cmp, TCG_COND_GT, MO_32)
721 BINARY_INT_GVEC(PCMPGTQ, tcg_gen_gvec_cmp, TCG_COND_GT, MO_64)
722 BINARY_INT_GVEC(PMAXSB, tcg_gen_gvec_smax, MO_8)
723 BINARY_INT_GVEC(PMAXSW, tcg_gen_gvec_smax, MO_16)
724 BINARY_INT_GVEC(PMAXSD, tcg_gen_gvec_smax, MO_32)
725 BINARY_INT_GVEC(PMAXUB, tcg_gen_gvec_umax, MO_8)
726 BINARY_INT_GVEC(PMAXUW, tcg_gen_gvec_umax, MO_16)
727 BINARY_INT_GVEC(PMAXUD, tcg_gen_gvec_umax, MO_32)
728 BINARY_INT_GVEC(PMINSB, tcg_gen_gvec_smin, MO_8)
729 BINARY_INT_GVEC(PMINSW, tcg_gen_gvec_smin, MO_16)
730 BINARY_INT_GVEC(PMINSD, tcg_gen_gvec_smin, MO_32)
731 BINARY_INT_GVEC(PMINUB, tcg_gen_gvec_umin, MO_8)
732 BINARY_INT_GVEC(PMINUW, tcg_gen_gvec_umin, MO_16)
733 BINARY_INT_GVEC(PMINUD, tcg_gen_gvec_umin, MO_32)
734 BINARY_INT_GVEC(PMULLW, tcg_gen_gvec_mul, MO_16)
735 BINARY_INT_GVEC(PMULLD, tcg_gen_gvec_mul, MO_32)
736 BINARY_INT_GVEC(POR, tcg_gen_gvec_or, MO_64)
737 BINARY_INT_GVEC(PSUBB, tcg_gen_gvec_sub, MO_8)
738 BINARY_INT_GVEC(PSUBW, tcg_gen_gvec_sub, MO_16)
739 BINARY_INT_GVEC(PSUBD, tcg_gen_gvec_sub, MO_32)
740 BINARY_INT_GVEC(PSUBQ, tcg_gen_gvec_sub, MO_64)
741 BINARY_INT_GVEC(PSUBSB, tcg_gen_gvec_sssub, MO_8)
742 BINARY_INT_GVEC(PSUBSW, tcg_gen_gvec_sssub, MO_16)
743 BINARY_INT_GVEC(PSUBUSB, tcg_gen_gvec_ussub, MO_8)
744 BINARY_INT_GVEC(PSUBUSW, tcg_gen_gvec_ussub, MO_16)
745 BINARY_INT_GVEC(PXOR, tcg_gen_gvec_xor, MO_64)
746
747
748 /*
749 * 00 = p* Pq, Qq (if mmx not NULL; no VEX)
750 * 66 = vp* Vx, Hx, Wx
751 *
752 * These are really the same encoding, because 1) V is the same as P when VEX.V
753 * is not present 2) P and Q are the same as H and W apart from MM/XMM
754 */
755 static inline void gen_binary_int_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
756 SSEFunc_0_eppp mmx, SSEFunc_0_eppp xmm, SSEFunc_0_eppp ymm)
757 {
758 assert(!!mmx == !!(decode->e.special == X86_SPECIAL_MMX));
759
760 if (mmx && (s->prefix & PREFIX_VEX) && !(s->prefix & PREFIX_DATA)) {
761 /* VEX encoding is not applicable to MMX instructions. */
762 gen_illegal_opcode(s);
763 return;
764 }
765 if (!(s->prefix & PREFIX_DATA)) {
766 mmx(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
767 } else if (!s->vex_l) {
768 xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
769 } else {
770 ymm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
771 }
772 }
773
774
775 #define BINARY_INT_MMX(uname, lname) \
776 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
777 { \
778 gen_binary_int_sse(s, env, decode, \
779 gen_helper_##lname##_mmx, \
780 gen_helper_##lname##_xmm, \
781 gen_helper_##lname##_ymm); \
782 }
783 BINARY_INT_MMX(PUNPCKLBW, punpcklbw)
784 BINARY_INT_MMX(PUNPCKLWD, punpcklwd)
785 BINARY_INT_MMX(PUNPCKLDQ, punpckldq)
786 BINARY_INT_MMX(PACKSSWB, packsswb)
787 BINARY_INT_MMX(PACKUSWB, packuswb)
788 BINARY_INT_MMX(PUNPCKHBW, punpckhbw)
789 BINARY_INT_MMX(PUNPCKHWD, punpckhwd)
790 BINARY_INT_MMX(PUNPCKHDQ, punpckhdq)
791 BINARY_INT_MMX(PACKSSDW, packssdw)
792
793 BINARY_INT_MMX(PAVGB, pavgb)
794 BINARY_INT_MMX(PAVGW, pavgw)
795 BINARY_INT_MMX(PMADDWD, pmaddwd)
796 BINARY_INT_MMX(PMULHUW, pmulhuw)
797 BINARY_INT_MMX(PMULHW, pmulhw)
798 BINARY_INT_MMX(PMULUDQ, pmuludq)
799 BINARY_INT_MMX(PSADBW, psadbw)
800
801 BINARY_INT_MMX(PSLLW_r, psllw)
802 BINARY_INT_MMX(PSLLD_r, pslld)
803 BINARY_INT_MMX(PSLLQ_r, psllq)
804 BINARY_INT_MMX(PSRLW_r, psrlw)
805 BINARY_INT_MMX(PSRLD_r, psrld)
806 BINARY_INT_MMX(PSRLQ_r, psrlq)
807 BINARY_INT_MMX(PSRAW_r, psraw)
808 BINARY_INT_MMX(PSRAD_r, psrad)
809
810 BINARY_INT_MMX(PHADDW, phaddw)
811 BINARY_INT_MMX(PHADDSW, phaddsw)
812 BINARY_INT_MMX(PHADDD, phaddd)
813 BINARY_INT_MMX(PHSUBW, phsubw)
814 BINARY_INT_MMX(PHSUBSW, phsubsw)
815 BINARY_INT_MMX(PHSUBD, phsubd)
816 BINARY_INT_MMX(PMADDUBSW, pmaddubsw)
817 BINARY_INT_MMX(PSHUFB, pshufb)
818 BINARY_INT_MMX(PSIGNB, psignb)
819 BINARY_INT_MMX(PSIGNW, psignw)
820 BINARY_INT_MMX(PSIGND, psignd)
821 BINARY_INT_MMX(PMULHRSW, pmulhrsw)
822
823 /* Instructions with no MMX equivalent. */
824 #define BINARY_INT_SSE(uname, lname) \
825 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
826 { \
827 gen_binary_int_sse(s, env, decode, \
828 NULL, \
829 gen_helper_##lname##_xmm, \
830 gen_helper_##lname##_ymm); \
831 }
832
833 /* Instructions with no MMX equivalent. */
834 BINARY_INT_SSE(PUNPCKLQDQ, punpcklqdq)
835 BINARY_INT_SSE(PUNPCKHQDQ, punpckhqdq)
836 BINARY_INT_SSE(VPACKUSDW, packusdw)
837 BINARY_INT_SSE(VPERMILPS, vpermilps)
838 BINARY_INT_SSE(VPERMILPD, vpermilpd)
839 BINARY_INT_SSE(VMASKMOVPS, vpmaskmovd)
840 BINARY_INT_SSE(VMASKMOVPD, vpmaskmovq)
841
842 BINARY_INT_SSE(PMULDQ, pmuldq)
843
844 BINARY_INT_SSE(VAESDEC, aesdec)
845 BINARY_INT_SSE(VAESDECLAST, aesdeclast)
846 BINARY_INT_SSE(VAESENC, aesenc)
847 BINARY_INT_SSE(VAESENCLAST, aesenclast)
848
849 #define UNARY_CMP_SSE(uname, lname) \
850 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
851 { \
852 if (!s->vex_l) { \
853 gen_helper_##lname##_xmm(tcg_env, OP_PTR1, OP_PTR2); \
854 } else { \
855 gen_helper_##lname##_ymm(tcg_env, OP_PTR1, OP_PTR2); \
856 } \
857 set_cc_op(s, CC_OP_EFLAGS); \
858 }
859 UNARY_CMP_SSE(VPTEST, ptest)
860 UNARY_CMP_SSE(VTESTPS, vtestps)
861 UNARY_CMP_SSE(VTESTPD, vtestpd)
862
863 static inline void gen_unary_int_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
864 SSEFunc_0_epp xmm, SSEFunc_0_epp ymm)
865 {
866 if (!s->vex_l) {
867 xmm(tcg_env, OP_PTR0, OP_PTR2);
868 } else {
869 ymm(tcg_env, OP_PTR0, OP_PTR2);
870 }
871 }
872
873 #define UNARY_INT_SSE(uname, lname) \
874 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
875 { \
876 gen_unary_int_sse(s, env, decode, \
877 gen_helper_##lname##_xmm, \
878 gen_helper_##lname##_ymm); \
879 }
880
881 UNARY_INT_SSE(VPMOVSXBW, pmovsxbw)
882 UNARY_INT_SSE(VPMOVSXBD, pmovsxbd)
883 UNARY_INT_SSE(VPMOVSXBQ, pmovsxbq)
884 UNARY_INT_SSE(VPMOVSXWD, pmovsxwd)
885 UNARY_INT_SSE(VPMOVSXWQ, pmovsxwq)
886 UNARY_INT_SSE(VPMOVSXDQ, pmovsxdq)
887
888 UNARY_INT_SSE(VPMOVZXBW, pmovzxbw)
889 UNARY_INT_SSE(VPMOVZXBD, pmovzxbd)
890 UNARY_INT_SSE(VPMOVZXBQ, pmovzxbq)
891 UNARY_INT_SSE(VPMOVZXWD, pmovzxwd)
892 UNARY_INT_SSE(VPMOVZXWQ, pmovzxwq)
893 UNARY_INT_SSE(VPMOVZXDQ, pmovzxdq)
894
895 UNARY_INT_SSE(VMOVSLDUP, pmovsldup)
896 UNARY_INT_SSE(VMOVSHDUP, pmovshdup)
897 UNARY_INT_SSE(VMOVDDUP, pmovdldup)
898
899 UNARY_INT_SSE(VCVTDQ2PD, cvtdq2pd)
900 UNARY_INT_SSE(VCVTPD2DQ, cvtpd2dq)
901 UNARY_INT_SSE(VCVTTPD2DQ, cvttpd2dq)
902 UNARY_INT_SSE(VCVTDQ2PS, cvtdq2ps)
903 UNARY_INT_SSE(VCVTPS2DQ, cvtps2dq)
904 UNARY_INT_SSE(VCVTTPS2DQ, cvttps2dq)
905 UNARY_INT_SSE(VCVTPH2PS, cvtph2ps)
906
907
908 static inline void gen_unary_imm_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
909 SSEFunc_0_ppi xmm, SSEFunc_0_ppi ymm)
910 {
911 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
912 if (!s->vex_l) {
913 xmm(OP_PTR0, OP_PTR1, imm);
914 } else {
915 ymm(OP_PTR0, OP_PTR1, imm);
916 }
917 }
918
919 #define UNARY_IMM_SSE(uname, lname) \
920 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
921 { \
922 gen_unary_imm_sse(s, env, decode, \
923 gen_helper_##lname##_xmm, \
924 gen_helper_##lname##_ymm); \
925 }
926
927 UNARY_IMM_SSE(PSHUFD, pshufd)
928 UNARY_IMM_SSE(PSHUFHW, pshufhw)
929 UNARY_IMM_SSE(PSHUFLW, pshuflw)
930 #define gen_helper_vpermq_xmm NULL
931 UNARY_IMM_SSE(VPERMQ, vpermq)
932 UNARY_IMM_SSE(VPERMILPS_i, vpermilps_imm)
933 UNARY_IMM_SSE(VPERMILPD_i, vpermilpd_imm)
934
935 static inline void gen_unary_imm_fp_sse(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
936 SSEFunc_0_eppi xmm, SSEFunc_0_eppi ymm)
937 {
938 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
939 if (!s->vex_l) {
940 xmm(tcg_env, OP_PTR0, OP_PTR1, imm);
941 } else {
942 ymm(tcg_env, OP_PTR0, OP_PTR1, imm);
943 }
944 }
945
946 #define UNARY_IMM_FP_SSE(uname, lname) \
947 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
948 { \
949 gen_unary_imm_fp_sse(s, env, decode, \
950 gen_helper_##lname##_xmm, \
951 gen_helper_##lname##_ymm); \
952 }
953
954 UNARY_IMM_FP_SSE(VROUNDPS, roundps)
955 UNARY_IMM_FP_SSE(VROUNDPD, roundpd)
956
957 static inline void gen_vexw_avx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
958 SSEFunc_0_eppp d_xmm, SSEFunc_0_eppp q_xmm,
959 SSEFunc_0_eppp d_ymm, SSEFunc_0_eppp q_ymm)
960 {
961 SSEFunc_0_eppp d = s->vex_l ? d_ymm : d_xmm;
962 SSEFunc_0_eppp q = s->vex_l ? q_ymm : q_xmm;
963 SSEFunc_0_eppp fn = s->vex_w ? q : d;
964 fn(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
965 }
966
967 /* VEX.W affects whether to operate on 32- or 64-bit elements. */
968 #define VEXW_AVX(uname, lname) \
969 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
970 { \
971 gen_vexw_avx(s, env, decode, \
972 gen_helper_##lname##d_xmm, gen_helper_##lname##q_xmm, \
973 gen_helper_##lname##d_ymm, gen_helper_##lname##q_ymm); \
974 }
975 VEXW_AVX(VPSLLV, vpsllv)
976 VEXW_AVX(VPSRLV, vpsrlv)
977 VEXW_AVX(VPSRAV, vpsrav)
978 VEXW_AVX(VPMASKMOV, vpmaskmov)
979
980 /* Same as above, but with extra arguments to the helper. */
981 static inline void gen_vsib_avx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
982 SSEFunc_0_epppti d_xmm, SSEFunc_0_epppti q_xmm,
983 SSEFunc_0_epppti d_ymm, SSEFunc_0_epppti q_ymm)
984 {
985 SSEFunc_0_epppti d = s->vex_l ? d_ymm : d_xmm;
986 SSEFunc_0_epppti q = s->vex_l ? q_ymm : q_xmm;
987 SSEFunc_0_epppti fn = s->vex_w ? q : d;
988 TCGv_i32 scale = tcg_constant_i32(decode->mem.scale);
989 TCGv_ptr index = tcg_temp_new_ptr();
990
991 /* Pass third input as (index, base, scale) */
992 tcg_gen_addi_ptr(index, tcg_env, ZMM_OFFSET(decode->mem.index));
993 fn(tcg_env, OP_PTR0, OP_PTR1, index, s->A0, scale);
994
995 /*
996 * There are two output operands, so zero OP1's high 128 bits
997 * in the VEX.128 case.
998 */
999 if (!s->vex_l) {
1000 int ymmh_ofs = vector_elem_offset(&decode->op[1], MO_128, 1);
1001 tcg_gen_gvec_dup_imm(MO_64, ymmh_ofs, 16, 16, 0);
1002 }
1003 }
1004 #define VSIB_AVX(uname, lname) \
1005 static void gen_##uname(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode) \
1006 { \
1007 gen_vsib_avx(s, env, decode, \
1008 gen_helper_##lname##d_xmm, gen_helper_##lname##q_xmm, \
1009 gen_helper_##lname##d_ymm, gen_helper_##lname##q_ymm); \
1010 }
1011 VSIB_AVX(VPGATHERD, vpgatherd)
1012 VSIB_AVX(VPGATHERQ, vpgatherq)
1013
1014 static void gen_ADCOX(DisasContext *s, CPUX86State *env, MemOp ot, int cc_op)
1015 {
1016 int opposite_cc_op;
1017 TCGv carry_in = NULL;
1018 TCGv carry_out = (cc_op == CC_OP_ADCX ? cpu_cc_dst : cpu_cc_src2);
1019 TCGv zero;
1020
1021 if (cc_op == s->cc_op || s->cc_op == CC_OP_ADCOX) {
1022 /* Re-use the carry-out from a previous round. */
1023 carry_in = carry_out;
1024 } else {
1025 /* We don't have a carry-in, get it out of EFLAGS. */
1026 if (s->cc_op != CC_OP_ADCX && s->cc_op != CC_OP_ADOX) {
1027 gen_compute_eflags(s);
1028 }
1029 carry_in = s->tmp0;
1030 tcg_gen_extract_tl(carry_in, cpu_cc_src,
1031 ctz32(cc_op == CC_OP_ADCX ? CC_C : CC_O), 1);
1032 }
1033
1034 switch (ot) {
1035 #ifdef TARGET_X86_64
1036 case MO_32:
1037 /* If TL is 64-bit just do everything in 64-bit arithmetic. */
1038 tcg_gen_ext32u_tl(s->T0, s->T0);
1039 tcg_gen_ext32u_tl(s->T1, s->T1);
1040 tcg_gen_add_i64(s->T0, s->T0, s->T1);
1041 tcg_gen_add_i64(s->T0, s->T0, carry_in);
1042 tcg_gen_shri_i64(carry_out, s->T0, 32);
1043 break;
1044 #endif
1045 default:
1046 zero = tcg_constant_tl(0);
1047 tcg_gen_add2_tl(s->T0, carry_out, s->T0, zero, carry_in, zero);
1048 tcg_gen_add2_tl(s->T0, carry_out, s->T0, carry_out, s->T1, zero);
1049 break;
1050 }
1051
1052 opposite_cc_op = cc_op == CC_OP_ADCX ? CC_OP_ADOX : CC_OP_ADCX;
1053 if (s->cc_op == CC_OP_ADCOX || s->cc_op == opposite_cc_op) {
1054 /* Merge with the carry-out from the opposite instruction. */
1055 set_cc_op(s, CC_OP_ADCOX);
1056 } else {
1057 set_cc_op(s, cc_op);
1058 }
1059 }
1060
1061 static void gen_ADCX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1062 {
1063 gen_ADCOX(s, env, decode->op[0].ot, CC_OP_ADCX);
1064 }
1065
1066 static void gen_ADOX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1067 {
1068 gen_ADCOX(s, env, decode->op[0].ot, CC_OP_ADOX);
1069 }
1070
1071 static void gen_ANDN(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1072 {
1073 MemOp ot = decode->op[0].ot;
1074
1075 tcg_gen_andc_tl(s->T0, s->T1, s->T0);
1076 gen_op_update1_cc(s);
1077 set_cc_op(s, CC_OP_LOGICB + ot);
1078 }
1079
1080 static void gen_BEXTR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1081 {
1082 MemOp ot = decode->op[0].ot;
1083 TCGv bound = tcg_constant_tl(ot == MO_64 ? 63 : 31);
1084 TCGv zero = tcg_constant_tl(0);
1085 TCGv mone = tcg_constant_tl(-1);
1086
1087 /*
1088 * Extract START, and shift the operand.
1089 * Shifts larger than operand size get zeros.
1090 */
1091 tcg_gen_ext8u_tl(s->A0, s->T1);
1092 if (TARGET_LONG_BITS == 64 && ot == MO_32) {
1093 tcg_gen_ext32u_tl(s->T0, s->T0);
1094 }
1095 tcg_gen_shr_tl(s->T0, s->T0, s->A0);
1096
1097 tcg_gen_movcond_tl(TCG_COND_LEU, s->T0, s->A0, bound, s->T0, zero);
1098
1099 /*
1100 * Extract the LEN into an inverse mask. Lengths larger than
1101 * operand size get all zeros, length 0 gets all ones.
1102 */
1103 tcg_gen_extract_tl(s->A0, s->T1, 8, 8);
1104 tcg_gen_shl_tl(s->T1, mone, s->A0);
1105 tcg_gen_movcond_tl(TCG_COND_LEU, s->T1, s->A0, bound, s->T1, zero);
1106 tcg_gen_andc_tl(s->T0, s->T0, s->T1);
1107
1108 gen_op_update1_cc(s);
1109 set_cc_op(s, CC_OP_LOGICB + ot);
1110 }
1111
1112 static void gen_BLSI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1113 {
1114 MemOp ot = decode->op[0].ot;
1115
1116 tcg_gen_mov_tl(cpu_cc_src, s->T0);
1117 tcg_gen_neg_tl(s->T1, s->T0);
1118 tcg_gen_and_tl(s->T0, s->T0, s->T1);
1119 tcg_gen_mov_tl(cpu_cc_dst, s->T0);
1120 set_cc_op(s, CC_OP_BMILGB + ot);
1121 }
1122
1123 static void gen_BLSMSK(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1124 {
1125 MemOp ot = decode->op[0].ot;
1126
1127 tcg_gen_mov_tl(cpu_cc_src, s->T0);
1128 tcg_gen_subi_tl(s->T1, s->T0, 1);
1129 tcg_gen_xor_tl(s->T0, s->T0, s->T1);
1130 tcg_gen_mov_tl(cpu_cc_dst, s->T0);
1131 set_cc_op(s, CC_OP_BMILGB + ot);
1132 }
1133
1134 static void gen_BLSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1135 {
1136 MemOp ot = decode->op[0].ot;
1137
1138 tcg_gen_mov_tl(cpu_cc_src, s->T0);
1139 tcg_gen_subi_tl(s->T1, s->T0, 1);
1140 tcg_gen_and_tl(s->T0, s->T0, s->T1);
1141 tcg_gen_mov_tl(cpu_cc_dst, s->T0);
1142 set_cc_op(s, CC_OP_BMILGB + ot);
1143 }
1144
1145 static void gen_BZHI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1146 {
1147 MemOp ot = decode->op[0].ot;
1148 TCGv bound = tcg_constant_tl(ot == MO_64 ? 63 : 31);
1149 TCGv zero = tcg_constant_tl(0);
1150 TCGv mone = tcg_constant_tl(-1);
1151
1152 tcg_gen_ext8u_tl(s->T1, s->T1);
1153
1154 /*
1155 * Note that since we're using BMILG (in order to get O
1156 * cleared) we need to store the inverse into C.
1157 */
1158 tcg_gen_setcond_tl(TCG_COND_LEU, cpu_cc_src, s->T1, bound);
1159
1160 tcg_gen_shl_tl(s->A0, mone, s->T1);
1161 tcg_gen_movcond_tl(TCG_COND_LEU, s->A0, s->T1, bound, s->A0, zero);
1162 tcg_gen_andc_tl(s->T0, s->T0, s->A0);
1163
1164 gen_op_update1_cc(s);
1165 set_cc_op(s, CC_OP_BMILGB + ot);
1166 }
1167
1168 static void gen_CRC32(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1169 {
1170 MemOp ot = decode->op[2].ot;
1171
1172 tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0);
1173 gen_helper_crc32(s->T0, s->tmp2_i32, s->T1, tcg_constant_i32(8 << ot));
1174 }
1175
1176 static void gen_CVTPI2Px(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1177 {
1178 gen_helper_enter_mmx(tcg_env);
1179 if (s->prefix & PREFIX_DATA) {
1180 gen_helper_cvtpi2pd(tcg_env, OP_PTR0, OP_PTR2);
1181 } else {
1182 gen_helper_cvtpi2ps(tcg_env, OP_PTR0, OP_PTR2);
1183 }
1184 }
1185
1186 static void gen_CVTPx2PI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1187 {
1188 gen_helper_enter_mmx(tcg_env);
1189 if (s->prefix & PREFIX_DATA) {
1190 gen_helper_cvtpd2pi(tcg_env, OP_PTR0, OP_PTR2);
1191 } else {
1192 gen_helper_cvtps2pi(tcg_env, OP_PTR0, OP_PTR2);
1193 }
1194 }
1195
1196 static void gen_CVTTPx2PI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1197 {
1198 gen_helper_enter_mmx(tcg_env);
1199 if (s->prefix & PREFIX_DATA) {
1200 gen_helper_cvttpd2pi(tcg_env, OP_PTR0, OP_PTR2);
1201 } else {
1202 gen_helper_cvttps2pi(tcg_env, OP_PTR0, OP_PTR2);
1203 }
1204 }
1205
1206 static void gen_EMMS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1207 {
1208 gen_helper_emms(tcg_env);
1209 }
1210
1211 static void gen_EXTRQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1212 {
1213 TCGv_i32 length = tcg_constant_i32(decode->immediate & 63);
1214 TCGv_i32 index = tcg_constant_i32((decode->immediate >> 8) & 63);
1215
1216 gen_helper_extrq_i(tcg_env, OP_PTR0, index, length);
1217 }
1218
1219 static void gen_EXTRQ_r(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1220 {
1221 gen_helper_extrq_r(tcg_env, OP_PTR0, OP_PTR2);
1222 }
1223
1224 static void gen_INSERTQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1225 {
1226 TCGv_i32 length = tcg_constant_i32(decode->immediate & 63);
1227 TCGv_i32 index = tcg_constant_i32((decode->immediate >> 8) & 63);
1228
1229 gen_helper_insertq_i(tcg_env, OP_PTR0, OP_PTR1, index, length);
1230 }
1231
1232 static void gen_INSERTQ_r(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1233 {
1234 gen_helper_insertq_r(tcg_env, OP_PTR0, OP_PTR2);
1235 }
1236
1237 static void gen_LDMXCSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1238 {
1239 if (s->vex_l) {
1240 gen_illegal_opcode(s);
1241 return;
1242 }
1243 tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T1);
1244 gen_helper_ldmxcsr(tcg_env, s->tmp2_i32);
1245 }
1246
1247 static void gen_MASKMOV(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1248 {
1249 tcg_gen_mov_tl(s->A0, cpu_regs[R_EDI]);
1250 gen_extu(s->aflag, s->A0);
1251 gen_add_A0_ds_seg(s);
1252
1253 if (s->prefix & PREFIX_DATA) {
1254 gen_helper_maskmov_xmm(tcg_env, OP_PTR1, OP_PTR2, s->A0);
1255 } else {
1256 gen_helper_maskmov_mmx(tcg_env, OP_PTR1, OP_PTR2, s->A0);
1257 }
1258 }
1259
1260 static void gen_MOVBE(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1261 {
1262 MemOp ot = decode->op[0].ot;
1263
1264 /* M operand type does not load/store */
1265 if (decode->e.op0 == X86_TYPE_M) {
1266 tcg_gen_qemu_st_tl(s->T0, s->A0, s->mem_index, ot | MO_BE);
1267 } else {
1268 tcg_gen_qemu_ld_tl(s->T0, s->A0, s->mem_index, ot | MO_BE);
1269 }
1270 }
1271
1272 static void gen_MOVD_from(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1273 {
1274 MemOp ot = decode->op[2].ot;
1275
1276 switch (ot) {
1277 case MO_32:
1278 #ifdef TARGET_X86_64
1279 tcg_gen_ld32u_tl(s->T0, tcg_env, decode->op[2].offset);
1280 break;
1281 case MO_64:
1282 #endif
1283 tcg_gen_ld_tl(s->T0, tcg_env, decode->op[2].offset);
1284 break;
1285 default:
1286 abort();
1287 }
1288 }
1289
1290 static void gen_MOVD_to(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1291 {
1292 MemOp ot = decode->op[2].ot;
1293 int vec_len = vector_len(s, decode);
1294 int lo_ofs = vector_elem_offset(&decode->op[0], ot, 0);
1295
1296 tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
1297
1298 switch (ot) {
1299 case MO_32:
1300 #ifdef TARGET_X86_64
1301 tcg_gen_st32_tl(s->T1, tcg_env, lo_ofs);
1302 break;
1303 case MO_64:
1304 #endif
1305 tcg_gen_st_tl(s->T1, tcg_env, lo_ofs);
1306 break;
1307 default:
1308 g_assert_not_reached();
1309 }
1310 }
1311
1312 static void gen_MOVDQ(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1313 {
1314 gen_store_sse(s, decode, decode->op[2].offset);
1315 }
1316
1317 static void gen_MOVMSK(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1318 {
1319 typeof(gen_helper_movmskps_ymm) *ps, *pd, *fn;
1320 ps = s->vex_l ? gen_helper_movmskps_ymm : gen_helper_movmskps_xmm;
1321 pd = s->vex_l ? gen_helper_movmskpd_ymm : gen_helper_movmskpd_xmm;
1322 fn = s->prefix & PREFIX_DATA ? pd : ps;
1323 fn(s->tmp2_i32, tcg_env, OP_PTR2);
1324 tcg_gen_extu_i32_tl(s->T0, s->tmp2_i32);
1325 }
1326
1327 static void gen_MOVQ(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1328 {
1329 int vec_len = vector_len(s, decode);
1330 int lo_ofs = vector_elem_offset(&decode->op[0], MO_64, 0);
1331
1332 tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset);
1333 if (decode->op[0].has_ea) {
1334 tcg_gen_qemu_st_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ);
1335 } else {
1336 /*
1337 * tcg_gen_gvec_dup_i64(MO_64, op0.offset, 8, vec_len, s->tmp1_64) would
1338 * seem to work, but it does not on big-endian platforms; the cleared parts
1339 * are always at higher addresses, but cross-endian emulation inverts the
1340 * byte order so that the cleared parts need to be at *lower* addresses.
1341 * Because oprsz is 8, we see this here even for SSE; but more in general,
1342 * it disqualifies using oprsz < maxsz to emulate VEX128.
1343 */
1344 tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
1345 tcg_gen_st_i64(s->tmp1_i64, tcg_env, lo_ofs);
1346 }
1347 }
1348
1349 static void gen_MOVq_dq(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1350 {
1351 gen_helper_enter_mmx(tcg_env);
1352 /* Otherwise the same as any other movq. */
1353 return gen_MOVQ(s, env, decode);
1354 }
1355
1356 static void gen_MULX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1357 {
1358 MemOp ot = decode->op[0].ot;
1359
1360 /* low part of result in VEX.vvvv, high in MODRM */
1361 switch (ot) {
1362 default:
1363 tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0);
1364 tcg_gen_trunc_tl_i32(s->tmp3_i32, s->T1);
1365 tcg_gen_mulu2_i32(s->tmp2_i32, s->tmp3_i32,
1366 s->tmp2_i32, s->tmp3_i32);
1367 tcg_gen_extu_i32_tl(cpu_regs[s->vex_v], s->tmp2_i32);
1368 tcg_gen_extu_i32_tl(s->T0, s->tmp3_i32);
1369 break;
1370 #ifdef TARGET_X86_64
1371 case MO_64:
1372 tcg_gen_mulu2_i64(cpu_regs[s->vex_v], s->T0, s->T0, s->T1);
1373 break;
1374 #endif
1375 }
1376
1377 }
1378
1379 static void gen_PALIGNR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1380 {
1381 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
1382 if (!(s->prefix & PREFIX_DATA)) {
1383 gen_helper_palignr_mmx(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
1384 } else if (!s->vex_l) {
1385 gen_helper_palignr_xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
1386 } else {
1387 gen_helper_palignr_ymm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
1388 }
1389 }
1390
1391 static void gen_PANDN(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1392 {
1393 int vec_len = vector_len(s, decode);
1394
1395 /* Careful, operand order is reversed! */
1396 tcg_gen_gvec_andc(MO_64,
1397 decode->op[0].offset, decode->op[2].offset,
1398 decode->op[1].offset, vec_len, vec_len);
1399 }
1400
1401 static void gen_PCMPESTRI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1402 {
1403 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
1404 gen_helper_pcmpestri_xmm(tcg_env, OP_PTR1, OP_PTR2, imm);
1405 set_cc_op(s, CC_OP_EFLAGS);
1406 }
1407
1408 static void gen_PCMPESTRM(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1409 {
1410 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
1411 gen_helper_pcmpestrm_xmm(tcg_env, OP_PTR1, OP_PTR2, imm);
1412 set_cc_op(s, CC_OP_EFLAGS);
1413 if ((s->prefix & PREFIX_VEX) && !s->vex_l) {
1414 tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_regs[0].ZMM_X(1)),
1415 16, 16, 0);
1416 }
1417 }
1418
1419 static void gen_PCMPISTRI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1420 {
1421 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
1422 gen_helper_pcmpistri_xmm(tcg_env, OP_PTR1, OP_PTR2, imm);
1423 set_cc_op(s, CC_OP_EFLAGS);
1424 }
1425
1426 static void gen_PCMPISTRM(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1427 {
1428 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
1429 gen_helper_pcmpistrm_xmm(tcg_env, OP_PTR1, OP_PTR2, imm);
1430 set_cc_op(s, CC_OP_EFLAGS);
1431 if ((s->prefix & PREFIX_VEX) && !s->vex_l) {
1432 tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_regs[0].ZMM_X(1)),
1433 16, 16, 0);
1434 }
1435 }
1436
1437 static void gen_PDEP(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1438 {
1439 MemOp ot = decode->op[1].ot;
1440 if (ot < MO_64) {
1441 tcg_gen_ext32u_tl(s->T0, s->T0);
1442 }
1443 gen_helper_pdep(s->T0, s->T0, s->T1);
1444 }
1445
1446 static void gen_PEXT(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1447 {
1448 MemOp ot = decode->op[1].ot;
1449 if (ot < MO_64) {
1450 tcg_gen_ext32u_tl(s->T0, s->T0);
1451 }
1452 gen_helper_pext(s->T0, s->T0, s->T1);
1453 }
1454
1455 static inline void gen_pextr(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, MemOp ot)
1456 {
1457 int vec_len = vector_len(s, decode);
1458 int mask = (vec_len >> ot) - 1;
1459 int val = decode->immediate & mask;
1460
1461 switch (ot) {
1462 case MO_8:
1463 tcg_gen_ld8u_tl(s->T0, tcg_env, vector_elem_offset(&decode->op[1], ot, val));
1464 break;
1465 case MO_16:
1466 tcg_gen_ld16u_tl(s->T0, tcg_env, vector_elem_offset(&decode->op[1], ot, val));
1467 break;
1468 case MO_32:
1469 #ifdef TARGET_X86_64
1470 tcg_gen_ld32u_tl(s->T0, tcg_env, vector_elem_offset(&decode->op[1], ot, val));
1471 break;
1472 case MO_64:
1473 #endif
1474 tcg_gen_ld_tl(s->T0, tcg_env, vector_elem_offset(&decode->op[1], ot, val));
1475 break;
1476 default:
1477 abort();
1478 }
1479 }
1480
1481 static void gen_PEXTRB(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1482 {
1483 gen_pextr(s, env, decode, MO_8);
1484 }
1485
1486 static void gen_PEXTRW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1487 {
1488 gen_pextr(s, env, decode, MO_16);
1489 }
1490
1491 static void gen_PEXTR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1492 {
1493 MemOp ot = decode->op[0].ot;
1494 gen_pextr(s, env, decode, ot);
1495 }
1496
1497 static inline void gen_pinsr(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, MemOp ot)
1498 {
1499 int vec_len = vector_len(s, decode);
1500 int mask = (vec_len >> ot) - 1;
1501 int val = decode->immediate & mask;
1502
1503 if (decode->op[1].offset != decode->op[0].offset) {
1504 assert(vec_len == 16);
1505 gen_store_sse(s, decode, decode->op[1].offset);
1506 }
1507
1508 switch (ot) {
1509 case MO_8:
1510 tcg_gen_st8_tl(s->T1, tcg_env, vector_elem_offset(&decode->op[0], ot, val));
1511 break;
1512 case MO_16:
1513 tcg_gen_st16_tl(s->T1, tcg_env, vector_elem_offset(&decode->op[0], ot, val));
1514 break;
1515 case MO_32:
1516 #ifdef TARGET_X86_64
1517 tcg_gen_st32_tl(s->T1, tcg_env, vector_elem_offset(&decode->op[0], ot, val));
1518 break;
1519 case MO_64:
1520 #endif
1521 tcg_gen_st_tl(s->T1, tcg_env, vector_elem_offset(&decode->op[0], ot, val));
1522 break;
1523 default:
1524 abort();
1525 }
1526 }
1527
1528 static void gen_PINSRB(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1529 {
1530 gen_pinsr(s, env, decode, MO_8);
1531 }
1532
1533 static void gen_PINSRW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1534 {
1535 gen_pinsr(s, env, decode, MO_16);
1536 }
1537
1538 static void gen_PINSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1539 {
1540 gen_pinsr(s, env, decode, decode->op[2].ot);
1541 }
1542
1543 static void gen_pmovmskb_i64(TCGv_i64 d, TCGv_i64 s)
1544 {
1545 TCGv_i64 t = tcg_temp_new_i64();
1546
1547 tcg_gen_andi_i64(d, s, 0x8080808080808080ull);
1548
1549 /*
1550 * After each shift+or pair:
1551 * 0: a.......b.......c.......d.......e.......f.......g.......h.......
1552 * 7: ab......bc......cd......de......ef......fg......gh......h.......
1553 * 14: abcd....bcde....cdef....defg....efgh....fgh.....gh......h.......
1554 * 28: abcdefghbcdefgh.cdefgh..defgh...efgh....fgh.....gh......h.......
1555 * The result is left in the high bits of the word.
1556 */
1557 tcg_gen_shli_i64(t, d, 7);
1558 tcg_gen_or_i64(d, d, t);
1559 tcg_gen_shli_i64(t, d, 14);
1560 tcg_gen_or_i64(d, d, t);
1561 tcg_gen_shli_i64(t, d, 28);
1562 tcg_gen_or_i64(d, d, t);
1563 }
1564
1565 static void gen_pmovmskb_vec(unsigned vece, TCGv_vec d, TCGv_vec s)
1566 {
1567 TCGv_vec t = tcg_temp_new_vec_matching(d);
1568 TCGv_vec m = tcg_constant_vec_matching(d, MO_8, 0x80);
1569
1570 /* See above */
1571 tcg_gen_and_vec(vece, d, s, m);
1572 tcg_gen_shli_vec(vece, t, d, 7);
1573 tcg_gen_or_vec(vece, d, d, t);
1574 tcg_gen_shli_vec(vece, t, d, 14);
1575 tcg_gen_or_vec(vece, d, d, t);
1576 tcg_gen_shli_vec(vece, t, d, 28);
1577 tcg_gen_or_vec(vece, d, d, t);
1578 }
1579
1580 #ifdef TARGET_X86_64
1581 #define TCG_TARGET_HAS_extract2_tl TCG_TARGET_HAS_extract2_i64
1582 #else
1583 #define TCG_TARGET_HAS_extract2_tl TCG_TARGET_HAS_extract2_i32
1584 #endif
1585
1586 static void gen_PMOVMSKB(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1587 {
1588 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
1589 static const GVecGen2 g = {
1590 .fni8 = gen_pmovmskb_i64,
1591 .fniv = gen_pmovmskb_vec,
1592 .opt_opc = vecop_list,
1593 .vece = MO_64,
1594 .prefer_i64 = TCG_TARGET_REG_BITS == 64
1595 };
1596 MemOp ot = decode->op[2].ot;
1597 int vec_len = vector_len(s, decode);
1598 TCGv t = tcg_temp_new();
1599
1600 tcg_gen_gvec_2(offsetof(CPUX86State, xmm_t0) + xmm_offset(ot), decode->op[2].offset,
1601 vec_len, vec_len, &g);
1602 tcg_gen_ld8u_tl(s->T0, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_B(vec_len - 1)));
1603 while (vec_len > 8) {
1604 vec_len -= 8;
1605 if (TCG_TARGET_HAS_extract2_tl) {
1606 /*
1607 * Load the next byte of the result into the high byte of T.
1608 * TCG does a similar expansion of deposit to shl+extract2; by
1609 * loading the whole word, the shift left is avoided.
1610 */
1611 #ifdef TARGET_X86_64
1612 tcg_gen_ld_tl(t, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_Q((vec_len - 1) / 8)));
1613 #else
1614 tcg_gen_ld_tl(t, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_L((vec_len - 1) / 4)));
1615 #endif
1616
1617 tcg_gen_extract2_tl(s->T0, t, s->T0, TARGET_LONG_BITS - 8);
1618 } else {
1619 /*
1620 * The _previous_ value is deposited into bits 8 and higher of t. Because
1621 * those bits are known to be zero after ld8u, this becomes a shift+or
1622 * if deposit is not available.
1623 */
1624 tcg_gen_ld8u_tl(t, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_B(vec_len - 1)));
1625 tcg_gen_deposit_tl(s->T0, t, s->T0, 8, TARGET_LONG_BITS - 8);
1626 }
1627 }
1628 }
1629
1630 static void gen_PSHUFW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1631 {
1632 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
1633 gen_helper_pshufw_mmx(OP_PTR0, OP_PTR1, imm);
1634 }
1635
1636 static void gen_PSRLW_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1637 {
1638 int vec_len = vector_len(s, decode);
1639
1640 if (decode->immediate >= 16) {
1641 tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
1642 } else {
1643 tcg_gen_gvec_shri(MO_16,
1644 decode->op[0].offset, decode->op[1].offset,
1645 decode->immediate, vec_len, vec_len);
1646 }
1647 }
1648
1649 static void gen_PSLLW_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1650 {
1651 int vec_len = vector_len(s, decode);
1652
1653 if (decode->immediate >= 16) {
1654 tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
1655 } else {
1656 tcg_gen_gvec_shli(MO_16,
1657 decode->op[0].offset, decode->op[1].offset,
1658 decode->immediate, vec_len, vec_len);
1659 }
1660 }
1661
1662 static void gen_PSRAW_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1663 {
1664 int vec_len = vector_len(s, decode);
1665
1666 if (decode->immediate >= 16) {
1667 decode->immediate = 15;
1668 }
1669 tcg_gen_gvec_sari(MO_16,
1670 decode->op[0].offset, decode->op[1].offset,
1671 decode->immediate, vec_len, vec_len);
1672 }
1673
1674 static void gen_PSRLD_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1675 {
1676 int vec_len = vector_len(s, decode);
1677
1678 if (decode->immediate >= 32) {
1679 tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
1680 } else {
1681 tcg_gen_gvec_shri(MO_32,
1682 decode->op[0].offset, decode->op[1].offset,
1683 decode->immediate, vec_len, vec_len);
1684 }
1685 }
1686
1687 static void gen_PSLLD_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1688 {
1689 int vec_len = vector_len(s, decode);
1690
1691 if (decode->immediate >= 32) {
1692 tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
1693 } else {
1694 tcg_gen_gvec_shli(MO_32,
1695 decode->op[0].offset, decode->op[1].offset,
1696 decode->immediate, vec_len, vec_len);
1697 }
1698 }
1699
1700 static void gen_PSRAD_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1701 {
1702 int vec_len = vector_len(s, decode);
1703
1704 if (decode->immediate >= 32) {
1705 decode->immediate = 31;
1706 }
1707 tcg_gen_gvec_sari(MO_32,
1708 decode->op[0].offset, decode->op[1].offset,
1709 decode->immediate, vec_len, vec_len);
1710 }
1711
1712 static void gen_PSRLQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1713 {
1714 int vec_len = vector_len(s, decode);
1715
1716 if (decode->immediate >= 64) {
1717 tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
1718 } else {
1719 tcg_gen_gvec_shri(MO_64,
1720 decode->op[0].offset, decode->op[1].offset,
1721 decode->immediate, vec_len, vec_len);
1722 }
1723 }
1724
1725 static void gen_PSLLQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1726 {
1727 int vec_len = vector_len(s, decode);
1728
1729 if (decode->immediate >= 64) {
1730 tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
1731 } else {
1732 tcg_gen_gvec_shli(MO_64,
1733 decode->op[0].offset, decode->op[1].offset,
1734 decode->immediate, vec_len, vec_len);
1735 }
1736 }
1737
1738 static TCGv_ptr make_imm8u_xmm_vec(uint8_t imm, int vec_len)
1739 {
1740 MemOp ot = vec_len == 16 ? MO_128 : MO_256;
1741 TCGv_i32 imm_v = tcg_constant8u_i32(imm);
1742 TCGv_ptr ptr = tcg_temp_new_ptr();
1743
1744 tcg_gen_gvec_dup_imm(MO_64, offsetof(CPUX86State, xmm_t0) + xmm_offset(ot),
1745 vec_len, vec_len, 0);
1746
1747 tcg_gen_addi_ptr(ptr, tcg_env, offsetof(CPUX86State, xmm_t0));
1748 tcg_gen_st_i32(imm_v, tcg_env, offsetof(CPUX86State, xmm_t0.ZMM_L(0)));
1749 return ptr;
1750 }
1751
1752 static void gen_PSRLDQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1753 {
1754 int vec_len = vector_len(s, decode);
1755 TCGv_ptr imm_vec = make_imm8u_xmm_vec(decode->immediate, vec_len);
1756
1757 if (s->vex_l) {
1758 gen_helper_psrldq_ymm(tcg_env, OP_PTR0, OP_PTR1, imm_vec);
1759 } else {
1760 gen_helper_psrldq_xmm(tcg_env, OP_PTR0, OP_PTR1, imm_vec);
1761 }
1762 }
1763
1764 static void gen_PSLLDQ_i(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1765 {
1766 int vec_len = vector_len(s, decode);
1767 TCGv_ptr imm_vec = make_imm8u_xmm_vec(decode->immediate, vec_len);
1768
1769 if (s->vex_l) {
1770 gen_helper_pslldq_ymm(tcg_env, OP_PTR0, OP_PTR1, imm_vec);
1771 } else {
1772 gen_helper_pslldq_xmm(tcg_env, OP_PTR0, OP_PTR1, imm_vec);
1773 }
1774 }
1775
1776 static void gen_RORX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1777 {
1778 MemOp ot = decode->op[0].ot;
1779 int b = decode->immediate;
1780
1781 if (ot == MO_64) {
1782 tcg_gen_rotri_tl(s->T0, s->T0, b & 63);
1783 } else {
1784 tcg_gen_trunc_tl_i32(s->tmp2_i32, s->T0);
1785 tcg_gen_rotri_i32(s->tmp2_i32, s->tmp2_i32, b & 31);
1786 tcg_gen_extu_i32_tl(s->T0, s->tmp2_i32);
1787 }
1788 }
1789
1790 static void gen_SARX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1791 {
1792 MemOp ot = decode->op[0].ot;
1793 int mask;
1794
1795 mask = ot == MO_64 ? 63 : 31;
1796 tcg_gen_andi_tl(s->T1, s->T1, mask);
1797 if (ot != MO_64) {
1798 tcg_gen_ext32s_tl(s->T0, s->T0);
1799 }
1800 tcg_gen_sar_tl(s->T0, s->T0, s->T1);
1801 }
1802
1803 static void gen_SHLX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1804 {
1805 MemOp ot = decode->op[0].ot;
1806 int mask;
1807
1808 mask = ot == MO_64 ? 63 : 31;
1809 tcg_gen_andi_tl(s->T1, s->T1, mask);
1810 tcg_gen_shl_tl(s->T0, s->T0, s->T1);
1811 }
1812
1813 static void gen_SHRX(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1814 {
1815 MemOp ot = decode->op[0].ot;
1816 int mask;
1817
1818 mask = ot == MO_64 ? 63 : 31;
1819 tcg_gen_andi_tl(s->T1, s->T1, mask);
1820 if (ot != MO_64) {
1821 tcg_gen_ext32u_tl(s->T0, s->T0);
1822 }
1823 tcg_gen_shr_tl(s->T0, s->T0, s->T1);
1824 }
1825
1826 static void gen_VAESKEYGEN(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1827 {
1828 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
1829 assert(!s->vex_l);
1830 gen_helper_aeskeygenassist_xmm(tcg_env, OP_PTR0, OP_PTR1, imm);
1831 }
1832
1833 static void gen_STMXCSR(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1834 {
1835 if (s->vex_l) {
1836 gen_illegal_opcode(s);
1837 return;
1838 }
1839 gen_helper_update_mxcsr(tcg_env);
1840 tcg_gen_ld32u_tl(s->T0, tcg_env, offsetof(CPUX86State, mxcsr));
1841 }
1842
1843 static void gen_VAESIMC(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1844 {
1845 assert(!s->vex_l);
1846 gen_helper_aesimc_xmm(tcg_env, OP_PTR0, OP_PTR2);
1847 }
1848
1849 /*
1850 * 00 = v*ps Vps, Hps, Wpd
1851 * 66 = v*pd Vpd, Hpd, Wps
1852 * f3 = v*ss Vss, Hss, Wps
1853 * f2 = v*sd Vsd, Hsd, Wps
1854 */
1855 #define SSE_CMP(x) { \
1856 gen_helper_ ## x ## ps ## _xmm, gen_helper_ ## x ## pd ## _xmm, \
1857 gen_helper_ ## x ## ss, gen_helper_ ## x ## sd, \
1858 gen_helper_ ## x ## ps ## _ymm, gen_helper_ ## x ## pd ## _ymm}
1859 static const SSEFunc_0_eppp gen_helper_cmp_funcs[32][6] = {
1860 SSE_CMP(cmpeq),
1861 SSE_CMP(cmplt),
1862 SSE_CMP(cmple),
1863 SSE_CMP(cmpunord),
1864 SSE_CMP(cmpneq),
1865 SSE_CMP(cmpnlt),
1866 SSE_CMP(cmpnle),
1867 SSE_CMP(cmpord),
1868
1869 SSE_CMP(cmpequ),
1870 SSE_CMP(cmpnge),
1871 SSE_CMP(cmpngt),
1872 SSE_CMP(cmpfalse),
1873 SSE_CMP(cmpnequ),
1874 SSE_CMP(cmpge),
1875 SSE_CMP(cmpgt),
1876 SSE_CMP(cmptrue),
1877
1878 SSE_CMP(cmpeqs),
1879 SSE_CMP(cmpltq),
1880 SSE_CMP(cmpleq),
1881 SSE_CMP(cmpunords),
1882 SSE_CMP(cmpneqq),
1883 SSE_CMP(cmpnltq),
1884 SSE_CMP(cmpnleq),
1885 SSE_CMP(cmpords),
1886
1887 SSE_CMP(cmpequs),
1888 SSE_CMP(cmpngeq),
1889 SSE_CMP(cmpngtq),
1890 SSE_CMP(cmpfalses),
1891 SSE_CMP(cmpnequs),
1892 SSE_CMP(cmpgeq),
1893 SSE_CMP(cmpgtq),
1894 SSE_CMP(cmptrues),
1895 };
1896 #undef SSE_CMP
1897
1898 static void gen_VCMP(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1899 {
1900 int index = decode->immediate & (s->prefix & PREFIX_VEX ? 31 : 7);
1901 int b =
1902 s->prefix & PREFIX_REPZ ? 2 /* ss */ :
1903 s->prefix & PREFIX_REPNZ ? 3 /* sd */ :
1904 !!(s->prefix & PREFIX_DATA) /* pd */ + (s->vex_l << 2);
1905
1906 gen_helper_cmp_funcs[index][b](tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
1907 }
1908
1909 static void gen_VCOMI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1910 {
1911 SSEFunc_0_epp fn;
1912 fn = s->prefix & PREFIX_DATA ? gen_helper_comisd : gen_helper_comiss;
1913 fn(tcg_env, OP_PTR1, OP_PTR2);
1914 set_cc_op(s, CC_OP_EFLAGS);
1915 }
1916
1917 static void gen_VCVTPD2PS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1918 {
1919 if (s->vex_l) {
1920 gen_helper_cvtpd2ps_ymm(tcg_env, OP_PTR0, OP_PTR2);
1921 } else {
1922 gen_helper_cvtpd2ps_xmm(tcg_env, OP_PTR0, OP_PTR2);
1923 }
1924 }
1925
1926 static void gen_VCVTPS2PD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1927 {
1928 if (s->vex_l) {
1929 gen_helper_cvtps2pd_ymm(tcg_env, OP_PTR0, OP_PTR2);
1930 } else {
1931 gen_helper_cvtps2pd_xmm(tcg_env, OP_PTR0, OP_PTR2);
1932 }
1933 }
1934
1935 static void gen_VCVTPS2PH(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1936 {
1937 gen_unary_imm_fp_sse(s, env, decode,
1938 gen_helper_cvtps2ph_xmm,
1939 gen_helper_cvtps2ph_ymm);
1940 /*
1941 * VCVTPS2PH is the only instruction that performs an operation on a
1942 * register source and then *stores* into memory.
1943 */
1944 if (decode->op[0].has_ea) {
1945 gen_store_sse(s, decode, decode->op[0].offset);
1946 }
1947 }
1948
1949 static void gen_VCVTSD2SS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1950 {
1951 gen_helper_cvtsd2ss(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
1952 }
1953
1954 static void gen_VCVTSS2SD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1955 {
1956 gen_helper_cvtss2sd(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2);
1957 }
1958
1959 static void gen_VCVTSI2Sx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
1960 {
1961 int vec_len = vector_len(s, decode);
1962 TCGv_i32 in;
1963
1964 tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len);
1965
1966 #ifdef TARGET_X86_64
1967 MemOp ot = decode->op[2].ot;
1968 if (ot == MO_64) {
1969 if (s->prefix & PREFIX_REPNZ) {
1970 gen_helper_cvtsq2sd(tcg_env, OP_PTR0, s->T1);
1971 } else {
1972 gen_helper_cvtsq2ss(tcg_env, OP_PTR0, s->T1);
1973 }
1974 return;
1975 }
1976 in = s->tmp2_i32;
1977 tcg_gen_trunc_tl_i32(in, s->T1);
1978 #else
1979 in = s->T1;
1980 #endif
1981
1982 if (s->prefix & PREFIX_REPNZ) {
1983 gen_helper_cvtsi2sd(tcg_env, OP_PTR0, in);
1984 } else {
1985 gen_helper_cvtsi2ss(tcg_env, OP_PTR0, in);
1986 }
1987 }
1988
1989 static inline void gen_VCVTtSx2SI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
1990 SSEFunc_i_ep ss2si, SSEFunc_l_ep ss2sq,
1991 SSEFunc_i_ep sd2si, SSEFunc_l_ep sd2sq)
1992 {
1993 TCGv_i32 out;
1994
1995 #ifdef TARGET_X86_64
1996 MemOp ot = decode->op[0].ot;
1997 if (ot == MO_64) {
1998 if (s->prefix & PREFIX_REPNZ) {
1999 sd2sq(s->T0, tcg_env, OP_PTR2);
2000 } else {
2001 ss2sq(s->T0, tcg_env, OP_PTR2);
2002 }
2003 return;
2004 }
2005
2006 out = s->tmp2_i32;
2007 #else
2008 out = s->T0;
2009 #endif
2010 if (s->prefix & PREFIX_REPNZ) {
2011 sd2si(out, tcg_env, OP_PTR2);
2012 } else {
2013 ss2si(out, tcg_env, OP_PTR2);
2014 }
2015 #ifdef TARGET_X86_64
2016 tcg_gen_extu_i32_tl(s->T0, out);
2017 #endif
2018 }
2019
2020 #ifndef TARGET_X86_64
2021 #define gen_helper_cvtss2sq NULL
2022 #define gen_helper_cvtsd2sq NULL
2023 #define gen_helper_cvttss2sq NULL
2024 #define gen_helper_cvttsd2sq NULL
2025 #endif
2026
2027 static void gen_VCVTSx2SI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2028 {
2029 gen_VCVTtSx2SI(s, env, decode,
2030 gen_helper_cvtss2si, gen_helper_cvtss2sq,
2031 gen_helper_cvtsd2si, gen_helper_cvtsd2sq);
2032 }
2033
2034 static void gen_VCVTTSx2SI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2035 {
2036 gen_VCVTtSx2SI(s, env, decode,
2037 gen_helper_cvttss2si, gen_helper_cvttss2sq,
2038 gen_helper_cvttsd2si, gen_helper_cvttsd2sq);
2039 }
2040
2041 static void gen_VEXTRACTx128(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2042 {
2043 int mask = decode->immediate & 1;
2044 int src_ofs = vector_elem_offset(&decode->op[1], MO_128, mask);
2045 if (decode->op[0].has_ea) {
2046 /* VEX-only instruction, no alignment requirements. */
2047 gen_sto_env_A0(s, src_ofs, false);
2048 } else {
2049 tcg_gen_gvec_mov(MO_64, decode->op[0].offset, src_ofs, 16, 16);
2050 }
2051 }
2052
2053 static void gen_VEXTRACTPS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2054 {
2055 gen_pextr(s, env, decode, MO_32);
2056 }
2057
2058 static void gen_vinsertps(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2059 {
2060 int val = decode->immediate;
2061 int dest_word = (val >> 4) & 3;
2062 int new_mask = (val & 15) | (1 << dest_word);
2063 int vec_len = 16;
2064
2065 assert(!s->vex_l);
2066
2067 if (new_mask == 15) {
2068 /* All zeroes except possibly for the inserted element */
2069 tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
2070 } else if (decode->op[1].offset != decode->op[0].offset) {
2071 gen_store_sse(s, decode, decode->op[1].offset);
2072 }
2073
2074 if (new_mask != (val & 15)) {
2075 tcg_gen_st_i32(s->tmp2_i32, tcg_env,
2076 vector_elem_offset(&decode->op[0], MO_32, dest_word));
2077 }
2078
2079 if (new_mask != 15) {
2080 TCGv_i32 zero = tcg_constant_i32(0); /* float32_zero */
2081 int i;
2082 for (i = 0; i < 4; i++) {
2083 if ((val >> i) & 1) {
2084 tcg_gen_st_i32(zero, tcg_env,
2085 vector_elem_offset(&decode->op[0], MO_32, i));
2086 }
2087 }
2088 }
2089 }
2090
2091 static void gen_VINSERTPS_r(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2092 {
2093 int val = decode->immediate;
2094 tcg_gen_ld_i32(s->tmp2_i32, tcg_env,
2095 vector_elem_offset(&decode->op[2], MO_32, (val >> 6) & 3));
2096 gen_vinsertps(s, env, decode);
2097 }
2098
2099 static void gen_VINSERTPS_m(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2100 {
2101 tcg_gen_qemu_ld_i32(s->tmp2_i32, s->A0, s->mem_index, MO_LEUL);
2102 gen_vinsertps(s, env, decode);
2103 }
2104
2105 static void gen_VINSERTx128(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2106 {
2107 int mask = decode->immediate & 1;
2108 tcg_gen_gvec_mov(MO_64,
2109 decode->op[0].offset + offsetof(YMMReg, YMM_X(mask)),
2110 decode->op[2].offset + offsetof(YMMReg, YMM_X(0)), 16, 16);
2111 tcg_gen_gvec_mov(MO_64,
2112 decode->op[0].offset + offsetof(YMMReg, YMM_X(!mask)),
2113 decode->op[1].offset + offsetof(YMMReg, YMM_X(!mask)), 16, 16);
2114 }
2115
2116 static inline void gen_maskmov(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
2117 SSEFunc_0_eppt xmm, SSEFunc_0_eppt ymm)
2118 {
2119 if (!s->vex_l) {
2120 xmm(tcg_env, OP_PTR2, OP_PTR1, s->A0);
2121 } else {
2122 ymm(tcg_env, OP_PTR2, OP_PTR1, s->A0);
2123 }
2124 }
2125
2126 static void gen_VMASKMOVPD_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2127 {
2128 gen_maskmov(s, env, decode, gen_helper_vpmaskmovq_st_xmm, gen_helper_vpmaskmovq_st_ymm);
2129 }
2130
2131 static void gen_VMASKMOVPS_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2132 {
2133 gen_maskmov(s, env, decode, gen_helper_vpmaskmovd_st_xmm, gen_helper_vpmaskmovd_st_ymm);
2134 }
2135
2136 static void gen_VMOVHPx_ld(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2137 {
2138 gen_ldq_env_A0(s, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1)));
2139 if (decode->op[0].offset != decode->op[1].offset) {
2140 tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(0)));
2141 tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0)));
2142 }
2143 }
2144
2145 static void gen_VMOVHPx_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2146 {
2147 gen_stq_env_A0(s, decode->op[2].offset + offsetof(XMMReg, XMM_Q(1)));
2148 }
2149
2150 static void gen_VMOVHPx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2151 {
2152 if (decode->op[0].offset != decode->op[2].offset) {
2153 tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset + offsetof(XMMReg, XMM_Q(1)));
2154 tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1)));
2155 }
2156 if (decode->op[0].offset != decode->op[1].offset) {
2157 tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(0)));
2158 tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0)));
2159 }
2160 }
2161
2162 static void gen_VMOVHLPS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2163 {
2164 tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset + offsetof(XMMReg, XMM_Q(1)));
2165 tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0)));
2166 if (decode->op[0].offset != decode->op[1].offset) {
2167 tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(1)));
2168 tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1)));
2169 }
2170 }
2171
2172 static void gen_VMOVLHPS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2173 {
2174 tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset);
2175 tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(1)));
2176 if (decode->op[0].offset != decode->op[1].offset) {
2177 tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[1].offset + offsetof(XMMReg, XMM_Q(0)));
2178 tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0)));
2179 }
2180 }
2181
2182 /*
2183 * Note that MOVLPx supports 256-bit operation unlike MOVHLPx, MOVLHPx, MOXHPx.
2184 * Use a gvec move to move everything above the bottom 64 bits.
2185 */
2186
2187 static void gen_VMOVLPx(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2188 {
2189 int vec_len = vector_len(s, decode);
2190
2191 tcg_gen_ld_i64(s->tmp1_i64, tcg_env, decode->op[2].offset + offsetof(XMMReg, XMM_Q(0)));
2192 tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len);
2193 tcg_gen_st_i64(s->tmp1_i64, tcg_env, decode->op[0].offset + offsetof(XMMReg, XMM_Q(0)));
2194 }
2195
2196 static void gen_VMOVLPx_ld(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2197 {
2198 int vec_len = vector_len(s, decode);
2199
2200 tcg_gen_qemu_ld_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ);
2201 tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len);
2202 tcg_gen_st_i64(s->tmp1_i64, OP_PTR0, offsetof(ZMMReg, ZMM_Q(0)));
2203 }
2204
2205 static void gen_VMOVLPx_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2206 {
2207 tcg_gen_ld_i64(s->tmp1_i64, OP_PTR2, offsetof(ZMMReg, ZMM_Q(0)));
2208 tcg_gen_qemu_st_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ);
2209 }
2210
2211 static void gen_VMOVSD_ld(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2212 {
2213 TCGv_i64 zero = tcg_constant_i64(0);
2214
2215 tcg_gen_qemu_ld_i64(s->tmp1_i64, s->A0, s->mem_index, MO_LEUQ);
2216 tcg_gen_st_i64(zero, OP_PTR0, offsetof(ZMMReg, ZMM_Q(1)));
2217 tcg_gen_st_i64(s->tmp1_i64, OP_PTR0, offsetof(ZMMReg, ZMM_Q(0)));
2218 }
2219
2220 static void gen_VMOVSS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2221 {
2222 int vec_len = vector_len(s, decode);
2223
2224 tcg_gen_ld_i32(s->tmp2_i32, OP_PTR2, offsetof(ZMMReg, ZMM_L(0)));
2225 tcg_gen_gvec_mov(MO_64, decode->op[0].offset, decode->op[1].offset, vec_len, vec_len);
2226 tcg_gen_st_i32(s->tmp2_i32, OP_PTR0, offsetof(ZMMReg, ZMM_L(0)));
2227 }
2228
2229 static void gen_VMOVSS_ld(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2230 {
2231 int vec_len = vector_len(s, decode);
2232
2233 tcg_gen_qemu_ld_i32(s->tmp2_i32, s->A0, s->mem_index, MO_LEUL);
2234 tcg_gen_gvec_dup_imm(MO_64, decode->op[0].offset, vec_len, vec_len, 0);
2235 tcg_gen_st_i32(s->tmp2_i32, OP_PTR0, offsetof(ZMMReg, ZMM_L(0)));
2236 }
2237
2238 static void gen_VMOVSS_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2239 {
2240 tcg_gen_ld_i32(s->tmp2_i32, OP_PTR2, offsetof(ZMMReg, ZMM_L(0)));
2241 tcg_gen_qemu_st_i32(s->tmp2_i32, s->A0, s->mem_index, MO_LEUL);
2242 }
2243
2244 static void gen_VPMASKMOV_st(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2245 {
2246 if (s->vex_w) {
2247 gen_VMASKMOVPD_st(s, env, decode);
2248 } else {
2249 gen_VMASKMOVPS_st(s, env, decode);
2250 }
2251 }
2252
2253 static void gen_VPERMD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2254 {
2255 assert(s->vex_l);
2256 gen_helper_vpermd_ymm(OP_PTR0, OP_PTR1, OP_PTR2);
2257 }
2258
2259 static void gen_VPERM2x128(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2260 {
2261 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
2262 assert(s->vex_l);
2263 gen_helper_vpermdq_ymm(OP_PTR0, OP_PTR1, OP_PTR2, imm);
2264 }
2265
2266 static void gen_VPHMINPOSUW(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2267 {
2268 assert(!s->vex_l);
2269 gen_helper_phminposuw_xmm(tcg_env, OP_PTR0, OP_PTR2);
2270 }
2271
2272 static void gen_VROUNDSD(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2273 {
2274 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
2275 assert(!s->vex_l);
2276 gen_helper_roundsd_xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
2277 }
2278
2279 static void gen_VROUNDSS(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2280 {
2281 TCGv_i32 imm = tcg_constant8u_i32(decode->immediate);
2282 assert(!s->vex_l);
2283 gen_helper_roundss_xmm(tcg_env, OP_PTR0, OP_PTR1, OP_PTR2, imm);
2284 }
2285
2286 static void gen_VSHUF(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2287 {
2288 TCGv_i32 imm = tcg_constant_i32(decode->immediate);
2289 SSEFunc_0_pppi ps, pd, fn;
2290 ps = s->vex_l ? gen_helper_shufps_ymm : gen_helper_shufps_xmm;
2291 pd = s->vex_l ? gen_helper_shufpd_ymm : gen_helper_shufpd_xmm;
2292 fn = s->prefix & PREFIX_DATA ? pd : ps;
2293 fn(OP_PTR0, OP_PTR1, OP_PTR2, imm);
2294 }
2295
2296 static void gen_VUCOMI(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2297 {
2298 SSEFunc_0_epp fn;
2299 fn = s->prefix & PREFIX_DATA ? gen_helper_ucomisd : gen_helper_ucomiss;
2300 fn(tcg_env, OP_PTR1, OP_PTR2);
2301 set_cc_op(s, CC_OP_EFLAGS);
2302 }
2303
2304 static void gen_VZEROALL(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2305 {
2306 TCGv_ptr ptr = tcg_temp_new_ptr();
2307
2308 tcg_gen_addi_ptr(ptr, tcg_env, offsetof(CPUX86State, xmm_regs));
2309 gen_helper_memset(ptr, ptr, tcg_constant_i32(0),
2310 tcg_constant_ptr(CPU_NB_REGS * sizeof(ZMMReg)));
2311 }
2312
2313 static void gen_VZEROUPPER(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode)
2314 {
2315 int i;
2316
2317 for (i = 0; i < CPU_NB_REGS; i++) {
2318 int offset = offsetof(CPUX86State, xmm_regs[i].ZMM_X(1));
2319 tcg_gen_gvec_dup_imm(MO_64, offset, 16, 16, 0);
2320 }
2321 }