]> git.proxmox.com Git - mirror_qemu.git/blob - target/m68k/helper.c
Merge tag 'pull-lu-20230901' of https://gitlab.com/rth7680/qemu into staging
[mirror_qemu.git] / target / m68k / helper.c
1 /*
2 * m68k op helpers
3 *
4 * Copyright (c) 2006-2007 CodeSourcery
5 * Written by Paul Brook
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/gdbstub.h"
25 #include "exec/helper-proto.h"
26 #include "gdbstub/helpers.h"
27 #include "fpu/softfloat.h"
28 #include "qemu/qemu-print.h"
29
30 #define SIGNBIT (1u << 31)
31
32 /* Sort alphabetically, except for "any". */
33 static gint m68k_cpu_list_compare(gconstpointer a, gconstpointer b)
34 {
35 ObjectClass *class_a = (ObjectClass *)a;
36 ObjectClass *class_b = (ObjectClass *)b;
37 const char *name_a, *name_b;
38
39 name_a = object_class_get_name(class_a);
40 name_b = object_class_get_name(class_b);
41 if (strcmp(name_a, "any-" TYPE_M68K_CPU) == 0) {
42 return 1;
43 } else if (strcmp(name_b, "any-" TYPE_M68K_CPU) == 0) {
44 return -1;
45 } else {
46 return strcasecmp(name_a, name_b);
47 }
48 }
49
50 static void m68k_cpu_list_entry(gpointer data, gpointer user_data)
51 {
52 ObjectClass *c = data;
53 const char *typename;
54 char *name;
55
56 typename = object_class_get_name(c);
57 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_M68K_CPU));
58 qemu_printf("%s\n", name);
59 g_free(name);
60 }
61
62 void m68k_cpu_list(void)
63 {
64 GSList *list;
65
66 list = object_class_get_list(TYPE_M68K_CPU, false);
67 list = g_slist_sort(list, m68k_cpu_list_compare);
68 g_slist_foreach(list, m68k_cpu_list_entry, NULL);
69 g_slist_free(list);
70 }
71
72 static int cf_fpu_gdb_get_reg(CPUM68KState *env, GByteArray *mem_buf, int n)
73 {
74 if (n < 8) {
75 float_status s;
76 return gdb_get_reg64(mem_buf, floatx80_to_float64(env->fregs[n].d, &s));
77 }
78 switch (n) {
79 case 8: /* fpcontrol */
80 return gdb_get_reg32(mem_buf, env->fpcr);
81 case 9: /* fpstatus */
82 return gdb_get_reg32(mem_buf, env->fpsr);
83 case 10: /* fpiar, not implemented */
84 return gdb_get_reg32(mem_buf, 0);
85 }
86 return 0;
87 }
88
89 static int cf_fpu_gdb_set_reg(CPUM68KState *env, uint8_t *mem_buf, int n)
90 {
91 if (n < 8) {
92 float_status s;
93 env->fregs[n].d = float64_to_floatx80(ldq_p(mem_buf), &s);
94 return 8;
95 }
96 switch (n) {
97 case 8: /* fpcontrol */
98 cpu_m68k_set_fpcr(env, ldl_p(mem_buf));
99 return 4;
100 case 9: /* fpstatus */
101 env->fpsr = ldl_p(mem_buf);
102 return 4;
103 case 10: /* fpiar, not implemented */
104 return 4;
105 }
106 return 0;
107 }
108
109 static int m68k_fpu_gdb_get_reg(CPUM68KState *env, GByteArray *mem_buf, int n)
110 {
111 if (n < 8) {
112 int len = gdb_get_reg16(mem_buf, env->fregs[n].l.upper);
113 len += gdb_get_reg16(mem_buf, 0);
114 len += gdb_get_reg64(mem_buf, env->fregs[n].l.lower);
115 return len;
116 }
117 switch (n) {
118 case 8: /* fpcontrol */
119 return gdb_get_reg32(mem_buf, env->fpcr);
120 case 9: /* fpstatus */
121 return gdb_get_reg32(mem_buf, env->fpsr);
122 case 10: /* fpiar, not implemented */
123 return gdb_get_reg32(mem_buf, 0);
124 }
125 return 0;
126 }
127
128 static int m68k_fpu_gdb_set_reg(CPUM68KState *env, uint8_t *mem_buf, int n)
129 {
130 if (n < 8) {
131 env->fregs[n].l.upper = lduw_be_p(mem_buf);
132 env->fregs[n].l.lower = ldq_be_p(mem_buf + 4);
133 return 12;
134 }
135 switch (n) {
136 case 8: /* fpcontrol */
137 cpu_m68k_set_fpcr(env, ldl_p(mem_buf));
138 return 4;
139 case 9: /* fpstatus */
140 env->fpsr = ldl_p(mem_buf);
141 return 4;
142 case 10: /* fpiar, not implemented */
143 return 4;
144 }
145 return 0;
146 }
147
148 void m68k_cpu_init_gdb(M68kCPU *cpu)
149 {
150 CPUState *cs = CPU(cpu);
151 CPUM68KState *env = &cpu->env;
152
153 if (m68k_feature(env, M68K_FEATURE_CF_FPU)) {
154 gdb_register_coprocessor(cs, cf_fpu_gdb_get_reg, cf_fpu_gdb_set_reg,
155 11, "cf-fp.xml", 18);
156 } else if (m68k_feature(env, M68K_FEATURE_FPU)) {
157 gdb_register_coprocessor(cs, m68k_fpu_gdb_get_reg,
158 m68k_fpu_gdb_set_reg, 11, "m68k-fp.xml", 18);
159 }
160 /* TODO: Add [E]MAC registers. */
161 }
162
163 void HELPER(cf_movec_to)(CPUM68KState *env, uint32_t reg, uint32_t val)
164 {
165 switch (reg) {
166 case M68K_CR_CACR:
167 env->cacr = val;
168 m68k_switch_sp(env);
169 break;
170 case M68K_CR_ACR0:
171 case M68K_CR_ACR1:
172 case M68K_CR_ACR2:
173 case M68K_CR_ACR3:
174 /* TODO: Implement Access Control Registers. */
175 break;
176 case M68K_CR_VBR:
177 env->vbr = val;
178 break;
179 /* TODO: Implement control registers. */
180 default:
181 cpu_abort(env_cpu(env),
182 "Unimplemented control register write 0x%x = 0x%x\n",
183 reg, val);
184 }
185 }
186
187 static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
188 {
189 CPUState *cs = env_cpu(env);
190
191 cs->exception_index = tt;
192 cpu_loop_exit_restore(cs, raddr);
193 }
194
195 void HELPER(m68k_movec_to)(CPUM68KState *env, uint32_t reg, uint32_t val)
196 {
197 switch (reg) {
198 /* MC680[12346]0 */
199 case M68K_CR_SFC:
200 env->sfc = val & 7;
201 return;
202 /* MC680[12346]0 */
203 case M68K_CR_DFC:
204 env->dfc = val & 7;
205 return;
206 /* MC680[12346]0 */
207 case M68K_CR_VBR:
208 env->vbr = val;
209 return;
210 /* MC680[2346]0 */
211 case M68K_CR_CACR:
212 if (m68k_feature(env, M68K_FEATURE_M68020)) {
213 env->cacr = val & 0x0000000f;
214 } else if (m68k_feature(env, M68K_FEATURE_M68030)) {
215 env->cacr = val & 0x00003f1f;
216 } else if (m68k_feature(env, M68K_FEATURE_M68040)) {
217 env->cacr = val & 0x80008000;
218 } else if (m68k_feature(env, M68K_FEATURE_M68060)) {
219 env->cacr = val & 0xf8e0e000;
220 } else {
221 break;
222 }
223 m68k_switch_sp(env);
224 return;
225 /* MC680[46]0 */
226 case M68K_CR_TC:
227 if (m68k_feature(env, M68K_FEATURE_M68040)
228 || m68k_feature(env, M68K_FEATURE_M68060)) {
229 env->mmu.tcr = val;
230 return;
231 }
232 break;
233 /* MC68040 */
234 case M68K_CR_MMUSR:
235 if (m68k_feature(env, M68K_FEATURE_M68040)) {
236 env->mmu.mmusr = val;
237 return;
238 }
239 break;
240 /* MC680[46]0 */
241 case M68K_CR_SRP:
242 if (m68k_feature(env, M68K_FEATURE_M68040)
243 || m68k_feature(env, M68K_FEATURE_M68060)) {
244 env->mmu.srp = val;
245 return;
246 }
247 break;
248 /* MC680[46]0 */
249 case M68K_CR_URP:
250 if (m68k_feature(env, M68K_FEATURE_M68040)
251 || m68k_feature(env, M68K_FEATURE_M68060)) {
252 env->mmu.urp = val;
253 return;
254 }
255 break;
256 /* MC680[12346]0 */
257 case M68K_CR_USP:
258 env->sp[M68K_USP] = val;
259 return;
260 /* MC680[234]0 */
261 case M68K_CR_MSP:
262 if (m68k_feature(env, M68K_FEATURE_M68020)
263 || m68k_feature(env, M68K_FEATURE_M68030)
264 || m68k_feature(env, M68K_FEATURE_M68040)) {
265 env->sp[M68K_SSP] = val;
266 return;
267 }
268 break;
269 /* MC680[234]0 */
270 case M68K_CR_ISP:
271 if (m68k_feature(env, M68K_FEATURE_M68020)
272 || m68k_feature(env, M68K_FEATURE_M68030)
273 || m68k_feature(env, M68K_FEATURE_M68040)) {
274 env->sp[M68K_ISP] = val;
275 return;
276 }
277 break;
278 /* MC68040/MC68LC040 */
279 case M68K_CR_ITT0: /* MC68EC040 only: M68K_CR_IACR0 */
280 if (m68k_feature(env, M68K_FEATURE_M68040)) {
281 env->mmu.ttr[M68K_ITTR0] = val;
282 return;
283 }
284 break;
285 /* MC68040/MC68LC040 */
286 case M68K_CR_ITT1: /* MC68EC040 only: M68K_CR_IACR1 */
287 if (m68k_feature(env, M68K_FEATURE_M68040)) {
288 env->mmu.ttr[M68K_ITTR1] = val;
289 return;
290 }
291 break;
292 /* MC68040/MC68LC040 */
293 case M68K_CR_DTT0: /* MC68EC040 only: M68K_CR_DACR0 */
294 if (m68k_feature(env, M68K_FEATURE_M68040)) {
295 env->mmu.ttr[M68K_DTTR0] = val;
296 return;
297 }
298 break;
299 /* MC68040/MC68LC040 */
300 case M68K_CR_DTT1: /* MC68EC040 only: M68K_CR_DACR1 */
301 if (m68k_feature(env, M68K_FEATURE_M68040)) {
302 env->mmu.ttr[M68K_DTTR1] = val;
303 return;
304 }
305 break;
306 /* Unimplemented Registers */
307 case M68K_CR_CAAR:
308 case M68K_CR_PCR:
309 case M68K_CR_BUSCR:
310 cpu_abort(env_cpu(env),
311 "Unimplemented control register write 0x%x = 0x%x\n",
312 reg, val);
313 }
314
315 /* Invalid control registers will generate an exception. */
316 raise_exception_ra(env, EXCP_ILLEGAL, 0);
317 return;
318 }
319
320 uint32_t HELPER(m68k_movec_from)(CPUM68KState *env, uint32_t reg)
321 {
322 switch (reg) {
323 /* MC680[12346]0 */
324 case M68K_CR_SFC:
325 return env->sfc;
326 /* MC680[12346]0 */
327 case M68K_CR_DFC:
328 return env->dfc;
329 /* MC680[12346]0 */
330 case M68K_CR_VBR:
331 return env->vbr;
332 /* MC680[2346]0 */
333 case M68K_CR_CACR:
334 if (m68k_feature(env, M68K_FEATURE_M68020)
335 || m68k_feature(env, M68K_FEATURE_M68030)
336 || m68k_feature(env, M68K_FEATURE_M68040)
337 || m68k_feature(env, M68K_FEATURE_M68060)) {
338 return env->cacr;
339 }
340 break;
341 /* MC680[46]0 */
342 case M68K_CR_TC:
343 if (m68k_feature(env, M68K_FEATURE_M68040)
344 || m68k_feature(env, M68K_FEATURE_M68060)) {
345 return env->mmu.tcr;
346 }
347 break;
348 /* MC68040 */
349 case M68K_CR_MMUSR:
350 if (m68k_feature(env, M68K_FEATURE_M68040)) {
351 return env->mmu.mmusr;
352 }
353 break;
354 /* MC680[46]0 */
355 case M68K_CR_SRP:
356 if (m68k_feature(env, M68K_FEATURE_M68040)
357 || m68k_feature(env, M68K_FEATURE_M68060)) {
358 return env->mmu.srp;
359 }
360 break;
361 /* MC68040/MC68LC040 */
362 case M68K_CR_URP:
363 if (m68k_feature(env, M68K_FEATURE_M68040)
364 || m68k_feature(env, M68K_FEATURE_M68060)) {
365 return env->mmu.urp;
366 }
367 break;
368 /* MC680[46]0 */
369 case M68K_CR_USP:
370 return env->sp[M68K_USP];
371 /* MC680[234]0 */
372 case M68K_CR_MSP:
373 if (m68k_feature(env, M68K_FEATURE_M68020)
374 || m68k_feature(env, M68K_FEATURE_M68030)
375 || m68k_feature(env, M68K_FEATURE_M68040)) {
376 return env->sp[M68K_SSP];
377 }
378 break;
379 /* MC680[234]0 */
380 case M68K_CR_ISP:
381 if (m68k_feature(env, M68K_FEATURE_M68020)
382 || m68k_feature(env, M68K_FEATURE_M68030)
383 || m68k_feature(env, M68K_FEATURE_M68040)) {
384 return env->sp[M68K_ISP];
385 }
386 break;
387 /* MC68040/MC68LC040 */
388 case M68K_CR_ITT0: /* MC68EC040 only: M68K_CR_IACR0 */
389 if (m68k_feature(env, M68K_FEATURE_M68040)) {
390 return env->mmu.ttr[M68K_ITTR0];
391 }
392 break;
393 /* MC68040/MC68LC040 */
394 case M68K_CR_ITT1: /* MC68EC040 only: M68K_CR_IACR1 */
395 if (m68k_feature(env, M68K_FEATURE_M68040)) {
396 return env->mmu.ttr[M68K_ITTR1];
397 }
398 break;
399 /* MC68040/MC68LC040 */
400 case M68K_CR_DTT0: /* MC68EC040 only: M68K_CR_DACR0 */
401 if (m68k_feature(env, M68K_FEATURE_M68040)) {
402 return env->mmu.ttr[M68K_DTTR0];
403 }
404 break;
405 /* MC68040/MC68LC040 */
406 case M68K_CR_DTT1: /* MC68EC040 only: M68K_CR_DACR1 */
407 if (m68k_feature(env, M68K_FEATURE_M68040)) {
408 return env->mmu.ttr[M68K_DTTR1];
409 }
410 break;
411 /* Unimplemented Registers */
412 case M68K_CR_CAAR:
413 case M68K_CR_PCR:
414 case M68K_CR_BUSCR:
415 cpu_abort(env_cpu(env), "Unimplemented control register read 0x%x\n",
416 reg);
417 }
418
419 /* Invalid control registers will generate an exception. */
420 raise_exception_ra(env, EXCP_ILLEGAL, 0);
421
422 return 0;
423 }
424
425 void HELPER(set_macsr)(CPUM68KState *env, uint32_t val)
426 {
427 uint32_t acc;
428 int8_t exthigh;
429 uint8_t extlow;
430 uint64_t regval;
431 int i;
432 if ((env->macsr ^ val) & (MACSR_FI | MACSR_SU)) {
433 for (i = 0; i < 4; i++) {
434 regval = env->macc[i];
435 exthigh = regval >> 40;
436 if (env->macsr & MACSR_FI) {
437 acc = regval >> 8;
438 extlow = regval;
439 } else {
440 acc = regval;
441 extlow = regval >> 32;
442 }
443 if (env->macsr & MACSR_FI) {
444 regval = (((uint64_t)acc) << 8) | extlow;
445 regval |= ((int64_t)exthigh) << 40;
446 } else if (env->macsr & MACSR_SU) {
447 regval = acc | (((int64_t)extlow) << 32);
448 regval |= ((int64_t)exthigh) << 40;
449 } else {
450 regval = acc | (((uint64_t)extlow) << 32);
451 regval |= ((uint64_t)(uint8_t)exthigh) << 40;
452 }
453 env->macc[i] = regval;
454 }
455 }
456 env->macsr = val;
457 }
458
459 void m68k_switch_sp(CPUM68KState *env)
460 {
461 int new_sp;
462
463 env->sp[env->current_sp] = env->aregs[7];
464 if (m68k_feature(env, M68K_FEATURE_M68K)) {
465 if (env->sr & SR_S) {
466 /* SR:Master-Mode bit unimplemented then ISP is not available */
467 if (!m68k_feature(env, M68K_FEATURE_MSP) || env->sr & SR_M) {
468 new_sp = M68K_SSP;
469 } else {
470 new_sp = M68K_ISP;
471 }
472 } else {
473 new_sp = M68K_USP;
474 }
475 } else {
476 new_sp = (env->sr & SR_S && env->cacr & M68K_CACR_EUSP)
477 ? M68K_SSP : M68K_USP;
478 }
479 env->aregs[7] = env->sp[new_sp];
480 env->current_sp = new_sp;
481 }
482
483 #if !defined(CONFIG_USER_ONLY)
484 /* MMU: 68040 only */
485
486 static void print_address_zone(uint32_t logical, uint32_t physical,
487 uint32_t size, int attr)
488 {
489 qemu_printf("%08x - %08x -> %08x - %08x %c ",
490 logical, logical + size - 1,
491 physical, physical + size - 1,
492 attr & 4 ? 'W' : '-');
493 size >>= 10;
494 if (size < 1024) {
495 qemu_printf("(%d KiB)\n", size);
496 } else {
497 size >>= 10;
498 if (size < 1024) {
499 qemu_printf("(%d MiB)\n", size);
500 } else {
501 size >>= 10;
502 qemu_printf("(%d GiB)\n", size);
503 }
504 }
505 }
506
507 static void dump_address_map(CPUM68KState *env, uint32_t root_pointer)
508 {
509 int i, j, k;
510 int tic_size, tic_shift;
511 uint32_t tib_mask;
512 uint32_t tia, tib, tic;
513 uint32_t logical = 0xffffffff, physical = 0xffffffff;
514 uint32_t first_logical = 0xffffffff, first_physical = 0xffffffff;
515 uint32_t last_logical, last_physical;
516 int32_t size;
517 int last_attr = -1, attr = -1;
518 CPUState *cs = env_cpu(env);
519 MemTxResult txres;
520
521 if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
522 /* 8k page */
523 tic_size = 32;
524 tic_shift = 13;
525 tib_mask = M68K_8K_PAGE_MASK;
526 } else {
527 /* 4k page */
528 tic_size = 64;
529 tic_shift = 12;
530 tib_mask = M68K_4K_PAGE_MASK;
531 }
532 for (i = 0; i < M68K_ROOT_POINTER_ENTRIES; i++) {
533 tia = address_space_ldl(cs->as, M68K_POINTER_BASE(root_pointer) + i * 4,
534 MEMTXATTRS_UNSPECIFIED, &txres);
535 if (txres != MEMTX_OK || !M68K_UDT_VALID(tia)) {
536 continue;
537 }
538 for (j = 0; j < M68K_ROOT_POINTER_ENTRIES; j++) {
539 tib = address_space_ldl(cs->as, M68K_POINTER_BASE(tia) + j * 4,
540 MEMTXATTRS_UNSPECIFIED, &txres);
541 if (txres != MEMTX_OK || !M68K_UDT_VALID(tib)) {
542 continue;
543 }
544 for (k = 0; k < tic_size; k++) {
545 tic = address_space_ldl(cs->as, (tib & tib_mask) + k * 4,
546 MEMTXATTRS_UNSPECIFIED, &txres);
547 if (txres != MEMTX_OK || !M68K_PDT_VALID(tic)) {
548 continue;
549 }
550 if (M68K_PDT_INDIRECT(tic)) {
551 tic = address_space_ldl(cs->as, M68K_INDIRECT_POINTER(tic),
552 MEMTXATTRS_UNSPECIFIED, &txres);
553 if (txres != MEMTX_OK) {
554 continue;
555 }
556 }
557
558 last_logical = logical;
559 logical = (i << M68K_TTS_ROOT_SHIFT) |
560 (j << M68K_TTS_POINTER_SHIFT) |
561 (k << tic_shift);
562
563 last_physical = physical;
564 physical = tic & ~((1 << tic_shift) - 1);
565
566 last_attr = attr;
567 attr = tic & ((1 << tic_shift) - 1);
568
569 if ((logical != (last_logical + (1 << tic_shift))) ||
570 (physical != (last_physical + (1 << tic_shift))) ||
571 (attr & 4) != (last_attr & 4)) {
572
573 if (first_logical != 0xffffffff) {
574 size = last_logical + (1 << tic_shift) -
575 first_logical;
576 print_address_zone(first_logical,
577 first_physical, size, last_attr);
578 }
579 first_logical = logical;
580 first_physical = physical;
581 }
582 }
583 }
584 }
585 if (first_logical != logical || (attr & 4) != (last_attr & 4)) {
586 size = logical + (1 << tic_shift) - first_logical;
587 print_address_zone(first_logical, first_physical, size, last_attr);
588 }
589 }
590
591 #define DUMP_CACHEFLAGS(a) \
592 switch (a & M68K_DESC_CACHEMODE) { \
593 case M68K_DESC_CM_WRTHRU: /* cacheable, write-through */ \
594 qemu_printf("T"); \
595 break; \
596 case M68K_DESC_CM_COPYBK: /* cacheable, copyback */ \
597 qemu_printf("C"); \
598 break; \
599 case M68K_DESC_CM_SERIAL: /* noncachable, serialized */ \
600 qemu_printf("S"); \
601 break; \
602 case M68K_DESC_CM_NCACHE: /* noncachable */ \
603 qemu_printf("N"); \
604 break; \
605 }
606
607 static void dump_ttr(uint32_t ttr)
608 {
609 if ((ttr & M68K_TTR_ENABLED) == 0) {
610 qemu_printf("disabled\n");
611 return;
612 }
613 qemu_printf("Base: 0x%08x Mask: 0x%08x Control: ",
614 ttr & M68K_TTR_ADDR_BASE,
615 (ttr & M68K_TTR_ADDR_MASK) << M68K_TTR_ADDR_MASK_SHIFT);
616 switch (ttr & M68K_TTR_SFIELD) {
617 case M68K_TTR_SFIELD_USER:
618 qemu_printf("U");
619 break;
620 case M68K_TTR_SFIELD_SUPER:
621 qemu_printf("S");
622 break;
623 default:
624 qemu_printf("*");
625 break;
626 }
627 DUMP_CACHEFLAGS(ttr);
628 if (ttr & M68K_DESC_WRITEPROT) {
629 qemu_printf("R");
630 } else {
631 qemu_printf("W");
632 }
633 qemu_printf(" U: %d\n", (ttr & M68K_DESC_USERATTR) >>
634 M68K_DESC_USERATTR_SHIFT);
635 }
636
637 void dump_mmu(CPUM68KState *env)
638 {
639 if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
640 qemu_printf("Translation disabled\n");
641 return;
642 }
643 qemu_printf("Page Size: ");
644 if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
645 qemu_printf("8kB\n");
646 } else {
647 qemu_printf("4kB\n");
648 }
649
650 qemu_printf("MMUSR: ");
651 if (env->mmu.mmusr & M68K_MMU_B_040) {
652 qemu_printf("BUS ERROR\n");
653 } else {
654 qemu_printf("Phy=%08x Flags: ", env->mmu.mmusr & 0xfffff000);
655 /* flags found on the page descriptor */
656 if (env->mmu.mmusr & M68K_MMU_G_040) {
657 qemu_printf("G"); /* Global */
658 } else {
659 qemu_printf(".");
660 }
661 if (env->mmu.mmusr & M68K_MMU_S_040) {
662 qemu_printf("S"); /* Supervisor */
663 } else {
664 qemu_printf(".");
665 }
666 if (env->mmu.mmusr & M68K_MMU_M_040) {
667 qemu_printf("M"); /* Modified */
668 } else {
669 qemu_printf(".");
670 }
671 if (env->mmu.mmusr & M68K_MMU_WP_040) {
672 qemu_printf("W"); /* Write protect */
673 } else {
674 qemu_printf(".");
675 }
676 if (env->mmu.mmusr & M68K_MMU_T_040) {
677 qemu_printf("T"); /* Transparent */
678 } else {
679 qemu_printf(".");
680 }
681 if (env->mmu.mmusr & M68K_MMU_R_040) {
682 qemu_printf("R"); /* Resident */
683 } else {
684 qemu_printf(".");
685 }
686 qemu_printf(" Cache: ");
687 DUMP_CACHEFLAGS(env->mmu.mmusr);
688 qemu_printf(" U: %d\n", (env->mmu.mmusr >> 8) & 3);
689 qemu_printf("\n");
690 }
691
692 qemu_printf("ITTR0: ");
693 dump_ttr(env->mmu.ttr[M68K_ITTR0]);
694 qemu_printf("ITTR1: ");
695 dump_ttr(env->mmu.ttr[M68K_ITTR1]);
696 qemu_printf("DTTR0: ");
697 dump_ttr(env->mmu.ttr[M68K_DTTR0]);
698 qemu_printf("DTTR1: ");
699 dump_ttr(env->mmu.ttr[M68K_DTTR1]);
700
701 qemu_printf("SRP: 0x%08x\n", env->mmu.srp);
702 dump_address_map(env, env->mmu.srp);
703
704 qemu_printf("URP: 0x%08x\n", env->mmu.urp);
705 dump_address_map(env, env->mmu.urp);
706 }
707
708 static int check_TTR(uint32_t ttr, int *prot, target_ulong addr,
709 int access_type)
710 {
711 uint32_t base, mask;
712
713 /* check if transparent translation is enabled */
714 if ((ttr & M68K_TTR_ENABLED) == 0) {
715 return 0;
716 }
717
718 /* check mode access */
719 switch (ttr & M68K_TTR_SFIELD) {
720 case M68K_TTR_SFIELD_USER:
721 /* match only if user */
722 if ((access_type & ACCESS_SUPER) != 0) {
723 return 0;
724 }
725 break;
726 case M68K_TTR_SFIELD_SUPER:
727 /* match only if supervisor */
728 if ((access_type & ACCESS_SUPER) == 0) {
729 return 0;
730 }
731 break;
732 default:
733 /* all other values disable mode matching (FC2) */
734 break;
735 }
736
737 /* check address matching */
738
739 base = ttr & M68K_TTR_ADDR_BASE;
740 mask = (ttr & M68K_TTR_ADDR_MASK) ^ M68K_TTR_ADDR_MASK;
741 mask <<= M68K_TTR_ADDR_MASK_SHIFT;
742
743 if ((addr & mask) != (base & mask)) {
744 return 0;
745 }
746
747 *prot = PAGE_READ | PAGE_EXEC;
748 if ((ttr & M68K_DESC_WRITEPROT) == 0) {
749 *prot |= PAGE_WRITE;
750 }
751
752 return 1;
753 }
754
755 static int get_physical_address(CPUM68KState *env, hwaddr *physical,
756 int *prot, target_ulong address,
757 int access_type, target_ulong *page_size)
758 {
759 CPUState *cs = env_cpu(env);
760 uint32_t entry;
761 uint32_t next;
762 target_ulong page_mask;
763 bool debug = access_type & ACCESS_DEBUG;
764 int page_bits;
765 int i;
766 MemTxResult txres;
767
768 /* Transparent Translation (physical = logical) */
769 for (i = 0; i < M68K_MAX_TTR; i++) {
770 if (check_TTR(env->mmu.TTR(access_type, i),
771 prot, address, access_type)) {
772 if (access_type & ACCESS_PTEST) {
773 /* Transparent Translation Register bit */
774 env->mmu.mmusr = M68K_MMU_T_040 | M68K_MMU_R_040;
775 }
776 *physical = address;
777 *page_size = TARGET_PAGE_SIZE;
778 return 0;
779 }
780 }
781
782 /* Page Table Root Pointer */
783 *prot = PAGE_READ | PAGE_WRITE;
784 if (access_type & ACCESS_CODE) {
785 *prot |= PAGE_EXEC;
786 }
787 if (access_type & ACCESS_SUPER) {
788 next = env->mmu.srp;
789 } else {
790 next = env->mmu.urp;
791 }
792
793 /* Root Index */
794 entry = M68K_POINTER_BASE(next) | M68K_ROOT_INDEX(address);
795
796 next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
797 if (txres != MEMTX_OK) {
798 goto txfail;
799 }
800 if (!M68K_UDT_VALID(next)) {
801 return -1;
802 }
803 if (!(next & M68K_DESC_USED) && !debug) {
804 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
805 MEMTXATTRS_UNSPECIFIED, &txres);
806 if (txres != MEMTX_OK) {
807 goto txfail;
808 }
809 }
810 if (next & M68K_DESC_WRITEPROT) {
811 if (access_type & ACCESS_PTEST) {
812 env->mmu.mmusr |= M68K_MMU_WP_040;
813 }
814 *prot &= ~PAGE_WRITE;
815 if (access_type & ACCESS_STORE) {
816 return -1;
817 }
818 }
819
820 /* Pointer Index */
821 entry = M68K_POINTER_BASE(next) | M68K_POINTER_INDEX(address);
822
823 next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
824 if (txres != MEMTX_OK) {
825 goto txfail;
826 }
827 if (!M68K_UDT_VALID(next)) {
828 return -1;
829 }
830 if (!(next & M68K_DESC_USED) && !debug) {
831 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
832 MEMTXATTRS_UNSPECIFIED, &txres);
833 if (txres != MEMTX_OK) {
834 goto txfail;
835 }
836 }
837 if (next & M68K_DESC_WRITEPROT) {
838 if (access_type & ACCESS_PTEST) {
839 env->mmu.mmusr |= M68K_MMU_WP_040;
840 }
841 *prot &= ~PAGE_WRITE;
842 if (access_type & ACCESS_STORE) {
843 return -1;
844 }
845 }
846
847 /* Page Index */
848 if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
849 entry = M68K_8K_PAGE_BASE(next) | M68K_8K_PAGE_INDEX(address);
850 } else {
851 entry = M68K_4K_PAGE_BASE(next) | M68K_4K_PAGE_INDEX(address);
852 }
853
854 next = address_space_ldl(cs->as, entry, MEMTXATTRS_UNSPECIFIED, &txres);
855 if (txres != MEMTX_OK) {
856 goto txfail;
857 }
858
859 if (!M68K_PDT_VALID(next)) {
860 return -1;
861 }
862 if (M68K_PDT_INDIRECT(next)) {
863 next = address_space_ldl(cs->as, M68K_INDIRECT_POINTER(next),
864 MEMTXATTRS_UNSPECIFIED, &txres);
865 if (txres != MEMTX_OK) {
866 goto txfail;
867 }
868 }
869 if (access_type & ACCESS_STORE) {
870 if (next & M68K_DESC_WRITEPROT) {
871 if (!(next & M68K_DESC_USED) && !debug) {
872 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
873 MEMTXATTRS_UNSPECIFIED, &txres);
874 if (txres != MEMTX_OK) {
875 goto txfail;
876 }
877 }
878 } else if ((next & (M68K_DESC_MODIFIED | M68K_DESC_USED)) !=
879 (M68K_DESC_MODIFIED | M68K_DESC_USED) && !debug) {
880 address_space_stl(cs->as, entry,
881 next | (M68K_DESC_MODIFIED | M68K_DESC_USED),
882 MEMTXATTRS_UNSPECIFIED, &txres);
883 if (txres != MEMTX_OK) {
884 goto txfail;
885 }
886 }
887 } else {
888 if (!(next & M68K_DESC_USED) && !debug) {
889 address_space_stl(cs->as, entry, next | M68K_DESC_USED,
890 MEMTXATTRS_UNSPECIFIED, &txres);
891 if (txres != MEMTX_OK) {
892 goto txfail;
893 }
894 }
895 }
896
897 if (env->mmu.tcr & M68K_TCR_PAGE_8K) {
898 page_bits = 13;
899 } else {
900 page_bits = 12;
901 }
902 *page_size = 1 << page_bits;
903 page_mask = ~(*page_size - 1);
904 *physical = (next & page_mask) + (address & (*page_size - 1));
905
906 if (access_type & ACCESS_PTEST) {
907 env->mmu.mmusr |= next & M68K_MMU_SR_MASK_040;
908 env->mmu.mmusr |= *physical & 0xfffff000;
909 env->mmu.mmusr |= M68K_MMU_R_040;
910 }
911
912 if (next & M68K_DESC_WRITEPROT) {
913 *prot &= ~PAGE_WRITE;
914 if (access_type & ACCESS_STORE) {
915 return -1;
916 }
917 }
918 if (next & M68K_DESC_SUPERONLY) {
919 if ((access_type & ACCESS_SUPER) == 0) {
920 return -1;
921 }
922 }
923
924 return 0;
925
926 txfail:
927 /*
928 * A page table load/store failed. TODO: we should really raise a
929 * suitable guest fault here if this is not a debug access.
930 * For now just return that the translation failed.
931 */
932 return -1;
933 }
934
935 hwaddr m68k_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
936 {
937 M68kCPU *cpu = M68K_CPU(cs);
938 CPUM68KState *env = &cpu->env;
939 hwaddr phys_addr;
940 int prot;
941 int access_type;
942 target_ulong page_size;
943
944 if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
945 /* MMU disabled */
946 return addr;
947 }
948
949 access_type = ACCESS_DATA | ACCESS_DEBUG;
950 if (env->sr & SR_S) {
951 access_type |= ACCESS_SUPER;
952 }
953
954 if (get_physical_address(env, &phys_addr, &prot,
955 addr, access_type, &page_size) != 0) {
956 return -1;
957 }
958
959 return phys_addr;
960 }
961
962 /*
963 * Notify CPU of a pending interrupt. Prioritization and vectoring should
964 * be handled by the interrupt controller. Real hardware only requests
965 * the vector when the interrupt is acknowledged by the CPU. For
966 * simplicity we calculate it when the interrupt is signalled.
967 */
968 void m68k_set_irq_level(M68kCPU *cpu, int level, uint8_t vector)
969 {
970 CPUState *cs = CPU(cpu);
971 CPUM68KState *env = &cpu->env;
972
973 env->pending_level = level;
974 env->pending_vector = vector;
975 if (level) {
976 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
977 } else {
978 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
979 }
980 }
981
982 bool m68k_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
983 MMUAccessType qemu_access_type, int mmu_idx,
984 bool probe, uintptr_t retaddr)
985 {
986 M68kCPU *cpu = M68K_CPU(cs);
987 CPUM68KState *env = &cpu->env;
988 hwaddr physical;
989 int prot;
990 int access_type;
991 int ret;
992 target_ulong page_size;
993
994 if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) {
995 /* MMU disabled */
996 tlb_set_page(cs, address & TARGET_PAGE_MASK,
997 address & TARGET_PAGE_MASK,
998 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
999 mmu_idx, TARGET_PAGE_SIZE);
1000 return true;
1001 }
1002
1003 if (qemu_access_type == MMU_INST_FETCH) {
1004 access_type = ACCESS_CODE;
1005 } else {
1006 access_type = ACCESS_DATA;
1007 if (qemu_access_type == MMU_DATA_STORE) {
1008 access_type |= ACCESS_STORE;
1009 }
1010 }
1011 if (mmu_idx != MMU_USER_IDX) {
1012 access_type |= ACCESS_SUPER;
1013 }
1014
1015 ret = get_physical_address(&cpu->env, &physical, &prot,
1016 address, access_type, &page_size);
1017 if (likely(ret == 0)) {
1018 tlb_set_page(cs, address & TARGET_PAGE_MASK,
1019 physical & TARGET_PAGE_MASK, prot, mmu_idx, page_size);
1020 return true;
1021 }
1022
1023 if (probe) {
1024 return false;
1025 }
1026
1027 /* page fault */
1028 env->mmu.ssw = M68K_ATC_040;
1029 switch (size) {
1030 case 1:
1031 env->mmu.ssw |= M68K_BA_SIZE_BYTE;
1032 break;
1033 case 2:
1034 env->mmu.ssw |= M68K_BA_SIZE_WORD;
1035 break;
1036 case 4:
1037 env->mmu.ssw |= M68K_BA_SIZE_LONG;
1038 break;
1039 }
1040 if (access_type & ACCESS_SUPER) {
1041 env->mmu.ssw |= M68K_TM_040_SUPER;
1042 }
1043 if (access_type & ACCESS_CODE) {
1044 env->mmu.ssw |= M68K_TM_040_CODE;
1045 } else {
1046 env->mmu.ssw |= M68K_TM_040_DATA;
1047 }
1048 if (!(access_type & ACCESS_STORE)) {
1049 env->mmu.ssw |= M68K_RW_040;
1050 }
1051
1052 cs->exception_index = EXCP_ACCESS;
1053 env->mmu.ar = address;
1054 cpu_loop_exit_restore(cs, retaddr);
1055 }
1056 #endif /* !CONFIG_USER_ONLY */
1057
1058 uint32_t HELPER(bitrev)(uint32_t x)
1059 {
1060 x = ((x >> 1) & 0x55555555u) | ((x << 1) & 0xaaaaaaaau);
1061 x = ((x >> 2) & 0x33333333u) | ((x << 2) & 0xccccccccu);
1062 x = ((x >> 4) & 0x0f0f0f0fu) | ((x << 4) & 0xf0f0f0f0u);
1063 return bswap32(x);
1064 }
1065
1066 uint32_t HELPER(ff1)(uint32_t x)
1067 {
1068 int n;
1069 for (n = 32; x; n--)
1070 x >>= 1;
1071 return n;
1072 }
1073
1074 uint32_t HELPER(sats)(uint32_t val, uint32_t v)
1075 {
1076 /* The result has the opposite sign to the original value. */
1077 if ((int32_t)v < 0) {
1078 val = (((int32_t)val) >> 31) ^ SIGNBIT;
1079 }
1080 return val;
1081 }
1082
1083 void cpu_m68k_set_sr(CPUM68KState *env, uint32_t sr)
1084 {
1085 env->sr = sr & 0xffe0;
1086 cpu_m68k_set_ccr(env, sr);
1087 m68k_switch_sp(env);
1088 }
1089
1090 void HELPER(set_sr)(CPUM68KState *env, uint32_t val)
1091 {
1092 cpu_m68k_set_sr(env, val);
1093 }
1094
1095 /* MAC unit. */
1096 /*
1097 * FIXME: The MAC unit implementation is a bit of a mess. Some helpers
1098 * take values, others take register numbers and manipulate the contents
1099 * in-place.
1100 */
1101 void HELPER(mac_move)(CPUM68KState *env, uint32_t dest, uint32_t src)
1102 {
1103 uint32_t mask;
1104 env->macc[dest] = env->macc[src];
1105 mask = MACSR_PAV0 << dest;
1106 if (env->macsr & (MACSR_PAV0 << src))
1107 env->macsr |= mask;
1108 else
1109 env->macsr &= ~mask;
1110 }
1111
1112 uint64_t HELPER(macmuls)(CPUM68KState *env, uint32_t op1, uint32_t op2)
1113 {
1114 int64_t product;
1115 int64_t res;
1116
1117 product = (uint64_t)op1 * op2;
1118 res = (product << 24) >> 24;
1119 if (res != product) {
1120 env->macsr |= MACSR_V;
1121 if (env->macsr & MACSR_OMC) {
1122 /* Make sure the accumulate operation overflows. */
1123 if (product < 0)
1124 res = ~(1ll << 50);
1125 else
1126 res = 1ll << 50;
1127 }
1128 }
1129 return res;
1130 }
1131
1132 uint64_t HELPER(macmulu)(CPUM68KState *env, uint32_t op1, uint32_t op2)
1133 {
1134 uint64_t product;
1135
1136 product = (uint64_t)op1 * op2;
1137 if (product & (0xffffffull << 40)) {
1138 env->macsr |= MACSR_V;
1139 if (env->macsr & MACSR_OMC) {
1140 /* Make sure the accumulate operation overflows. */
1141 product = 1ll << 50;
1142 } else {
1143 product &= ((1ull << 40) - 1);
1144 }
1145 }
1146 return product;
1147 }
1148
1149 uint64_t HELPER(macmulf)(CPUM68KState *env, uint32_t op1, uint32_t op2)
1150 {
1151 uint64_t product;
1152 uint32_t remainder;
1153
1154 product = (uint64_t)op1 * op2;
1155 if (env->macsr & MACSR_RT) {
1156 remainder = product & 0xffffff;
1157 product >>= 24;
1158 if (remainder > 0x800000)
1159 product++;
1160 else if (remainder == 0x800000)
1161 product += (product & 1);
1162 } else {
1163 product >>= 24;
1164 }
1165 return product;
1166 }
1167
1168 void HELPER(macsats)(CPUM68KState *env, uint32_t acc)
1169 {
1170 int64_t tmp;
1171 int64_t result;
1172 tmp = env->macc[acc];
1173 result = ((tmp << 16) >> 16);
1174 if (result != tmp) {
1175 env->macsr |= MACSR_V;
1176 }
1177 if (env->macsr & MACSR_V) {
1178 env->macsr |= MACSR_PAV0 << acc;
1179 if (env->macsr & MACSR_OMC) {
1180 /*
1181 * The result is saturated to 32 bits, despite overflow occurring
1182 * at 48 bits. Seems weird, but that's what the hardware docs
1183 * say.
1184 */
1185 result = (result >> 63) ^ 0x7fffffff;
1186 }
1187 }
1188 env->macc[acc] = result;
1189 }
1190
1191 void HELPER(macsatu)(CPUM68KState *env, uint32_t acc)
1192 {
1193 uint64_t val;
1194
1195 val = env->macc[acc];
1196 if (val & (0xffffull << 48)) {
1197 env->macsr |= MACSR_V;
1198 }
1199 if (env->macsr & MACSR_V) {
1200 env->macsr |= MACSR_PAV0 << acc;
1201 if (env->macsr & MACSR_OMC) {
1202 if (val > (1ull << 53))
1203 val = 0;
1204 else
1205 val = (1ull << 48) - 1;
1206 } else {
1207 val &= ((1ull << 48) - 1);
1208 }
1209 }
1210 env->macc[acc] = val;
1211 }
1212
1213 void HELPER(macsatf)(CPUM68KState *env, uint32_t acc)
1214 {
1215 int64_t sum;
1216 int64_t result;
1217
1218 sum = env->macc[acc];
1219 result = (sum << 16) >> 16;
1220 if (result != sum) {
1221 env->macsr |= MACSR_V;
1222 }
1223 if (env->macsr & MACSR_V) {
1224 env->macsr |= MACSR_PAV0 << acc;
1225 if (env->macsr & MACSR_OMC) {
1226 result = (result >> 63) ^ 0x7fffffffffffll;
1227 }
1228 }
1229 env->macc[acc] = result;
1230 }
1231
1232 void HELPER(mac_set_flags)(CPUM68KState *env, uint32_t acc)
1233 {
1234 uint64_t val;
1235 val = env->macc[acc];
1236 if (val == 0) {
1237 env->macsr |= MACSR_Z;
1238 } else if (val & (1ull << 47)) {
1239 env->macsr |= MACSR_N;
1240 }
1241 if (env->macsr & (MACSR_PAV0 << acc)) {
1242 env->macsr |= MACSR_V;
1243 }
1244 if (env->macsr & MACSR_FI) {
1245 val = ((int64_t)val) >> 40;
1246 if (val != 0 && val != -1)
1247 env->macsr |= MACSR_EV;
1248 } else if (env->macsr & MACSR_SU) {
1249 val = ((int64_t)val) >> 32;
1250 if (val != 0 && val != -1)
1251 env->macsr |= MACSR_EV;
1252 } else {
1253 if ((val >> 32) != 0)
1254 env->macsr |= MACSR_EV;
1255 }
1256 }
1257
1258 #define EXTSIGN(val, index) ( \
1259 (index == 0) ? (int8_t)(val) : ((index == 1) ? (int16_t)(val) : (val)) \
1260 )
1261
1262 #define COMPUTE_CCR(op, x, n, z, v, c) { \
1263 switch (op) { \
1264 case CC_OP_FLAGS: \
1265 /* Everything in place. */ \
1266 break; \
1267 case CC_OP_ADDB: \
1268 case CC_OP_ADDW: \
1269 case CC_OP_ADDL: \
1270 res = n; \
1271 src2 = v; \
1272 src1 = EXTSIGN(res - src2, op - CC_OP_ADDB); \
1273 c = x; \
1274 z = n; \
1275 v = (res ^ src1) & ~(src1 ^ src2); \
1276 break; \
1277 case CC_OP_SUBB: \
1278 case CC_OP_SUBW: \
1279 case CC_OP_SUBL: \
1280 res = n; \
1281 src2 = v; \
1282 src1 = EXTSIGN(res + src2, op - CC_OP_SUBB); \
1283 c = x; \
1284 z = n; \
1285 v = (res ^ src1) & (src1 ^ src2); \
1286 break; \
1287 case CC_OP_CMPB: \
1288 case CC_OP_CMPW: \
1289 case CC_OP_CMPL: \
1290 src1 = n; \
1291 src2 = v; \
1292 res = EXTSIGN(src1 - src2, op - CC_OP_CMPB); \
1293 n = res; \
1294 z = res; \
1295 c = src1 < src2; \
1296 v = (res ^ src1) & (src1 ^ src2); \
1297 break; \
1298 case CC_OP_LOGIC: \
1299 c = v = 0; \
1300 z = n; \
1301 break; \
1302 default: \
1303 cpu_abort(env_cpu(env), "Bad CC_OP %d", op); \
1304 } \
1305 } while (0)
1306
1307 uint32_t cpu_m68k_get_ccr(CPUM68KState *env)
1308 {
1309 uint32_t x, c, n, z, v;
1310 uint32_t res, src1, src2;
1311
1312 x = env->cc_x;
1313 n = env->cc_n;
1314 z = env->cc_z;
1315 v = env->cc_v;
1316 c = env->cc_c;
1317
1318 COMPUTE_CCR(env->cc_op, x, n, z, v, c);
1319
1320 n = n >> 31;
1321 z = (z == 0);
1322 v = v >> 31;
1323
1324 return x * CCF_X + n * CCF_N + z * CCF_Z + v * CCF_V + c * CCF_C;
1325 }
1326
1327 uint32_t HELPER(get_ccr)(CPUM68KState *env)
1328 {
1329 return cpu_m68k_get_ccr(env);
1330 }
1331
1332 void cpu_m68k_set_ccr(CPUM68KState *env, uint32_t ccr)
1333 {
1334 env->cc_x = (ccr & CCF_X ? 1 : 0);
1335 env->cc_n = (ccr & CCF_N ? -1 : 0);
1336 env->cc_z = (ccr & CCF_Z ? 0 : 1);
1337 env->cc_v = (ccr & CCF_V ? -1 : 0);
1338 env->cc_c = (ccr & CCF_C ? 1 : 0);
1339 env->cc_op = CC_OP_FLAGS;
1340 }
1341
1342 void HELPER(set_ccr)(CPUM68KState *env, uint32_t ccr)
1343 {
1344 cpu_m68k_set_ccr(env, ccr);
1345 }
1346
1347 void HELPER(flush_flags)(CPUM68KState *env, uint32_t cc_op)
1348 {
1349 uint32_t res, src1, src2;
1350
1351 COMPUTE_CCR(cc_op, env->cc_x, env->cc_n, env->cc_z, env->cc_v, env->cc_c);
1352 env->cc_op = CC_OP_FLAGS;
1353 }
1354
1355 uint32_t HELPER(get_macf)(CPUM68KState *env, uint64_t val)
1356 {
1357 int rem;
1358 uint32_t result;
1359
1360 if (env->macsr & MACSR_SU) {
1361 /* 16-bit rounding. */
1362 rem = val & 0xffffff;
1363 val = (val >> 24) & 0xffffu;
1364 if (rem > 0x800000)
1365 val++;
1366 else if (rem == 0x800000)
1367 val += (val & 1);
1368 } else if (env->macsr & MACSR_RT) {
1369 /* 32-bit rounding. */
1370 rem = val & 0xff;
1371 val >>= 8;
1372 if (rem > 0x80)
1373 val++;
1374 else if (rem == 0x80)
1375 val += (val & 1);
1376 } else {
1377 /* No rounding. */
1378 val >>= 8;
1379 }
1380 if (env->macsr & MACSR_OMC) {
1381 /* Saturate. */
1382 if (env->macsr & MACSR_SU) {
1383 if (val != (uint16_t) val) {
1384 result = ((val >> 63) ^ 0x7fff) & 0xffff;
1385 } else {
1386 result = val & 0xffff;
1387 }
1388 } else {
1389 if (val != (uint32_t)val) {
1390 result = ((uint32_t)(val >> 63) & 0x7fffffff);
1391 } else {
1392 result = (uint32_t)val;
1393 }
1394 }
1395 } else {
1396 /* No saturation. */
1397 if (env->macsr & MACSR_SU) {
1398 result = val & 0xffff;
1399 } else {
1400 result = (uint32_t)val;
1401 }
1402 }
1403 return result;
1404 }
1405
1406 uint32_t HELPER(get_macs)(uint64_t val)
1407 {
1408 if (val == (int32_t)val) {
1409 return (int32_t)val;
1410 } else {
1411 return (val >> 61) ^ ~SIGNBIT;
1412 }
1413 }
1414
1415 uint32_t HELPER(get_macu)(uint64_t val)
1416 {
1417 if ((val >> 32) == 0) {
1418 return (uint32_t)val;
1419 } else {
1420 return 0xffffffffu;
1421 }
1422 }
1423
1424 uint32_t HELPER(get_mac_extf)(CPUM68KState *env, uint32_t acc)
1425 {
1426 uint32_t val;
1427 val = env->macc[acc] & 0x00ff;
1428 val |= (env->macc[acc] >> 32) & 0xff00;
1429 val |= (env->macc[acc + 1] << 16) & 0x00ff0000;
1430 val |= (env->macc[acc + 1] >> 16) & 0xff000000;
1431 return val;
1432 }
1433
1434 uint32_t HELPER(get_mac_exti)(CPUM68KState *env, uint32_t acc)
1435 {
1436 uint32_t val;
1437 val = (env->macc[acc] >> 32) & 0xffff;
1438 val |= (env->macc[acc + 1] >> 16) & 0xffff0000;
1439 return val;
1440 }
1441
1442 void HELPER(set_mac_extf)(CPUM68KState *env, uint32_t val, uint32_t acc)
1443 {
1444 int64_t res;
1445 int32_t tmp;
1446 res = env->macc[acc] & 0xffffffff00ull;
1447 tmp = (int16_t)(val & 0xff00);
1448 res |= ((int64_t)tmp) << 32;
1449 res |= val & 0xff;
1450 env->macc[acc] = res;
1451 res = env->macc[acc + 1] & 0xffffffff00ull;
1452 tmp = (val & 0xff000000);
1453 res |= ((int64_t)tmp) << 16;
1454 res |= (val >> 16) & 0xff;
1455 env->macc[acc + 1] = res;
1456 }
1457
1458 void HELPER(set_mac_exts)(CPUM68KState *env, uint32_t val, uint32_t acc)
1459 {
1460 int64_t res;
1461 int32_t tmp;
1462 res = (uint32_t)env->macc[acc];
1463 tmp = (int16_t)val;
1464 res |= ((int64_t)tmp) << 32;
1465 env->macc[acc] = res;
1466 res = (uint32_t)env->macc[acc + 1];
1467 tmp = val & 0xffff0000;
1468 res |= (int64_t)tmp << 16;
1469 env->macc[acc + 1] = res;
1470 }
1471
1472 void HELPER(set_mac_extu)(CPUM68KState *env, uint32_t val, uint32_t acc)
1473 {
1474 uint64_t res;
1475 res = (uint32_t)env->macc[acc];
1476 res |= ((uint64_t)(val & 0xffff)) << 32;
1477 env->macc[acc] = res;
1478 res = (uint32_t)env->macc[acc + 1];
1479 res |= (uint64_t)(val & 0xffff0000) << 16;
1480 env->macc[acc + 1] = res;
1481 }
1482
1483 #if !defined(CONFIG_USER_ONLY)
1484 void HELPER(ptest)(CPUM68KState *env, uint32_t addr, uint32_t is_read)
1485 {
1486 hwaddr physical;
1487 int access_type;
1488 int prot;
1489 int ret;
1490 target_ulong page_size;
1491
1492 access_type = ACCESS_PTEST;
1493 if (env->dfc & 4) {
1494 access_type |= ACCESS_SUPER;
1495 }
1496 if ((env->dfc & 3) == 2) {
1497 access_type |= ACCESS_CODE;
1498 }
1499 if (!is_read) {
1500 access_type |= ACCESS_STORE;
1501 }
1502
1503 env->mmu.mmusr = 0;
1504 env->mmu.ssw = 0;
1505 ret = get_physical_address(env, &physical, &prot, addr,
1506 access_type, &page_size);
1507 if (ret == 0) {
1508 tlb_set_page(env_cpu(env), addr & TARGET_PAGE_MASK,
1509 physical & TARGET_PAGE_MASK,
1510 prot, access_type & ACCESS_SUPER ?
1511 MMU_KERNEL_IDX : MMU_USER_IDX, page_size);
1512 }
1513 }
1514
1515 void HELPER(pflush)(CPUM68KState *env, uint32_t addr, uint32_t opmode)
1516 {
1517 CPUState *cs = env_cpu(env);
1518
1519 switch (opmode) {
1520 case 0: /* Flush page entry if not global */
1521 case 1: /* Flush page entry */
1522 tlb_flush_page(cs, addr);
1523 break;
1524 case 2: /* Flush all except global entries */
1525 tlb_flush(cs);
1526 break;
1527 case 3: /* Flush all entries */
1528 tlb_flush(cs);
1529 break;
1530 }
1531 }
1532
1533 void HELPER(reset)(CPUM68KState *env)
1534 {
1535 /* FIXME: reset all except CPU */
1536 }
1537 #endif /* !CONFIG_USER_ONLY */