]> git.proxmox.com Git - mirror_qemu.git/blob - target/m68k/op_helper.c
Merge tag 'pull-tcg-20230511-2' of https://gitlab.com/rth7680/qemu into staging
[mirror_qemu.git] / target / m68k / op_helper.c
1 /*
2 * M68K helper routines
3 *
4 * Copyright (c) 2007 CodeSourcery
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
25 #include "semihosting/semihost.h"
26
27 #if !defined(CONFIG_USER_ONLY)
28
29 static void cf_rte(CPUM68KState *env)
30 {
31 uint32_t sp;
32 uint32_t fmt;
33
34 sp = env->aregs[7];
35 fmt = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
36 env->pc = cpu_ldl_mmuidx_ra(env, sp + 4, MMU_KERNEL_IDX, 0);
37 sp |= (fmt >> 28) & 3;
38 env->aregs[7] = sp + 8;
39
40 cpu_m68k_set_sr(env, fmt);
41 }
42
43 static void m68k_rte(CPUM68KState *env)
44 {
45 uint32_t sp;
46 uint16_t fmt;
47 uint16_t sr;
48
49 sp = env->aregs[7];
50 throwaway:
51 sr = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
52 sp += 2;
53 env->pc = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
54 sp += 4;
55 if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
56 /* all except 68000 */
57 fmt = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
58 sp += 2;
59 switch (fmt >> 12) {
60 case 0:
61 break;
62 case 1:
63 env->aregs[7] = sp;
64 cpu_m68k_set_sr(env, sr);
65 goto throwaway;
66 case 2:
67 case 3:
68 sp += 4;
69 break;
70 case 4:
71 sp += 8;
72 break;
73 case 7:
74 sp += 52;
75 break;
76 }
77 }
78 env->aregs[7] = sp;
79 cpu_m68k_set_sr(env, sr);
80 }
81
82 static const char *m68k_exception_name(int index)
83 {
84 switch (index) {
85 case EXCP_ACCESS:
86 return "Access Fault";
87 case EXCP_ADDRESS:
88 return "Address Error";
89 case EXCP_ILLEGAL:
90 return "Illegal Instruction";
91 case EXCP_DIV0:
92 return "Divide by Zero";
93 case EXCP_CHK:
94 return "CHK/CHK2";
95 case EXCP_TRAPCC:
96 return "FTRAPcc, TRAPcc, TRAPV";
97 case EXCP_PRIVILEGE:
98 return "Privilege Violation";
99 case EXCP_TRACE:
100 return "Trace";
101 case EXCP_LINEA:
102 return "A-Line";
103 case EXCP_LINEF:
104 return "F-Line";
105 case EXCP_DEBEGBP: /* 68020/030 only */
106 return "Copro Protocol Violation";
107 case EXCP_FORMAT:
108 return "Format Error";
109 case EXCP_UNINITIALIZED:
110 return "Uninitialized Interrupt";
111 case EXCP_SPURIOUS:
112 return "Spurious Interrupt";
113 case EXCP_INT_LEVEL_1:
114 return "Level 1 Interrupt";
115 case EXCP_INT_LEVEL_1 + 1:
116 return "Level 2 Interrupt";
117 case EXCP_INT_LEVEL_1 + 2:
118 return "Level 3 Interrupt";
119 case EXCP_INT_LEVEL_1 + 3:
120 return "Level 4 Interrupt";
121 case EXCP_INT_LEVEL_1 + 4:
122 return "Level 5 Interrupt";
123 case EXCP_INT_LEVEL_1 + 5:
124 return "Level 6 Interrupt";
125 case EXCP_INT_LEVEL_1 + 6:
126 return "Level 7 Interrupt";
127 case EXCP_TRAP0:
128 return "TRAP #0";
129 case EXCP_TRAP0 + 1:
130 return "TRAP #1";
131 case EXCP_TRAP0 + 2:
132 return "TRAP #2";
133 case EXCP_TRAP0 + 3:
134 return "TRAP #3";
135 case EXCP_TRAP0 + 4:
136 return "TRAP #4";
137 case EXCP_TRAP0 + 5:
138 return "TRAP #5";
139 case EXCP_TRAP0 + 6:
140 return "TRAP #6";
141 case EXCP_TRAP0 + 7:
142 return "TRAP #7";
143 case EXCP_TRAP0 + 8:
144 return "TRAP #8";
145 case EXCP_TRAP0 + 9:
146 return "TRAP #9";
147 case EXCP_TRAP0 + 10:
148 return "TRAP #10";
149 case EXCP_TRAP0 + 11:
150 return "TRAP #11";
151 case EXCP_TRAP0 + 12:
152 return "TRAP #12";
153 case EXCP_TRAP0 + 13:
154 return "TRAP #13";
155 case EXCP_TRAP0 + 14:
156 return "TRAP #14";
157 case EXCP_TRAP0 + 15:
158 return "TRAP #15";
159 case EXCP_FP_BSUN:
160 return "FP Branch/Set on unordered condition";
161 case EXCP_FP_INEX:
162 return "FP Inexact Result";
163 case EXCP_FP_DZ:
164 return "FP Divide by Zero";
165 case EXCP_FP_UNFL:
166 return "FP Underflow";
167 case EXCP_FP_OPERR:
168 return "FP Operand Error";
169 case EXCP_FP_OVFL:
170 return "FP Overflow";
171 case EXCP_FP_SNAN:
172 return "FP Signaling NAN";
173 case EXCP_FP_UNIMP:
174 return "FP Unimplemented Data Type";
175 case EXCP_MMU_CONF: /* 68030/68851 only */
176 return "MMU Configuration Error";
177 case EXCP_MMU_ILLEGAL: /* 68851 only */
178 return "MMU Illegal Operation";
179 case EXCP_MMU_ACCESS: /* 68851 only */
180 return "MMU Access Level Violation";
181 case 64 ... 255:
182 return "User Defined Vector";
183 }
184 return "Unassigned";
185 }
186
187 static void cf_interrupt_all(CPUM68KState *env, int is_hw)
188 {
189 CPUState *cs = env_cpu(env);
190 uint32_t sp;
191 uint32_t sr;
192 uint32_t fmt;
193 uint32_t retaddr;
194 uint32_t vector;
195
196 fmt = 0;
197 retaddr = env->pc;
198
199 if (!is_hw) {
200 switch (cs->exception_index) {
201 case EXCP_RTE:
202 /* Return from an exception. */
203 cf_rte(env);
204 return;
205 case EXCP_HALT_INSN:
206 if (semihosting_enabled((env->sr & SR_S) == 0)
207 && (env->pc & 3) == 0
208 && cpu_lduw_code(env, env->pc - 4) == 0x4e71
209 && cpu_ldl_code(env, env->pc) == 0x4e7bf000) {
210 env->pc += 4;
211 do_m68k_semihosting(env, env->dregs[0]);
212 return;
213 }
214 cs->halted = 1;
215 cs->exception_index = EXCP_HLT;
216 cpu_loop_exit(cs);
217 return;
218 }
219 }
220
221 vector = cs->exception_index << 2;
222
223 sr = env->sr | cpu_m68k_get_ccr(env);
224 if (qemu_loglevel_mask(CPU_LOG_INT)) {
225 static int count;
226 qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
227 ++count, m68k_exception_name(cs->exception_index),
228 vector, env->pc, env->aregs[7], sr);
229 }
230
231 fmt |= 0x40000000;
232 fmt |= vector << 16;
233 fmt |= sr;
234
235 env->sr |= SR_S;
236 if (is_hw) {
237 env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
238 env->sr &= ~SR_M;
239 }
240 m68k_switch_sp(env);
241 sp = env->aregs[7];
242 fmt |= (sp & 3) << 28;
243
244 /* ??? This could cause MMU faults. */
245 sp &= ~3;
246 sp -= 4;
247 cpu_stl_mmuidx_ra(env, sp, retaddr, MMU_KERNEL_IDX, 0);
248 sp -= 4;
249 cpu_stl_mmuidx_ra(env, sp, fmt, MMU_KERNEL_IDX, 0);
250 env->aregs[7] = sp;
251 /* Jump to vector. */
252 env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
253 }
254
255 static inline void do_stack_frame(CPUM68KState *env, uint32_t *sp,
256 uint16_t format, uint16_t sr,
257 uint32_t addr, uint32_t retaddr)
258 {
259 if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
260 /* all except 68000 */
261 CPUState *cs = env_cpu(env);
262 switch (format) {
263 case 4:
264 *sp -= 4;
265 cpu_stl_mmuidx_ra(env, *sp, env->pc, MMU_KERNEL_IDX, 0);
266 *sp -= 4;
267 cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
268 break;
269 case 3:
270 case 2:
271 *sp -= 4;
272 cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
273 break;
274 }
275 *sp -= 2;
276 cpu_stw_mmuidx_ra(env, *sp, (format << 12) + (cs->exception_index << 2),
277 MMU_KERNEL_IDX, 0);
278 }
279 *sp -= 4;
280 cpu_stl_mmuidx_ra(env, *sp, retaddr, MMU_KERNEL_IDX, 0);
281 *sp -= 2;
282 cpu_stw_mmuidx_ra(env, *sp, sr, MMU_KERNEL_IDX, 0);
283 }
284
285 static void m68k_interrupt_all(CPUM68KState *env, int is_hw)
286 {
287 CPUState *cs = env_cpu(env);
288 uint32_t sp;
289 uint32_t vector;
290 uint16_t sr, oldsr;
291
292 if (!is_hw) {
293 switch (cs->exception_index) {
294 case EXCP_RTE:
295 /* Return from an exception. */
296 m68k_rte(env);
297 return;
298 }
299 }
300
301 vector = cs->exception_index << 2;
302
303 sr = env->sr | cpu_m68k_get_ccr(env);
304 if (qemu_loglevel_mask(CPU_LOG_INT)) {
305 static int count;
306 qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
307 ++count, m68k_exception_name(cs->exception_index),
308 vector, env->pc, env->aregs[7], sr);
309 }
310
311 /*
312 * MC68040UM/AD, chapter 9.3.10
313 */
314
315 /* "the processor first make an internal copy" */
316 oldsr = sr;
317 /* "set the mode to supervisor" */
318 sr |= SR_S;
319 /* "suppress tracing" */
320 sr &= ~SR_T;
321 /* "sets the processor interrupt mask" */
322 if (is_hw) {
323 sr |= (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
324 }
325 cpu_m68k_set_sr(env, sr);
326 sp = env->aregs[7];
327
328 if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) {
329 sp &= ~1;
330 }
331
332 switch (cs->exception_index) {
333 case EXCP_ACCESS:
334 if (env->mmu.fault) {
335 cpu_abort(cs, "DOUBLE MMU FAULT\n");
336 }
337 env->mmu.fault = true;
338 /* push data 3 */
339 sp -= 4;
340 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
341 /* push data 2 */
342 sp -= 4;
343 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
344 /* push data 1 */
345 sp -= 4;
346 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
347 /* write back 1 / push data 0 */
348 sp -= 4;
349 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
350 /* write back 1 address */
351 sp -= 4;
352 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
353 /* write back 2 data */
354 sp -= 4;
355 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
356 /* write back 2 address */
357 sp -= 4;
358 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
359 /* write back 3 data */
360 sp -= 4;
361 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
362 /* write back 3 address */
363 sp -= 4;
364 cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
365 /* fault address */
366 sp -= 4;
367 cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
368 /* write back 1 status */
369 sp -= 2;
370 cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
371 /* write back 2 status */
372 sp -= 2;
373 cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
374 /* write back 3 status */
375 sp -= 2;
376 cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
377 /* special status word */
378 sp -= 2;
379 cpu_stw_mmuidx_ra(env, sp, env->mmu.ssw, MMU_KERNEL_IDX, 0);
380 /* effective address */
381 sp -= 4;
382 cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
383
384 do_stack_frame(env, &sp, 7, oldsr, 0, env->pc);
385 env->mmu.fault = false;
386 if (qemu_loglevel_mask(CPU_LOG_INT)) {
387 qemu_log(" "
388 "ssw: %08x ea: %08x sfc: %d dfc: %d\n",
389 env->mmu.ssw, env->mmu.ar, env->sfc, env->dfc);
390 }
391 break;
392
393 case EXCP_ILLEGAL:
394 do_stack_frame(env, &sp, 0, oldsr, 0, env->pc);
395 break;
396
397 case EXCP_ADDRESS:
398 do_stack_frame(env, &sp, 2, oldsr, 0, env->pc);
399 break;
400
401 case EXCP_CHK:
402 case EXCP_DIV0:
403 case EXCP_TRACE:
404 case EXCP_TRAPCC:
405 do_stack_frame(env, &sp, 2, oldsr, env->mmu.ar, env->pc);
406 break;
407
408 case EXCP_SPURIOUS ... EXCP_INT_LEVEL_7:
409 if (is_hw && (oldsr & SR_M)) {
410 do_stack_frame(env, &sp, 0, oldsr, 0, env->pc);
411 oldsr = sr;
412 env->aregs[7] = sp;
413 cpu_m68k_set_sr(env, sr & ~SR_M);
414 sp = env->aregs[7];
415 if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) {
416 sp &= ~1;
417 }
418 do_stack_frame(env, &sp, 1, oldsr, 0, env->pc);
419 break;
420 }
421 /* fall through */
422
423 default:
424 do_stack_frame(env, &sp, 0, oldsr, 0, env->pc);
425 break;
426 }
427
428 env->aregs[7] = sp;
429 /* Jump to vector. */
430 env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
431 }
432
433 static void do_interrupt_all(CPUM68KState *env, int is_hw)
434 {
435 if (m68k_feature(env, M68K_FEATURE_M68K)) {
436 m68k_interrupt_all(env, is_hw);
437 return;
438 }
439 cf_interrupt_all(env, is_hw);
440 }
441
442 void m68k_cpu_do_interrupt(CPUState *cs)
443 {
444 M68kCPU *cpu = M68K_CPU(cs);
445 CPUM68KState *env = &cpu->env;
446
447 do_interrupt_all(env, 0);
448 }
449
450 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
451 {
452 do_interrupt_all(env, 1);
453 }
454
455 void m68k_cpu_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr,
456 unsigned size, MMUAccessType access_type,
457 int mmu_idx, MemTxAttrs attrs,
458 MemTxResult response, uintptr_t retaddr)
459 {
460 M68kCPU *cpu = M68K_CPU(cs);
461 CPUM68KState *env = &cpu->env;
462
463 cpu_restore_state(cs, retaddr);
464
465 if (m68k_feature(env, M68K_FEATURE_M68040)) {
466 env->mmu.mmusr = 0;
467
468 /*
469 * According to the MC68040 users manual the ATC bit of the SSW is
470 * used to distinguish between ATC faults and physical bus errors.
471 * In the case of a bus error e.g. during nubus read from an empty
472 * slot this bit should not be set
473 */
474 if (response != MEMTX_DECODE_ERROR) {
475 env->mmu.ssw |= M68K_ATC_040;
476 }
477
478 /* FIXME: manage MMU table access error */
479 env->mmu.ssw &= ~M68K_TM_040;
480 if (env->sr & SR_S) { /* SUPERVISOR */
481 env->mmu.ssw |= M68K_TM_040_SUPER;
482 }
483 if (access_type == MMU_INST_FETCH) { /* instruction or data */
484 env->mmu.ssw |= M68K_TM_040_CODE;
485 } else {
486 env->mmu.ssw |= M68K_TM_040_DATA;
487 }
488 env->mmu.ssw &= ~M68K_BA_SIZE_MASK;
489 switch (size) {
490 case 1:
491 env->mmu.ssw |= M68K_BA_SIZE_BYTE;
492 break;
493 case 2:
494 env->mmu.ssw |= M68K_BA_SIZE_WORD;
495 break;
496 case 4:
497 env->mmu.ssw |= M68K_BA_SIZE_LONG;
498 break;
499 }
500
501 if (access_type != MMU_DATA_STORE) {
502 env->mmu.ssw |= M68K_RW_040;
503 }
504
505 env->mmu.ar = addr;
506
507 cs->exception_index = EXCP_ACCESS;
508 cpu_loop_exit(cs);
509 }
510 }
511
512 bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
513 {
514 M68kCPU *cpu = M68K_CPU(cs);
515 CPUM68KState *env = &cpu->env;
516
517 if (interrupt_request & CPU_INTERRUPT_HARD
518 && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
519 /*
520 * Real hardware gets the interrupt vector via an IACK cycle
521 * at this point. Current emulated hardware doesn't rely on
522 * this, so we provide/save the vector when the interrupt is
523 * first signalled.
524 */
525 cs->exception_index = env->pending_vector;
526 do_interrupt_m68k_hardirq(env);
527 return true;
528 }
529 return false;
530 }
531
532 #endif /* !CONFIG_USER_ONLY */
533
534 G_NORETURN static void
535 raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
536 {
537 CPUState *cs = env_cpu(env);
538
539 cs->exception_index = tt;
540 cpu_loop_exit_restore(cs, raddr);
541 }
542
543 G_NORETURN static void raise_exception(CPUM68KState *env, int tt)
544 {
545 raise_exception_ra(env, tt, 0);
546 }
547
548 void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
549 {
550 raise_exception(env, tt);
551 }
552
553 G_NORETURN static void
554 raise_exception_format2(CPUM68KState *env, int tt, int ilen, uintptr_t raddr)
555 {
556 CPUState *cs = env_cpu(env);
557
558 cs->exception_index = tt;
559
560 /* Recover PC and CC_OP for the beginning of the insn. */
561 cpu_restore_state(cs, raddr);
562
563 /* Flags are current in env->cc_*, or are undefined. */
564 env->cc_op = CC_OP_FLAGS;
565
566 /*
567 * Remember original pc in mmu.ar, for the Format 2 stack frame.
568 * Adjust PC to end of the insn.
569 */
570 env->mmu.ar = env->pc;
571 env->pc += ilen;
572
573 cpu_loop_exit(cs);
574 }
575
576 void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den, int ilen)
577 {
578 uint32_t num = env->dregs[destr];
579 uint32_t quot, rem;
580
581 env->cc_c = 0; /* always cleared, even if div0 */
582
583 if (den == 0) {
584 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC());
585 }
586 quot = num / den;
587 rem = num % den;
588
589 if (quot > 0xffff) {
590 env->cc_v = -1;
591 /*
592 * real 68040 keeps N and unset Z on overflow,
593 * whereas documentation says "undefined"
594 */
595 env->cc_z = 1;
596 return;
597 }
598 env->dregs[destr] = deposit32(quot, 16, 16, rem);
599 env->cc_z = (int16_t)quot;
600 env->cc_n = (int16_t)quot;
601 env->cc_v = 0;
602 }
603
604 void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den, int ilen)
605 {
606 int32_t num = env->dregs[destr];
607 uint32_t quot, rem;
608
609 env->cc_c = 0; /* always cleared, even if overflow/div0 */
610
611 if (den == 0) {
612 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC());
613 }
614 quot = num / den;
615 rem = num % den;
616
617 if (quot != (int16_t)quot) {
618 env->cc_v = -1;
619 /* nothing else is modified */
620 /*
621 * real 68040 keeps N and unset Z on overflow,
622 * whereas documentation says "undefined"
623 */
624 env->cc_z = 1;
625 return;
626 }
627 env->dregs[destr] = deposit32(quot, 16, 16, rem);
628 env->cc_z = (int16_t)quot;
629 env->cc_n = (int16_t)quot;
630 env->cc_v = 0;
631 }
632
633 void HELPER(divul)(CPUM68KState *env, int numr, int regr,
634 uint32_t den, int ilen)
635 {
636 uint32_t num = env->dregs[numr];
637 uint32_t quot, rem;
638
639 env->cc_c = 0; /* always cleared, even if div0 */
640
641 if (den == 0) {
642 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC());
643 }
644 quot = num / den;
645 rem = num % den;
646
647 env->cc_z = quot;
648 env->cc_n = quot;
649 env->cc_v = 0;
650
651 if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
652 if (numr == regr) {
653 env->dregs[numr] = quot;
654 } else {
655 env->dregs[regr] = rem;
656 }
657 } else {
658 env->dregs[regr] = rem;
659 env->dregs[numr] = quot;
660 }
661 }
662
663 void HELPER(divsl)(CPUM68KState *env, int numr, int regr,
664 int32_t den, int ilen)
665 {
666 int32_t num = env->dregs[numr];
667 int32_t quot, rem;
668
669 env->cc_c = 0; /* always cleared, even if overflow/div0 */
670
671 if (den == 0) {
672 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC());
673 }
674 quot = num / den;
675 rem = num % den;
676
677 env->cc_z = quot;
678 env->cc_n = quot;
679 env->cc_v = 0;
680
681 if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
682 if (numr == regr) {
683 env->dregs[numr] = quot;
684 } else {
685 env->dregs[regr] = rem;
686 }
687 } else {
688 env->dregs[regr] = rem;
689 env->dregs[numr] = quot;
690 }
691 }
692
693 void HELPER(divull)(CPUM68KState *env, int numr, int regr,
694 uint32_t den, int ilen)
695 {
696 uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
697 uint64_t quot;
698 uint32_t rem;
699
700 env->cc_c = 0; /* always cleared, even if overflow/div0 */
701
702 if (den == 0) {
703 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC());
704 }
705 quot = num / den;
706 rem = num % den;
707
708 if (quot > 0xffffffffULL) {
709 env->cc_v = -1;
710 /*
711 * real 68040 keeps N and unset Z on overflow,
712 * whereas documentation says "undefined"
713 */
714 env->cc_z = 1;
715 return;
716 }
717 env->cc_z = quot;
718 env->cc_n = quot;
719 env->cc_v = 0;
720
721 /*
722 * If Dq and Dr are the same, the quotient is returned.
723 * therefore we set Dq last.
724 */
725
726 env->dregs[regr] = rem;
727 env->dregs[numr] = quot;
728 }
729
730 void HELPER(divsll)(CPUM68KState *env, int numr, int regr,
731 int32_t den, int ilen)
732 {
733 int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
734 int64_t quot;
735 int32_t rem;
736
737 env->cc_c = 0; /* always cleared, even if overflow/div0 */
738
739 if (den == 0) {
740 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC());
741 }
742 quot = num / den;
743 rem = num % den;
744
745 if (quot != (int32_t)quot) {
746 env->cc_v = -1;
747 /*
748 * real 68040 keeps N and unset Z on overflow,
749 * whereas documentation says "undefined"
750 */
751 env->cc_z = 1;
752 return;
753 }
754 env->cc_z = quot;
755 env->cc_n = quot;
756 env->cc_v = 0;
757
758 /*
759 * If Dq and Dr are the same, the quotient is returned.
760 * therefore we set Dq last.
761 */
762
763 env->dregs[regr] = rem;
764 env->dregs[numr] = quot;
765 }
766
767 /* We're executing in a serial context -- no need to be atomic. */
768 void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
769 {
770 uint32_t Dc1 = extract32(regs, 9, 3);
771 uint32_t Dc2 = extract32(regs, 6, 3);
772 uint32_t Du1 = extract32(regs, 3, 3);
773 uint32_t Du2 = extract32(regs, 0, 3);
774 int16_t c1 = env->dregs[Dc1];
775 int16_t c2 = env->dregs[Dc2];
776 int16_t u1 = env->dregs[Du1];
777 int16_t u2 = env->dregs[Du2];
778 int16_t l1, l2;
779 uintptr_t ra = GETPC();
780
781 l1 = cpu_lduw_data_ra(env, a1, ra);
782 l2 = cpu_lduw_data_ra(env, a2, ra);
783 if (l1 == c1 && l2 == c2) {
784 cpu_stw_data_ra(env, a1, u1, ra);
785 cpu_stw_data_ra(env, a2, u2, ra);
786 }
787
788 if (c1 != l1) {
789 env->cc_n = l1;
790 env->cc_v = c1;
791 } else {
792 env->cc_n = l2;
793 env->cc_v = c2;
794 }
795 env->cc_op = CC_OP_CMPW;
796 env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
797 env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
798 }
799
800 static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2,
801 bool parallel)
802 {
803 uint32_t Dc1 = extract32(regs, 9, 3);
804 uint32_t Dc2 = extract32(regs, 6, 3);
805 uint32_t Du1 = extract32(regs, 3, 3);
806 uint32_t Du2 = extract32(regs, 0, 3);
807 uint32_t c1 = env->dregs[Dc1];
808 uint32_t c2 = env->dregs[Dc2];
809 uint32_t u1 = env->dregs[Du1];
810 uint32_t u2 = env->dregs[Du2];
811 uint32_t l1, l2;
812 uintptr_t ra = GETPC();
813 #if defined(CONFIG_ATOMIC64)
814 int mmu_idx = cpu_mmu_index(env, 0);
815 MemOpIdx oi = make_memop_idx(MO_BEUQ, mmu_idx);
816 #endif
817
818 if (parallel) {
819 /* We're executing in a parallel context -- must be atomic. */
820 #ifdef CONFIG_ATOMIC64
821 uint64_t c, u, l;
822 if ((a1 & 7) == 0 && a2 == a1 + 4) {
823 c = deposit64(c2, 32, 32, c1);
824 u = deposit64(u2, 32, 32, u1);
825 l = cpu_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
826 l1 = l >> 32;
827 l2 = l;
828 } else if ((a2 & 7) == 0 && a1 == a2 + 4) {
829 c = deposit64(c1, 32, 32, c2);
830 u = deposit64(u1, 32, 32, u2);
831 l = cpu_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
832 l2 = l >> 32;
833 l1 = l;
834 } else
835 #endif
836 {
837 /* Tell the main loop we need to serialize this insn. */
838 cpu_loop_exit_atomic(env_cpu(env), ra);
839 }
840 } else {
841 /* We're executing in a serial context -- no need to be atomic. */
842 l1 = cpu_ldl_data_ra(env, a1, ra);
843 l2 = cpu_ldl_data_ra(env, a2, ra);
844 if (l1 == c1 && l2 == c2) {
845 cpu_stl_data_ra(env, a1, u1, ra);
846 cpu_stl_data_ra(env, a2, u2, ra);
847 }
848 }
849
850 if (c1 != l1) {
851 env->cc_n = l1;
852 env->cc_v = c1;
853 } else {
854 env->cc_n = l2;
855 env->cc_v = c2;
856 }
857 env->cc_op = CC_OP_CMPL;
858 env->dregs[Dc1] = l1;
859 env->dregs[Dc2] = l2;
860 }
861
862 void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
863 {
864 do_cas2l(env, regs, a1, a2, false);
865 }
866
867 void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1,
868 uint32_t a2)
869 {
870 do_cas2l(env, regs, a1, a2, true);
871 }
872
873 struct bf_data {
874 uint32_t addr;
875 uint32_t bofs;
876 uint32_t blen;
877 uint32_t len;
878 };
879
880 static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
881 {
882 int bofs, blen;
883
884 /* Bound length; map 0 to 32. */
885 len = ((len - 1) & 31) + 1;
886
887 /* Note that ofs is signed. */
888 addr += ofs / 8;
889 bofs = ofs % 8;
890 if (bofs < 0) {
891 bofs += 8;
892 addr -= 1;
893 }
894
895 /*
896 * Compute the number of bytes required (minus one) to
897 * satisfy the bitfield.
898 */
899 blen = (bofs + len - 1) / 8;
900
901 /*
902 * Canonicalize the bit offset for data loaded into a 64-bit big-endian
903 * word. For the cases where BLEN is not a power of 2, adjust ADDR so
904 * that we can use the next power of two sized load without crossing a
905 * page boundary, unless the field itself crosses the boundary.
906 */
907 switch (blen) {
908 case 0:
909 bofs += 56;
910 break;
911 case 1:
912 bofs += 48;
913 break;
914 case 2:
915 if (addr & 1) {
916 bofs += 8;
917 addr -= 1;
918 }
919 /* fallthru */
920 case 3:
921 bofs += 32;
922 break;
923 case 4:
924 if (addr & 3) {
925 bofs += 8 * (addr & 3);
926 addr &= -4;
927 }
928 break;
929 default:
930 g_assert_not_reached();
931 }
932
933 return (struct bf_data){
934 .addr = addr,
935 .bofs = bofs,
936 .blen = blen,
937 .len = len,
938 };
939 }
940
941 static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
942 uintptr_t ra)
943 {
944 switch (blen) {
945 case 0:
946 return cpu_ldub_data_ra(env, addr, ra);
947 case 1:
948 return cpu_lduw_data_ra(env, addr, ra);
949 case 2:
950 case 3:
951 return cpu_ldl_data_ra(env, addr, ra);
952 case 4:
953 return cpu_ldq_data_ra(env, addr, ra);
954 default:
955 g_assert_not_reached();
956 }
957 }
958
959 static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
960 uint64_t data, uintptr_t ra)
961 {
962 switch (blen) {
963 case 0:
964 cpu_stb_data_ra(env, addr, data, ra);
965 break;
966 case 1:
967 cpu_stw_data_ra(env, addr, data, ra);
968 break;
969 case 2:
970 case 3:
971 cpu_stl_data_ra(env, addr, data, ra);
972 break;
973 case 4:
974 cpu_stq_data_ra(env, addr, data, ra);
975 break;
976 default:
977 g_assert_not_reached();
978 }
979 }
980
981 uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
982 int32_t ofs, uint32_t len)
983 {
984 uintptr_t ra = GETPC();
985 struct bf_data d = bf_prep(addr, ofs, len);
986 uint64_t data = bf_load(env, d.addr, d.blen, ra);
987
988 return (int64_t)(data << d.bofs) >> (64 - d.len);
989 }
990
991 uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
992 int32_t ofs, uint32_t len)
993 {
994 uintptr_t ra = GETPC();
995 struct bf_data d = bf_prep(addr, ofs, len);
996 uint64_t data = bf_load(env, d.addr, d.blen, ra);
997
998 /*
999 * Put CC_N at the top of the high word; put the zero-extended value
1000 * at the bottom of the low word.
1001 */
1002 data <<= d.bofs;
1003 data >>= 64 - d.len;
1004 data |= data << (64 - d.len);
1005
1006 return data;
1007 }
1008
1009 uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
1010 int32_t ofs, uint32_t len)
1011 {
1012 uintptr_t ra = GETPC();
1013 struct bf_data d = bf_prep(addr, ofs, len);
1014 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1015 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1016
1017 data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);
1018
1019 bf_store(env, d.addr, d.blen, data, ra);
1020
1021 /* The field at the top of the word is also CC_N for CC_OP_LOGIC. */
1022 return val << (32 - d.len);
1023 }
1024
1025 uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
1026 int32_t ofs, uint32_t len)
1027 {
1028 uintptr_t ra = GETPC();
1029 struct bf_data d = bf_prep(addr, ofs, len);
1030 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1031 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1032
1033 bf_store(env, d.addr, d.blen, data ^ mask, ra);
1034
1035 return ((data & mask) << d.bofs) >> 32;
1036 }
1037
1038 uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
1039 int32_t ofs, uint32_t len)
1040 {
1041 uintptr_t ra = GETPC();
1042 struct bf_data d = bf_prep(addr, ofs, len);
1043 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1044 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1045
1046 bf_store(env, d.addr, d.blen, data & ~mask, ra);
1047
1048 return ((data & mask) << d.bofs) >> 32;
1049 }
1050
1051 uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
1052 int32_t ofs, uint32_t len)
1053 {
1054 uintptr_t ra = GETPC();
1055 struct bf_data d = bf_prep(addr, ofs, len);
1056 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1057 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1058
1059 bf_store(env, d.addr, d.blen, data | mask, ra);
1060
1061 return ((data & mask) << d.bofs) >> 32;
1062 }
1063
1064 uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
1065 {
1066 return (n ? clz32(n) : len) + ofs;
1067 }
1068
1069 uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
1070 int32_t ofs, uint32_t len)
1071 {
1072 uintptr_t ra = GETPC();
1073 struct bf_data d = bf_prep(addr, ofs, len);
1074 uint64_t data = bf_load(env, d.addr, d.blen, ra);
1075 uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1076 uint64_t n = (data & mask) << d.bofs;
1077 uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
1078
1079 /*
1080 * Return FFO in the low word and N in the high word.
1081 * Note that because of MASK and the shift, the low word
1082 * is already zero.
1083 */
1084 return n | ffo;
1085 }
1086
1087 void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub)
1088 {
1089 /*
1090 * From the specs:
1091 * X: Not affected, C,V,Z: Undefined,
1092 * N: Set if val < 0; cleared if val > ub, undefined otherwise
1093 * We implement here values found from a real MC68040:
1094 * X,V,Z: Not affected
1095 * N: Set if val < 0; cleared if val >= 0
1096 * C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise
1097 * if 0 > ub: set if val > ub and val < 0, cleared otherwise
1098 */
1099 env->cc_n = val;
1100 env->cc_c = 0 <= ub ? val < 0 || val > ub : val > ub && val < 0;
1101
1102 if (val < 0 || val > ub) {
1103 raise_exception_format2(env, EXCP_CHK, 2, GETPC());
1104 }
1105 }
1106
1107 void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub)
1108 {
1109 /*
1110 * From the specs:
1111 * X: Not affected, N,V: Undefined,
1112 * Z: Set if val is equal to lb or ub
1113 * C: Set if val < lb or val > ub, cleared otherwise
1114 * We implement here values found from a real MC68040:
1115 * X,N,V: Not affected
1116 * Z: Set if val is equal to lb or ub
1117 * C: if lb <= ub: set if val < lb or val > ub, cleared otherwise
1118 * if lb > ub: set if val > ub and val < lb, cleared otherwise
1119 */
1120 env->cc_z = val != lb && val != ub;
1121 env->cc_c = lb <= ub ? val < lb || val > ub : val > ub && val < lb;
1122
1123 if (env->cc_c) {
1124 raise_exception_format2(env, EXCP_CHK, 4, GETPC());
1125 }
1126 }