]> git.proxmox.com Git - mirror_qemu.git/blob - target/microblaze/op_helper.c
Merge remote-tracking branch 'remotes/rth/tags/pull-tcg-20170110' into staging
[mirror_qemu.git] / target / microblaze / op_helper.c
1 /*
2 * Microblaze helper routines.
3 *
4 * Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
5 * Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd.
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/host-utils.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27
28 #define D(x)
29
30 #if !defined(CONFIG_USER_ONLY)
31
32 /* Try to fill the TLB and return an exception if error. If retaddr is
33 * NULL, it means that the function was called in C code (i.e. not
34 * from generated code or from helper.c)
35 */
36 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
37 int mmu_idx, uintptr_t retaddr)
38 {
39 int ret;
40
41 ret = mb_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
42 if (unlikely(ret)) {
43 if (retaddr) {
44 /* now we have a real cpu fault */
45 cpu_restore_state(cs, retaddr);
46 }
47 cpu_loop_exit(cs);
48 }
49 }
50 #endif
51
52 void helper_put(uint32_t id, uint32_t ctrl, uint32_t data)
53 {
54 int test = ctrl & STREAM_TEST;
55 int atomic = ctrl & STREAM_ATOMIC;
56 int control = ctrl & STREAM_CONTROL;
57 int nonblock = ctrl & STREAM_NONBLOCK;
58 int exception = ctrl & STREAM_EXCEPTION;
59
60 qemu_log_mask(LOG_UNIMP, "Unhandled stream put to stream-id=%d data=%x %s%s%s%s%s\n",
61 id, data,
62 test ? "t" : "",
63 nonblock ? "n" : "",
64 exception ? "e" : "",
65 control ? "c" : "",
66 atomic ? "a" : "");
67 }
68
69 uint32_t helper_get(uint32_t id, uint32_t ctrl)
70 {
71 int test = ctrl & STREAM_TEST;
72 int atomic = ctrl & STREAM_ATOMIC;
73 int control = ctrl & STREAM_CONTROL;
74 int nonblock = ctrl & STREAM_NONBLOCK;
75 int exception = ctrl & STREAM_EXCEPTION;
76
77 qemu_log_mask(LOG_UNIMP, "Unhandled stream get from stream-id=%d %s%s%s%s%s\n",
78 id,
79 test ? "t" : "",
80 nonblock ? "n" : "",
81 exception ? "e" : "",
82 control ? "c" : "",
83 atomic ? "a" : "");
84 return 0xdead0000 | id;
85 }
86
87 void helper_raise_exception(CPUMBState *env, uint32_t index)
88 {
89 CPUState *cs = CPU(mb_env_get_cpu(env));
90
91 cs->exception_index = index;
92 cpu_loop_exit(cs);
93 }
94
95 void helper_debug(CPUMBState *env)
96 {
97 int i;
98
99 qemu_log("PC=%8.8x\n", env->sregs[SR_PC]);
100 qemu_log("rmsr=%x resr=%x rear=%x debug[%x] imm=%x iflags=%x\n",
101 env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR],
102 env->debug, env->imm, env->iflags);
103 qemu_log("btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n",
104 env->btaken, env->btarget,
105 (env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel",
106 (env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel",
107 (env->sregs[SR_MSR] & MSR_EIP),
108 (env->sregs[SR_MSR] & MSR_IE));
109 for (i = 0; i < 32; i++) {
110 qemu_log("r%2.2d=%8.8x ", i, env->regs[i]);
111 if ((i + 1) % 4 == 0)
112 qemu_log("\n");
113 }
114 qemu_log("\n\n");
115 }
116
117 static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin)
118 {
119 uint32_t cout = 0;
120
121 if ((b == ~0) && cin)
122 cout = 1;
123 else if ((~0 - a) < (b + cin))
124 cout = 1;
125 return cout;
126 }
127
128 uint32_t helper_cmp(uint32_t a, uint32_t b)
129 {
130 uint32_t t;
131
132 t = b + ~a + 1;
133 if ((b & 0x80000000) ^ (a & 0x80000000))
134 t = (t & 0x7fffffff) | (b & 0x80000000);
135 return t;
136 }
137
138 uint32_t helper_cmpu(uint32_t a, uint32_t b)
139 {
140 uint32_t t;
141
142 t = b + ~a + 1;
143 if ((b & 0x80000000) ^ (a & 0x80000000))
144 t = (t & 0x7fffffff) | (a & 0x80000000);
145 return t;
146 }
147
148 uint32_t helper_carry(uint32_t a, uint32_t b, uint32_t cf)
149 {
150 return compute_carry(a, b, cf);
151 }
152
153 static inline int div_prepare(CPUMBState *env, uint32_t a, uint32_t b)
154 {
155 if (b == 0) {
156 env->sregs[SR_MSR] |= MSR_DZ;
157
158 if ((env->sregs[SR_MSR] & MSR_EE)
159 && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) {
160 env->sregs[SR_ESR] = ESR_EC_DIVZERO;
161 helper_raise_exception(env, EXCP_HW_EXCP);
162 }
163 return 0;
164 }
165 env->sregs[SR_MSR] &= ~MSR_DZ;
166 return 1;
167 }
168
169 uint32_t helper_divs(CPUMBState *env, uint32_t a, uint32_t b)
170 {
171 if (!div_prepare(env, a, b)) {
172 return 0;
173 }
174 return (int32_t)a / (int32_t)b;
175 }
176
177 uint32_t helper_divu(CPUMBState *env, uint32_t a, uint32_t b)
178 {
179 if (!div_prepare(env, a, b)) {
180 return 0;
181 }
182 return a / b;
183 }
184
185 /* raise FPU exception. */
186 static void raise_fpu_exception(CPUMBState *env)
187 {
188 env->sregs[SR_ESR] = ESR_EC_FPU;
189 helper_raise_exception(env, EXCP_HW_EXCP);
190 }
191
192 static void update_fpu_flags(CPUMBState *env, int flags)
193 {
194 int raise = 0;
195
196 if (flags & float_flag_invalid) {
197 env->sregs[SR_FSR] |= FSR_IO;
198 raise = 1;
199 }
200 if (flags & float_flag_divbyzero) {
201 env->sregs[SR_FSR] |= FSR_DZ;
202 raise = 1;
203 }
204 if (flags & float_flag_overflow) {
205 env->sregs[SR_FSR] |= FSR_OF;
206 raise = 1;
207 }
208 if (flags & float_flag_underflow) {
209 env->sregs[SR_FSR] |= FSR_UF;
210 raise = 1;
211 }
212 if (raise
213 && (env->pvr.regs[2] & PVR2_FPU_EXC_MASK)
214 && (env->sregs[SR_MSR] & MSR_EE)) {
215 raise_fpu_exception(env);
216 }
217 }
218
219 uint32_t helper_fadd(CPUMBState *env, uint32_t a, uint32_t b)
220 {
221 CPU_FloatU fd, fa, fb;
222 int flags;
223
224 set_float_exception_flags(0, &env->fp_status);
225 fa.l = a;
226 fb.l = b;
227 fd.f = float32_add(fa.f, fb.f, &env->fp_status);
228
229 flags = get_float_exception_flags(&env->fp_status);
230 update_fpu_flags(env, flags);
231 return fd.l;
232 }
233
234 uint32_t helper_frsub(CPUMBState *env, uint32_t a, uint32_t b)
235 {
236 CPU_FloatU fd, fa, fb;
237 int flags;
238
239 set_float_exception_flags(0, &env->fp_status);
240 fa.l = a;
241 fb.l = b;
242 fd.f = float32_sub(fb.f, fa.f, &env->fp_status);
243 flags = get_float_exception_flags(&env->fp_status);
244 update_fpu_flags(env, flags);
245 return fd.l;
246 }
247
248 uint32_t helper_fmul(CPUMBState *env, uint32_t a, uint32_t b)
249 {
250 CPU_FloatU fd, fa, fb;
251 int flags;
252
253 set_float_exception_flags(0, &env->fp_status);
254 fa.l = a;
255 fb.l = b;
256 fd.f = float32_mul(fa.f, fb.f, &env->fp_status);
257 flags = get_float_exception_flags(&env->fp_status);
258 update_fpu_flags(env, flags);
259
260 return fd.l;
261 }
262
263 uint32_t helper_fdiv(CPUMBState *env, uint32_t a, uint32_t b)
264 {
265 CPU_FloatU fd, fa, fb;
266 int flags;
267
268 set_float_exception_flags(0, &env->fp_status);
269 fa.l = a;
270 fb.l = b;
271 fd.f = float32_div(fb.f, fa.f, &env->fp_status);
272 flags = get_float_exception_flags(&env->fp_status);
273 update_fpu_flags(env, flags);
274
275 return fd.l;
276 }
277
278 uint32_t helper_fcmp_un(CPUMBState *env, uint32_t a, uint32_t b)
279 {
280 CPU_FloatU fa, fb;
281 uint32_t r = 0;
282
283 fa.l = a;
284 fb.l = b;
285
286 if (float32_is_signaling_nan(fa.f, &env->fp_status) ||
287 float32_is_signaling_nan(fb.f, &env->fp_status)) {
288 update_fpu_flags(env, float_flag_invalid);
289 r = 1;
290 }
291
292 if (float32_is_quiet_nan(fa.f, &env->fp_status) ||
293 float32_is_quiet_nan(fb.f, &env->fp_status)) {
294 r = 1;
295 }
296
297 return r;
298 }
299
300 uint32_t helper_fcmp_lt(CPUMBState *env, uint32_t a, uint32_t b)
301 {
302 CPU_FloatU fa, fb;
303 int r;
304 int flags;
305
306 set_float_exception_flags(0, &env->fp_status);
307 fa.l = a;
308 fb.l = b;
309 r = float32_lt(fb.f, fa.f, &env->fp_status);
310 flags = get_float_exception_flags(&env->fp_status);
311 update_fpu_flags(env, flags & float_flag_invalid);
312
313 return r;
314 }
315
316 uint32_t helper_fcmp_eq(CPUMBState *env, uint32_t a, uint32_t b)
317 {
318 CPU_FloatU fa, fb;
319 int flags;
320 int r;
321
322 set_float_exception_flags(0, &env->fp_status);
323 fa.l = a;
324 fb.l = b;
325 r = float32_eq_quiet(fa.f, fb.f, &env->fp_status);
326 flags = get_float_exception_flags(&env->fp_status);
327 update_fpu_flags(env, flags & float_flag_invalid);
328
329 return r;
330 }
331
332 uint32_t helper_fcmp_le(CPUMBState *env, uint32_t a, uint32_t b)
333 {
334 CPU_FloatU fa, fb;
335 int flags;
336 int r;
337
338 fa.l = a;
339 fb.l = b;
340 set_float_exception_flags(0, &env->fp_status);
341 r = float32_le(fa.f, fb.f, &env->fp_status);
342 flags = get_float_exception_flags(&env->fp_status);
343 update_fpu_flags(env, flags & float_flag_invalid);
344
345
346 return r;
347 }
348
349 uint32_t helper_fcmp_gt(CPUMBState *env, uint32_t a, uint32_t b)
350 {
351 CPU_FloatU fa, fb;
352 int flags, r;
353
354 fa.l = a;
355 fb.l = b;
356 set_float_exception_flags(0, &env->fp_status);
357 r = float32_lt(fa.f, fb.f, &env->fp_status);
358 flags = get_float_exception_flags(&env->fp_status);
359 update_fpu_flags(env, flags & float_flag_invalid);
360 return r;
361 }
362
363 uint32_t helper_fcmp_ne(CPUMBState *env, uint32_t a, uint32_t b)
364 {
365 CPU_FloatU fa, fb;
366 int flags, r;
367
368 fa.l = a;
369 fb.l = b;
370 set_float_exception_flags(0, &env->fp_status);
371 r = !float32_eq_quiet(fa.f, fb.f, &env->fp_status);
372 flags = get_float_exception_flags(&env->fp_status);
373 update_fpu_flags(env, flags & float_flag_invalid);
374
375 return r;
376 }
377
378 uint32_t helper_fcmp_ge(CPUMBState *env, uint32_t a, uint32_t b)
379 {
380 CPU_FloatU fa, fb;
381 int flags, r;
382
383 fa.l = a;
384 fb.l = b;
385 set_float_exception_flags(0, &env->fp_status);
386 r = !float32_lt(fa.f, fb.f, &env->fp_status);
387 flags = get_float_exception_flags(&env->fp_status);
388 update_fpu_flags(env, flags & float_flag_invalid);
389
390 return r;
391 }
392
393 uint32_t helper_flt(CPUMBState *env, uint32_t a)
394 {
395 CPU_FloatU fd, fa;
396
397 fa.l = a;
398 fd.f = int32_to_float32(fa.l, &env->fp_status);
399 return fd.l;
400 }
401
402 uint32_t helper_fint(CPUMBState *env, uint32_t a)
403 {
404 CPU_FloatU fa;
405 uint32_t r;
406 int flags;
407
408 set_float_exception_flags(0, &env->fp_status);
409 fa.l = a;
410 r = float32_to_int32(fa.f, &env->fp_status);
411 flags = get_float_exception_flags(&env->fp_status);
412 update_fpu_flags(env, flags);
413
414 return r;
415 }
416
417 uint32_t helper_fsqrt(CPUMBState *env, uint32_t a)
418 {
419 CPU_FloatU fd, fa;
420 int flags;
421
422 set_float_exception_flags(0, &env->fp_status);
423 fa.l = a;
424 fd.l = float32_sqrt(fa.f, &env->fp_status);
425 flags = get_float_exception_flags(&env->fp_status);
426 update_fpu_flags(env, flags);
427
428 return fd.l;
429 }
430
431 uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
432 {
433 unsigned int i;
434 uint32_t mask = 0xff000000;
435
436 for (i = 0; i < 4; i++) {
437 if ((a & mask) == (b & mask))
438 return i + 1;
439 mask >>= 8;
440 }
441 return 0;
442 }
443
444 void helper_memalign(CPUMBState *env, uint32_t addr, uint32_t dr, uint32_t wr,
445 uint32_t mask)
446 {
447 if (addr & mask) {
448 qemu_log_mask(CPU_LOG_INT,
449 "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
450 addr, mask, wr, dr);
451 env->sregs[SR_EAR] = addr;
452 env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \
453 | (dr & 31) << 5;
454 if (mask == 3) {
455 env->sregs[SR_ESR] |= 1 << 11;
456 }
457 if (!(env->sregs[SR_MSR] & MSR_EE)) {
458 return;
459 }
460 helper_raise_exception(env, EXCP_HW_EXCP);
461 }
462 }
463
464 void helper_stackprot(CPUMBState *env, uint32_t addr)
465 {
466 if (addr < env->slr || addr > env->shr) {
467 qemu_log_mask(CPU_LOG_INT, "Stack protector violation at %x %x %x\n",
468 addr, env->slr, env->shr);
469 env->sregs[SR_EAR] = addr;
470 env->sregs[SR_ESR] = ESR_EC_STACKPROT;
471 helper_raise_exception(env, EXCP_HW_EXCP);
472 }
473 }
474
475 #if !defined(CONFIG_USER_ONLY)
476 /* Writes/reads to the MMU's special regs end up here. */
477 uint32_t helper_mmu_read(CPUMBState *env, uint32_t rn)
478 {
479 return mmu_read(env, rn);
480 }
481
482 void helper_mmu_write(CPUMBState *env, uint32_t rn, uint32_t v)
483 {
484 mmu_write(env, rn, v);
485 }
486
487 void mb_cpu_unassigned_access(CPUState *cs, hwaddr addr,
488 bool is_write, bool is_exec, int is_asi,
489 unsigned size)
490 {
491 MicroBlazeCPU *cpu;
492 CPUMBState *env;
493
494 qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
495 addr, is_write ? 1 : 0, is_exec ? 1 : 0);
496 if (cs == NULL) {
497 return;
498 }
499 cpu = MICROBLAZE_CPU(cs);
500 env = &cpu->env;
501 if (!(env->sregs[SR_MSR] & MSR_EE)) {
502 return;
503 }
504
505 env->sregs[SR_EAR] = addr;
506 if (is_exec) {
507 if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) {
508 env->sregs[SR_ESR] = ESR_EC_INSN_BUS;
509 helper_raise_exception(env, EXCP_HW_EXCP);
510 }
511 } else {
512 if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) {
513 env->sregs[SR_ESR] = ESR_EC_DATA_BUS;
514 helper_raise_exception(env, EXCP_HW_EXCP);
515 }
516 }
517 }
518 #endif