]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/internal.h
Merge tag 'pull-qapi-2023-07-10' of https://repo.or.cz/qemu/armbru into staging
[mirror_qemu.git] / target / mips / internal.h
1 /*
2 * MIPS internal definitions and helpers
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
7
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
10
11 #include "exec/memattrs.h"
12 #ifdef CONFIG_TCG
13 #include "tcg/tcg-internal.h"
14 #endif
15 #include "cpu.h"
16
17 /*
18 * MMU types, the first four entries have the same layout as the
19 * CP0C0_MT field.
20 */
21 enum mips_mmu_types {
22 MMU_TYPE_NONE = 0,
23 MMU_TYPE_R4000 = 1, /* Standard TLB */
24 MMU_TYPE_BAT = 2, /* Block Address Translation */
25 MMU_TYPE_FMT = 3, /* Fixed Mapping */
26 MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */
27 MMU_TYPE_R3000,
28 MMU_TYPE_R6000,
29 MMU_TYPE_R8000
30 };
31
32 struct mips_def_t {
33 const char *name;
34 int32_t CP0_PRid;
35 int32_t CP0_Config0;
36 int32_t CP0_Config1;
37 int32_t CP0_Config2;
38 int32_t CP0_Config3;
39 int32_t CP0_Config4;
40 int32_t CP0_Config4_rw_bitmask;
41 int32_t CP0_Config5;
42 int32_t CP0_Config5_rw_bitmask;
43 int32_t CP0_Config6;
44 int32_t CP0_Config6_rw_bitmask;
45 int32_t CP0_Config7;
46 int32_t CP0_Config7_rw_bitmask;
47 target_ulong CP0_LLAddr_rw_bitmask;
48 int CP0_LLAddr_shift;
49 int32_t SYNCI_Step;
50 /*
51 * @CCRes: rate at which the coprocessor 0 counter increments
52 *
53 * The Count register acts as a timer, incrementing at a constant rate,
54 * whether or not an instruction is executed, retired, or any forward
55 * progress is made through the pipeline. The rate at which the counter
56 * increments is implementation dependent, and is a function of the
57 * pipeline clock of the processor, not the issue width of the processor.
58 */
59 int32_t CCRes;
60 int32_t CP0_Status_rw_bitmask;
61 int32_t CP0_TCStatus_rw_bitmask;
62 int32_t CP0_SRSCtl;
63 int32_t CP1_fcr0;
64 int32_t CP1_fcr31_rw_bitmask;
65 int32_t CP1_fcr31;
66 int32_t MSAIR;
67 int32_t SEGBITS;
68 int32_t PABITS;
69 int32_t CP0_SRSConf0_rw_bitmask;
70 int32_t CP0_SRSConf0;
71 int32_t CP0_SRSConf1_rw_bitmask;
72 int32_t CP0_SRSConf1;
73 int32_t CP0_SRSConf2_rw_bitmask;
74 int32_t CP0_SRSConf2;
75 int32_t CP0_SRSConf3_rw_bitmask;
76 int32_t CP0_SRSConf3;
77 int32_t CP0_SRSConf4_rw_bitmask;
78 int32_t CP0_SRSConf4;
79 int32_t CP0_PageGrain_rw_bitmask;
80 int32_t CP0_PageGrain;
81 target_ulong CP0_EBaseWG_rw_bitmask;
82 uint32_t lcsr_cpucfg1;
83 uint32_t lcsr_cpucfg2;
84 uint64_t insn_flags;
85 enum mips_mmu_types mmu_type;
86 int32_t SAARP;
87 };
88
89 extern const char regnames[32][3];
90 extern const char fregnames[32][4];
91
92 extern const struct mips_def_t mips_defs[];
93 extern const int mips_defs_number;
94
95 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
96 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
97
98 #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL)
99 #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL)
100 #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL)
101 #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL)
102 #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL)
103
104 #if !defined(CONFIG_USER_ONLY)
105
106 enum {
107 TLBRET_XI = -6,
108 TLBRET_RI = -5,
109 TLBRET_DIRTY = -4,
110 TLBRET_INVALID = -3,
111 TLBRET_NOMATCH = -2,
112 TLBRET_BADADDR = -1,
113 TLBRET_MATCH = 0
114 };
115
116 int get_physical_address(CPUMIPSState *env, hwaddr *physical,
117 int *prot, target_ulong real_address,
118 MMUAccessType access_type, int mmu_idx);
119 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
120
121 typedef struct r4k_tlb_t r4k_tlb_t;
122 struct r4k_tlb_t {
123 target_ulong VPN;
124 uint32_t PageMask;
125 uint16_t ASID;
126 uint32_t MMID;
127 unsigned int G:1;
128 unsigned int C0:3;
129 unsigned int C1:3;
130 unsigned int V0:1;
131 unsigned int V1:1;
132 unsigned int D0:1;
133 unsigned int D1:1;
134 unsigned int XI0:1;
135 unsigned int XI1:1;
136 unsigned int RI0:1;
137 unsigned int RI1:1;
138 unsigned int EHINV:1;
139 uint64_t PFN[2];
140 };
141
142 struct CPUMIPSTLBContext {
143 uint32_t nb_tlb;
144 uint32_t tlb_in_use;
145 int (*map_address)(CPUMIPSState *env, hwaddr *physical, int *prot,
146 target_ulong address, MMUAccessType access_type);
147 void (*helper_tlbwi)(CPUMIPSState *env);
148 void (*helper_tlbwr)(CPUMIPSState *env);
149 void (*helper_tlbp)(CPUMIPSState *env);
150 void (*helper_tlbr)(CPUMIPSState *env);
151 void (*helper_tlbinv)(CPUMIPSState *env);
152 void (*helper_tlbinvf)(CPUMIPSState *env);
153 union {
154 struct {
155 r4k_tlb_t tlb[MIPS_TLB_MAX];
156 } r4k;
157 } mmu;
158 };
159
160 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
161 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
162 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
163
164 extern const VMStateDescription vmstate_mips_cpu;
165
166 #endif /* !CONFIG_USER_ONLY */
167
168 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
169 {
170 return (env->CP0_Status & (1 << CP0St_IE)) &&
171 !(env->CP0_Status & (1 << CP0St_EXL)) &&
172 !(env->CP0_Status & (1 << CP0St_ERL)) &&
173 !(env->hflags & MIPS_HFLAG_DM) &&
174 /*
175 * Note that the TCStatus IXMT field is initialized to zero,
176 * and only MT capable cores can set it to one. So we don't
177 * need to check for MT capabilities here.
178 */
179 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
180 }
181
182 /* Check if there is pending and not masked out interrupt */
183 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
184 {
185 int32_t pending;
186 int32_t status;
187 bool r;
188
189 pending = env->CP0_Cause & CP0Ca_IP_mask;
190 status = env->CP0_Status & CP0Ca_IP_mask;
191
192 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
193 /*
194 * A MIPS configured with a vectorizing external interrupt controller
195 * will feed a vector into the Cause pending lines. The core treats
196 * the status lines as a vector level, not as individual masks.
197 */
198 r = pending > status;
199 } else {
200 /*
201 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
202 * treats the pending lines as individual interrupt lines, the status
203 * lines are individual masks.
204 */
205 r = (pending & status) != 0;
206 }
207 return r;
208 }
209
210 void msa_reset(CPUMIPSState *env);
211
212 /* cp0_timer.c */
213 uint32_t cpu_mips_get_count(CPUMIPSState *env);
214 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
215 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
216 void cpu_mips_start_count(CPUMIPSState *env);
217 void cpu_mips_stop_count(CPUMIPSState *env);
218
219 static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
220 {
221 env->active_tc.PC = value & ~(target_ulong)1;
222 if (value & 1) {
223 env->hflags |= MIPS_HFLAG_M16;
224 } else {
225 env->hflags &= ~(MIPS_HFLAG_M16);
226 }
227 }
228
229 static inline void restore_pamask(CPUMIPSState *env)
230 {
231 if (env->hflags & MIPS_HFLAG_ELPA) {
232 env->PAMask = (1ULL << env->PABITS) - 1;
233 } else {
234 env->PAMask = PAMASK_BASE;
235 }
236 }
237
238 static inline int mips_vpe_active(CPUMIPSState *env)
239 {
240 int active = 1;
241
242 /* Check that the VPE is enabled. */
243 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
244 active = 0;
245 }
246 /* Check that the VPE is activated. */
247 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
248 active = 0;
249 }
250
251 /*
252 * Now verify that there are active thread contexts in the VPE.
253 *
254 * This assumes the CPU model will internally reschedule threads
255 * if the active one goes to sleep. If there are no threads available
256 * the active one will be in a sleeping state, and we can turn off
257 * the entire VPE.
258 */
259 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
260 /* TC is not activated. */
261 active = 0;
262 }
263 if (env->active_tc.CP0_TCHalt & 1) {
264 /* TC is in halt state. */
265 active = 0;
266 }
267
268 return active;
269 }
270
271 static inline int mips_vp_active(CPUMIPSState *env)
272 {
273 CPUState *other_cs = first_cpu;
274
275 /* Check if the VP disabled other VPs (which means the VP is enabled) */
276 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
277 return 1;
278 }
279
280 /* Check if the virtual processor is disabled due to a DVP */
281 CPU_FOREACH(other_cs) {
282 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
283 if ((&other_cpu->env != env) &&
284 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
285 return 0;
286 }
287 }
288 return 1;
289 }
290
291 static inline void compute_hflags(CPUMIPSState *env)
292 {
293 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
294 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
295 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
296 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
297 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
298 if (env->CP0_Status & (1 << CP0St_ERL)) {
299 env->hflags |= MIPS_HFLAG_ERL;
300 }
301 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
302 !(env->CP0_Status & (1 << CP0St_ERL)) &&
303 !(env->hflags & MIPS_HFLAG_DM)) {
304 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
305 MIPS_HFLAG_KSU;
306 }
307 #if defined(TARGET_MIPS64)
308 if ((env->insn_flags & ISA_MIPS3) &&
309 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
310 (env->CP0_Status & (1 << CP0St_PX)) ||
311 (env->CP0_Status & (1 << CP0St_UX)))) {
312 env->hflags |= MIPS_HFLAG_64;
313 }
314
315 if (!(env->insn_flags & ISA_MIPS3)) {
316 env->hflags |= MIPS_HFLAG_AWRAP;
317 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
318 !(env->CP0_Status & (1 << CP0St_UX))) {
319 env->hflags |= MIPS_HFLAG_AWRAP;
320 } else if (env->insn_flags & ISA_MIPS_R6) {
321 /* Address wrapping for Supervisor and Kernel is specified in R6 */
322 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
323 !(env->CP0_Status & (1 << CP0St_SX))) ||
324 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
325 !(env->CP0_Status & (1 << CP0St_KX)))) {
326 env->hflags |= MIPS_HFLAG_AWRAP;
327 }
328 }
329 #endif
330 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
331 !(env->insn_flags & ISA_MIPS_R6)) ||
332 !(env->hflags & MIPS_HFLAG_KSU)) {
333 env->hflags |= MIPS_HFLAG_CP0;
334 }
335 if (env->CP0_Status & (1 << CP0St_CU1)) {
336 env->hflags |= MIPS_HFLAG_FPU;
337 }
338 if (env->CP0_Status & (1 << CP0St_FR)) {
339 env->hflags |= MIPS_HFLAG_F64;
340 }
341 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
342 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
343 env->hflags |= MIPS_HFLAG_SBRI;
344 }
345 if (env->insn_flags & ASE_DSP_R3) {
346 /*
347 * Our cpu supports DSP R3 ASE, so enable
348 * access to DSP R3 resources.
349 */
350 if (env->CP0_Status & (1 << CP0St_MX)) {
351 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
352 MIPS_HFLAG_DSP_R3;
353 }
354 } else if (env->insn_flags & ASE_DSP_R2) {
355 /*
356 * Our cpu supports DSP R2 ASE, so enable
357 * access to DSP R2 resources.
358 */
359 if (env->CP0_Status & (1 << CP0St_MX)) {
360 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
361 }
362
363 } else if (env->insn_flags & ASE_DSP) {
364 /*
365 * Our cpu supports DSP ASE, so enable
366 * access to DSP resources.
367 */
368 if (env->CP0_Status & (1 << CP0St_MX)) {
369 env->hflags |= MIPS_HFLAG_DSP;
370 }
371
372 }
373 if (env->insn_flags & ISA_MIPS_R2) {
374 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
375 env->hflags |= MIPS_HFLAG_COP1X;
376 }
377 } else if (env->insn_flags & ISA_MIPS_R1) {
378 if (env->hflags & MIPS_HFLAG_64) {
379 env->hflags |= MIPS_HFLAG_COP1X;
380 }
381 } else if (env->insn_flags & ISA_MIPS4) {
382 /*
383 * All supported MIPS IV CPUs use the XX (CU3) to enable
384 * and disable the MIPS IV extensions to the MIPS III ISA.
385 * Some other MIPS IV CPUs ignore the bit, so the check here
386 * would be too restrictive for them.
387 */
388 if (env->CP0_Status & (1U << CP0St_CU3)) {
389 env->hflags |= MIPS_HFLAG_COP1X;
390 }
391 }
392 if (ase_msa_available(env)) {
393 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
394 env->hflags |= MIPS_HFLAG_MSA;
395 }
396 }
397 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
398 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
399 env->hflags |= MIPS_HFLAG_FRE;
400 }
401 }
402 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
403 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
404 env->hflags |= MIPS_HFLAG_ELPA;
405 }
406 }
407 }
408
409 #endif