]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/internal.h
target: Use forward declared type instead of structure type
[mirror_qemu.git] / target / mips / internal.h
1 /*
2 * MIPS internal definitions and helpers
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
7
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
10
11 #include "exec/memattrs.h"
12 #ifdef CONFIG_TCG
13 #include "tcg/tcg-internal.h"
14 #endif
15 #include "cpu.h"
16
17 /*
18 * MMU types, the first four entries have the same layout as the
19 * CP0C0_MT field.
20 */
21 enum mips_mmu_types {
22 MMU_TYPE_NONE = 0,
23 MMU_TYPE_R4000 = 1, /* Standard TLB */
24 MMU_TYPE_BAT = 2, /* Block Address Translation */
25 MMU_TYPE_FMT = 3, /* Fixed Mapping */
26 MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */
27 MMU_TYPE_R3000,
28 MMU_TYPE_R6000,
29 MMU_TYPE_R8000
30 };
31
32 struct mips_def_t {
33 const char *name;
34 int32_t CP0_PRid;
35 int32_t CP0_Config0;
36 int32_t CP0_Config1;
37 int32_t CP0_Config2;
38 int32_t CP0_Config3;
39 int32_t CP0_Config4;
40 int32_t CP0_Config4_rw_bitmask;
41 int32_t CP0_Config5;
42 int32_t CP0_Config5_rw_bitmask;
43 int32_t CP0_Config6;
44 int32_t CP0_Config6_rw_bitmask;
45 int32_t CP0_Config7;
46 int32_t CP0_Config7_rw_bitmask;
47 target_ulong CP0_LLAddr_rw_bitmask;
48 int CP0_LLAddr_shift;
49 int32_t SYNCI_Step;
50 int32_t CCRes;
51 int32_t CP0_Status_rw_bitmask;
52 int32_t CP0_TCStatus_rw_bitmask;
53 int32_t CP0_SRSCtl;
54 int32_t CP1_fcr0;
55 int32_t CP1_fcr31_rw_bitmask;
56 int32_t CP1_fcr31;
57 int32_t MSAIR;
58 int32_t SEGBITS;
59 int32_t PABITS;
60 int32_t CP0_SRSConf0_rw_bitmask;
61 int32_t CP0_SRSConf0;
62 int32_t CP0_SRSConf1_rw_bitmask;
63 int32_t CP0_SRSConf1;
64 int32_t CP0_SRSConf2_rw_bitmask;
65 int32_t CP0_SRSConf2;
66 int32_t CP0_SRSConf3_rw_bitmask;
67 int32_t CP0_SRSConf3;
68 int32_t CP0_SRSConf4_rw_bitmask;
69 int32_t CP0_SRSConf4;
70 int32_t CP0_PageGrain_rw_bitmask;
71 int32_t CP0_PageGrain;
72 target_ulong CP0_EBaseWG_rw_bitmask;
73 uint64_t insn_flags;
74 enum mips_mmu_types mmu_type;
75 int32_t SAARP;
76 };
77
78 extern const char regnames[32][3];
79 extern const char fregnames[32][4];
80
81 extern const struct mips_def_t mips_defs[];
82 extern const int mips_defs_number;
83
84 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
85 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
86
87 #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL)
88 #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL)
89 #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL)
90 #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL)
91 #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL)
92
93 #define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL)
94 #define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL)
95
96 #if !defined(CONFIG_USER_ONLY)
97
98 enum {
99 TLBRET_XI = -6,
100 TLBRET_RI = -5,
101 TLBRET_DIRTY = -4,
102 TLBRET_INVALID = -3,
103 TLBRET_NOMATCH = -2,
104 TLBRET_BADADDR = -1,
105 TLBRET_MATCH = 0
106 };
107
108 int get_physical_address(CPUMIPSState *env, hwaddr *physical,
109 int *prot, target_ulong real_address,
110 MMUAccessType access_type, int mmu_idx);
111 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
112
113 typedef struct r4k_tlb_t r4k_tlb_t;
114 struct r4k_tlb_t {
115 target_ulong VPN;
116 uint32_t PageMask;
117 uint16_t ASID;
118 uint32_t MMID;
119 unsigned int G:1;
120 unsigned int C0:3;
121 unsigned int C1:3;
122 unsigned int V0:1;
123 unsigned int V1:1;
124 unsigned int D0:1;
125 unsigned int D1:1;
126 unsigned int XI0:1;
127 unsigned int XI1:1;
128 unsigned int RI0:1;
129 unsigned int RI1:1;
130 unsigned int EHINV:1;
131 uint64_t PFN[2];
132 };
133
134 struct CPUMIPSTLBContext {
135 uint32_t nb_tlb;
136 uint32_t tlb_in_use;
137 int (*map_address)(CPUMIPSState *env, hwaddr *physical, int *prot,
138 target_ulong address, MMUAccessType access_type);
139 void (*helper_tlbwi)(CPUMIPSState *env);
140 void (*helper_tlbwr)(CPUMIPSState *env);
141 void (*helper_tlbp)(CPUMIPSState *env);
142 void (*helper_tlbr)(CPUMIPSState *env);
143 void (*helper_tlbinv)(CPUMIPSState *env);
144 void (*helper_tlbinvf)(CPUMIPSState *env);
145 union {
146 struct {
147 r4k_tlb_t tlb[MIPS_TLB_MAX];
148 } r4k;
149 } mmu;
150 };
151
152 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
153 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
154 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
155
156 extern const VMStateDescription vmstate_mips_cpu;
157
158 #endif /* !CONFIG_USER_ONLY */
159
160 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
161 {
162 return (env->CP0_Status & (1 << CP0St_IE)) &&
163 !(env->CP0_Status & (1 << CP0St_EXL)) &&
164 !(env->CP0_Status & (1 << CP0St_ERL)) &&
165 !(env->hflags & MIPS_HFLAG_DM) &&
166 /*
167 * Note that the TCStatus IXMT field is initialized to zero,
168 * and only MT capable cores can set it to one. So we don't
169 * need to check for MT capabilities here.
170 */
171 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
172 }
173
174 /* Check if there is pending and not masked out interrupt */
175 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
176 {
177 int32_t pending;
178 int32_t status;
179 bool r;
180
181 pending = env->CP0_Cause & CP0Ca_IP_mask;
182 status = env->CP0_Status & CP0Ca_IP_mask;
183
184 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
185 /*
186 * A MIPS configured with a vectorizing external interrupt controller
187 * will feed a vector into the Cause pending lines. The core treats
188 * the status lines as a vector level, not as individual masks.
189 */
190 r = pending > status;
191 } else {
192 /*
193 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
194 * treats the pending lines as individual interrupt lines, the status
195 * lines are individual masks.
196 */
197 r = (pending & status) != 0;
198 }
199 return r;
200 }
201
202 void msa_reset(CPUMIPSState *env);
203
204 /* cp0_timer.c */
205 uint32_t cpu_mips_get_count(CPUMIPSState *env);
206 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
207 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
208 void cpu_mips_start_count(CPUMIPSState *env);
209 void cpu_mips_stop_count(CPUMIPSState *env);
210
211 static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
212 {
213 env->active_tc.PC = value & ~(target_ulong)1;
214 if (value & 1) {
215 env->hflags |= MIPS_HFLAG_M16;
216 } else {
217 env->hflags &= ~(MIPS_HFLAG_M16);
218 }
219 }
220
221 static inline void restore_pamask(CPUMIPSState *env)
222 {
223 if (env->hflags & MIPS_HFLAG_ELPA) {
224 env->PAMask = (1ULL << env->PABITS) - 1;
225 } else {
226 env->PAMask = PAMASK_BASE;
227 }
228 }
229
230 static inline int mips_vpe_active(CPUMIPSState *env)
231 {
232 int active = 1;
233
234 /* Check that the VPE is enabled. */
235 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
236 active = 0;
237 }
238 /* Check that the VPE is activated. */
239 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
240 active = 0;
241 }
242
243 /*
244 * Now verify that there are active thread contexts in the VPE.
245 *
246 * This assumes the CPU model will internally reschedule threads
247 * if the active one goes to sleep. If there are no threads available
248 * the active one will be in a sleeping state, and we can turn off
249 * the entire VPE.
250 */
251 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
252 /* TC is not activated. */
253 active = 0;
254 }
255 if (env->active_tc.CP0_TCHalt & 1) {
256 /* TC is in halt state. */
257 active = 0;
258 }
259
260 return active;
261 }
262
263 static inline int mips_vp_active(CPUMIPSState *env)
264 {
265 CPUState *other_cs = first_cpu;
266
267 /* Check if the VP disabled other VPs (which means the VP is enabled) */
268 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
269 return 1;
270 }
271
272 /* Check if the virtual processor is disabled due to a DVP */
273 CPU_FOREACH(other_cs) {
274 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
275 if ((&other_cpu->env != env) &&
276 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
277 return 0;
278 }
279 }
280 return 1;
281 }
282
283 static inline void compute_hflags(CPUMIPSState *env)
284 {
285 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
286 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
287 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
288 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
289 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
290 if (env->CP0_Status & (1 << CP0St_ERL)) {
291 env->hflags |= MIPS_HFLAG_ERL;
292 }
293 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
294 !(env->CP0_Status & (1 << CP0St_ERL)) &&
295 !(env->hflags & MIPS_HFLAG_DM)) {
296 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
297 MIPS_HFLAG_KSU;
298 }
299 #if defined(TARGET_MIPS64)
300 if ((env->insn_flags & ISA_MIPS3) &&
301 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
302 (env->CP0_Status & (1 << CP0St_PX)) ||
303 (env->CP0_Status & (1 << CP0St_UX)))) {
304 env->hflags |= MIPS_HFLAG_64;
305 }
306
307 if (!(env->insn_flags & ISA_MIPS3)) {
308 env->hflags |= MIPS_HFLAG_AWRAP;
309 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
310 !(env->CP0_Status & (1 << CP0St_UX))) {
311 env->hflags |= MIPS_HFLAG_AWRAP;
312 } else if (env->insn_flags & ISA_MIPS_R6) {
313 /* Address wrapping for Supervisor and Kernel is specified in R6 */
314 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
315 !(env->CP0_Status & (1 << CP0St_SX))) ||
316 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
317 !(env->CP0_Status & (1 << CP0St_KX)))) {
318 env->hflags |= MIPS_HFLAG_AWRAP;
319 }
320 }
321 #endif
322 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
323 !(env->insn_flags & ISA_MIPS_R6)) ||
324 !(env->hflags & MIPS_HFLAG_KSU)) {
325 env->hflags |= MIPS_HFLAG_CP0;
326 }
327 if (env->CP0_Status & (1 << CP0St_CU1)) {
328 env->hflags |= MIPS_HFLAG_FPU;
329 }
330 if (env->CP0_Status & (1 << CP0St_FR)) {
331 env->hflags |= MIPS_HFLAG_F64;
332 }
333 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
334 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
335 env->hflags |= MIPS_HFLAG_SBRI;
336 }
337 if (env->insn_flags & ASE_DSP_R3) {
338 /*
339 * Our cpu supports DSP R3 ASE, so enable
340 * access to DSP R3 resources.
341 */
342 if (env->CP0_Status & (1 << CP0St_MX)) {
343 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
344 MIPS_HFLAG_DSP_R3;
345 }
346 } else if (env->insn_flags & ASE_DSP_R2) {
347 /*
348 * Our cpu supports DSP R2 ASE, so enable
349 * access to DSP R2 resources.
350 */
351 if (env->CP0_Status & (1 << CP0St_MX)) {
352 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
353 }
354
355 } else if (env->insn_flags & ASE_DSP) {
356 /*
357 * Our cpu supports DSP ASE, so enable
358 * access to DSP resources.
359 */
360 if (env->CP0_Status & (1 << CP0St_MX)) {
361 env->hflags |= MIPS_HFLAG_DSP;
362 }
363
364 }
365 if (env->insn_flags & ISA_MIPS_R2) {
366 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
367 env->hflags |= MIPS_HFLAG_COP1X;
368 }
369 } else if (env->insn_flags & ISA_MIPS_R1) {
370 if (env->hflags & MIPS_HFLAG_64) {
371 env->hflags |= MIPS_HFLAG_COP1X;
372 }
373 } else if (env->insn_flags & ISA_MIPS4) {
374 /*
375 * All supported MIPS IV CPUs use the XX (CU3) to enable
376 * and disable the MIPS IV extensions to the MIPS III ISA.
377 * Some other MIPS IV CPUs ignore the bit, so the check here
378 * would be too restrictive for them.
379 */
380 if (env->CP0_Status & (1U << CP0St_CU3)) {
381 env->hflags |= MIPS_HFLAG_COP1X;
382 }
383 }
384 if (ase_msa_available(env)) {
385 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
386 env->hflags |= MIPS_HFLAG_MSA;
387 }
388 }
389 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
390 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
391 env->hflags |= MIPS_HFLAG_FRE;
392 }
393 }
394 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
395 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
396 env->hflags |= MIPS_HFLAG_ELPA;
397 }
398 }
399 }
400
401 #endif