]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/internal.h
target/mips: Restrict mips_cpu_dump_state() to cpu.c
[mirror_qemu.git] / target / mips / internal.h
1 /*
2 * MIPS internal definitions and helpers
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
7
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
10
11 #include "exec/memattrs.h"
12
13 /*
14 * MMU types, the first four entries have the same layout as the
15 * CP0C0_MT field.
16 */
17 enum mips_mmu_types {
18 MMU_TYPE_NONE = 0,
19 MMU_TYPE_R4000 = 1, /* Standard TLB */
20 MMU_TYPE_BAT = 2, /* Block Address Translation */
21 MMU_TYPE_FMT = 3, /* Fixed Mapping */
22 MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */
23 MMU_TYPE_R3000,
24 MMU_TYPE_R6000,
25 MMU_TYPE_R8000
26 };
27
28 struct mips_def_t {
29 const char *name;
30 int32_t CP0_PRid;
31 int32_t CP0_Config0;
32 int32_t CP0_Config1;
33 int32_t CP0_Config2;
34 int32_t CP0_Config3;
35 int32_t CP0_Config4;
36 int32_t CP0_Config4_rw_bitmask;
37 int32_t CP0_Config5;
38 int32_t CP0_Config5_rw_bitmask;
39 int32_t CP0_Config6;
40 int32_t CP0_Config6_rw_bitmask;
41 int32_t CP0_Config7;
42 int32_t CP0_Config7_rw_bitmask;
43 target_ulong CP0_LLAddr_rw_bitmask;
44 int CP0_LLAddr_shift;
45 int32_t SYNCI_Step;
46 int32_t CCRes;
47 int32_t CP0_Status_rw_bitmask;
48 int32_t CP0_TCStatus_rw_bitmask;
49 int32_t CP0_SRSCtl;
50 int32_t CP1_fcr0;
51 int32_t CP1_fcr31_rw_bitmask;
52 int32_t CP1_fcr31;
53 int32_t MSAIR;
54 int32_t SEGBITS;
55 int32_t PABITS;
56 int32_t CP0_SRSConf0_rw_bitmask;
57 int32_t CP0_SRSConf0;
58 int32_t CP0_SRSConf1_rw_bitmask;
59 int32_t CP0_SRSConf1;
60 int32_t CP0_SRSConf2_rw_bitmask;
61 int32_t CP0_SRSConf2;
62 int32_t CP0_SRSConf3_rw_bitmask;
63 int32_t CP0_SRSConf3;
64 int32_t CP0_SRSConf4_rw_bitmask;
65 int32_t CP0_SRSConf4;
66 int32_t CP0_PageGrain_rw_bitmask;
67 int32_t CP0_PageGrain;
68 target_ulong CP0_EBaseWG_rw_bitmask;
69 uint64_t insn_flags;
70 enum mips_mmu_types mmu_type;
71 int32_t SAARP;
72 };
73
74 extern const char regnames[32][4];
75 extern const char fregnames[32][4];
76
77 extern const struct mips_def_t mips_defs[];
78 extern const int mips_defs_number;
79
80 void mips_cpu_do_interrupt(CPUState *cpu);
81 bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
82 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
83 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
84 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85 void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
86 MMUAccessType access_type,
87 int mmu_idx, uintptr_t retaddr);
88
89 #if !defined(CONFIG_USER_ONLY)
90
91 typedef struct r4k_tlb_t r4k_tlb_t;
92 struct r4k_tlb_t {
93 target_ulong VPN;
94 uint32_t PageMask;
95 uint16_t ASID;
96 uint32_t MMID;
97 unsigned int G:1;
98 unsigned int C0:3;
99 unsigned int C1:3;
100 unsigned int V0:1;
101 unsigned int V1:1;
102 unsigned int D0:1;
103 unsigned int D1:1;
104 unsigned int XI0:1;
105 unsigned int XI1:1;
106 unsigned int RI0:1;
107 unsigned int RI1:1;
108 unsigned int EHINV:1;
109 uint64_t PFN[2];
110 };
111
112 struct CPUMIPSTLBContext {
113 uint32_t nb_tlb;
114 uint32_t tlb_in_use;
115 int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
116 target_ulong address, MMUAccessType access_type);
117 void (*helper_tlbwi)(struct CPUMIPSState *env);
118 void (*helper_tlbwr)(struct CPUMIPSState *env);
119 void (*helper_tlbp)(struct CPUMIPSState *env);
120 void (*helper_tlbr)(struct CPUMIPSState *env);
121 void (*helper_tlbinv)(struct CPUMIPSState *env);
122 void (*helper_tlbinvf)(struct CPUMIPSState *env);
123 union {
124 struct {
125 r4k_tlb_t tlb[MIPS_TLB_MAX];
126 } r4k;
127 } mmu;
128 };
129
130 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
131 target_ulong address, MMUAccessType access_type);
132 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
133 target_ulong address, MMUAccessType access_type);
134 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
135 target_ulong address, MMUAccessType access_type);
136 void r4k_helper_tlbwi(CPUMIPSState *env);
137 void r4k_helper_tlbwr(CPUMIPSState *env);
138 void r4k_helper_tlbp(CPUMIPSState *env);
139 void r4k_helper_tlbr(CPUMIPSState *env);
140 void r4k_helper_tlbinv(CPUMIPSState *env);
141 void r4k_helper_tlbinvf(CPUMIPSState *env);
142 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
143 uint32_t cpu_mips_get_random(CPUMIPSState *env);
144
145 void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
146 vaddr addr, unsigned size,
147 MMUAccessType access_type,
148 int mmu_idx, MemTxAttrs attrs,
149 MemTxResult response, uintptr_t retaddr);
150 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
151 MMUAccessType access_type);
152 #endif
153
154 #define cpu_signal_handler cpu_mips_signal_handler
155
156 #ifndef CONFIG_USER_ONLY
157 extern const VMStateDescription vmstate_mips_cpu;
158 #endif
159
160 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
161 {
162 return (env->CP0_Status & (1 << CP0St_IE)) &&
163 !(env->CP0_Status & (1 << CP0St_EXL)) &&
164 !(env->CP0_Status & (1 << CP0St_ERL)) &&
165 !(env->hflags & MIPS_HFLAG_DM) &&
166 /*
167 * Note that the TCStatus IXMT field is initialized to zero,
168 * and only MT capable cores can set it to one. So we don't
169 * need to check for MT capabilities here.
170 */
171 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
172 }
173
174 /* Check if there is pending and not masked out interrupt */
175 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
176 {
177 int32_t pending;
178 int32_t status;
179 bool r;
180
181 pending = env->CP0_Cause & CP0Ca_IP_mask;
182 status = env->CP0_Status & CP0Ca_IP_mask;
183
184 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
185 /*
186 * A MIPS configured with a vectorizing external interrupt controller
187 * will feed a vector into the Cause pending lines. The core treats
188 * the status lines as a vector level, not as individual masks.
189 */
190 r = pending > status;
191 } else {
192 /*
193 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
194 * treats the pending lines as individual interrupt lines, the status
195 * lines are individual masks.
196 */
197 r = (pending & status) != 0;
198 }
199 return r;
200 }
201
202 void mips_tcg_init(void);
203
204 void msa_reset(CPUMIPSState *env);
205
206 /* cp0_timer.c */
207 uint32_t cpu_mips_get_count(CPUMIPSState *env);
208 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
209 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
210 void cpu_mips_start_count(CPUMIPSState *env);
211 void cpu_mips_stop_count(CPUMIPSState *env);
212
213 /* helper.c */
214 void mmu_init(CPUMIPSState *env, const mips_def_t *def);
215 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
216 MMUAccessType access_type, int mmu_idx,
217 bool probe, uintptr_t retaddr);
218
219 /* op_helper.c */
220 void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask);
221
222 static inline void restore_pamask(CPUMIPSState *env)
223 {
224 if (env->hflags & MIPS_HFLAG_ELPA) {
225 env->PAMask = (1ULL << env->PABITS) - 1;
226 } else {
227 env->PAMask = PAMASK_BASE;
228 }
229 }
230
231 static inline int mips_vpe_active(CPUMIPSState *env)
232 {
233 int active = 1;
234
235 /* Check that the VPE is enabled. */
236 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
237 active = 0;
238 }
239 /* Check that the VPE is activated. */
240 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
241 active = 0;
242 }
243
244 /*
245 * Now verify that there are active thread contexts in the VPE.
246 *
247 * This assumes the CPU model will internally reschedule threads
248 * if the active one goes to sleep. If there are no threads available
249 * the active one will be in a sleeping state, and we can turn off
250 * the entire VPE.
251 */
252 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
253 /* TC is not activated. */
254 active = 0;
255 }
256 if (env->active_tc.CP0_TCHalt & 1) {
257 /* TC is in halt state. */
258 active = 0;
259 }
260
261 return active;
262 }
263
264 static inline int mips_vp_active(CPUMIPSState *env)
265 {
266 CPUState *other_cs = first_cpu;
267
268 /* Check if the VP disabled other VPs (which means the VP is enabled) */
269 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
270 return 1;
271 }
272
273 /* Check if the virtual processor is disabled due to a DVP */
274 CPU_FOREACH(other_cs) {
275 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
276 if ((&other_cpu->env != env) &&
277 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
278 return 0;
279 }
280 }
281 return 1;
282 }
283
284 static inline void compute_hflags(CPUMIPSState *env)
285 {
286 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
287 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
288 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
289 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
290 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
291 if (env->CP0_Status & (1 << CP0St_ERL)) {
292 env->hflags |= MIPS_HFLAG_ERL;
293 }
294 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
295 !(env->CP0_Status & (1 << CP0St_ERL)) &&
296 !(env->hflags & MIPS_HFLAG_DM)) {
297 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
298 MIPS_HFLAG_KSU;
299 }
300 #if defined(TARGET_MIPS64)
301 if ((env->insn_flags & ISA_MIPS3) &&
302 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
303 (env->CP0_Status & (1 << CP0St_PX)) ||
304 (env->CP0_Status & (1 << CP0St_UX)))) {
305 env->hflags |= MIPS_HFLAG_64;
306 }
307
308 if (!(env->insn_flags & ISA_MIPS3)) {
309 env->hflags |= MIPS_HFLAG_AWRAP;
310 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
311 !(env->CP0_Status & (1 << CP0St_UX))) {
312 env->hflags |= MIPS_HFLAG_AWRAP;
313 } else if (env->insn_flags & ISA_MIPS_R6) {
314 /* Address wrapping for Supervisor and Kernel is specified in R6 */
315 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
316 !(env->CP0_Status & (1 << CP0St_SX))) ||
317 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
318 !(env->CP0_Status & (1 << CP0St_KX)))) {
319 env->hflags |= MIPS_HFLAG_AWRAP;
320 }
321 }
322 #endif
323 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
324 !(env->insn_flags & ISA_MIPS_R6)) ||
325 !(env->hflags & MIPS_HFLAG_KSU)) {
326 env->hflags |= MIPS_HFLAG_CP0;
327 }
328 if (env->CP0_Status & (1 << CP0St_CU1)) {
329 env->hflags |= MIPS_HFLAG_FPU;
330 }
331 if (env->CP0_Status & (1 << CP0St_FR)) {
332 env->hflags |= MIPS_HFLAG_F64;
333 }
334 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
335 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
336 env->hflags |= MIPS_HFLAG_SBRI;
337 }
338 if (env->insn_flags & ASE_DSP_R3) {
339 /*
340 * Our cpu supports DSP R3 ASE, so enable
341 * access to DSP R3 resources.
342 */
343 if (env->CP0_Status & (1 << CP0St_MX)) {
344 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
345 MIPS_HFLAG_DSP_R3;
346 }
347 } else if (env->insn_flags & ASE_DSP_R2) {
348 /*
349 * Our cpu supports DSP R2 ASE, so enable
350 * access to DSP R2 resources.
351 */
352 if (env->CP0_Status & (1 << CP0St_MX)) {
353 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
354 }
355
356 } else if (env->insn_flags & ASE_DSP) {
357 /*
358 * Our cpu supports DSP ASE, so enable
359 * access to DSP resources.
360 */
361 if (env->CP0_Status & (1 << CP0St_MX)) {
362 env->hflags |= MIPS_HFLAG_DSP;
363 }
364
365 }
366 if (env->insn_flags & ISA_MIPS_R2) {
367 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
368 env->hflags |= MIPS_HFLAG_COP1X;
369 }
370 } else if (env->insn_flags & ISA_MIPS_R1) {
371 if (env->hflags & MIPS_HFLAG_64) {
372 env->hflags |= MIPS_HFLAG_COP1X;
373 }
374 } else if (env->insn_flags & ISA_MIPS4) {
375 /*
376 * All supported MIPS IV CPUs use the XX (CU3) to enable
377 * and disable the MIPS IV extensions to the MIPS III ISA.
378 * Some other MIPS IV CPUs ignore the bit, so the check here
379 * would be too restrictive for them.
380 */
381 if (env->CP0_Status & (1U << CP0St_CU3)) {
382 env->hflags |= MIPS_HFLAG_COP1X;
383 }
384 }
385 if (ase_msa_available(env)) {
386 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
387 env->hflags |= MIPS_HFLAG_MSA;
388 }
389 }
390 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
391 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
392 env->hflags |= MIPS_HFLAG_FRE;
393 }
394 }
395 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
396 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
397 env->hflags |= MIPS_HFLAG_ELPA;
398 }
399 }
400 }
401
402 void cpu_mips_tlb_flush(CPUMIPSState *env);
403 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
404 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
405 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
406
407 const char *mips_exception_name(int32_t exception);
408
409 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
410 int error_code, uintptr_t pc);
411
412 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
413 uint32_t exception,
414 uintptr_t pc)
415 {
416 do_raise_exception_err(env, exception, 0, pc);
417 }
418
419 #endif