]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/internal.h
target/mips: Declare mips_env_set_pc() inlined in "internal.h"
[mirror_qemu.git] / target / mips / internal.h
1 /*
2 * MIPS internal definitions and helpers
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
7
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
10
11 #include "exec/memattrs.h"
12
13 /*
14 * MMU types, the first four entries have the same layout as the
15 * CP0C0_MT field.
16 */
17 enum mips_mmu_types {
18 MMU_TYPE_NONE = 0,
19 MMU_TYPE_R4000 = 1, /* Standard TLB */
20 MMU_TYPE_BAT = 2, /* Block Address Translation */
21 MMU_TYPE_FMT = 3, /* Fixed Mapping */
22 MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */
23 MMU_TYPE_R3000,
24 MMU_TYPE_R6000,
25 MMU_TYPE_R8000
26 };
27
28 struct mips_def_t {
29 const char *name;
30 int32_t CP0_PRid;
31 int32_t CP0_Config0;
32 int32_t CP0_Config1;
33 int32_t CP0_Config2;
34 int32_t CP0_Config3;
35 int32_t CP0_Config4;
36 int32_t CP0_Config4_rw_bitmask;
37 int32_t CP0_Config5;
38 int32_t CP0_Config5_rw_bitmask;
39 int32_t CP0_Config6;
40 int32_t CP0_Config6_rw_bitmask;
41 int32_t CP0_Config7;
42 int32_t CP0_Config7_rw_bitmask;
43 target_ulong CP0_LLAddr_rw_bitmask;
44 int CP0_LLAddr_shift;
45 int32_t SYNCI_Step;
46 int32_t CCRes;
47 int32_t CP0_Status_rw_bitmask;
48 int32_t CP0_TCStatus_rw_bitmask;
49 int32_t CP0_SRSCtl;
50 int32_t CP1_fcr0;
51 int32_t CP1_fcr31_rw_bitmask;
52 int32_t CP1_fcr31;
53 int32_t MSAIR;
54 int32_t SEGBITS;
55 int32_t PABITS;
56 int32_t CP0_SRSConf0_rw_bitmask;
57 int32_t CP0_SRSConf0;
58 int32_t CP0_SRSConf1_rw_bitmask;
59 int32_t CP0_SRSConf1;
60 int32_t CP0_SRSConf2_rw_bitmask;
61 int32_t CP0_SRSConf2;
62 int32_t CP0_SRSConf3_rw_bitmask;
63 int32_t CP0_SRSConf3;
64 int32_t CP0_SRSConf4_rw_bitmask;
65 int32_t CP0_SRSConf4;
66 int32_t CP0_PageGrain_rw_bitmask;
67 int32_t CP0_PageGrain;
68 target_ulong CP0_EBaseWG_rw_bitmask;
69 uint64_t insn_flags;
70 enum mips_mmu_types mmu_type;
71 int32_t SAARP;
72 };
73
74 extern const char regnames[32][4];
75 extern const char fregnames[32][4];
76
77 extern const struct mips_def_t mips_defs[];
78 extern const int mips_defs_number;
79
80 void mips_cpu_do_interrupt(CPUState *cpu);
81 bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
82 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
83 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
84 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85 void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
86 MMUAccessType access_type,
87 int mmu_idx, uintptr_t retaddr);
88
89 #if !defined(CONFIG_USER_ONLY)
90
91 typedef struct r4k_tlb_t r4k_tlb_t;
92 struct r4k_tlb_t {
93 target_ulong VPN;
94 uint32_t PageMask;
95 uint16_t ASID;
96 uint32_t MMID;
97 unsigned int G:1;
98 unsigned int C0:3;
99 unsigned int C1:3;
100 unsigned int V0:1;
101 unsigned int V1:1;
102 unsigned int D0:1;
103 unsigned int D1:1;
104 unsigned int XI0:1;
105 unsigned int XI1:1;
106 unsigned int RI0:1;
107 unsigned int RI1:1;
108 unsigned int EHINV:1;
109 uint64_t PFN[2];
110 };
111
112 struct CPUMIPSTLBContext {
113 uint32_t nb_tlb;
114 uint32_t tlb_in_use;
115 int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
116 target_ulong address, MMUAccessType access_type);
117 void (*helper_tlbwi)(struct CPUMIPSState *env);
118 void (*helper_tlbwr)(struct CPUMIPSState *env);
119 void (*helper_tlbp)(struct CPUMIPSState *env);
120 void (*helper_tlbr)(struct CPUMIPSState *env);
121 void (*helper_tlbinv)(struct CPUMIPSState *env);
122 void (*helper_tlbinvf)(struct CPUMIPSState *env);
123 union {
124 struct {
125 r4k_tlb_t tlb[MIPS_TLB_MAX];
126 } r4k;
127 } mmu;
128 };
129
130 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
131 target_ulong address, MMUAccessType access_type);
132 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
133 target_ulong address, MMUAccessType access_type);
134 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
135 target_ulong address, MMUAccessType access_type);
136 void r4k_helper_tlbwi(CPUMIPSState *env);
137 void r4k_helper_tlbwr(CPUMIPSState *env);
138 void r4k_helper_tlbp(CPUMIPSState *env);
139 void r4k_helper_tlbr(CPUMIPSState *env);
140 void r4k_helper_tlbinv(CPUMIPSState *env);
141 void r4k_helper_tlbinvf(CPUMIPSState *env);
142 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
143 uint32_t cpu_mips_get_random(CPUMIPSState *env);
144
145 void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
146 vaddr addr, unsigned size,
147 MMUAccessType access_type,
148 int mmu_idx, MemTxAttrs attrs,
149 MemTxResult response, uintptr_t retaddr);
150 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
151 MMUAccessType access_type);
152 #endif
153
154 #define cpu_signal_handler cpu_mips_signal_handler
155
156 #ifndef CONFIG_USER_ONLY
157 extern const VMStateDescription vmstate_mips_cpu;
158 #endif
159
160 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
161 {
162 return (env->CP0_Status & (1 << CP0St_IE)) &&
163 !(env->CP0_Status & (1 << CP0St_EXL)) &&
164 !(env->CP0_Status & (1 << CP0St_ERL)) &&
165 !(env->hflags & MIPS_HFLAG_DM) &&
166 /*
167 * Note that the TCStatus IXMT field is initialized to zero,
168 * and only MT capable cores can set it to one. So we don't
169 * need to check for MT capabilities here.
170 */
171 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
172 }
173
174 /* Check if there is pending and not masked out interrupt */
175 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
176 {
177 int32_t pending;
178 int32_t status;
179 bool r;
180
181 pending = env->CP0_Cause & CP0Ca_IP_mask;
182 status = env->CP0_Status & CP0Ca_IP_mask;
183
184 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
185 /*
186 * A MIPS configured with a vectorizing external interrupt controller
187 * will feed a vector into the Cause pending lines. The core treats
188 * the status lines as a vector level, not as individual masks.
189 */
190 r = pending > status;
191 } else {
192 /*
193 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
194 * treats the pending lines as individual interrupt lines, the status
195 * lines are individual masks.
196 */
197 r = (pending & status) != 0;
198 }
199 return r;
200 }
201
202 void mips_tcg_init(void);
203
204 void msa_reset(CPUMIPSState *env);
205
206 /* cp0_timer.c */
207 uint32_t cpu_mips_get_count(CPUMIPSState *env);
208 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
209 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
210 void cpu_mips_start_count(CPUMIPSState *env);
211 void cpu_mips_stop_count(CPUMIPSState *env);
212
213 /* helper.c */
214 void mmu_init(CPUMIPSState *env, const mips_def_t *def);
215 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
216 MMUAccessType access_type, int mmu_idx,
217 bool probe, uintptr_t retaddr);
218
219 /* op_helper.c */
220 void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask);
221
222 static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
223 {
224 env->active_tc.PC = value & ~(target_ulong)1;
225 if (value & 1) {
226 env->hflags |= MIPS_HFLAG_M16;
227 } else {
228 env->hflags &= ~(MIPS_HFLAG_M16);
229 }
230 }
231
232 static inline void restore_pamask(CPUMIPSState *env)
233 {
234 if (env->hflags & MIPS_HFLAG_ELPA) {
235 env->PAMask = (1ULL << env->PABITS) - 1;
236 } else {
237 env->PAMask = PAMASK_BASE;
238 }
239 }
240
241 static inline int mips_vpe_active(CPUMIPSState *env)
242 {
243 int active = 1;
244
245 /* Check that the VPE is enabled. */
246 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
247 active = 0;
248 }
249 /* Check that the VPE is activated. */
250 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
251 active = 0;
252 }
253
254 /*
255 * Now verify that there are active thread contexts in the VPE.
256 *
257 * This assumes the CPU model will internally reschedule threads
258 * if the active one goes to sleep. If there are no threads available
259 * the active one will be in a sleeping state, and we can turn off
260 * the entire VPE.
261 */
262 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
263 /* TC is not activated. */
264 active = 0;
265 }
266 if (env->active_tc.CP0_TCHalt & 1) {
267 /* TC is in halt state. */
268 active = 0;
269 }
270
271 return active;
272 }
273
274 static inline int mips_vp_active(CPUMIPSState *env)
275 {
276 CPUState *other_cs = first_cpu;
277
278 /* Check if the VP disabled other VPs (which means the VP is enabled) */
279 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
280 return 1;
281 }
282
283 /* Check if the virtual processor is disabled due to a DVP */
284 CPU_FOREACH(other_cs) {
285 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
286 if ((&other_cpu->env != env) &&
287 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
288 return 0;
289 }
290 }
291 return 1;
292 }
293
294 static inline void compute_hflags(CPUMIPSState *env)
295 {
296 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
297 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
298 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
299 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
300 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
301 if (env->CP0_Status & (1 << CP0St_ERL)) {
302 env->hflags |= MIPS_HFLAG_ERL;
303 }
304 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
305 !(env->CP0_Status & (1 << CP0St_ERL)) &&
306 !(env->hflags & MIPS_HFLAG_DM)) {
307 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
308 MIPS_HFLAG_KSU;
309 }
310 #if defined(TARGET_MIPS64)
311 if ((env->insn_flags & ISA_MIPS3) &&
312 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
313 (env->CP0_Status & (1 << CP0St_PX)) ||
314 (env->CP0_Status & (1 << CP0St_UX)))) {
315 env->hflags |= MIPS_HFLAG_64;
316 }
317
318 if (!(env->insn_flags & ISA_MIPS3)) {
319 env->hflags |= MIPS_HFLAG_AWRAP;
320 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
321 !(env->CP0_Status & (1 << CP0St_UX))) {
322 env->hflags |= MIPS_HFLAG_AWRAP;
323 } else if (env->insn_flags & ISA_MIPS_R6) {
324 /* Address wrapping for Supervisor and Kernel is specified in R6 */
325 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
326 !(env->CP0_Status & (1 << CP0St_SX))) ||
327 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
328 !(env->CP0_Status & (1 << CP0St_KX)))) {
329 env->hflags |= MIPS_HFLAG_AWRAP;
330 }
331 }
332 #endif
333 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
334 !(env->insn_flags & ISA_MIPS_R6)) ||
335 !(env->hflags & MIPS_HFLAG_KSU)) {
336 env->hflags |= MIPS_HFLAG_CP0;
337 }
338 if (env->CP0_Status & (1 << CP0St_CU1)) {
339 env->hflags |= MIPS_HFLAG_FPU;
340 }
341 if (env->CP0_Status & (1 << CP0St_FR)) {
342 env->hflags |= MIPS_HFLAG_F64;
343 }
344 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
345 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
346 env->hflags |= MIPS_HFLAG_SBRI;
347 }
348 if (env->insn_flags & ASE_DSP_R3) {
349 /*
350 * Our cpu supports DSP R3 ASE, so enable
351 * access to DSP R3 resources.
352 */
353 if (env->CP0_Status & (1 << CP0St_MX)) {
354 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
355 MIPS_HFLAG_DSP_R3;
356 }
357 } else if (env->insn_flags & ASE_DSP_R2) {
358 /*
359 * Our cpu supports DSP R2 ASE, so enable
360 * access to DSP R2 resources.
361 */
362 if (env->CP0_Status & (1 << CP0St_MX)) {
363 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
364 }
365
366 } else if (env->insn_flags & ASE_DSP) {
367 /*
368 * Our cpu supports DSP ASE, so enable
369 * access to DSP resources.
370 */
371 if (env->CP0_Status & (1 << CP0St_MX)) {
372 env->hflags |= MIPS_HFLAG_DSP;
373 }
374
375 }
376 if (env->insn_flags & ISA_MIPS_R2) {
377 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
378 env->hflags |= MIPS_HFLAG_COP1X;
379 }
380 } else if (env->insn_flags & ISA_MIPS_R1) {
381 if (env->hflags & MIPS_HFLAG_64) {
382 env->hflags |= MIPS_HFLAG_COP1X;
383 }
384 } else if (env->insn_flags & ISA_MIPS4) {
385 /*
386 * All supported MIPS IV CPUs use the XX (CU3) to enable
387 * and disable the MIPS IV extensions to the MIPS III ISA.
388 * Some other MIPS IV CPUs ignore the bit, so the check here
389 * would be too restrictive for them.
390 */
391 if (env->CP0_Status & (1U << CP0St_CU3)) {
392 env->hflags |= MIPS_HFLAG_COP1X;
393 }
394 }
395 if (ase_msa_available(env)) {
396 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
397 env->hflags |= MIPS_HFLAG_MSA;
398 }
399 }
400 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
401 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
402 env->hflags |= MIPS_HFLAG_FRE;
403 }
404 }
405 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
406 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
407 env->hflags |= MIPS_HFLAG_ELPA;
408 }
409 }
410 }
411
412 void cpu_mips_tlb_flush(CPUMIPSState *env);
413 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
414 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
415 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
416
417 const char *mips_exception_name(int32_t exception);
418
419 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
420 int error_code, uintptr_t pc);
421
422 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
423 uint32_t exception,
424 uintptr_t pc)
425 {
426 do_raise_exception_err(env, exception, 0, pc);
427 }
428
429 #endif