]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/internal.h
target/mips: Move CP0 helpers to sysemu/cp0.c
[mirror_qemu.git] / target / mips / internal.h
1 /*
2 * MIPS internal definitions and helpers
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
7
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
10
11 #include "exec/memattrs.h"
12 #ifdef CONFIG_TCG
13 #include "tcg/tcg-internal.h"
14 #endif
15
16 /*
17 * MMU types, the first four entries have the same layout as the
18 * CP0C0_MT field.
19 */
20 enum mips_mmu_types {
21 MMU_TYPE_NONE = 0,
22 MMU_TYPE_R4000 = 1, /* Standard TLB */
23 MMU_TYPE_BAT = 2, /* Block Address Translation */
24 MMU_TYPE_FMT = 3, /* Fixed Mapping */
25 MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */
26 MMU_TYPE_R3000,
27 MMU_TYPE_R6000,
28 MMU_TYPE_R8000
29 };
30
31 struct mips_def_t {
32 const char *name;
33 int32_t CP0_PRid;
34 int32_t CP0_Config0;
35 int32_t CP0_Config1;
36 int32_t CP0_Config2;
37 int32_t CP0_Config3;
38 int32_t CP0_Config4;
39 int32_t CP0_Config4_rw_bitmask;
40 int32_t CP0_Config5;
41 int32_t CP0_Config5_rw_bitmask;
42 int32_t CP0_Config6;
43 int32_t CP0_Config6_rw_bitmask;
44 int32_t CP0_Config7;
45 int32_t CP0_Config7_rw_bitmask;
46 target_ulong CP0_LLAddr_rw_bitmask;
47 int CP0_LLAddr_shift;
48 int32_t SYNCI_Step;
49 int32_t CCRes;
50 int32_t CP0_Status_rw_bitmask;
51 int32_t CP0_TCStatus_rw_bitmask;
52 int32_t CP0_SRSCtl;
53 int32_t CP1_fcr0;
54 int32_t CP1_fcr31_rw_bitmask;
55 int32_t CP1_fcr31;
56 int32_t MSAIR;
57 int32_t SEGBITS;
58 int32_t PABITS;
59 int32_t CP0_SRSConf0_rw_bitmask;
60 int32_t CP0_SRSConf0;
61 int32_t CP0_SRSConf1_rw_bitmask;
62 int32_t CP0_SRSConf1;
63 int32_t CP0_SRSConf2_rw_bitmask;
64 int32_t CP0_SRSConf2;
65 int32_t CP0_SRSConf3_rw_bitmask;
66 int32_t CP0_SRSConf3;
67 int32_t CP0_SRSConf4_rw_bitmask;
68 int32_t CP0_SRSConf4;
69 int32_t CP0_PageGrain_rw_bitmask;
70 int32_t CP0_PageGrain;
71 target_ulong CP0_EBaseWG_rw_bitmask;
72 uint64_t insn_flags;
73 enum mips_mmu_types mmu_type;
74 int32_t SAARP;
75 };
76
77 extern const char regnames[32][4];
78 extern const char fregnames[32][4];
79
80 extern const struct mips_def_t mips_defs[];
81 extern const int mips_defs_number;
82
83 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
84 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85 void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
86 MMUAccessType access_type,
87 int mmu_idx, uintptr_t retaddr);
88
89 #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL)
90 #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL)
91 #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL)
92 #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL)
93 #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL)
94
95 #define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL)
96 #define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL)
97
98 #if !defined(CONFIG_USER_ONLY)
99
100 enum {
101 TLBRET_XI = -6,
102 TLBRET_RI = -5,
103 TLBRET_DIRTY = -4,
104 TLBRET_INVALID = -3,
105 TLBRET_NOMATCH = -2,
106 TLBRET_BADADDR = -1,
107 TLBRET_MATCH = 0
108 };
109
110 int get_physical_address(CPUMIPSState *env, hwaddr *physical,
111 int *prot, target_ulong real_address,
112 MMUAccessType access_type, int mmu_idx);
113 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
114
115 typedef struct r4k_tlb_t r4k_tlb_t;
116 struct r4k_tlb_t {
117 target_ulong VPN;
118 uint32_t PageMask;
119 uint16_t ASID;
120 uint32_t MMID;
121 unsigned int G:1;
122 unsigned int C0:3;
123 unsigned int C1:3;
124 unsigned int V0:1;
125 unsigned int V1:1;
126 unsigned int D0:1;
127 unsigned int D1:1;
128 unsigned int XI0:1;
129 unsigned int XI1:1;
130 unsigned int RI0:1;
131 unsigned int RI1:1;
132 unsigned int EHINV:1;
133 uint64_t PFN[2];
134 };
135
136 struct CPUMIPSTLBContext {
137 uint32_t nb_tlb;
138 uint32_t tlb_in_use;
139 int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
140 target_ulong address, MMUAccessType access_type);
141 void (*helper_tlbwi)(struct CPUMIPSState *env);
142 void (*helper_tlbwr)(struct CPUMIPSState *env);
143 void (*helper_tlbp)(struct CPUMIPSState *env);
144 void (*helper_tlbr)(struct CPUMIPSState *env);
145 void (*helper_tlbinv)(struct CPUMIPSState *env);
146 void (*helper_tlbinvf)(struct CPUMIPSState *env);
147 union {
148 struct {
149 r4k_tlb_t tlb[MIPS_TLB_MAX];
150 } r4k;
151 } mmu;
152 };
153
154 void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
155 vaddr addr, unsigned size,
156 MMUAccessType access_type,
157 int mmu_idx, MemTxAttrs attrs,
158 MemTxResult response, uintptr_t retaddr);
159
160 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
161 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
162 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
163
164 extern const VMStateDescription vmstate_mips_cpu;
165
166 #endif /* !CONFIG_USER_ONLY */
167
168 #define cpu_signal_handler cpu_mips_signal_handler
169
170 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
171 {
172 return (env->CP0_Status & (1 << CP0St_IE)) &&
173 !(env->CP0_Status & (1 << CP0St_EXL)) &&
174 !(env->CP0_Status & (1 << CP0St_ERL)) &&
175 !(env->hflags & MIPS_HFLAG_DM) &&
176 /*
177 * Note that the TCStatus IXMT field is initialized to zero,
178 * and only MT capable cores can set it to one. So we don't
179 * need to check for MT capabilities here.
180 */
181 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
182 }
183
184 /* Check if there is pending and not masked out interrupt */
185 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
186 {
187 int32_t pending;
188 int32_t status;
189 bool r;
190
191 pending = env->CP0_Cause & CP0Ca_IP_mask;
192 status = env->CP0_Status & CP0Ca_IP_mask;
193
194 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
195 /*
196 * A MIPS configured with a vectorizing external interrupt controller
197 * will feed a vector into the Cause pending lines. The core treats
198 * the status lines as a vector level, not as individual masks.
199 */
200 r = pending > status;
201 } else {
202 /*
203 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
204 * treats the pending lines as individual interrupt lines, the status
205 * lines are individual masks.
206 */
207 r = (pending & status) != 0;
208 }
209 return r;
210 }
211
212 void mips_tcg_init(void);
213
214 void msa_reset(CPUMIPSState *env);
215
216 /* cp0_timer.c */
217 uint32_t cpu_mips_get_count(CPUMIPSState *env);
218 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
219 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
220 void cpu_mips_start_count(CPUMIPSState *env);
221 void cpu_mips_stop_count(CPUMIPSState *env);
222
223 static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
224 {
225 env->active_tc.PC = value & ~(target_ulong)1;
226 if (value & 1) {
227 env->hflags |= MIPS_HFLAG_M16;
228 } else {
229 env->hflags &= ~(MIPS_HFLAG_M16);
230 }
231 }
232
233 static inline void restore_pamask(CPUMIPSState *env)
234 {
235 if (env->hflags & MIPS_HFLAG_ELPA) {
236 env->PAMask = (1ULL << env->PABITS) - 1;
237 } else {
238 env->PAMask = PAMASK_BASE;
239 }
240 }
241
242 static inline int mips_vpe_active(CPUMIPSState *env)
243 {
244 int active = 1;
245
246 /* Check that the VPE is enabled. */
247 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
248 active = 0;
249 }
250 /* Check that the VPE is activated. */
251 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
252 active = 0;
253 }
254
255 /*
256 * Now verify that there are active thread contexts in the VPE.
257 *
258 * This assumes the CPU model will internally reschedule threads
259 * if the active one goes to sleep. If there are no threads available
260 * the active one will be in a sleeping state, and we can turn off
261 * the entire VPE.
262 */
263 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
264 /* TC is not activated. */
265 active = 0;
266 }
267 if (env->active_tc.CP0_TCHalt & 1) {
268 /* TC is in halt state. */
269 active = 0;
270 }
271
272 return active;
273 }
274
275 static inline int mips_vp_active(CPUMIPSState *env)
276 {
277 CPUState *other_cs = first_cpu;
278
279 /* Check if the VP disabled other VPs (which means the VP is enabled) */
280 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
281 return 1;
282 }
283
284 /* Check if the virtual processor is disabled due to a DVP */
285 CPU_FOREACH(other_cs) {
286 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
287 if ((&other_cpu->env != env) &&
288 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
289 return 0;
290 }
291 }
292 return 1;
293 }
294
295 static inline void compute_hflags(CPUMIPSState *env)
296 {
297 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
298 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
299 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
300 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
301 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
302 if (env->CP0_Status & (1 << CP0St_ERL)) {
303 env->hflags |= MIPS_HFLAG_ERL;
304 }
305 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
306 !(env->CP0_Status & (1 << CP0St_ERL)) &&
307 !(env->hflags & MIPS_HFLAG_DM)) {
308 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
309 MIPS_HFLAG_KSU;
310 }
311 #if defined(TARGET_MIPS64)
312 if ((env->insn_flags & ISA_MIPS3) &&
313 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
314 (env->CP0_Status & (1 << CP0St_PX)) ||
315 (env->CP0_Status & (1 << CP0St_UX)))) {
316 env->hflags |= MIPS_HFLAG_64;
317 }
318
319 if (!(env->insn_flags & ISA_MIPS3)) {
320 env->hflags |= MIPS_HFLAG_AWRAP;
321 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
322 !(env->CP0_Status & (1 << CP0St_UX))) {
323 env->hflags |= MIPS_HFLAG_AWRAP;
324 } else if (env->insn_flags & ISA_MIPS_R6) {
325 /* Address wrapping for Supervisor and Kernel is specified in R6 */
326 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
327 !(env->CP0_Status & (1 << CP0St_SX))) ||
328 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
329 !(env->CP0_Status & (1 << CP0St_KX)))) {
330 env->hflags |= MIPS_HFLAG_AWRAP;
331 }
332 }
333 #endif
334 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
335 !(env->insn_flags & ISA_MIPS_R6)) ||
336 !(env->hflags & MIPS_HFLAG_KSU)) {
337 env->hflags |= MIPS_HFLAG_CP0;
338 }
339 if (env->CP0_Status & (1 << CP0St_CU1)) {
340 env->hflags |= MIPS_HFLAG_FPU;
341 }
342 if (env->CP0_Status & (1 << CP0St_FR)) {
343 env->hflags |= MIPS_HFLAG_F64;
344 }
345 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
346 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
347 env->hflags |= MIPS_HFLAG_SBRI;
348 }
349 if (env->insn_flags & ASE_DSP_R3) {
350 /*
351 * Our cpu supports DSP R3 ASE, so enable
352 * access to DSP R3 resources.
353 */
354 if (env->CP0_Status & (1 << CP0St_MX)) {
355 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
356 MIPS_HFLAG_DSP_R3;
357 }
358 } else if (env->insn_flags & ASE_DSP_R2) {
359 /*
360 * Our cpu supports DSP R2 ASE, so enable
361 * access to DSP R2 resources.
362 */
363 if (env->CP0_Status & (1 << CP0St_MX)) {
364 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
365 }
366
367 } else if (env->insn_flags & ASE_DSP) {
368 /*
369 * Our cpu supports DSP ASE, so enable
370 * access to DSP resources.
371 */
372 if (env->CP0_Status & (1 << CP0St_MX)) {
373 env->hflags |= MIPS_HFLAG_DSP;
374 }
375
376 }
377 if (env->insn_flags & ISA_MIPS_R2) {
378 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
379 env->hflags |= MIPS_HFLAG_COP1X;
380 }
381 } else if (env->insn_flags & ISA_MIPS_R1) {
382 if (env->hflags & MIPS_HFLAG_64) {
383 env->hflags |= MIPS_HFLAG_COP1X;
384 }
385 } else if (env->insn_flags & ISA_MIPS4) {
386 /*
387 * All supported MIPS IV CPUs use the XX (CU3) to enable
388 * and disable the MIPS IV extensions to the MIPS III ISA.
389 * Some other MIPS IV CPUs ignore the bit, so the check here
390 * would be too restrictive for them.
391 */
392 if (env->CP0_Status & (1U << CP0St_CU3)) {
393 env->hflags |= MIPS_HFLAG_COP1X;
394 }
395 }
396 if (ase_msa_available(env)) {
397 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
398 env->hflags |= MIPS_HFLAG_MSA;
399 }
400 }
401 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
402 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
403 env->hflags |= MIPS_HFLAG_FRE;
404 }
405 }
406 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
407 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
408 env->hflags |= MIPS_HFLAG_ELPA;
409 }
410 }
411 }
412
413 #endif