]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/internal.h
target/mips: Optimize CPU/FPU regnames[] arrays
[mirror_qemu.git] / target / mips / internal.h
1 /*
2 * MIPS internal definitions and helpers
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
7
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
10
11 #include "exec/memattrs.h"
12
13 /*
14 * MMU types, the first four entries have the same layout as the
15 * CP0C0_MT field.
16 */
17 enum mips_mmu_types {
18 MMU_TYPE_NONE = 0,
19 MMU_TYPE_R4000 = 1, /* Standard TLB */
20 MMU_TYPE_BAT = 2, /* Block Address Translation */
21 MMU_TYPE_FMT = 3, /* Fixed Mapping */
22 MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */
23 MMU_TYPE_R3000,
24 MMU_TYPE_R6000,
25 MMU_TYPE_R8000
26 };
27
28 struct mips_def_t {
29 const char *name;
30 int32_t CP0_PRid;
31 int32_t CP0_Config0;
32 int32_t CP0_Config1;
33 int32_t CP0_Config2;
34 int32_t CP0_Config3;
35 int32_t CP0_Config4;
36 int32_t CP0_Config4_rw_bitmask;
37 int32_t CP0_Config5;
38 int32_t CP0_Config5_rw_bitmask;
39 int32_t CP0_Config6;
40 int32_t CP0_Config6_rw_bitmask;
41 int32_t CP0_Config7;
42 int32_t CP0_Config7_rw_bitmask;
43 target_ulong CP0_LLAddr_rw_bitmask;
44 int CP0_LLAddr_shift;
45 int32_t SYNCI_Step;
46 int32_t CCRes;
47 int32_t CP0_Status_rw_bitmask;
48 int32_t CP0_TCStatus_rw_bitmask;
49 int32_t CP0_SRSCtl;
50 int32_t CP1_fcr0;
51 int32_t CP1_fcr31_rw_bitmask;
52 int32_t CP1_fcr31;
53 int32_t MSAIR;
54 int32_t SEGBITS;
55 int32_t PABITS;
56 int32_t CP0_SRSConf0_rw_bitmask;
57 int32_t CP0_SRSConf0;
58 int32_t CP0_SRSConf1_rw_bitmask;
59 int32_t CP0_SRSConf1;
60 int32_t CP0_SRSConf2_rw_bitmask;
61 int32_t CP0_SRSConf2;
62 int32_t CP0_SRSConf3_rw_bitmask;
63 int32_t CP0_SRSConf3;
64 int32_t CP0_SRSConf4_rw_bitmask;
65 int32_t CP0_SRSConf4;
66 int32_t CP0_PageGrain_rw_bitmask;
67 int32_t CP0_PageGrain;
68 target_ulong CP0_EBaseWG_rw_bitmask;
69 uint64_t insn_flags;
70 enum mips_mmu_types mmu_type;
71 int32_t SAARP;
72 };
73
74 extern const char regnames[32][4];
75 extern const char fregnames[32][4];
76
77 extern const struct mips_def_t mips_defs[];
78 extern const int mips_defs_number;
79
80 void mips_cpu_do_interrupt(CPUState *cpu);
81 bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
82 void mips_cpu_dump_state(CPUState *cpu, FILE *f, int flags);
83 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
84 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
85 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
86 void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
87 MMUAccessType access_type,
88 int mmu_idx, uintptr_t retaddr);
89
90 #if !defined(CONFIG_USER_ONLY)
91
92 typedef struct r4k_tlb_t r4k_tlb_t;
93 struct r4k_tlb_t {
94 target_ulong VPN;
95 uint32_t PageMask;
96 uint16_t ASID;
97 uint32_t MMID;
98 unsigned int G:1;
99 unsigned int C0:3;
100 unsigned int C1:3;
101 unsigned int V0:1;
102 unsigned int V1:1;
103 unsigned int D0:1;
104 unsigned int D1:1;
105 unsigned int XI0:1;
106 unsigned int XI1:1;
107 unsigned int RI0:1;
108 unsigned int RI1:1;
109 unsigned int EHINV:1;
110 uint64_t PFN[2];
111 };
112
113 struct CPUMIPSTLBContext {
114 uint32_t nb_tlb;
115 uint32_t tlb_in_use;
116 int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
117 target_ulong address, MMUAccessType access_type);
118 void (*helper_tlbwi)(struct CPUMIPSState *env);
119 void (*helper_tlbwr)(struct CPUMIPSState *env);
120 void (*helper_tlbp)(struct CPUMIPSState *env);
121 void (*helper_tlbr)(struct CPUMIPSState *env);
122 void (*helper_tlbinv)(struct CPUMIPSState *env);
123 void (*helper_tlbinvf)(struct CPUMIPSState *env);
124 union {
125 struct {
126 r4k_tlb_t tlb[MIPS_TLB_MAX];
127 } r4k;
128 } mmu;
129 };
130
131 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
132 target_ulong address, MMUAccessType access_type);
133 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
134 target_ulong address, MMUAccessType access_type);
135 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
136 target_ulong address, MMUAccessType access_type);
137 void r4k_helper_tlbwi(CPUMIPSState *env);
138 void r4k_helper_tlbwr(CPUMIPSState *env);
139 void r4k_helper_tlbp(CPUMIPSState *env);
140 void r4k_helper_tlbr(CPUMIPSState *env);
141 void r4k_helper_tlbinv(CPUMIPSState *env);
142 void r4k_helper_tlbinvf(CPUMIPSState *env);
143 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
144 uint32_t cpu_mips_get_random(CPUMIPSState *env);
145
146 void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
147 vaddr addr, unsigned size,
148 MMUAccessType access_type,
149 int mmu_idx, MemTxAttrs attrs,
150 MemTxResult response, uintptr_t retaddr);
151 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
152 MMUAccessType access_type);
153 #endif
154
155 #define cpu_signal_handler cpu_mips_signal_handler
156
157 #ifndef CONFIG_USER_ONLY
158 extern const VMStateDescription vmstate_mips_cpu;
159 #endif
160
161 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
162 {
163 return (env->CP0_Status & (1 << CP0St_IE)) &&
164 !(env->CP0_Status & (1 << CP0St_EXL)) &&
165 !(env->CP0_Status & (1 << CP0St_ERL)) &&
166 !(env->hflags & MIPS_HFLAG_DM) &&
167 /*
168 * Note that the TCStatus IXMT field is initialized to zero,
169 * and only MT capable cores can set it to one. So we don't
170 * need to check for MT capabilities here.
171 */
172 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
173 }
174
175 /* Check if there is pending and not masked out interrupt */
176 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
177 {
178 int32_t pending;
179 int32_t status;
180 bool r;
181
182 pending = env->CP0_Cause & CP0Ca_IP_mask;
183 status = env->CP0_Status & CP0Ca_IP_mask;
184
185 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
186 /*
187 * A MIPS configured with a vectorizing external interrupt controller
188 * will feed a vector into the Cause pending lines. The core treats
189 * the status lines as a vector level, not as individual masks.
190 */
191 r = pending > status;
192 } else {
193 /*
194 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
195 * treats the pending lines as individual interrupt lines, the status
196 * lines are individual masks.
197 */
198 r = (pending & status) != 0;
199 }
200 return r;
201 }
202
203 void mips_tcg_init(void);
204
205 void msa_reset(CPUMIPSState *env);
206
207 /* cp0_timer.c */
208 uint32_t cpu_mips_get_count(CPUMIPSState *env);
209 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
210 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
211 void cpu_mips_start_count(CPUMIPSState *env);
212 void cpu_mips_stop_count(CPUMIPSState *env);
213
214 /* helper.c */
215 void mmu_init(CPUMIPSState *env, const mips_def_t *def);
216 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
217 MMUAccessType access_type, int mmu_idx,
218 bool probe, uintptr_t retaddr);
219
220 /* op_helper.c */
221 void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask);
222
223 static inline void restore_pamask(CPUMIPSState *env)
224 {
225 if (env->hflags & MIPS_HFLAG_ELPA) {
226 env->PAMask = (1ULL << env->PABITS) - 1;
227 } else {
228 env->PAMask = PAMASK_BASE;
229 }
230 }
231
232 static inline int mips_vpe_active(CPUMIPSState *env)
233 {
234 int active = 1;
235
236 /* Check that the VPE is enabled. */
237 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
238 active = 0;
239 }
240 /* Check that the VPE is activated. */
241 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
242 active = 0;
243 }
244
245 /*
246 * Now verify that there are active thread contexts in the VPE.
247 *
248 * This assumes the CPU model will internally reschedule threads
249 * if the active one goes to sleep. If there are no threads available
250 * the active one will be in a sleeping state, and we can turn off
251 * the entire VPE.
252 */
253 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
254 /* TC is not activated. */
255 active = 0;
256 }
257 if (env->active_tc.CP0_TCHalt & 1) {
258 /* TC is in halt state. */
259 active = 0;
260 }
261
262 return active;
263 }
264
265 static inline int mips_vp_active(CPUMIPSState *env)
266 {
267 CPUState *other_cs = first_cpu;
268
269 /* Check if the VP disabled other VPs (which means the VP is enabled) */
270 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
271 return 1;
272 }
273
274 /* Check if the virtual processor is disabled due to a DVP */
275 CPU_FOREACH(other_cs) {
276 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
277 if ((&other_cpu->env != env) &&
278 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
279 return 0;
280 }
281 }
282 return 1;
283 }
284
285 static inline void compute_hflags(CPUMIPSState *env)
286 {
287 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
288 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
289 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
290 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
291 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
292 if (env->CP0_Status & (1 << CP0St_ERL)) {
293 env->hflags |= MIPS_HFLAG_ERL;
294 }
295 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
296 !(env->CP0_Status & (1 << CP0St_ERL)) &&
297 !(env->hflags & MIPS_HFLAG_DM)) {
298 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
299 MIPS_HFLAG_KSU;
300 }
301 #if defined(TARGET_MIPS64)
302 if ((env->insn_flags & ISA_MIPS3) &&
303 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
304 (env->CP0_Status & (1 << CP0St_PX)) ||
305 (env->CP0_Status & (1 << CP0St_UX)))) {
306 env->hflags |= MIPS_HFLAG_64;
307 }
308
309 if (!(env->insn_flags & ISA_MIPS3)) {
310 env->hflags |= MIPS_HFLAG_AWRAP;
311 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
312 !(env->CP0_Status & (1 << CP0St_UX))) {
313 env->hflags |= MIPS_HFLAG_AWRAP;
314 } else if (env->insn_flags & ISA_MIPS_R6) {
315 /* Address wrapping for Supervisor and Kernel is specified in R6 */
316 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
317 !(env->CP0_Status & (1 << CP0St_SX))) ||
318 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
319 !(env->CP0_Status & (1 << CP0St_KX)))) {
320 env->hflags |= MIPS_HFLAG_AWRAP;
321 }
322 }
323 #endif
324 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
325 !(env->insn_flags & ISA_MIPS_R6)) ||
326 !(env->hflags & MIPS_HFLAG_KSU)) {
327 env->hflags |= MIPS_HFLAG_CP0;
328 }
329 if (env->CP0_Status & (1 << CP0St_CU1)) {
330 env->hflags |= MIPS_HFLAG_FPU;
331 }
332 if (env->CP0_Status & (1 << CP0St_FR)) {
333 env->hflags |= MIPS_HFLAG_F64;
334 }
335 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
336 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
337 env->hflags |= MIPS_HFLAG_SBRI;
338 }
339 if (env->insn_flags & ASE_DSP_R3) {
340 /*
341 * Our cpu supports DSP R3 ASE, so enable
342 * access to DSP R3 resources.
343 */
344 if (env->CP0_Status & (1 << CP0St_MX)) {
345 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
346 MIPS_HFLAG_DSP_R3;
347 }
348 } else if (env->insn_flags & ASE_DSP_R2) {
349 /*
350 * Our cpu supports DSP R2 ASE, so enable
351 * access to DSP R2 resources.
352 */
353 if (env->CP0_Status & (1 << CP0St_MX)) {
354 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
355 }
356
357 } else if (env->insn_flags & ASE_DSP) {
358 /*
359 * Our cpu supports DSP ASE, so enable
360 * access to DSP resources.
361 */
362 if (env->CP0_Status & (1 << CP0St_MX)) {
363 env->hflags |= MIPS_HFLAG_DSP;
364 }
365
366 }
367 if (env->insn_flags & ISA_MIPS_R2) {
368 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
369 env->hflags |= MIPS_HFLAG_COP1X;
370 }
371 } else if (env->insn_flags & ISA_MIPS_R1) {
372 if (env->hflags & MIPS_HFLAG_64) {
373 env->hflags |= MIPS_HFLAG_COP1X;
374 }
375 } else if (env->insn_flags & ISA_MIPS4) {
376 /*
377 * All supported MIPS IV CPUs use the XX (CU3) to enable
378 * and disable the MIPS IV extensions to the MIPS III ISA.
379 * Some other MIPS IV CPUs ignore the bit, so the check here
380 * would be too restrictive for them.
381 */
382 if (env->CP0_Status & (1U << CP0St_CU3)) {
383 env->hflags |= MIPS_HFLAG_COP1X;
384 }
385 }
386 if (ase_msa_available(env)) {
387 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
388 env->hflags |= MIPS_HFLAG_MSA;
389 }
390 }
391 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
392 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
393 env->hflags |= MIPS_HFLAG_FRE;
394 }
395 }
396 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
397 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
398 env->hflags |= MIPS_HFLAG_ELPA;
399 }
400 }
401 }
402
403 void cpu_mips_tlb_flush(CPUMIPSState *env);
404 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
405 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
406 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
407
408 const char *mips_exception_name(int32_t exception);
409
410 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
411 int error_code, uintptr_t pc);
412
413 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
414 uint32_t exception,
415 uintptr_t pc)
416 {
417 do_raise_exception_err(env, exception, 0, pc);
418 }
419
420 #endif