]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/internal.h
include/exec: Move cpu_signal_handler declaration
[mirror_qemu.git] / target / mips / internal.h
1 /*
2 * MIPS internal definitions and helpers
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
7
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
10
11 #include "exec/memattrs.h"
12 #ifdef CONFIG_TCG
13 #include "tcg/tcg-internal.h"
14 #endif
15
16 /*
17 * MMU types, the first four entries have the same layout as the
18 * CP0C0_MT field.
19 */
20 enum mips_mmu_types {
21 MMU_TYPE_NONE = 0,
22 MMU_TYPE_R4000 = 1, /* Standard TLB */
23 MMU_TYPE_BAT = 2, /* Block Address Translation */
24 MMU_TYPE_FMT = 3, /* Fixed Mapping */
25 MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */
26 MMU_TYPE_R3000,
27 MMU_TYPE_R6000,
28 MMU_TYPE_R8000
29 };
30
31 struct mips_def_t {
32 const char *name;
33 int32_t CP0_PRid;
34 int32_t CP0_Config0;
35 int32_t CP0_Config1;
36 int32_t CP0_Config2;
37 int32_t CP0_Config3;
38 int32_t CP0_Config4;
39 int32_t CP0_Config4_rw_bitmask;
40 int32_t CP0_Config5;
41 int32_t CP0_Config5_rw_bitmask;
42 int32_t CP0_Config6;
43 int32_t CP0_Config6_rw_bitmask;
44 int32_t CP0_Config7;
45 int32_t CP0_Config7_rw_bitmask;
46 target_ulong CP0_LLAddr_rw_bitmask;
47 int CP0_LLAddr_shift;
48 int32_t SYNCI_Step;
49 int32_t CCRes;
50 int32_t CP0_Status_rw_bitmask;
51 int32_t CP0_TCStatus_rw_bitmask;
52 int32_t CP0_SRSCtl;
53 int32_t CP1_fcr0;
54 int32_t CP1_fcr31_rw_bitmask;
55 int32_t CP1_fcr31;
56 int32_t MSAIR;
57 int32_t SEGBITS;
58 int32_t PABITS;
59 int32_t CP0_SRSConf0_rw_bitmask;
60 int32_t CP0_SRSConf0;
61 int32_t CP0_SRSConf1_rw_bitmask;
62 int32_t CP0_SRSConf1;
63 int32_t CP0_SRSConf2_rw_bitmask;
64 int32_t CP0_SRSConf2;
65 int32_t CP0_SRSConf3_rw_bitmask;
66 int32_t CP0_SRSConf3;
67 int32_t CP0_SRSConf4_rw_bitmask;
68 int32_t CP0_SRSConf4;
69 int32_t CP0_PageGrain_rw_bitmask;
70 int32_t CP0_PageGrain;
71 target_ulong CP0_EBaseWG_rw_bitmask;
72 uint64_t insn_flags;
73 enum mips_mmu_types mmu_type;
74 int32_t SAARP;
75 };
76
77 extern const char regnames[32][3];
78 extern const char fregnames[32][4];
79
80 extern const struct mips_def_t mips_defs[];
81 extern const int mips_defs_number;
82
83 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
84 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85
86 #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL)
87 #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL)
88 #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL)
89 #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL)
90 #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL)
91
92 #define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL)
93 #define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL)
94
95 #if !defined(CONFIG_USER_ONLY)
96
97 enum {
98 TLBRET_XI = -6,
99 TLBRET_RI = -5,
100 TLBRET_DIRTY = -4,
101 TLBRET_INVALID = -3,
102 TLBRET_NOMATCH = -2,
103 TLBRET_BADADDR = -1,
104 TLBRET_MATCH = 0
105 };
106
107 int get_physical_address(CPUMIPSState *env, hwaddr *physical,
108 int *prot, target_ulong real_address,
109 MMUAccessType access_type, int mmu_idx);
110 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
111
112 typedef struct r4k_tlb_t r4k_tlb_t;
113 struct r4k_tlb_t {
114 target_ulong VPN;
115 uint32_t PageMask;
116 uint16_t ASID;
117 uint32_t MMID;
118 unsigned int G:1;
119 unsigned int C0:3;
120 unsigned int C1:3;
121 unsigned int V0:1;
122 unsigned int V1:1;
123 unsigned int D0:1;
124 unsigned int D1:1;
125 unsigned int XI0:1;
126 unsigned int XI1:1;
127 unsigned int RI0:1;
128 unsigned int RI1:1;
129 unsigned int EHINV:1;
130 uint64_t PFN[2];
131 };
132
133 struct CPUMIPSTLBContext {
134 uint32_t nb_tlb;
135 uint32_t tlb_in_use;
136 int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
137 target_ulong address, MMUAccessType access_type);
138 void (*helper_tlbwi)(struct CPUMIPSState *env);
139 void (*helper_tlbwr)(struct CPUMIPSState *env);
140 void (*helper_tlbp)(struct CPUMIPSState *env);
141 void (*helper_tlbr)(struct CPUMIPSState *env);
142 void (*helper_tlbinv)(struct CPUMIPSState *env);
143 void (*helper_tlbinvf)(struct CPUMIPSState *env);
144 union {
145 struct {
146 r4k_tlb_t tlb[MIPS_TLB_MAX];
147 } r4k;
148 } mmu;
149 };
150
151 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
152 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
153 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
154
155 extern const VMStateDescription vmstate_mips_cpu;
156
157 #endif /* !CONFIG_USER_ONLY */
158
159 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
160 {
161 return (env->CP0_Status & (1 << CP0St_IE)) &&
162 !(env->CP0_Status & (1 << CP0St_EXL)) &&
163 !(env->CP0_Status & (1 << CP0St_ERL)) &&
164 !(env->hflags & MIPS_HFLAG_DM) &&
165 /*
166 * Note that the TCStatus IXMT field is initialized to zero,
167 * and only MT capable cores can set it to one. So we don't
168 * need to check for MT capabilities here.
169 */
170 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
171 }
172
173 /* Check if there is pending and not masked out interrupt */
174 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
175 {
176 int32_t pending;
177 int32_t status;
178 bool r;
179
180 pending = env->CP0_Cause & CP0Ca_IP_mask;
181 status = env->CP0_Status & CP0Ca_IP_mask;
182
183 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
184 /*
185 * A MIPS configured with a vectorizing external interrupt controller
186 * will feed a vector into the Cause pending lines. The core treats
187 * the status lines as a vector level, not as individual masks.
188 */
189 r = pending > status;
190 } else {
191 /*
192 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
193 * treats the pending lines as individual interrupt lines, the status
194 * lines are individual masks.
195 */
196 r = (pending & status) != 0;
197 }
198 return r;
199 }
200
201 void msa_reset(CPUMIPSState *env);
202
203 /* cp0_timer.c */
204 uint32_t cpu_mips_get_count(CPUMIPSState *env);
205 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
206 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
207 void cpu_mips_start_count(CPUMIPSState *env);
208 void cpu_mips_stop_count(CPUMIPSState *env);
209
210 static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
211 {
212 env->active_tc.PC = value & ~(target_ulong)1;
213 if (value & 1) {
214 env->hflags |= MIPS_HFLAG_M16;
215 } else {
216 env->hflags &= ~(MIPS_HFLAG_M16);
217 }
218 }
219
220 static inline void restore_pamask(CPUMIPSState *env)
221 {
222 if (env->hflags & MIPS_HFLAG_ELPA) {
223 env->PAMask = (1ULL << env->PABITS) - 1;
224 } else {
225 env->PAMask = PAMASK_BASE;
226 }
227 }
228
229 static inline int mips_vpe_active(CPUMIPSState *env)
230 {
231 int active = 1;
232
233 /* Check that the VPE is enabled. */
234 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
235 active = 0;
236 }
237 /* Check that the VPE is activated. */
238 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
239 active = 0;
240 }
241
242 /*
243 * Now verify that there are active thread contexts in the VPE.
244 *
245 * This assumes the CPU model will internally reschedule threads
246 * if the active one goes to sleep. If there are no threads available
247 * the active one will be in a sleeping state, and we can turn off
248 * the entire VPE.
249 */
250 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
251 /* TC is not activated. */
252 active = 0;
253 }
254 if (env->active_tc.CP0_TCHalt & 1) {
255 /* TC is in halt state. */
256 active = 0;
257 }
258
259 return active;
260 }
261
262 static inline int mips_vp_active(CPUMIPSState *env)
263 {
264 CPUState *other_cs = first_cpu;
265
266 /* Check if the VP disabled other VPs (which means the VP is enabled) */
267 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
268 return 1;
269 }
270
271 /* Check if the virtual processor is disabled due to a DVP */
272 CPU_FOREACH(other_cs) {
273 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
274 if ((&other_cpu->env != env) &&
275 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
276 return 0;
277 }
278 }
279 return 1;
280 }
281
282 static inline void compute_hflags(CPUMIPSState *env)
283 {
284 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
285 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
286 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
287 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
288 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
289 if (env->CP0_Status & (1 << CP0St_ERL)) {
290 env->hflags |= MIPS_HFLAG_ERL;
291 }
292 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
293 !(env->CP0_Status & (1 << CP0St_ERL)) &&
294 !(env->hflags & MIPS_HFLAG_DM)) {
295 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
296 MIPS_HFLAG_KSU;
297 }
298 #if defined(TARGET_MIPS64)
299 if ((env->insn_flags & ISA_MIPS3) &&
300 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
301 (env->CP0_Status & (1 << CP0St_PX)) ||
302 (env->CP0_Status & (1 << CP0St_UX)))) {
303 env->hflags |= MIPS_HFLAG_64;
304 }
305
306 if (!(env->insn_flags & ISA_MIPS3)) {
307 env->hflags |= MIPS_HFLAG_AWRAP;
308 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
309 !(env->CP0_Status & (1 << CP0St_UX))) {
310 env->hflags |= MIPS_HFLAG_AWRAP;
311 } else if (env->insn_flags & ISA_MIPS_R6) {
312 /* Address wrapping for Supervisor and Kernel is specified in R6 */
313 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
314 !(env->CP0_Status & (1 << CP0St_SX))) ||
315 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
316 !(env->CP0_Status & (1 << CP0St_KX)))) {
317 env->hflags |= MIPS_HFLAG_AWRAP;
318 }
319 }
320 #endif
321 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
322 !(env->insn_flags & ISA_MIPS_R6)) ||
323 !(env->hflags & MIPS_HFLAG_KSU)) {
324 env->hflags |= MIPS_HFLAG_CP0;
325 }
326 if (env->CP0_Status & (1 << CP0St_CU1)) {
327 env->hflags |= MIPS_HFLAG_FPU;
328 }
329 if (env->CP0_Status & (1 << CP0St_FR)) {
330 env->hflags |= MIPS_HFLAG_F64;
331 }
332 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
333 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
334 env->hflags |= MIPS_HFLAG_SBRI;
335 }
336 if (env->insn_flags & ASE_DSP_R3) {
337 /*
338 * Our cpu supports DSP R3 ASE, so enable
339 * access to DSP R3 resources.
340 */
341 if (env->CP0_Status & (1 << CP0St_MX)) {
342 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
343 MIPS_HFLAG_DSP_R3;
344 }
345 } else if (env->insn_flags & ASE_DSP_R2) {
346 /*
347 * Our cpu supports DSP R2 ASE, so enable
348 * access to DSP R2 resources.
349 */
350 if (env->CP0_Status & (1 << CP0St_MX)) {
351 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
352 }
353
354 } else if (env->insn_flags & ASE_DSP) {
355 /*
356 * Our cpu supports DSP ASE, so enable
357 * access to DSP resources.
358 */
359 if (env->CP0_Status & (1 << CP0St_MX)) {
360 env->hflags |= MIPS_HFLAG_DSP;
361 }
362
363 }
364 if (env->insn_flags & ISA_MIPS_R2) {
365 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
366 env->hflags |= MIPS_HFLAG_COP1X;
367 }
368 } else if (env->insn_flags & ISA_MIPS_R1) {
369 if (env->hflags & MIPS_HFLAG_64) {
370 env->hflags |= MIPS_HFLAG_COP1X;
371 }
372 } else if (env->insn_flags & ISA_MIPS4) {
373 /*
374 * All supported MIPS IV CPUs use the XX (CU3) to enable
375 * and disable the MIPS IV extensions to the MIPS III ISA.
376 * Some other MIPS IV CPUs ignore the bit, so the check here
377 * would be too restrictive for them.
378 */
379 if (env->CP0_Status & (1U << CP0St_CU3)) {
380 env->hflags |= MIPS_HFLAG_COP1X;
381 }
382 }
383 if (ase_msa_available(env)) {
384 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
385 env->hflags |= MIPS_HFLAG_MSA;
386 }
387 }
388 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
389 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
390 env->hflags |= MIPS_HFLAG_FRE;
391 }
392 }
393 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
394 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
395 env->hflags |= MIPS_HFLAG_ELPA;
396 }
397 }
398 }
399
400 #endif