]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/internal.h
Merge remote-tracking branch 'remotes/philmd/tags/mips-20210502' into staging
[mirror_qemu.git] / target / mips / internal.h
1 /*
2 * MIPS internal definitions and helpers
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
7
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
10
11 #include "exec/memattrs.h"
12 #ifdef CONFIG_TCG
13 #include "tcg/tcg-internal.h"
14 #endif
15
16 /*
17 * MMU types, the first four entries have the same layout as the
18 * CP0C0_MT field.
19 */
20 enum mips_mmu_types {
21 MMU_TYPE_NONE = 0,
22 MMU_TYPE_R4000 = 1, /* Standard TLB */
23 MMU_TYPE_BAT = 2, /* Block Address Translation */
24 MMU_TYPE_FMT = 3, /* Fixed Mapping */
25 MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */
26 MMU_TYPE_R3000,
27 MMU_TYPE_R6000,
28 MMU_TYPE_R8000
29 };
30
31 struct mips_def_t {
32 const char *name;
33 int32_t CP0_PRid;
34 int32_t CP0_Config0;
35 int32_t CP0_Config1;
36 int32_t CP0_Config2;
37 int32_t CP0_Config3;
38 int32_t CP0_Config4;
39 int32_t CP0_Config4_rw_bitmask;
40 int32_t CP0_Config5;
41 int32_t CP0_Config5_rw_bitmask;
42 int32_t CP0_Config6;
43 int32_t CP0_Config6_rw_bitmask;
44 int32_t CP0_Config7;
45 int32_t CP0_Config7_rw_bitmask;
46 target_ulong CP0_LLAddr_rw_bitmask;
47 int CP0_LLAddr_shift;
48 int32_t SYNCI_Step;
49 int32_t CCRes;
50 int32_t CP0_Status_rw_bitmask;
51 int32_t CP0_TCStatus_rw_bitmask;
52 int32_t CP0_SRSCtl;
53 int32_t CP1_fcr0;
54 int32_t CP1_fcr31_rw_bitmask;
55 int32_t CP1_fcr31;
56 int32_t MSAIR;
57 int32_t SEGBITS;
58 int32_t PABITS;
59 int32_t CP0_SRSConf0_rw_bitmask;
60 int32_t CP0_SRSConf0;
61 int32_t CP0_SRSConf1_rw_bitmask;
62 int32_t CP0_SRSConf1;
63 int32_t CP0_SRSConf2_rw_bitmask;
64 int32_t CP0_SRSConf2;
65 int32_t CP0_SRSConf3_rw_bitmask;
66 int32_t CP0_SRSConf3;
67 int32_t CP0_SRSConf4_rw_bitmask;
68 int32_t CP0_SRSConf4;
69 int32_t CP0_PageGrain_rw_bitmask;
70 int32_t CP0_PageGrain;
71 target_ulong CP0_EBaseWG_rw_bitmask;
72 uint64_t insn_flags;
73 enum mips_mmu_types mmu_type;
74 int32_t SAARP;
75 };
76
77 extern const char regnames[32][4];
78 extern const char fregnames[32][4];
79
80 extern const struct mips_def_t mips_defs[];
81 extern const int mips_defs_number;
82
83 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
84 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
85
86 #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL)
87 #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL)
88 #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL)
89 #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL)
90 #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL)
91
92 #define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL)
93 #define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL)
94
95 #if !defined(CONFIG_USER_ONLY)
96
97 enum {
98 TLBRET_XI = -6,
99 TLBRET_RI = -5,
100 TLBRET_DIRTY = -4,
101 TLBRET_INVALID = -3,
102 TLBRET_NOMATCH = -2,
103 TLBRET_BADADDR = -1,
104 TLBRET_MATCH = 0
105 };
106
107 int get_physical_address(CPUMIPSState *env, hwaddr *physical,
108 int *prot, target_ulong real_address,
109 MMUAccessType access_type, int mmu_idx);
110 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
111
112 typedef struct r4k_tlb_t r4k_tlb_t;
113 struct r4k_tlb_t {
114 target_ulong VPN;
115 uint32_t PageMask;
116 uint16_t ASID;
117 uint32_t MMID;
118 unsigned int G:1;
119 unsigned int C0:3;
120 unsigned int C1:3;
121 unsigned int V0:1;
122 unsigned int V1:1;
123 unsigned int D0:1;
124 unsigned int D1:1;
125 unsigned int XI0:1;
126 unsigned int XI1:1;
127 unsigned int RI0:1;
128 unsigned int RI1:1;
129 unsigned int EHINV:1;
130 uint64_t PFN[2];
131 };
132
133 struct CPUMIPSTLBContext {
134 uint32_t nb_tlb;
135 uint32_t tlb_in_use;
136 int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
137 target_ulong address, MMUAccessType access_type);
138 void (*helper_tlbwi)(struct CPUMIPSState *env);
139 void (*helper_tlbwr)(struct CPUMIPSState *env);
140 void (*helper_tlbp)(struct CPUMIPSState *env);
141 void (*helper_tlbr)(struct CPUMIPSState *env);
142 void (*helper_tlbinv)(struct CPUMIPSState *env);
143 void (*helper_tlbinvf)(struct CPUMIPSState *env);
144 union {
145 struct {
146 r4k_tlb_t tlb[MIPS_TLB_MAX];
147 } r4k;
148 } mmu;
149 };
150
151 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
152 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
153 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
154
155 extern const VMStateDescription vmstate_mips_cpu;
156
157 #endif /* !CONFIG_USER_ONLY */
158
159 #define cpu_signal_handler cpu_mips_signal_handler
160
161 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
162 {
163 return (env->CP0_Status & (1 << CP0St_IE)) &&
164 !(env->CP0_Status & (1 << CP0St_EXL)) &&
165 !(env->CP0_Status & (1 << CP0St_ERL)) &&
166 !(env->hflags & MIPS_HFLAG_DM) &&
167 /*
168 * Note that the TCStatus IXMT field is initialized to zero,
169 * and only MT capable cores can set it to one. So we don't
170 * need to check for MT capabilities here.
171 */
172 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
173 }
174
175 /* Check if there is pending and not masked out interrupt */
176 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
177 {
178 int32_t pending;
179 int32_t status;
180 bool r;
181
182 pending = env->CP0_Cause & CP0Ca_IP_mask;
183 status = env->CP0_Status & CP0Ca_IP_mask;
184
185 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
186 /*
187 * A MIPS configured with a vectorizing external interrupt controller
188 * will feed a vector into the Cause pending lines. The core treats
189 * the status lines as a vector level, not as individual masks.
190 */
191 r = pending > status;
192 } else {
193 /*
194 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
195 * treats the pending lines as individual interrupt lines, the status
196 * lines are individual masks.
197 */
198 r = (pending & status) != 0;
199 }
200 return r;
201 }
202
203 void msa_reset(CPUMIPSState *env);
204
205 /* cp0_timer.c */
206 uint32_t cpu_mips_get_count(CPUMIPSState *env);
207 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
208 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
209 void cpu_mips_start_count(CPUMIPSState *env);
210 void cpu_mips_stop_count(CPUMIPSState *env);
211
212 static inline void mips_env_set_pc(CPUMIPSState *env, target_ulong value)
213 {
214 env->active_tc.PC = value & ~(target_ulong)1;
215 if (value & 1) {
216 env->hflags |= MIPS_HFLAG_M16;
217 } else {
218 env->hflags &= ~(MIPS_HFLAG_M16);
219 }
220 }
221
222 static inline void restore_pamask(CPUMIPSState *env)
223 {
224 if (env->hflags & MIPS_HFLAG_ELPA) {
225 env->PAMask = (1ULL << env->PABITS) - 1;
226 } else {
227 env->PAMask = PAMASK_BASE;
228 }
229 }
230
231 static inline int mips_vpe_active(CPUMIPSState *env)
232 {
233 int active = 1;
234
235 /* Check that the VPE is enabled. */
236 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
237 active = 0;
238 }
239 /* Check that the VPE is activated. */
240 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
241 active = 0;
242 }
243
244 /*
245 * Now verify that there are active thread contexts in the VPE.
246 *
247 * This assumes the CPU model will internally reschedule threads
248 * if the active one goes to sleep. If there are no threads available
249 * the active one will be in a sleeping state, and we can turn off
250 * the entire VPE.
251 */
252 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
253 /* TC is not activated. */
254 active = 0;
255 }
256 if (env->active_tc.CP0_TCHalt & 1) {
257 /* TC is in halt state. */
258 active = 0;
259 }
260
261 return active;
262 }
263
264 static inline int mips_vp_active(CPUMIPSState *env)
265 {
266 CPUState *other_cs = first_cpu;
267
268 /* Check if the VP disabled other VPs (which means the VP is enabled) */
269 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
270 return 1;
271 }
272
273 /* Check if the virtual processor is disabled due to a DVP */
274 CPU_FOREACH(other_cs) {
275 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
276 if ((&other_cpu->env != env) &&
277 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
278 return 0;
279 }
280 }
281 return 1;
282 }
283
284 static inline void compute_hflags(CPUMIPSState *env)
285 {
286 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
287 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
288 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
289 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
290 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
291 if (env->CP0_Status & (1 << CP0St_ERL)) {
292 env->hflags |= MIPS_HFLAG_ERL;
293 }
294 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
295 !(env->CP0_Status & (1 << CP0St_ERL)) &&
296 !(env->hflags & MIPS_HFLAG_DM)) {
297 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
298 MIPS_HFLAG_KSU;
299 }
300 #if defined(TARGET_MIPS64)
301 if ((env->insn_flags & ISA_MIPS3) &&
302 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
303 (env->CP0_Status & (1 << CP0St_PX)) ||
304 (env->CP0_Status & (1 << CP0St_UX)))) {
305 env->hflags |= MIPS_HFLAG_64;
306 }
307
308 if (!(env->insn_flags & ISA_MIPS3)) {
309 env->hflags |= MIPS_HFLAG_AWRAP;
310 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
311 !(env->CP0_Status & (1 << CP0St_UX))) {
312 env->hflags |= MIPS_HFLAG_AWRAP;
313 } else if (env->insn_flags & ISA_MIPS_R6) {
314 /* Address wrapping for Supervisor and Kernel is specified in R6 */
315 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
316 !(env->CP0_Status & (1 << CP0St_SX))) ||
317 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
318 !(env->CP0_Status & (1 << CP0St_KX)))) {
319 env->hflags |= MIPS_HFLAG_AWRAP;
320 }
321 }
322 #endif
323 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
324 !(env->insn_flags & ISA_MIPS_R6)) ||
325 !(env->hflags & MIPS_HFLAG_KSU)) {
326 env->hflags |= MIPS_HFLAG_CP0;
327 }
328 if (env->CP0_Status & (1 << CP0St_CU1)) {
329 env->hflags |= MIPS_HFLAG_FPU;
330 }
331 if (env->CP0_Status & (1 << CP0St_FR)) {
332 env->hflags |= MIPS_HFLAG_F64;
333 }
334 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
335 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
336 env->hflags |= MIPS_HFLAG_SBRI;
337 }
338 if (env->insn_flags & ASE_DSP_R3) {
339 /*
340 * Our cpu supports DSP R3 ASE, so enable
341 * access to DSP R3 resources.
342 */
343 if (env->CP0_Status & (1 << CP0St_MX)) {
344 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
345 MIPS_HFLAG_DSP_R3;
346 }
347 } else if (env->insn_flags & ASE_DSP_R2) {
348 /*
349 * Our cpu supports DSP R2 ASE, so enable
350 * access to DSP R2 resources.
351 */
352 if (env->CP0_Status & (1 << CP0St_MX)) {
353 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
354 }
355
356 } else if (env->insn_flags & ASE_DSP) {
357 /*
358 * Our cpu supports DSP ASE, so enable
359 * access to DSP resources.
360 */
361 if (env->CP0_Status & (1 << CP0St_MX)) {
362 env->hflags |= MIPS_HFLAG_DSP;
363 }
364
365 }
366 if (env->insn_flags & ISA_MIPS_R2) {
367 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
368 env->hflags |= MIPS_HFLAG_COP1X;
369 }
370 } else if (env->insn_flags & ISA_MIPS_R1) {
371 if (env->hflags & MIPS_HFLAG_64) {
372 env->hflags |= MIPS_HFLAG_COP1X;
373 }
374 } else if (env->insn_flags & ISA_MIPS4) {
375 /*
376 * All supported MIPS IV CPUs use the XX (CU3) to enable
377 * and disable the MIPS IV extensions to the MIPS III ISA.
378 * Some other MIPS IV CPUs ignore the bit, so the check here
379 * would be too restrictive for them.
380 */
381 if (env->CP0_Status & (1U << CP0St_CU3)) {
382 env->hflags |= MIPS_HFLAG_COP1X;
383 }
384 }
385 if (ase_msa_available(env)) {
386 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
387 env->hflags |= MIPS_HFLAG_MSA;
388 }
389 }
390 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
391 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
392 env->hflags |= MIPS_HFLAG_FRE;
393 }
394 }
395 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
396 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
397 env->hflags |= MIPS_HFLAG_ELPA;
398 }
399 }
400 }
401
402 #endif