]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/op_helper.c
Merge remote-tracking branch 'remotes/vivier2/tags/linux-user-for-3.1-pull-request...
[mirror_qemu.git] / target / mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "qemu/host-utils.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "sysemu/kvm.h"
28
29 /*****************************************************************************/
30 /* Exceptions processing helpers */
31
32 void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
33 int error_code)
34 {
35 do_raise_exception_err(env, exception, error_code, 0);
36 }
37
38 void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
39 {
40 do_raise_exception(env, exception, GETPC());
41 }
42
43 void helper_raise_exception_debug(CPUMIPSState *env)
44 {
45 do_raise_exception(env, EXCP_DEBUG, 0);
46 }
47
48 static void raise_exception(CPUMIPSState *env, uint32_t exception)
49 {
50 do_raise_exception(env, exception, 0);
51 }
52
53 #if defined(CONFIG_USER_ONLY)
54 #define HELPER_LD(name, insn, type) \
55 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
56 int mem_idx, uintptr_t retaddr) \
57 { \
58 return (type) cpu_##insn##_data_ra(env, addr, retaddr); \
59 }
60 #else
61 #define HELPER_LD(name, insn, type) \
62 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
63 int mem_idx, uintptr_t retaddr) \
64 { \
65 switch (mem_idx) \
66 { \
67 case 0: return (type) cpu_##insn##_kernel_ra(env, addr, retaddr); \
68 case 1: return (type) cpu_##insn##_super_ra(env, addr, retaddr); \
69 default: \
70 case 2: return (type) cpu_##insn##_user_ra(env, addr, retaddr); \
71 case 3: return (type) cpu_##insn##_error_ra(env, addr, retaddr); \
72 } \
73 }
74 #endif
75 HELPER_LD(lw, ldl, int32_t)
76 #if defined(TARGET_MIPS64)
77 HELPER_LD(ld, ldq, int64_t)
78 #endif
79 #undef HELPER_LD
80
81 #if defined(CONFIG_USER_ONLY)
82 #define HELPER_ST(name, insn, type) \
83 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
84 type val, int mem_idx, uintptr_t retaddr) \
85 { \
86 cpu_##insn##_data_ra(env, addr, val, retaddr); \
87 }
88 #else
89 #define HELPER_ST(name, insn, type) \
90 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
91 type val, int mem_idx, uintptr_t retaddr) \
92 { \
93 switch (mem_idx) \
94 { \
95 case 0: cpu_##insn##_kernel_ra(env, addr, val, retaddr); break; \
96 case 1: cpu_##insn##_super_ra(env, addr, val, retaddr); break; \
97 default: \
98 case 2: cpu_##insn##_user_ra(env, addr, val, retaddr); break; \
99 case 3: \
100 cpu_##insn##_error_ra(env, addr, val, retaddr); \
101 break; \
102 } \
103 }
104 #endif
105 HELPER_ST(sb, stb, uint8_t)
106 HELPER_ST(sw, stl, uint32_t)
107 #if defined(TARGET_MIPS64)
108 HELPER_ST(sd, stq, uint64_t)
109 #endif
110 #undef HELPER_ST
111
112 /* 64 bits arithmetic for 32 bits hosts */
113 static inline uint64_t get_HILO(CPUMIPSState *env)
114 {
115 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
116 }
117
118 static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
119 {
120 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
121 return env->active_tc.HI[0] = (int32_t)(HILO >> 32);
122 }
123
124 static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
125 {
126 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
127 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
128 return tmp;
129 }
130
131 /* Multiplication variants of the vr54xx. */
132 target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
133 target_ulong arg2)
134 {
135 return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
136 (int64_t)(int32_t)arg2));
137 }
138
139 target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
140 target_ulong arg2)
141 {
142 return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
143 (uint64_t)(uint32_t)arg2);
144 }
145
146 target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
147 target_ulong arg2)
148 {
149 return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
150 (int64_t)(int32_t)arg2);
151 }
152
153 target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
154 target_ulong arg2)
155 {
156 return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
157 (int64_t)(int32_t)arg2);
158 }
159
160 target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
161 target_ulong arg2)
162 {
163 return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
164 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
165 }
166
167 target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
168 target_ulong arg2)
169 {
170 return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
171 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
172 }
173
174 target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
175 target_ulong arg2)
176 {
177 return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
178 (int64_t)(int32_t)arg2);
179 }
180
181 target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
182 target_ulong arg2)
183 {
184 return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
185 (int64_t)(int32_t)arg2);
186 }
187
188 target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
189 target_ulong arg2)
190 {
191 return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
192 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
193 }
194
195 target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
196 target_ulong arg2)
197 {
198 return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
199 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
200 }
201
202 target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
203 target_ulong arg2)
204 {
205 return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
206 }
207
208 target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
209 target_ulong arg2)
210 {
211 return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
212 (uint64_t)(uint32_t)arg2);
213 }
214
215 target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
216 target_ulong arg2)
217 {
218 return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
219 (int64_t)(int32_t)arg2);
220 }
221
222 target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
223 target_ulong arg2)
224 {
225 return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
226 (uint64_t)(uint32_t)arg2);
227 }
228
229 static inline target_ulong bitswap(target_ulong v)
230 {
231 v = ((v >> 1) & (target_ulong)0x5555555555555555ULL) |
232 ((v & (target_ulong)0x5555555555555555ULL) << 1);
233 v = ((v >> 2) & (target_ulong)0x3333333333333333ULL) |
234 ((v & (target_ulong)0x3333333333333333ULL) << 2);
235 v = ((v >> 4) & (target_ulong)0x0F0F0F0F0F0F0F0FULL) |
236 ((v & (target_ulong)0x0F0F0F0F0F0F0F0FULL) << 4);
237 return v;
238 }
239
240 #ifdef TARGET_MIPS64
241 target_ulong helper_dbitswap(target_ulong rt)
242 {
243 return bitswap(rt);
244 }
245 #endif
246
247 target_ulong helper_bitswap(target_ulong rt)
248 {
249 return (int32_t)bitswap(rt);
250 }
251
252 target_ulong helper_rotx(target_ulong rs, uint32_t shift, uint32_t shiftx,
253 uint32_t stripe)
254 {
255 int i;
256 uint64_t tmp0 = ((uint64_t)rs) << 32 | ((uint64_t)rs & 0xffffffff);
257 uint64_t tmp1 = tmp0;
258 for (i = 0; i <= 46; i++) {
259 int s;
260 if (i & 0x8) {
261 s = shift;
262 } else {
263 s = shiftx;
264 }
265
266 if (stripe != 0 && !(i & 0x4)) {
267 s = ~s;
268 }
269 if (s & 0x10) {
270 if (tmp0 & (1LL << (i + 16))) {
271 tmp1 |= 1LL << i;
272 } else {
273 tmp1 &= ~(1LL << i);
274 }
275 }
276 }
277
278 uint64_t tmp2 = tmp1;
279 for (i = 0; i <= 38; i++) {
280 int s;
281 if (i & 0x4) {
282 s = shift;
283 } else {
284 s = shiftx;
285 }
286
287 if (s & 0x8) {
288 if (tmp1 & (1LL << (i + 8))) {
289 tmp2 |= 1LL << i;
290 } else {
291 tmp2 &= ~(1LL << i);
292 }
293 }
294 }
295
296 uint64_t tmp3 = tmp2;
297 for (i = 0; i <= 34; i++) {
298 int s;
299 if (i & 0x2) {
300 s = shift;
301 } else {
302 s = shiftx;
303 }
304 if (s & 0x4) {
305 if (tmp2 & (1LL << (i + 4))) {
306 tmp3 |= 1LL << i;
307 } else {
308 tmp3 &= ~(1LL << i);
309 }
310 }
311 }
312
313 uint64_t tmp4 = tmp3;
314 for (i = 0; i <= 32; i++) {
315 int s;
316 if (i & 0x1) {
317 s = shift;
318 } else {
319 s = shiftx;
320 }
321 if (s & 0x2) {
322 if (tmp3 & (1LL << (i + 2))) {
323 tmp4 |= 1LL << i;
324 } else {
325 tmp4 &= ~(1LL << i);
326 }
327 }
328 }
329
330 uint64_t tmp5 = tmp4;
331 for (i = 0; i <= 31; i++) {
332 int s;
333 s = shift;
334 if (s & 0x1) {
335 if (tmp4 & (1LL << (i + 1))) {
336 tmp5 |= 1LL << i;
337 } else {
338 tmp5 &= ~(1LL << i);
339 }
340 }
341 }
342
343 return (int64_t)(int32_t)(uint32_t)tmp5;
344 }
345
346 #ifndef CONFIG_USER_ONLY
347
348 static inline hwaddr do_translate_address(CPUMIPSState *env,
349 target_ulong address,
350 int rw, uintptr_t retaddr)
351 {
352 hwaddr lladdr;
353 CPUState *cs = CPU(mips_env_get_cpu(env));
354
355 lladdr = cpu_mips_translate_address(env, address, rw);
356
357 if (lladdr == -1LL) {
358 cpu_loop_exit_restore(cs, retaddr);
359 } else {
360 return lladdr;
361 }
362 }
363
364 #define HELPER_LD_ATOMIC(name, insn, almask) \
365 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
366 { \
367 if (arg & almask) { \
368 if (!(env->hflags & MIPS_HFLAG_DM)) { \
369 env->CP0_BadVAddr = arg; \
370 } \
371 do_raise_exception(env, EXCP_AdEL, GETPC()); \
372 } \
373 env->lladdr = do_translate_address(env, arg, 0, GETPC()); \
374 env->llval = do_##insn(env, arg, mem_idx, GETPC()); \
375 return env->llval; \
376 }
377 HELPER_LD_ATOMIC(ll, lw, 0x3)
378 #ifdef TARGET_MIPS64
379 HELPER_LD_ATOMIC(lld, ld, 0x7)
380 #endif
381 #undef HELPER_LD_ATOMIC
382
383 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
384 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
385 target_ulong arg2, int mem_idx) \
386 { \
387 target_long tmp; \
388 \
389 if (arg2 & almask) { \
390 if (!(env->hflags & MIPS_HFLAG_DM)) { \
391 env->CP0_BadVAddr = arg2; \
392 } \
393 do_raise_exception(env, EXCP_AdES, GETPC()); \
394 } \
395 if (do_translate_address(env, arg2, 1, GETPC()) == env->lladdr) { \
396 tmp = do_##ld_insn(env, arg2, mem_idx, GETPC()); \
397 if (tmp == env->llval) { \
398 do_##st_insn(env, arg2, arg1, mem_idx, GETPC()); \
399 return 1; \
400 } \
401 } \
402 return 0; \
403 }
404 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
405 #ifdef TARGET_MIPS64
406 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
407 #endif
408 #undef HELPER_ST_ATOMIC
409 #endif
410
411 #ifdef TARGET_WORDS_BIGENDIAN
412 #define GET_LMASK(v) ((v) & 3)
413 #define GET_OFFSET(addr, offset) (addr + (offset))
414 #else
415 #define GET_LMASK(v) (((v) & 3) ^ 3)
416 #define GET_OFFSET(addr, offset) (addr - (offset))
417 #endif
418
419 void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
420 int mem_idx)
421 {
422 do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx, GETPC());
423
424 if (GET_LMASK(arg2) <= 2) {
425 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx,
426 GETPC());
427 }
428
429 if (GET_LMASK(arg2) <= 1) {
430 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx,
431 GETPC());
432 }
433
434 if (GET_LMASK(arg2) == 0) {
435 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx,
436 GETPC());
437 }
438 }
439
440 void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
441 int mem_idx)
442 {
443 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
444
445 if (GET_LMASK(arg2) >= 1) {
446 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
447 GETPC());
448 }
449
450 if (GET_LMASK(arg2) >= 2) {
451 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
452 GETPC());
453 }
454
455 if (GET_LMASK(arg2) == 3) {
456 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
457 GETPC());
458 }
459 }
460
461 #if defined(TARGET_MIPS64)
462 /* "half" load and stores. We must do the memory access inline,
463 or fault handling won't work. */
464
465 #ifdef TARGET_WORDS_BIGENDIAN
466 #define GET_LMASK64(v) ((v) & 7)
467 #else
468 #define GET_LMASK64(v) (((v) & 7) ^ 7)
469 #endif
470
471 void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
472 int mem_idx)
473 {
474 do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx, GETPC());
475
476 if (GET_LMASK64(arg2) <= 6) {
477 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx,
478 GETPC());
479 }
480
481 if (GET_LMASK64(arg2) <= 5) {
482 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx,
483 GETPC());
484 }
485
486 if (GET_LMASK64(arg2) <= 4) {
487 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx,
488 GETPC());
489 }
490
491 if (GET_LMASK64(arg2) <= 3) {
492 do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx,
493 GETPC());
494 }
495
496 if (GET_LMASK64(arg2) <= 2) {
497 do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx,
498 GETPC());
499 }
500
501 if (GET_LMASK64(arg2) <= 1) {
502 do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx,
503 GETPC());
504 }
505
506 if (GET_LMASK64(arg2) <= 0) {
507 do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx,
508 GETPC());
509 }
510 }
511
512 void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
513 int mem_idx)
514 {
515 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
516
517 if (GET_LMASK64(arg2) >= 1) {
518 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
519 GETPC());
520 }
521
522 if (GET_LMASK64(arg2) >= 2) {
523 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
524 GETPC());
525 }
526
527 if (GET_LMASK64(arg2) >= 3) {
528 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
529 GETPC());
530 }
531
532 if (GET_LMASK64(arg2) >= 4) {
533 do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx,
534 GETPC());
535 }
536
537 if (GET_LMASK64(arg2) >= 5) {
538 do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx,
539 GETPC());
540 }
541
542 if (GET_LMASK64(arg2) >= 6) {
543 do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx,
544 GETPC());
545 }
546
547 if (GET_LMASK64(arg2) == 7) {
548 do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx,
549 GETPC());
550 }
551 }
552 #endif /* TARGET_MIPS64 */
553
554 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
555
556 void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
557 uint32_t mem_idx)
558 {
559 target_ulong base_reglist = reglist & 0xf;
560 target_ulong do_r31 = reglist & 0x10;
561
562 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
563 target_ulong i;
564
565 for (i = 0; i < base_reglist; i++) {
566 env->active_tc.gpr[multiple_regs[i]] =
567 (target_long)do_lw(env, addr, mem_idx, GETPC());
568 addr += 4;
569 }
570 }
571
572 if (do_r31) {
573 env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx,
574 GETPC());
575 }
576 }
577
578 void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
579 uint32_t mem_idx)
580 {
581 target_ulong base_reglist = reglist & 0xf;
582 target_ulong do_r31 = reglist & 0x10;
583
584 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
585 target_ulong i;
586
587 for (i = 0; i < base_reglist; i++) {
588 do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
589 GETPC());
590 addr += 4;
591 }
592 }
593
594 if (do_r31) {
595 do_sw(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
596 }
597 }
598
599 #if defined(TARGET_MIPS64)
600 void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
601 uint32_t mem_idx)
602 {
603 target_ulong base_reglist = reglist & 0xf;
604 target_ulong do_r31 = reglist & 0x10;
605
606 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
607 target_ulong i;
608
609 for (i = 0; i < base_reglist; i++) {
610 env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx,
611 GETPC());
612 addr += 8;
613 }
614 }
615
616 if (do_r31) {
617 env->active_tc.gpr[31] = do_ld(env, addr, mem_idx, GETPC());
618 }
619 }
620
621 void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
622 uint32_t mem_idx)
623 {
624 target_ulong base_reglist = reglist & 0xf;
625 target_ulong do_r31 = reglist & 0x10;
626
627 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
628 target_ulong i;
629
630 for (i = 0; i < base_reglist; i++) {
631 do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
632 GETPC());
633 addr += 8;
634 }
635 }
636
637 if (do_r31) {
638 do_sd(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
639 }
640 }
641 #endif
642
643 #ifndef CONFIG_USER_ONLY
644 /* SMP helpers. */
645 static bool mips_vpe_is_wfi(MIPSCPU *c)
646 {
647 CPUState *cpu = CPU(c);
648 CPUMIPSState *env = &c->env;
649
650 /* If the VPE is halted but otherwise active, it means it's waiting for
651 an interrupt. */
652 return cpu->halted && mips_vpe_active(env);
653 }
654
655 static bool mips_vp_is_wfi(MIPSCPU *c)
656 {
657 CPUState *cpu = CPU(c);
658 CPUMIPSState *env = &c->env;
659
660 return cpu->halted && mips_vp_active(env);
661 }
662
663 static inline void mips_vpe_wake(MIPSCPU *c)
664 {
665 /* Don't set ->halted = 0 directly, let it be done via cpu_has_work
666 because there might be other conditions that state that c should
667 be sleeping. */
668 cpu_interrupt(CPU(c), CPU_INTERRUPT_WAKE);
669 }
670
671 static inline void mips_vpe_sleep(MIPSCPU *cpu)
672 {
673 CPUState *cs = CPU(cpu);
674
675 /* The VPE was shut off, really go to bed.
676 Reset any old _WAKE requests. */
677 cs->halted = 1;
678 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
679 }
680
681 static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
682 {
683 CPUMIPSState *c = &cpu->env;
684
685 /* FIXME: TC reschedule. */
686 if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
687 mips_vpe_wake(cpu);
688 }
689 }
690
691 static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
692 {
693 CPUMIPSState *c = &cpu->env;
694
695 /* FIXME: TC reschedule. */
696 if (!mips_vpe_active(c)) {
697 mips_vpe_sleep(cpu);
698 }
699 }
700
701 /**
702 * mips_cpu_map_tc:
703 * @env: CPU from which mapping is performed.
704 * @tc: Should point to an int with the value of the global TC index.
705 *
706 * This function will transform @tc into a local index within the
707 * returned #CPUMIPSState.
708 */
709 /* FIXME: This code assumes that all VPEs have the same number of TCs,
710 which depends on runtime setup. Can probably be fixed by
711 walking the list of CPUMIPSStates. */
712 static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
713 {
714 MIPSCPU *cpu;
715 CPUState *cs;
716 CPUState *other_cs;
717 int vpe_idx;
718 int tc_idx = *tc;
719
720 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
721 /* Not allowed to address other CPUs. */
722 *tc = env->current_tc;
723 return env;
724 }
725
726 cs = CPU(mips_env_get_cpu(env));
727 vpe_idx = tc_idx / cs->nr_threads;
728 *tc = tc_idx % cs->nr_threads;
729 other_cs = qemu_get_cpu(vpe_idx);
730 if (other_cs == NULL) {
731 return env;
732 }
733 cpu = MIPS_CPU(other_cs);
734 return &cpu->env;
735 }
736
737 /* The per VPE CP0_Status register shares some fields with the per TC
738 CP0_TCStatus registers. These fields are wired to the same registers,
739 so changes to either of them should be reflected on both registers.
740
741 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
742
743 These helper call synchronizes the regs for a given cpu. */
744
745 /* Called for updates to CP0_Status. Defined in "cpu.h" for gdbstub.c. */
746 /* static inline void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu,
747 int tc); */
748
749 /* Called for updates to CP0_TCStatus. */
750 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
751 target_ulong v)
752 {
753 uint32_t status;
754 uint32_t tcu, tmx, tasid, tksu;
755 uint32_t mask = ((1U << CP0St_CU3)
756 | (1 << CP0St_CU2)
757 | (1 << CP0St_CU1)
758 | (1 << CP0St_CU0)
759 | (1 << CP0St_MX)
760 | (3 << CP0St_KSU));
761
762 tcu = (v >> CP0TCSt_TCU0) & 0xf;
763 tmx = (v >> CP0TCSt_TMX) & 0x1;
764 tasid = v & cpu->CP0_EntryHi_ASID_mask;
765 tksu = (v >> CP0TCSt_TKSU) & 0x3;
766
767 status = tcu << CP0St_CU0;
768 status |= tmx << CP0St_MX;
769 status |= tksu << CP0St_KSU;
770
771 cpu->CP0_Status &= ~mask;
772 cpu->CP0_Status |= status;
773
774 /* Sync the TASID with EntryHi. */
775 cpu->CP0_EntryHi &= ~cpu->CP0_EntryHi_ASID_mask;
776 cpu->CP0_EntryHi |= tasid;
777
778 compute_hflags(cpu);
779 }
780
781 /* Called for updates to CP0_EntryHi. */
782 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
783 {
784 int32_t *tcst;
785 uint32_t asid, v = cpu->CP0_EntryHi;
786
787 asid = v & cpu->CP0_EntryHi_ASID_mask;
788
789 if (tc == cpu->current_tc) {
790 tcst = &cpu->active_tc.CP0_TCStatus;
791 } else {
792 tcst = &cpu->tcs[tc].CP0_TCStatus;
793 }
794
795 *tcst &= ~cpu->CP0_EntryHi_ASID_mask;
796 *tcst |= asid;
797 }
798
799 /* CP0 helpers */
800 target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
801 {
802 return env->mvp->CP0_MVPControl;
803 }
804
805 target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
806 {
807 return env->mvp->CP0_MVPConf0;
808 }
809
810 target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
811 {
812 return env->mvp->CP0_MVPConf1;
813 }
814
815 target_ulong helper_mfc0_random(CPUMIPSState *env)
816 {
817 return (int32_t)cpu_mips_get_random(env);
818 }
819
820 target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
821 {
822 return env->active_tc.CP0_TCStatus;
823 }
824
825 target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
826 {
827 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
828 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
829
830 if (other_tc == other->current_tc)
831 return other->active_tc.CP0_TCStatus;
832 else
833 return other->tcs[other_tc].CP0_TCStatus;
834 }
835
836 target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
837 {
838 return env->active_tc.CP0_TCBind;
839 }
840
841 target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
842 {
843 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
844 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
845
846 if (other_tc == other->current_tc)
847 return other->active_tc.CP0_TCBind;
848 else
849 return other->tcs[other_tc].CP0_TCBind;
850 }
851
852 target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
853 {
854 return env->active_tc.PC;
855 }
856
857 target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
858 {
859 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
860 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
861
862 if (other_tc == other->current_tc)
863 return other->active_tc.PC;
864 else
865 return other->tcs[other_tc].PC;
866 }
867
868 target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
869 {
870 return env->active_tc.CP0_TCHalt;
871 }
872
873 target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
874 {
875 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
876 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
877
878 if (other_tc == other->current_tc)
879 return other->active_tc.CP0_TCHalt;
880 else
881 return other->tcs[other_tc].CP0_TCHalt;
882 }
883
884 target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
885 {
886 return env->active_tc.CP0_TCContext;
887 }
888
889 target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
890 {
891 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
892 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
893
894 if (other_tc == other->current_tc)
895 return other->active_tc.CP0_TCContext;
896 else
897 return other->tcs[other_tc].CP0_TCContext;
898 }
899
900 target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
901 {
902 return env->active_tc.CP0_TCSchedule;
903 }
904
905 target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
906 {
907 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
908 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
909
910 if (other_tc == other->current_tc)
911 return other->active_tc.CP0_TCSchedule;
912 else
913 return other->tcs[other_tc].CP0_TCSchedule;
914 }
915
916 target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
917 {
918 return env->active_tc.CP0_TCScheFBack;
919 }
920
921 target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
922 {
923 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
924 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
925
926 if (other_tc == other->current_tc)
927 return other->active_tc.CP0_TCScheFBack;
928 else
929 return other->tcs[other_tc].CP0_TCScheFBack;
930 }
931
932 target_ulong helper_mfc0_count(CPUMIPSState *env)
933 {
934 int32_t count;
935 qemu_mutex_lock_iothread();
936 count = (int32_t) cpu_mips_get_count(env);
937 qemu_mutex_unlock_iothread();
938 return count;
939 }
940
941 target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
942 {
943 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
944 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
945
946 return other->CP0_EntryHi;
947 }
948
949 target_ulong helper_mftc0_cause(CPUMIPSState *env)
950 {
951 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
952 int32_t tccause;
953 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
954
955 if (other_tc == other->current_tc) {
956 tccause = other->CP0_Cause;
957 } else {
958 tccause = other->CP0_Cause;
959 }
960
961 return tccause;
962 }
963
964 target_ulong helper_mftc0_status(CPUMIPSState *env)
965 {
966 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
967 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
968
969 return other->CP0_Status;
970 }
971
972 target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
973 {
974 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
975 }
976
977 target_ulong helper_mfc0_maar(CPUMIPSState *env)
978 {
979 return (int32_t) env->CP0_MAAR[env->CP0_MAARI];
980 }
981
982 target_ulong helper_mfhc0_maar(CPUMIPSState *env)
983 {
984 return env->CP0_MAAR[env->CP0_MAARI] >> 32;
985 }
986
987 target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
988 {
989 return (int32_t)env->CP0_WatchLo[sel];
990 }
991
992 target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
993 {
994 return env->CP0_WatchHi[sel];
995 }
996
997 target_ulong helper_mfc0_debug(CPUMIPSState *env)
998 {
999 target_ulong t0 = env->CP0_Debug;
1000 if (env->hflags & MIPS_HFLAG_DM)
1001 t0 |= 1 << CP0DB_DM;
1002
1003 return t0;
1004 }
1005
1006 target_ulong helper_mftc0_debug(CPUMIPSState *env)
1007 {
1008 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1009 int32_t tcstatus;
1010 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1011
1012 if (other_tc == other->current_tc)
1013 tcstatus = other->active_tc.CP0_Debug_tcstatus;
1014 else
1015 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
1016
1017 /* XXX: Might be wrong, check with EJTAG spec. */
1018 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1019 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1020 }
1021
1022 #if defined(TARGET_MIPS64)
1023 target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
1024 {
1025 return env->active_tc.PC;
1026 }
1027
1028 target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
1029 {
1030 return env->active_tc.CP0_TCHalt;
1031 }
1032
1033 target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
1034 {
1035 return env->active_tc.CP0_TCContext;
1036 }
1037
1038 target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
1039 {
1040 return env->active_tc.CP0_TCSchedule;
1041 }
1042
1043 target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
1044 {
1045 return env->active_tc.CP0_TCScheFBack;
1046 }
1047
1048 target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
1049 {
1050 return env->lladdr >> env->CP0_LLAddr_shift;
1051 }
1052
1053 target_ulong helper_dmfc0_maar(CPUMIPSState *env)
1054 {
1055 return env->CP0_MAAR[env->CP0_MAARI];
1056 }
1057
1058 target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
1059 {
1060 return env->CP0_WatchLo[sel];
1061 }
1062 #endif /* TARGET_MIPS64 */
1063
1064 void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
1065 {
1066 uint32_t index_p = env->CP0_Index & 0x80000000;
1067 uint32_t tlb_index = arg1 & 0x7fffffff;
1068 if (tlb_index < env->tlb->nb_tlb) {
1069 if (env->insn_flags & ISA_MIPS32R6) {
1070 index_p |= arg1 & 0x80000000;
1071 }
1072 env->CP0_Index = index_p | tlb_index;
1073 }
1074 }
1075
1076 void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
1077 {
1078 uint32_t mask = 0;
1079 uint32_t newval;
1080
1081 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
1082 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
1083 (1 << CP0MVPCo_EVP);
1084 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1085 mask |= (1 << CP0MVPCo_STLB);
1086 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
1087
1088 // TODO: Enable/disable shared TLB, enable/disable VPEs.
1089
1090 env->mvp->CP0_MVPControl = newval;
1091 }
1092
1093 void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
1094 {
1095 uint32_t mask;
1096 uint32_t newval;
1097
1098 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1099 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1100 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
1101
1102 /* Yield scheduler intercept not implemented. */
1103 /* Gating storage scheduler intercept not implemented. */
1104
1105 // TODO: Enable/disable TCs.
1106
1107 env->CP0_VPEControl = newval;
1108 }
1109
1110 void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
1111 {
1112 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1113 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1114 uint32_t mask;
1115 uint32_t newval;
1116
1117 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1118 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1119 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
1120
1121 /* TODO: Enable/disable TCs. */
1122
1123 other->CP0_VPEControl = newval;
1124 }
1125
1126 target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
1127 {
1128 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1129 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1130 /* FIXME: Mask away return zero on read bits. */
1131 return other->CP0_VPEControl;
1132 }
1133
1134 target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
1135 {
1136 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1137 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1138
1139 return other->CP0_VPEConf0;
1140 }
1141
1142 void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1143 {
1144 uint32_t mask = 0;
1145 uint32_t newval;
1146
1147 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1148 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1149 mask |= (0xff << CP0VPEC0_XTC);
1150 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1151 }
1152 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1153
1154 // TODO: TC exclusive handling due to ERL/EXL.
1155
1156 env->CP0_VPEConf0 = newval;
1157 }
1158
1159 void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1160 {
1161 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1162 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1163 uint32_t mask = 0;
1164 uint32_t newval;
1165
1166 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1167 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1168
1169 /* TODO: TC exclusive handling due to ERL/EXL. */
1170 other->CP0_VPEConf0 = newval;
1171 }
1172
1173 void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
1174 {
1175 uint32_t mask = 0;
1176 uint32_t newval;
1177
1178 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1179 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1180 (0xff << CP0VPEC1_NCP1);
1181 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1182
1183 /* UDI not implemented. */
1184 /* CP2 not implemented. */
1185
1186 // TODO: Handle FPU (CP1) binding.
1187
1188 env->CP0_VPEConf1 = newval;
1189 }
1190
1191 void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
1192 {
1193 /* Yield qualifier inputs not implemented. */
1194 env->CP0_YQMask = 0x00000000;
1195 }
1196
1197 void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
1198 {
1199 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1200 }
1201
1202 #define MTC0_ENTRYLO_MASK(env) ((env->PAMask >> 6) & 0x3FFFFFFF)
1203
1204 void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
1205 {
1206 /* 1k pages not implemented */
1207 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1208 env->CP0_EntryLo0 = (arg1 & MTC0_ENTRYLO_MASK(env))
1209 | (rxi << (CP0EnLo_XI - 30));
1210 }
1211
1212 #if defined(TARGET_MIPS64)
1213 #define DMTC0_ENTRYLO_MASK(env) (env->PAMask >> 6)
1214
1215 void helper_dmtc0_entrylo0(CPUMIPSState *env, uint64_t arg1)
1216 {
1217 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1218 env->CP0_EntryLo0 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1219 }
1220 #endif
1221
1222 void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1223 {
1224 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1225 uint32_t newval;
1226
1227 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1228
1229 env->active_tc.CP0_TCStatus = newval;
1230 sync_c0_tcstatus(env, env->current_tc, newval);
1231 }
1232
1233 void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1234 {
1235 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1236 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1237
1238 if (other_tc == other->current_tc)
1239 other->active_tc.CP0_TCStatus = arg1;
1240 else
1241 other->tcs[other_tc].CP0_TCStatus = arg1;
1242 sync_c0_tcstatus(other, other_tc, arg1);
1243 }
1244
1245 void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1246 {
1247 uint32_t mask = (1 << CP0TCBd_TBE);
1248 uint32_t newval;
1249
1250 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1251 mask |= (1 << CP0TCBd_CurVPE);
1252 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1253 env->active_tc.CP0_TCBind = newval;
1254 }
1255
1256 void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1257 {
1258 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1259 uint32_t mask = (1 << CP0TCBd_TBE);
1260 uint32_t newval;
1261 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1262
1263 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1264 mask |= (1 << CP0TCBd_CurVPE);
1265 if (other_tc == other->current_tc) {
1266 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1267 other->active_tc.CP0_TCBind = newval;
1268 } else {
1269 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1270 other->tcs[other_tc].CP0_TCBind = newval;
1271 }
1272 }
1273
1274 void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1275 {
1276 env->active_tc.PC = arg1;
1277 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1278 env->lladdr = 0ULL;
1279 /* MIPS16 not implemented. */
1280 }
1281
1282 void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1283 {
1284 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1285 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1286
1287 if (other_tc == other->current_tc) {
1288 other->active_tc.PC = arg1;
1289 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1290 other->lladdr = 0ULL;
1291 /* MIPS16 not implemented. */
1292 } else {
1293 other->tcs[other_tc].PC = arg1;
1294 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1295 other->lladdr = 0ULL;
1296 /* MIPS16 not implemented. */
1297 }
1298 }
1299
1300 void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1301 {
1302 MIPSCPU *cpu = mips_env_get_cpu(env);
1303
1304 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1305
1306 // TODO: Halt TC / Restart (if allocated+active) TC.
1307 if (env->active_tc.CP0_TCHalt & 1) {
1308 mips_tc_sleep(cpu, env->current_tc);
1309 } else {
1310 mips_tc_wake(cpu, env->current_tc);
1311 }
1312 }
1313
1314 void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1315 {
1316 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1317 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1318 MIPSCPU *other_cpu = mips_env_get_cpu(other);
1319
1320 // TODO: Halt TC / Restart (if allocated+active) TC.
1321
1322 if (other_tc == other->current_tc)
1323 other->active_tc.CP0_TCHalt = arg1;
1324 else
1325 other->tcs[other_tc].CP0_TCHalt = arg1;
1326
1327 if (arg1 & 1) {
1328 mips_tc_sleep(other_cpu, other_tc);
1329 } else {
1330 mips_tc_wake(other_cpu, other_tc);
1331 }
1332 }
1333
1334 void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1335 {
1336 env->active_tc.CP0_TCContext = arg1;
1337 }
1338
1339 void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1340 {
1341 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1342 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1343
1344 if (other_tc == other->current_tc)
1345 other->active_tc.CP0_TCContext = arg1;
1346 else
1347 other->tcs[other_tc].CP0_TCContext = arg1;
1348 }
1349
1350 void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1351 {
1352 env->active_tc.CP0_TCSchedule = arg1;
1353 }
1354
1355 void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1356 {
1357 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1358 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1359
1360 if (other_tc == other->current_tc)
1361 other->active_tc.CP0_TCSchedule = arg1;
1362 else
1363 other->tcs[other_tc].CP0_TCSchedule = arg1;
1364 }
1365
1366 void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1367 {
1368 env->active_tc.CP0_TCScheFBack = arg1;
1369 }
1370
1371 void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1372 {
1373 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1374 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1375
1376 if (other_tc == other->current_tc)
1377 other->active_tc.CP0_TCScheFBack = arg1;
1378 else
1379 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1380 }
1381
1382 void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
1383 {
1384 /* 1k pages not implemented */
1385 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1386 env->CP0_EntryLo1 = (arg1 & MTC0_ENTRYLO_MASK(env))
1387 | (rxi << (CP0EnLo_XI - 30));
1388 }
1389
1390 #if defined(TARGET_MIPS64)
1391 void helper_dmtc0_entrylo1(CPUMIPSState *env, uint64_t arg1)
1392 {
1393 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1394 env->CP0_EntryLo1 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1395 }
1396 #endif
1397
1398 void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
1399 {
1400 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1401 }
1402
1403 void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask)
1404 {
1405 uint64_t mask = arg1 >> (TARGET_PAGE_BITS + 1);
1406 if (!(env->insn_flags & ISA_MIPS32R6) || (arg1 == ~0) ||
1407 (mask == 0x0000 || mask == 0x0003 || mask == 0x000F ||
1408 mask == 0x003F || mask == 0x00FF || mask == 0x03FF ||
1409 mask == 0x0FFF || mask == 0x3FFF || mask == 0xFFFF)) {
1410 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1411 }
1412 }
1413
1414 void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
1415 {
1416 update_pagemask(env, arg1, &env->CP0_PageMask);
1417 }
1418
1419 void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
1420 {
1421 /* SmartMIPS not implemented */
1422 /* 1k pages not implemented */
1423 env->CP0_PageGrain = (arg1 & env->CP0_PageGrain_rw_bitmask) |
1424 (env->CP0_PageGrain & ~env->CP0_PageGrain_rw_bitmask);
1425 compute_hflags(env);
1426 restore_pamask(env);
1427 }
1428
1429 void helper_mtc0_segctl0(CPUMIPSState *env, target_ulong arg1)
1430 {
1431 CPUState *cs = CPU(mips_env_get_cpu(env));
1432
1433 env->CP0_SegCtl0 = arg1 & CP0SC0_MASK;
1434 tlb_flush(cs);
1435 }
1436
1437 void helper_mtc0_segctl1(CPUMIPSState *env, target_ulong arg1)
1438 {
1439 CPUState *cs = CPU(mips_env_get_cpu(env));
1440
1441 env->CP0_SegCtl1 = arg1 & CP0SC1_MASK;
1442 tlb_flush(cs);
1443 }
1444
1445 void helper_mtc0_segctl2(CPUMIPSState *env, target_ulong arg1)
1446 {
1447 CPUState *cs = CPU(mips_env_get_cpu(env));
1448
1449 env->CP0_SegCtl2 = arg1 & CP0SC2_MASK;
1450 tlb_flush(cs);
1451 }
1452
1453 void helper_mtc0_pwfield(CPUMIPSState *env, target_ulong arg1)
1454 {
1455 #if defined(TARGET_MIPS64)
1456 uint64_t mask = 0x3F3FFFFFFFULL;
1457 uint32_t old_ptei = (env->CP0_PWField >> CP0PF_PTEI) & 0x3FULL;
1458 uint32_t new_ptei = (arg1 >> CP0PF_PTEI) & 0x3FULL;
1459
1460 if ((env->insn_flags & ISA_MIPS32R6)) {
1461 if (((arg1 >> CP0PF_BDI) & 0x3FULL) < 12) {
1462 mask &= ~(0x3FULL << CP0PF_BDI);
1463 }
1464 if (((arg1 >> CP0PF_GDI) & 0x3FULL) < 12) {
1465 mask &= ~(0x3FULL << CP0PF_GDI);
1466 }
1467 if (((arg1 >> CP0PF_UDI) & 0x3FULL) < 12) {
1468 mask &= ~(0x3FULL << CP0PF_UDI);
1469 }
1470 if (((arg1 >> CP0PF_MDI) & 0x3FULL) < 12) {
1471 mask &= ~(0x3FULL << CP0PF_MDI);
1472 }
1473 if (((arg1 >> CP0PF_PTI) & 0x3FULL) < 12) {
1474 mask &= ~(0x3FULL << CP0PF_PTI);
1475 }
1476 }
1477 env->CP0_PWField = arg1 & mask;
1478
1479 if ((new_ptei >= 32) ||
1480 ((env->insn_flags & ISA_MIPS32R6) &&
1481 (new_ptei == 0 || new_ptei == 1))) {
1482 env->CP0_PWField = (env->CP0_PWField & ~0x3FULL) |
1483 (old_ptei << CP0PF_PTEI);
1484 }
1485 #else
1486 uint32_t mask = 0x3FFFFFFF;
1487 uint32_t old_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
1488 uint32_t new_ptew = (arg1 >> CP0PF_PTEW) & 0x3F;
1489
1490 if ((env->insn_flags & ISA_MIPS32R6)) {
1491 if (((arg1 >> CP0PF_GDW) & 0x3F) < 12) {
1492 mask &= ~(0x3F << CP0PF_GDW);
1493 }
1494 if (((arg1 >> CP0PF_UDW) & 0x3F) < 12) {
1495 mask &= ~(0x3F << CP0PF_UDW);
1496 }
1497 if (((arg1 >> CP0PF_MDW) & 0x3F) < 12) {
1498 mask &= ~(0x3F << CP0PF_MDW);
1499 }
1500 if (((arg1 >> CP0PF_PTW) & 0x3F) < 12) {
1501 mask &= ~(0x3F << CP0PF_PTW);
1502 }
1503 }
1504 env->CP0_PWField = arg1 & mask;
1505
1506 if ((new_ptew >= 32) ||
1507 ((env->insn_flags & ISA_MIPS32R6) &&
1508 (new_ptew == 0 || new_ptew == 1))) {
1509 env->CP0_PWField = (env->CP0_PWField & ~0x3F) |
1510 (old_ptew << CP0PF_PTEW);
1511 }
1512 #endif
1513 }
1514
1515 void helper_mtc0_pwsize(CPUMIPSState *env, target_ulong arg1)
1516 {
1517 #if defined(TARGET_MIPS64)
1518 env->CP0_PWSize = arg1 & 0x3F7FFFFFFFULL;
1519 #else
1520 env->CP0_PWSize = arg1 & 0x3FFFFFFF;
1521 #endif
1522 }
1523
1524 void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
1525 {
1526 if (env->insn_flags & ISA_MIPS32R6) {
1527 if (arg1 < env->tlb->nb_tlb) {
1528 env->CP0_Wired = arg1;
1529 }
1530 } else {
1531 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1532 }
1533 }
1534
1535 void helper_mtc0_pwctl(CPUMIPSState *env, target_ulong arg1)
1536 {
1537 #if defined(TARGET_MIPS64)
1538 /* PWEn = 0. Hardware page table walking is not implemented. */
1539 env->CP0_PWCtl = (env->CP0_PWCtl & 0x000000C0) | (arg1 & 0x5C00003F);
1540 #else
1541 env->CP0_PWCtl = (arg1 & 0x800000FF);
1542 #endif
1543 }
1544
1545 void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
1546 {
1547 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1548 }
1549
1550 void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
1551 {
1552 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1553 }
1554
1555 void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
1556 {
1557 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1558 }
1559
1560 void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
1561 {
1562 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1563 }
1564
1565 void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
1566 {
1567 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1568 }
1569
1570 void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
1571 {
1572 uint32_t mask = 0x0000000F;
1573
1574 if ((env->CP0_Config1 & (1 << CP0C1_PC)) &&
1575 (env->insn_flags & ISA_MIPS32R6)) {
1576 mask |= (1 << 4);
1577 }
1578 if (env->insn_flags & ISA_MIPS32R6) {
1579 mask |= (1 << 5);
1580 }
1581 if (env->CP0_Config3 & (1 << CP0C3_ULRI)) {
1582 mask |= (1 << 29);
1583
1584 if (arg1 & (1 << 29)) {
1585 env->hflags |= MIPS_HFLAG_HWRENA_ULR;
1586 } else {
1587 env->hflags &= ~MIPS_HFLAG_HWRENA_ULR;
1588 }
1589 }
1590
1591 env->CP0_HWREna = arg1 & mask;
1592 }
1593
1594 void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
1595 {
1596 qemu_mutex_lock_iothread();
1597 cpu_mips_store_count(env, arg1);
1598 qemu_mutex_unlock_iothread();
1599 }
1600
1601 void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1602 {
1603 target_ulong old, val, mask;
1604 mask = (TARGET_PAGE_MASK << 1) | env->CP0_EntryHi_ASID_mask;
1605 if (((env->CP0_Config4 >> CP0C4_IE) & 0x3) >= 2) {
1606 mask |= 1 << CP0EnHi_EHINV;
1607 }
1608
1609 /* 1k pages not implemented */
1610 #if defined(TARGET_MIPS64)
1611 if (env->insn_flags & ISA_MIPS32R6) {
1612 int entryhi_r = extract64(arg1, 62, 2);
1613 int config0_at = extract32(env->CP0_Config0, 13, 2);
1614 bool no_supervisor = (env->CP0_Status_rw_bitmask & 0x8) == 0;
1615 if ((entryhi_r == 2) ||
1616 (entryhi_r == 1 && (no_supervisor || config0_at == 1))) {
1617 /* skip EntryHi.R field if new value is reserved */
1618 mask &= ~(0x3ull << 62);
1619 }
1620 }
1621 mask &= env->SEGMask;
1622 #endif
1623 old = env->CP0_EntryHi;
1624 val = (arg1 & mask) | (old & ~mask);
1625 env->CP0_EntryHi = val;
1626 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1627 sync_c0_entryhi(env, env->current_tc);
1628 }
1629 /* If the ASID changes, flush qemu's TLB. */
1630 if ((old & env->CP0_EntryHi_ASID_mask) !=
1631 (val & env->CP0_EntryHi_ASID_mask)) {
1632 tlb_flush(CPU(mips_env_get_cpu(env)));
1633 }
1634 }
1635
1636 void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1637 {
1638 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1639 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1640
1641 other->CP0_EntryHi = arg1;
1642 sync_c0_entryhi(other, other_tc);
1643 }
1644
1645 void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
1646 {
1647 qemu_mutex_lock_iothread();
1648 cpu_mips_store_compare(env, arg1);
1649 qemu_mutex_unlock_iothread();
1650 }
1651
1652 void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
1653 {
1654 MIPSCPU *cpu = mips_env_get_cpu(env);
1655 uint32_t val, old;
1656
1657 old = env->CP0_Status;
1658 cpu_mips_store_status(env, arg1);
1659 val = env->CP0_Status;
1660
1661 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1662 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1663 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1664 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1665 env->CP0_Cause);
1666 switch (cpu_mmu_index(env, false)) {
1667 case 3:
1668 qemu_log(", ERL\n");
1669 break;
1670 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1671 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1672 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1673 default:
1674 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
1675 break;
1676 }
1677 }
1678 }
1679
1680 void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
1681 {
1682 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1683 uint32_t mask = env->CP0_Status_rw_bitmask & ~0xf1000018;
1684 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1685
1686 other->CP0_Status = (other->CP0_Status & ~mask) | (arg1 & mask);
1687 sync_c0_status(env, other, other_tc);
1688 }
1689
1690 void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
1691 {
1692 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1693 }
1694
1695 void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
1696 {
1697 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1698 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1699 }
1700
1701 void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
1702 {
1703 qemu_mutex_lock_iothread();
1704 cpu_mips_store_cause(env, arg1);
1705 qemu_mutex_unlock_iothread();
1706 }
1707
1708 void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
1709 {
1710 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1711 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1712
1713 cpu_mips_store_cause(other, arg1);
1714 }
1715
1716 target_ulong helper_mftc0_epc(CPUMIPSState *env)
1717 {
1718 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1719 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1720
1721 return other->CP0_EPC;
1722 }
1723
1724 target_ulong helper_mftc0_ebase(CPUMIPSState *env)
1725 {
1726 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1727 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1728
1729 return other->CP0_EBase;
1730 }
1731
1732 void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
1733 {
1734 target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask;
1735 if (arg1 & env->CP0_EBaseWG_rw_bitmask) {
1736 mask |= ~0x3FFFFFFF;
1737 }
1738 env->CP0_EBase = (env->CP0_EBase & ~mask) | (arg1 & mask);
1739 }
1740
1741 void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
1742 {
1743 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1744 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1745 target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask;
1746 if (arg1 & env->CP0_EBaseWG_rw_bitmask) {
1747 mask |= ~0x3FFFFFFF;
1748 }
1749 other->CP0_EBase = (other->CP0_EBase & ~mask) | (arg1 & mask);
1750 }
1751
1752 target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
1753 {
1754 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1755 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1756
1757 switch (idx) {
1758 case 0: return other->CP0_Config0;
1759 case 1: return other->CP0_Config1;
1760 case 2: return other->CP0_Config2;
1761 case 3: return other->CP0_Config3;
1762 /* 4 and 5 are reserved. */
1763 case 6: return other->CP0_Config6;
1764 case 7: return other->CP0_Config7;
1765 default:
1766 break;
1767 }
1768 return 0;
1769 }
1770
1771 void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
1772 {
1773 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1774 }
1775
1776 void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
1777 {
1778 /* tertiary/secondary caches not implemented */
1779 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1780 }
1781
1782 void helper_mtc0_config3(CPUMIPSState *env, target_ulong arg1)
1783 {
1784 if (env->insn_flags & ASE_MICROMIPS) {
1785 env->CP0_Config3 = (env->CP0_Config3 & ~(1 << CP0C3_ISA_ON_EXC)) |
1786 (arg1 & (1 << CP0C3_ISA_ON_EXC));
1787 }
1788 }
1789
1790 void helper_mtc0_config4(CPUMIPSState *env, target_ulong arg1)
1791 {
1792 env->CP0_Config4 = (env->CP0_Config4 & (~env->CP0_Config4_rw_bitmask)) |
1793 (arg1 & env->CP0_Config4_rw_bitmask);
1794 }
1795
1796 void helper_mtc0_config5(CPUMIPSState *env, target_ulong arg1)
1797 {
1798 env->CP0_Config5 = (env->CP0_Config5 & (~env->CP0_Config5_rw_bitmask)) |
1799 (arg1 & env->CP0_Config5_rw_bitmask);
1800 compute_hflags(env);
1801 }
1802
1803 void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
1804 {
1805 target_long mask = env->CP0_LLAddr_rw_bitmask;
1806 arg1 = arg1 << env->CP0_LLAddr_shift;
1807 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1808 }
1809
1810 #define MTC0_MAAR_MASK(env) \
1811 ((0x1ULL << 63) | ((env->PAMask >> 4) & ~0xFFFull) | 0x3)
1812
1813 void helper_mtc0_maar(CPUMIPSState *env, target_ulong arg1)
1814 {
1815 env->CP0_MAAR[env->CP0_MAARI] = arg1 & MTC0_MAAR_MASK(env);
1816 }
1817
1818 void helper_mthc0_maar(CPUMIPSState *env, target_ulong arg1)
1819 {
1820 env->CP0_MAAR[env->CP0_MAARI] =
1821 (((uint64_t) arg1 << 32) & MTC0_MAAR_MASK(env)) |
1822 (env->CP0_MAAR[env->CP0_MAARI] & 0x00000000ffffffffULL);
1823 }
1824
1825 void helper_mtc0_maari(CPUMIPSState *env, target_ulong arg1)
1826 {
1827 int index = arg1 & 0x3f;
1828 if (index == 0x3f) {
1829 /* Software may write all ones to INDEX to determine the
1830 maximum value supported. */
1831 env->CP0_MAARI = MIPS_MAAR_MAX - 1;
1832 } else if (index < MIPS_MAAR_MAX) {
1833 env->CP0_MAARI = index;
1834 }
1835 /* Other than the all ones, if the
1836 value written is not supported, then INDEX is unchanged
1837 from its previous value. */
1838 }
1839
1840 void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1841 {
1842 /* Watch exceptions for instructions, data loads, data stores
1843 not implemented. */
1844 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1845 }
1846
1847 void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1848 {
1849 int mask = 0x40000FF8 | (env->CP0_EntryHi_ASID_mask << CP0WH_ASID);
1850 env->CP0_WatchHi[sel] = arg1 & mask;
1851 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1852 }
1853
1854 void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
1855 {
1856 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1857 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1858 }
1859
1860 void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
1861 {
1862 env->CP0_Framemask = arg1; /* XXX */
1863 }
1864
1865 void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
1866 {
1867 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1868 if (arg1 & (1 << CP0DB_DM))
1869 env->hflags |= MIPS_HFLAG_DM;
1870 else
1871 env->hflags &= ~MIPS_HFLAG_DM;
1872 }
1873
1874 void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
1875 {
1876 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1877 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1878 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1879
1880 /* XXX: Might be wrong, check with EJTAG spec. */
1881 if (other_tc == other->current_tc)
1882 other->active_tc.CP0_Debug_tcstatus = val;
1883 else
1884 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1885 other->CP0_Debug = (other->CP0_Debug &
1886 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1887 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1888 }
1889
1890 void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
1891 {
1892 env->CP0_Performance0 = arg1 & 0x000007ff;
1893 }
1894
1895 void helper_mtc0_errctl(CPUMIPSState *env, target_ulong arg1)
1896 {
1897 int32_t wst = arg1 & (1 << CP0EC_WST);
1898 int32_t spr = arg1 & (1 << CP0EC_SPR);
1899 int32_t itc = env->itc_tag ? (arg1 & (1 << CP0EC_ITC)) : 0;
1900
1901 env->CP0_ErrCtl = wst | spr | itc;
1902
1903 if (itc && !wst && !spr) {
1904 env->hflags |= MIPS_HFLAG_ITC_CACHE;
1905 } else {
1906 env->hflags &= ~MIPS_HFLAG_ITC_CACHE;
1907 }
1908 }
1909
1910 void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
1911 {
1912 if (env->hflags & MIPS_HFLAG_ITC_CACHE) {
1913 /* If CACHE instruction is configured for ITC tags then make all
1914 CP0.TagLo bits writable. The actual write to ITC Configuration
1915 Tag will take care of the read-only bits. */
1916 env->CP0_TagLo = arg1;
1917 } else {
1918 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1919 }
1920 }
1921
1922 void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
1923 {
1924 env->CP0_DataLo = arg1; /* XXX */
1925 }
1926
1927 void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
1928 {
1929 env->CP0_TagHi = arg1; /* XXX */
1930 }
1931
1932 void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
1933 {
1934 env->CP0_DataHi = arg1; /* XXX */
1935 }
1936
1937 /* MIPS MT functions */
1938 target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
1939 {
1940 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1941 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1942
1943 if (other_tc == other->current_tc)
1944 return other->active_tc.gpr[sel];
1945 else
1946 return other->tcs[other_tc].gpr[sel];
1947 }
1948
1949 target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
1950 {
1951 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1952 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1953
1954 if (other_tc == other->current_tc)
1955 return other->active_tc.LO[sel];
1956 else
1957 return other->tcs[other_tc].LO[sel];
1958 }
1959
1960 target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
1961 {
1962 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1963 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1964
1965 if (other_tc == other->current_tc)
1966 return other->active_tc.HI[sel];
1967 else
1968 return other->tcs[other_tc].HI[sel];
1969 }
1970
1971 target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
1972 {
1973 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1974 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1975
1976 if (other_tc == other->current_tc)
1977 return other->active_tc.ACX[sel];
1978 else
1979 return other->tcs[other_tc].ACX[sel];
1980 }
1981
1982 target_ulong helper_mftdsp(CPUMIPSState *env)
1983 {
1984 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1985 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1986
1987 if (other_tc == other->current_tc)
1988 return other->active_tc.DSPControl;
1989 else
1990 return other->tcs[other_tc].DSPControl;
1991 }
1992
1993 void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1994 {
1995 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1996 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1997
1998 if (other_tc == other->current_tc)
1999 other->active_tc.gpr[sel] = arg1;
2000 else
2001 other->tcs[other_tc].gpr[sel] = arg1;
2002 }
2003
2004 void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
2005 {
2006 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
2007 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
2008
2009 if (other_tc == other->current_tc)
2010 other->active_tc.LO[sel] = arg1;
2011 else
2012 other->tcs[other_tc].LO[sel] = arg1;
2013 }
2014
2015 void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
2016 {
2017 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
2018 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
2019
2020 if (other_tc == other->current_tc)
2021 other->active_tc.HI[sel] = arg1;
2022 else
2023 other->tcs[other_tc].HI[sel] = arg1;
2024 }
2025
2026 void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
2027 {
2028 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
2029 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
2030
2031 if (other_tc == other->current_tc)
2032 other->active_tc.ACX[sel] = arg1;
2033 else
2034 other->tcs[other_tc].ACX[sel] = arg1;
2035 }
2036
2037 void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
2038 {
2039 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
2040 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
2041
2042 if (other_tc == other->current_tc)
2043 other->active_tc.DSPControl = arg1;
2044 else
2045 other->tcs[other_tc].DSPControl = arg1;
2046 }
2047
2048 /* MIPS MT functions */
2049 target_ulong helper_dmt(void)
2050 {
2051 // TODO
2052 return 0;
2053 }
2054
2055 target_ulong helper_emt(void)
2056 {
2057 // TODO
2058 return 0;
2059 }
2060
2061 target_ulong helper_dvpe(CPUMIPSState *env)
2062 {
2063 CPUState *other_cs = first_cpu;
2064 target_ulong prev = env->mvp->CP0_MVPControl;
2065
2066 CPU_FOREACH(other_cs) {
2067 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
2068 /* Turn off all VPEs except the one executing the dvpe. */
2069 if (&other_cpu->env != env) {
2070 other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
2071 mips_vpe_sleep(other_cpu);
2072 }
2073 }
2074 return prev;
2075 }
2076
2077 target_ulong helper_evpe(CPUMIPSState *env)
2078 {
2079 CPUState *other_cs = first_cpu;
2080 target_ulong prev = env->mvp->CP0_MVPControl;
2081
2082 CPU_FOREACH(other_cs) {
2083 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
2084
2085 if (&other_cpu->env != env
2086 /* If the VPE is WFI, don't disturb its sleep. */
2087 && !mips_vpe_is_wfi(other_cpu)) {
2088 /* Enable the VPE. */
2089 other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
2090 mips_vpe_wake(other_cpu); /* And wake it up. */
2091 }
2092 }
2093 return prev;
2094 }
2095 #endif /* !CONFIG_USER_ONLY */
2096
2097 void helper_fork(target_ulong arg1, target_ulong arg2)
2098 {
2099 // arg1 = rt, arg2 = rs
2100 // TODO: store to TC register
2101 }
2102
2103 target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
2104 {
2105 target_long arg1 = arg;
2106
2107 if (arg1 < 0) {
2108 /* No scheduling policy implemented. */
2109 if (arg1 != -2) {
2110 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
2111 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
2112 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
2113 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
2114 do_raise_exception(env, EXCP_THREAD, GETPC());
2115 }
2116 }
2117 } else if (arg1 == 0) {
2118 if (0 /* TODO: TC underflow */) {
2119 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
2120 do_raise_exception(env, EXCP_THREAD, GETPC());
2121 } else {
2122 // TODO: Deallocate TC
2123 }
2124 } else if (arg1 > 0) {
2125 /* Yield qualifier inputs not implemented. */
2126 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
2127 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
2128 do_raise_exception(env, EXCP_THREAD, GETPC());
2129 }
2130 return env->CP0_YQMask;
2131 }
2132
2133 /* R6 Multi-threading */
2134 #ifndef CONFIG_USER_ONLY
2135 target_ulong helper_dvp(CPUMIPSState *env)
2136 {
2137 CPUState *other_cs = first_cpu;
2138 target_ulong prev = env->CP0_VPControl;
2139
2140 if (!((env->CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
2141 CPU_FOREACH(other_cs) {
2142 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
2143 /* Turn off all VPs except the one executing the dvp. */
2144 if (&other_cpu->env != env) {
2145 mips_vpe_sleep(other_cpu);
2146 }
2147 }
2148 env->CP0_VPControl |= (1 << CP0VPCtl_DIS);
2149 }
2150 return prev;
2151 }
2152
2153 target_ulong helper_evp(CPUMIPSState *env)
2154 {
2155 CPUState *other_cs = first_cpu;
2156 target_ulong prev = env->CP0_VPControl;
2157
2158 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
2159 CPU_FOREACH(other_cs) {
2160 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
2161 if ((&other_cpu->env != env) && !mips_vp_is_wfi(other_cpu)) {
2162 /* If the VP is WFI, don't disturb its sleep.
2163 * Otherwise, wake it up. */
2164 mips_vpe_wake(other_cpu);
2165 }
2166 }
2167 env->CP0_VPControl &= ~(1 << CP0VPCtl_DIS);
2168 }
2169 return prev;
2170 }
2171 #endif /* !CONFIG_USER_ONLY */
2172
2173 #ifndef CONFIG_USER_ONLY
2174 /* TLB management */
2175 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
2176 {
2177 /* Discard entries from env->tlb[first] onwards. */
2178 while (env->tlb->tlb_in_use > first) {
2179 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
2180 }
2181 }
2182
2183 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
2184 {
2185 #if defined(TARGET_MIPS64)
2186 return extract64(entrylo, 6, 54);
2187 #else
2188 return extract64(entrylo, 6, 24) | /* PFN */
2189 (extract64(entrylo, 32, 32) << 24); /* PFNX */
2190 #endif
2191 }
2192
2193 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
2194 {
2195 r4k_tlb_t *tlb;
2196 uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
2197
2198 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
2199 tlb = &env->tlb->mmu.r4k.tlb[idx];
2200 if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
2201 tlb->EHINV = 1;
2202 return;
2203 }
2204 tlb->EHINV = 0;
2205 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
2206 #if defined(TARGET_MIPS64)
2207 tlb->VPN &= env->SEGMask;
2208 #endif
2209 tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2210 tlb->PageMask = env->CP0_PageMask;
2211 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
2212 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
2213 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
2214 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
2215 tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
2216 tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
2217 tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
2218 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
2219 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
2220 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
2221 tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
2222 tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
2223 tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
2224 }
2225
2226 void r4k_helper_tlbinv(CPUMIPSState *env)
2227 {
2228 int idx;
2229 r4k_tlb_t *tlb;
2230 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2231
2232 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2233 tlb = &env->tlb->mmu.r4k.tlb[idx];
2234 if (!tlb->G && tlb->ASID == ASID) {
2235 tlb->EHINV = 1;
2236 }
2237 }
2238 cpu_mips_tlb_flush(env);
2239 }
2240
2241 void r4k_helper_tlbinvf(CPUMIPSState *env)
2242 {
2243 int idx;
2244
2245 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2246 env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
2247 }
2248 cpu_mips_tlb_flush(env);
2249 }
2250
2251 void r4k_helper_tlbwi(CPUMIPSState *env)
2252 {
2253 r4k_tlb_t *tlb;
2254 int idx;
2255 target_ulong VPN;
2256 uint16_t ASID;
2257 bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
2258
2259 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2260 tlb = &env->tlb->mmu.r4k.tlb[idx];
2261 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
2262 #if defined(TARGET_MIPS64)
2263 VPN &= env->SEGMask;
2264 #endif
2265 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2266 EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
2267 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
2268 V0 = (env->CP0_EntryLo0 & 2) != 0;
2269 D0 = (env->CP0_EntryLo0 & 4) != 0;
2270 XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
2271 RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
2272 V1 = (env->CP0_EntryLo1 & 2) != 0;
2273 D1 = (env->CP0_EntryLo1 & 4) != 0;
2274 XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
2275 RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
2276
2277 /* Discard cached TLB entries, unless tlbwi is just upgrading access
2278 permissions on the current entry. */
2279 if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
2280 (!tlb->EHINV && EHINV) ||
2281 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
2282 (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
2283 (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
2284 (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
2285 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2286 }
2287
2288 r4k_invalidate_tlb(env, idx, 0);
2289 r4k_fill_tlb(env, idx);
2290 }
2291
2292 void r4k_helper_tlbwr(CPUMIPSState *env)
2293 {
2294 int r = cpu_mips_get_random(env);
2295
2296 r4k_invalidate_tlb(env, r, 1);
2297 r4k_fill_tlb(env, r);
2298 }
2299
2300 void r4k_helper_tlbp(CPUMIPSState *env)
2301 {
2302 r4k_tlb_t *tlb;
2303 target_ulong mask;
2304 target_ulong tag;
2305 target_ulong VPN;
2306 uint16_t ASID;
2307 int i;
2308
2309 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2310 for (i = 0; i < env->tlb->nb_tlb; i++) {
2311 tlb = &env->tlb->mmu.r4k.tlb[i];
2312 /* 1k pages are not supported. */
2313 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2314 tag = env->CP0_EntryHi & ~mask;
2315 VPN = tlb->VPN & ~mask;
2316 #if defined(TARGET_MIPS64)
2317 tag &= env->SEGMask;
2318 #endif
2319 /* Check ASID, virtual page number & size */
2320 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
2321 /* TLB match */
2322 env->CP0_Index = i;
2323 break;
2324 }
2325 }
2326 if (i == env->tlb->nb_tlb) {
2327 /* No match. Discard any shadow entries, if any of them match. */
2328 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
2329 tlb = &env->tlb->mmu.r4k.tlb[i];
2330 /* 1k pages are not supported. */
2331 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2332 tag = env->CP0_EntryHi & ~mask;
2333 VPN = tlb->VPN & ~mask;
2334 #if defined(TARGET_MIPS64)
2335 tag &= env->SEGMask;
2336 #endif
2337 /* Check ASID, virtual page number & size */
2338 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
2339 r4k_mips_tlb_flush_extra (env, i);
2340 break;
2341 }
2342 }
2343
2344 env->CP0_Index |= 0x80000000;
2345 }
2346 }
2347
2348 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
2349 {
2350 #if defined(TARGET_MIPS64)
2351 return tlb_pfn << 6;
2352 #else
2353 return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
2354 (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
2355 #endif
2356 }
2357
2358 void r4k_helper_tlbr(CPUMIPSState *env)
2359 {
2360 r4k_tlb_t *tlb;
2361 uint16_t ASID;
2362 int idx;
2363
2364 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2365 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2366 tlb = &env->tlb->mmu.r4k.tlb[idx];
2367
2368 /* If this will change the current ASID, flush qemu's TLB. */
2369 if (ASID != tlb->ASID)
2370 cpu_mips_tlb_flush(env);
2371
2372 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2373
2374 if (tlb->EHINV) {
2375 env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
2376 env->CP0_PageMask = 0;
2377 env->CP0_EntryLo0 = 0;
2378 env->CP0_EntryLo1 = 0;
2379 } else {
2380 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
2381 env->CP0_PageMask = tlb->PageMask;
2382 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
2383 ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
2384 ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
2385 get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
2386 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
2387 ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
2388 ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
2389 get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
2390 }
2391 }
2392
2393 void helper_tlbwi(CPUMIPSState *env)
2394 {
2395 env->tlb->helper_tlbwi(env);
2396 }
2397
2398 void helper_tlbwr(CPUMIPSState *env)
2399 {
2400 env->tlb->helper_tlbwr(env);
2401 }
2402
2403 void helper_tlbp(CPUMIPSState *env)
2404 {
2405 env->tlb->helper_tlbp(env);
2406 }
2407
2408 void helper_tlbr(CPUMIPSState *env)
2409 {
2410 env->tlb->helper_tlbr(env);
2411 }
2412
2413 void helper_tlbinv(CPUMIPSState *env)
2414 {
2415 env->tlb->helper_tlbinv(env);
2416 }
2417
2418 void helper_tlbinvf(CPUMIPSState *env)
2419 {
2420 env->tlb->helper_tlbinvf(env);
2421 }
2422
2423 /* Specials */
2424 target_ulong helper_di(CPUMIPSState *env)
2425 {
2426 target_ulong t0 = env->CP0_Status;
2427
2428 env->CP0_Status = t0 & ~(1 << CP0St_IE);
2429 return t0;
2430 }
2431
2432 target_ulong helper_ei(CPUMIPSState *env)
2433 {
2434 target_ulong t0 = env->CP0_Status;
2435
2436 env->CP0_Status = t0 | (1 << CP0St_IE);
2437 return t0;
2438 }
2439
2440 static void debug_pre_eret(CPUMIPSState *env)
2441 {
2442 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2443 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2444 env->active_tc.PC, env->CP0_EPC);
2445 if (env->CP0_Status & (1 << CP0St_ERL))
2446 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2447 if (env->hflags & MIPS_HFLAG_DM)
2448 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2449 qemu_log("\n");
2450 }
2451 }
2452
2453 static void debug_post_eret(CPUMIPSState *env)
2454 {
2455 MIPSCPU *cpu = mips_env_get_cpu(env);
2456
2457 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2458 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2459 env->active_tc.PC, env->CP0_EPC);
2460 if (env->CP0_Status & (1 << CP0St_ERL))
2461 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2462 if (env->hflags & MIPS_HFLAG_DM)
2463 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2464 switch (cpu_mmu_index(env, false)) {
2465 case 3:
2466 qemu_log(", ERL\n");
2467 break;
2468 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
2469 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
2470 case MIPS_HFLAG_KM: qemu_log("\n"); break;
2471 default:
2472 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
2473 break;
2474 }
2475 }
2476 }
2477
2478 static void set_pc(CPUMIPSState *env, target_ulong error_pc)
2479 {
2480 env->active_tc.PC = error_pc & ~(target_ulong)1;
2481 if (error_pc & 1) {
2482 env->hflags |= MIPS_HFLAG_M16;
2483 } else {
2484 env->hflags &= ~(MIPS_HFLAG_M16);
2485 }
2486 }
2487
2488 static inline void exception_return(CPUMIPSState *env)
2489 {
2490 debug_pre_eret(env);
2491 if (env->CP0_Status & (1 << CP0St_ERL)) {
2492 set_pc(env, env->CP0_ErrorEPC);
2493 env->CP0_Status &= ~(1 << CP0St_ERL);
2494 } else {
2495 set_pc(env, env->CP0_EPC);
2496 env->CP0_Status &= ~(1 << CP0St_EXL);
2497 }
2498 compute_hflags(env);
2499 debug_post_eret(env);
2500 }
2501
2502 void helper_eret(CPUMIPSState *env)
2503 {
2504 exception_return(env);
2505 env->lladdr = 1;
2506 }
2507
2508 void helper_eretnc(CPUMIPSState *env)
2509 {
2510 exception_return(env);
2511 }
2512
2513 void helper_deret(CPUMIPSState *env)
2514 {
2515 debug_pre_eret(env);
2516
2517 env->hflags &= ~MIPS_HFLAG_DM;
2518 compute_hflags(env);
2519
2520 set_pc(env, env->CP0_DEPC);
2521
2522 debug_post_eret(env);
2523 }
2524 #endif /* !CONFIG_USER_ONLY */
2525
2526 static inline void check_hwrena(CPUMIPSState *env, int reg, uintptr_t pc)
2527 {
2528 if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << reg))) {
2529 return;
2530 }
2531 do_raise_exception(env, EXCP_RI, pc);
2532 }
2533
2534 target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
2535 {
2536 check_hwrena(env, 0, GETPC());
2537 return env->CP0_EBase & 0x3ff;
2538 }
2539
2540 target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
2541 {
2542 check_hwrena(env, 1, GETPC());
2543 return env->SYNCI_Step;
2544 }
2545
2546 target_ulong helper_rdhwr_cc(CPUMIPSState *env)
2547 {
2548 int32_t count;
2549 check_hwrena(env, 2, GETPC());
2550 #ifdef CONFIG_USER_ONLY
2551 count = env->CP0_Count;
2552 #else
2553 qemu_mutex_lock_iothread();
2554 count = (int32_t)cpu_mips_get_count(env);
2555 qemu_mutex_unlock_iothread();
2556 #endif
2557 return count;
2558 }
2559
2560 target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
2561 {
2562 check_hwrena(env, 3, GETPC());
2563 return env->CCRes;
2564 }
2565
2566 target_ulong helper_rdhwr_performance(CPUMIPSState *env)
2567 {
2568 check_hwrena(env, 4, GETPC());
2569 return env->CP0_Performance0;
2570 }
2571
2572 target_ulong helper_rdhwr_xnp(CPUMIPSState *env)
2573 {
2574 check_hwrena(env, 5, GETPC());
2575 return (env->CP0_Config5 >> CP0C5_XNP) & 1;
2576 }
2577
2578 void helper_pmon(CPUMIPSState *env, int function)
2579 {
2580 function /= 2;
2581 switch (function) {
2582 case 2: /* TODO: char inbyte(int waitflag); */
2583 if (env->active_tc.gpr[4] == 0)
2584 env->active_tc.gpr[2] = -1;
2585 /* Fall through */
2586 case 11: /* TODO: char inbyte (void); */
2587 env->active_tc.gpr[2] = -1;
2588 break;
2589 case 3:
2590 case 12:
2591 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2592 break;
2593 case 17:
2594 break;
2595 case 158:
2596 {
2597 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2598 printf("%s", fmt);
2599 }
2600 break;
2601 }
2602 }
2603
2604 void helper_wait(CPUMIPSState *env)
2605 {
2606 CPUState *cs = CPU(mips_env_get_cpu(env));
2607
2608 cs->halted = 1;
2609 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
2610 /* Last instruction in the block, PC was updated before
2611 - no need to recover PC and icount */
2612 raise_exception(env, EXCP_HLT);
2613 }
2614
2615 #if !defined(CONFIG_USER_ONLY)
2616
2617 void mips_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
2618 MMUAccessType access_type,
2619 int mmu_idx, uintptr_t retaddr)
2620 {
2621 MIPSCPU *cpu = MIPS_CPU(cs);
2622 CPUMIPSState *env = &cpu->env;
2623 int error_code = 0;
2624 int excp;
2625
2626 if (!(env->hflags & MIPS_HFLAG_DM)) {
2627 env->CP0_BadVAddr = addr;
2628 }
2629
2630 if (access_type == MMU_DATA_STORE) {
2631 excp = EXCP_AdES;
2632 } else {
2633 excp = EXCP_AdEL;
2634 if (access_type == MMU_INST_FETCH) {
2635 error_code |= EXCP_INST_NOTAVAIL;
2636 }
2637 }
2638
2639 do_raise_exception_err(env, excp, error_code, retaddr);
2640 }
2641
2642 void tlb_fill(CPUState *cs, target_ulong addr, int size,
2643 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
2644 {
2645 int ret;
2646
2647 ret = mips_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
2648 if (ret) {
2649 MIPSCPU *cpu = MIPS_CPU(cs);
2650 CPUMIPSState *env = &cpu->env;
2651
2652 do_raise_exception_err(env, cs->exception_index,
2653 env->error_code, retaddr);
2654 }
2655 }
2656
2657 void mips_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2658 bool is_write, bool is_exec, int unused,
2659 unsigned size)
2660 {
2661 MIPSCPU *cpu = MIPS_CPU(cs);
2662 CPUMIPSState *env = &cpu->env;
2663
2664 /*
2665 * Raising an exception with KVM enabled will crash because it won't be from
2666 * the main execution loop so the longjmp won't have a matching setjmp.
2667 * Until we can trigger a bus error exception through KVM lets just ignore
2668 * the access.
2669 */
2670 if (kvm_enabled()) {
2671 return;
2672 }
2673
2674 if (is_exec) {
2675 raise_exception(env, EXCP_IBE);
2676 } else {
2677 raise_exception(env, EXCP_DBE);
2678 }
2679 }
2680 #endif /* !CONFIG_USER_ONLY */
2681
2682 /* Complex FPU operations which may need stack space. */
2683
2684 #define FLOAT_TWO32 make_float32(1 << 30)
2685 #define FLOAT_TWO64 make_float64(1ULL << 62)
2686
2687 #define FP_TO_INT32_OVERFLOW 0x7fffffff
2688 #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
2689
2690 /* convert MIPS rounding mode in FCR31 to IEEE library */
2691 unsigned int ieee_rm[] = {
2692 float_round_nearest_even,
2693 float_round_to_zero,
2694 float_round_up,
2695 float_round_down
2696 };
2697
2698 target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
2699 {
2700 target_ulong arg1 = 0;
2701
2702 switch (reg) {
2703 case 0:
2704 arg1 = (int32_t)env->active_fpu.fcr0;
2705 break;
2706 case 1:
2707 /* UFR Support - Read Status FR */
2708 if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) {
2709 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2710 arg1 = (int32_t)
2711 ((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR);
2712 } else {
2713 do_raise_exception(env, EXCP_RI, GETPC());
2714 }
2715 }
2716 break;
2717 case 5:
2718 /* FRE Support - read Config5.FRE bit */
2719 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
2720 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2721 arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1;
2722 } else {
2723 helper_raise_exception(env, EXCP_RI);
2724 }
2725 }
2726 break;
2727 case 25:
2728 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2729 break;
2730 case 26:
2731 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2732 break;
2733 case 28:
2734 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2735 break;
2736 default:
2737 arg1 = (int32_t)env->active_fpu.fcr31;
2738 break;
2739 }
2740
2741 return arg1;
2742 }
2743
2744 void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt)
2745 {
2746 switch (fs) {
2747 case 1:
2748 /* UFR Alias - Reset Status FR */
2749 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2750 return;
2751 }
2752 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2753 env->CP0_Status &= ~(1 << CP0St_FR);
2754 compute_hflags(env);
2755 } else {
2756 do_raise_exception(env, EXCP_RI, GETPC());
2757 }
2758 break;
2759 case 4:
2760 /* UNFR Alias - Set Status FR */
2761 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2762 return;
2763 }
2764 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2765 env->CP0_Status |= (1 << CP0St_FR);
2766 compute_hflags(env);
2767 } else {
2768 do_raise_exception(env, EXCP_RI, GETPC());
2769 }
2770 break;
2771 case 5:
2772 /* FRE Support - clear Config5.FRE bit */
2773 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2774 return;
2775 }
2776 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2777 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
2778 compute_hflags(env);
2779 } else {
2780 helper_raise_exception(env, EXCP_RI);
2781 }
2782 break;
2783 case 6:
2784 /* FRE Support - set Config5.FRE bit */
2785 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2786 return;
2787 }
2788 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2789 env->CP0_Config5 |= (1 << CP0C5_FRE);
2790 compute_hflags(env);
2791 } else {
2792 helper_raise_exception(env, EXCP_RI);
2793 }
2794 break;
2795 case 25:
2796 if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) {
2797 return;
2798 }
2799 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2800 ((arg1 & 0x1) << 23);
2801 break;
2802 case 26:
2803 if (arg1 & 0x007c0000)
2804 return;
2805 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2806 break;
2807 case 28:
2808 if (arg1 & 0x007c0000)
2809 return;
2810 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2811 ((arg1 & 0x4) << 22);
2812 break;
2813 case 31:
2814 env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) |
2815 (env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask));
2816 break;
2817 default:
2818 if (env->insn_flags & ISA_MIPS32R6) {
2819 do_raise_exception(env, EXCP_RI, GETPC());
2820 }
2821 return;
2822 }
2823 restore_fp_status(env);
2824 set_float_exception_flags(0, &env->active_fpu.fp_status);
2825 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2826 do_raise_exception(env, EXCP_FPE, GETPC());
2827 }
2828
2829 int ieee_ex_to_mips(int xcpt)
2830 {
2831 int ret = 0;
2832 if (xcpt) {
2833 if (xcpt & float_flag_invalid) {
2834 ret |= FP_INVALID;
2835 }
2836 if (xcpt & float_flag_overflow) {
2837 ret |= FP_OVERFLOW;
2838 }
2839 if (xcpt & float_flag_underflow) {
2840 ret |= FP_UNDERFLOW;
2841 }
2842 if (xcpt & float_flag_divbyzero) {
2843 ret |= FP_DIV0;
2844 }
2845 if (xcpt & float_flag_inexact) {
2846 ret |= FP_INEXACT;
2847 }
2848 }
2849 return ret;
2850 }
2851
2852 static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
2853 {
2854 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2855
2856 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2857
2858 if (tmp) {
2859 set_float_exception_flags(0, &env->active_fpu.fp_status);
2860
2861 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
2862 do_raise_exception(env, EXCP_FPE, pc);
2863 } else {
2864 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2865 }
2866 }
2867 }
2868
2869 /* Float support.
2870 Single precition routines have a "s" suffix, double precision a
2871 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2872 paired single lower "pl", paired single upper "pu". */
2873
2874 /* unary operations, modifying fp status */
2875 uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
2876 {
2877 fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2878 update_fcr31(env, GETPC());
2879 return fdt0;
2880 }
2881
2882 uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
2883 {
2884 fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2885 update_fcr31(env, GETPC());
2886 return fst0;
2887 }
2888
2889 uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
2890 {
2891 uint64_t fdt2;
2892
2893 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2894 update_fcr31(env, GETPC());
2895 return fdt2;
2896 }
2897
2898 uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
2899 {
2900 uint64_t fdt2;
2901
2902 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2903 update_fcr31(env, GETPC());
2904 return fdt2;
2905 }
2906
2907 uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
2908 {
2909 uint64_t fdt2;
2910
2911 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2912 update_fcr31(env, GETPC());
2913 return fdt2;
2914 }
2915
2916 uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0)
2917 {
2918 uint64_t dt2;
2919
2920 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2921 if (get_float_exception_flags(&env->active_fpu.fp_status)
2922 & (float_flag_invalid | float_flag_overflow)) {
2923 dt2 = FP_TO_INT64_OVERFLOW;
2924 }
2925 update_fcr31(env, GETPC());
2926 return dt2;
2927 }
2928
2929 uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0)
2930 {
2931 uint64_t dt2;
2932
2933 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2934 if (get_float_exception_flags(&env->active_fpu.fp_status)
2935 & (float_flag_invalid | float_flag_overflow)) {
2936 dt2 = FP_TO_INT64_OVERFLOW;
2937 }
2938 update_fcr31(env, GETPC());
2939 return dt2;
2940 }
2941
2942 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
2943 {
2944 uint32_t fst2;
2945 uint32_t fsth2;
2946
2947 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2948 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2949 update_fcr31(env, GETPC());
2950 return ((uint64_t)fsth2 << 32) | fst2;
2951 }
2952
2953 uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
2954 {
2955 uint32_t wt2;
2956 uint32_t wth2;
2957 int excp, excph;
2958
2959 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2960 excp = get_float_exception_flags(&env->active_fpu.fp_status);
2961 if (excp & (float_flag_overflow | float_flag_invalid)) {
2962 wt2 = FP_TO_INT32_OVERFLOW;
2963 }
2964
2965 set_float_exception_flags(0, &env->active_fpu.fp_status);
2966 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2967 excph = get_float_exception_flags(&env->active_fpu.fp_status);
2968 if (excph & (float_flag_overflow | float_flag_invalid)) {
2969 wth2 = FP_TO_INT32_OVERFLOW;
2970 }
2971
2972 set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
2973 update_fcr31(env, GETPC());
2974
2975 return ((uint64_t)wth2 << 32) | wt2;
2976 }
2977
2978 uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
2979 {
2980 uint32_t fst2;
2981
2982 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2983 update_fcr31(env, GETPC());
2984 return fst2;
2985 }
2986
2987 uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
2988 {
2989 uint32_t fst2;
2990
2991 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2992 update_fcr31(env, GETPC());
2993 return fst2;
2994 }
2995
2996 uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
2997 {
2998 uint32_t fst2;
2999
3000 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
3001 update_fcr31(env, GETPC());
3002 return fst2;
3003 }
3004
3005 uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
3006 {
3007 uint32_t wt2;
3008
3009 wt2 = wt0;
3010 update_fcr31(env, GETPC());
3011 return wt2;
3012 }
3013
3014 uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
3015 {
3016 uint32_t wt2;
3017
3018 wt2 = wth0;
3019 update_fcr31(env, GETPC());
3020 return wt2;
3021 }
3022
3023 uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0)
3024 {
3025 uint32_t wt2;
3026
3027 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3028 if (get_float_exception_flags(&env->active_fpu.fp_status)
3029 & (float_flag_invalid | float_flag_overflow)) {
3030 wt2 = FP_TO_INT32_OVERFLOW;
3031 }
3032 update_fcr31(env, GETPC());
3033 return wt2;
3034 }
3035
3036 uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0)
3037 {
3038 uint32_t wt2;
3039
3040 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3041 if (get_float_exception_flags(&env->active_fpu.fp_status)
3042 & (float_flag_invalid | float_flag_overflow)) {
3043 wt2 = FP_TO_INT32_OVERFLOW;
3044 }
3045 update_fcr31(env, GETPC());
3046 return wt2;
3047 }
3048
3049 uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0)
3050 {
3051 uint64_t dt2;
3052
3053 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
3054 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3055 restore_rounding_mode(env);
3056 if (get_float_exception_flags(&env->active_fpu.fp_status)
3057 & (float_flag_invalid | float_flag_overflow)) {
3058 dt2 = FP_TO_INT64_OVERFLOW;
3059 }
3060 update_fcr31(env, GETPC());
3061 return dt2;
3062 }
3063
3064 uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0)
3065 {
3066 uint64_t dt2;
3067
3068 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
3069 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3070 restore_rounding_mode(env);
3071 if (get_float_exception_flags(&env->active_fpu.fp_status)
3072 & (float_flag_invalid | float_flag_overflow)) {
3073 dt2 = FP_TO_INT64_OVERFLOW;
3074 }
3075 update_fcr31(env, GETPC());
3076 return dt2;
3077 }
3078
3079 uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0)
3080 {
3081 uint32_t wt2;
3082
3083 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
3084 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3085 restore_rounding_mode(env);
3086 if (get_float_exception_flags(&env->active_fpu.fp_status)
3087 & (float_flag_invalid | float_flag_overflow)) {
3088 wt2 = FP_TO_INT32_OVERFLOW;
3089 }
3090 update_fcr31(env, GETPC());
3091 return wt2;
3092 }
3093
3094 uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0)
3095 {
3096 uint32_t wt2;
3097
3098 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
3099 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3100 restore_rounding_mode(env);
3101 if (get_float_exception_flags(&env->active_fpu.fp_status)
3102 & (float_flag_invalid | float_flag_overflow)) {
3103 wt2 = FP_TO_INT32_OVERFLOW;
3104 }
3105 update_fcr31(env, GETPC());
3106 return wt2;
3107 }
3108
3109 uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0)
3110 {
3111 uint64_t dt2;
3112
3113 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
3114 if (get_float_exception_flags(&env->active_fpu.fp_status)
3115 & (float_flag_invalid | float_flag_overflow)) {
3116 dt2 = FP_TO_INT64_OVERFLOW;
3117 }
3118 update_fcr31(env, GETPC());
3119 return dt2;
3120 }
3121
3122 uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0)
3123 {
3124 uint64_t dt2;
3125
3126 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
3127 if (get_float_exception_flags(&env->active_fpu.fp_status)
3128 & (float_flag_invalid | float_flag_overflow)) {
3129 dt2 = FP_TO_INT64_OVERFLOW;
3130 }
3131 update_fcr31(env, GETPC());
3132 return dt2;
3133 }
3134
3135 uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0)
3136 {
3137 uint32_t wt2;
3138
3139 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
3140 if (get_float_exception_flags(&env->active_fpu.fp_status)
3141 & (float_flag_invalid | float_flag_overflow)) {
3142 wt2 = FP_TO_INT32_OVERFLOW;
3143 }
3144 update_fcr31(env, GETPC());
3145 return wt2;
3146 }
3147
3148 uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0)
3149 {
3150 uint32_t wt2;
3151
3152 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
3153 if (get_float_exception_flags(&env->active_fpu.fp_status)
3154 & (float_flag_invalid | float_flag_overflow)) {
3155 wt2 = FP_TO_INT32_OVERFLOW;
3156 }
3157 update_fcr31(env, GETPC());
3158 return wt2;
3159 }
3160
3161 uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0)
3162 {
3163 uint64_t dt2;
3164
3165 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3166 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3167 restore_rounding_mode(env);
3168 if (get_float_exception_flags(&env->active_fpu.fp_status)
3169 & (float_flag_invalid | float_flag_overflow)) {
3170 dt2 = FP_TO_INT64_OVERFLOW;
3171 }
3172 update_fcr31(env, GETPC());
3173 return dt2;
3174 }
3175
3176 uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0)
3177 {
3178 uint64_t dt2;
3179
3180 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3181 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3182 restore_rounding_mode(env);
3183 if (get_float_exception_flags(&env->active_fpu.fp_status)
3184 & (float_flag_invalid | float_flag_overflow)) {
3185 dt2 = FP_TO_INT64_OVERFLOW;
3186 }
3187 update_fcr31(env, GETPC());
3188 return dt2;
3189 }
3190
3191 uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0)
3192 {
3193 uint32_t wt2;
3194
3195 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3196 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3197 restore_rounding_mode(env);
3198 if (get_float_exception_flags(&env->active_fpu.fp_status)
3199 & (float_flag_invalid | float_flag_overflow)) {
3200 wt2 = FP_TO_INT32_OVERFLOW;
3201 }
3202 update_fcr31(env, GETPC());
3203 return wt2;
3204 }
3205
3206 uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0)
3207 {
3208 uint32_t wt2;
3209
3210 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3211 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3212 restore_rounding_mode(env);
3213 if (get_float_exception_flags(&env->active_fpu.fp_status)
3214 & (float_flag_invalid | float_flag_overflow)) {
3215 wt2 = FP_TO_INT32_OVERFLOW;
3216 }
3217 update_fcr31(env, GETPC());
3218 return wt2;
3219 }
3220
3221 uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0)
3222 {
3223 uint64_t dt2;
3224
3225 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3226 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3227 restore_rounding_mode(env);
3228 if (get_float_exception_flags(&env->active_fpu.fp_status)
3229 & (float_flag_invalid | float_flag_overflow)) {
3230 dt2 = FP_TO_INT64_OVERFLOW;
3231 }
3232 update_fcr31(env, GETPC());
3233 return dt2;
3234 }
3235
3236 uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0)
3237 {
3238 uint64_t dt2;
3239
3240 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3241 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3242 restore_rounding_mode(env);
3243 if (get_float_exception_flags(&env->active_fpu.fp_status)
3244 & (float_flag_invalid | float_flag_overflow)) {
3245 dt2 = FP_TO_INT64_OVERFLOW;
3246 }
3247 update_fcr31(env, GETPC());
3248 return dt2;
3249 }
3250
3251 uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0)
3252 {
3253 uint32_t wt2;
3254
3255 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3256 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3257 restore_rounding_mode(env);
3258 if (get_float_exception_flags(&env->active_fpu.fp_status)
3259 & (float_flag_invalid | float_flag_overflow)) {
3260 wt2 = FP_TO_INT32_OVERFLOW;
3261 }
3262 update_fcr31(env, GETPC());
3263 return wt2;
3264 }
3265
3266 uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0)
3267 {
3268 uint32_t wt2;
3269
3270 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3271 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3272 restore_rounding_mode(env);
3273 if (get_float_exception_flags(&env->active_fpu.fp_status)
3274 & (float_flag_invalid | float_flag_overflow)) {
3275 wt2 = FP_TO_INT32_OVERFLOW;
3276 }
3277 update_fcr31(env, GETPC());
3278 return wt2;
3279 }
3280
3281 uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3282 {
3283 uint64_t dt2;
3284
3285 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3286 if (get_float_exception_flags(&env->active_fpu.fp_status)
3287 & float_flag_invalid) {
3288 if (float64_is_any_nan(fdt0)) {
3289 dt2 = 0;
3290 }
3291 }
3292 update_fcr31(env, GETPC());
3293 return dt2;
3294 }
3295
3296 uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3297 {
3298 uint64_t dt2;
3299
3300 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3301 if (get_float_exception_flags(&env->active_fpu.fp_status)
3302 & float_flag_invalid) {
3303 if (float32_is_any_nan(fst0)) {
3304 dt2 = 0;
3305 }
3306 }
3307 update_fcr31(env, GETPC());
3308 return dt2;
3309 }
3310
3311 uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3312 {
3313 uint32_t wt2;
3314
3315 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3316 if (get_float_exception_flags(&env->active_fpu.fp_status)
3317 & float_flag_invalid) {
3318 if (float64_is_any_nan(fdt0)) {
3319 wt2 = 0;
3320 }
3321 }
3322 update_fcr31(env, GETPC());
3323 return wt2;
3324 }
3325
3326 uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3327 {
3328 uint32_t wt2;
3329
3330 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3331 if (get_float_exception_flags(&env->active_fpu.fp_status)
3332 & float_flag_invalid) {
3333 if (float32_is_any_nan(fst0)) {
3334 wt2 = 0;
3335 }
3336 }
3337 update_fcr31(env, GETPC());
3338 return wt2;
3339 }
3340
3341 uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3342 {
3343 uint64_t dt2;
3344
3345 set_float_rounding_mode(float_round_nearest_even,
3346 &env->active_fpu.fp_status);
3347 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3348 restore_rounding_mode(env);
3349 if (get_float_exception_flags(&env->active_fpu.fp_status)
3350 & float_flag_invalid) {
3351 if (float64_is_any_nan(fdt0)) {
3352 dt2 = 0;
3353 }
3354 }
3355 update_fcr31(env, GETPC());
3356 return dt2;
3357 }
3358
3359 uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3360 {
3361 uint64_t dt2;
3362
3363 set_float_rounding_mode(float_round_nearest_even,
3364 &env->active_fpu.fp_status);
3365 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3366 restore_rounding_mode(env);
3367 if (get_float_exception_flags(&env->active_fpu.fp_status)
3368 & float_flag_invalid) {
3369 if (float32_is_any_nan(fst0)) {
3370 dt2 = 0;
3371 }
3372 }
3373 update_fcr31(env, GETPC());
3374 return dt2;
3375 }
3376
3377 uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3378 {
3379 uint32_t wt2;
3380
3381 set_float_rounding_mode(float_round_nearest_even,
3382 &env->active_fpu.fp_status);
3383 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3384 restore_rounding_mode(env);
3385 if (get_float_exception_flags(&env->active_fpu.fp_status)
3386 & float_flag_invalid) {
3387 if (float64_is_any_nan(fdt0)) {
3388 wt2 = 0;
3389 }
3390 }
3391 update_fcr31(env, GETPC());
3392 return wt2;
3393 }
3394
3395 uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3396 {
3397 uint32_t wt2;
3398
3399 set_float_rounding_mode(float_round_nearest_even,
3400 &env->active_fpu.fp_status);
3401 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3402 restore_rounding_mode(env);
3403 if (get_float_exception_flags(&env->active_fpu.fp_status)
3404 & float_flag_invalid) {
3405 if (float32_is_any_nan(fst0)) {
3406 wt2 = 0;
3407 }
3408 }
3409 update_fcr31(env, GETPC());
3410 return wt2;
3411 }
3412
3413 uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3414 {
3415 uint64_t dt2;
3416
3417 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
3418 if (get_float_exception_flags(&env->active_fpu.fp_status)
3419 & float_flag_invalid) {
3420 if (float64_is_any_nan(fdt0)) {
3421 dt2 = 0;
3422 }
3423 }
3424 update_fcr31(env, GETPC());
3425 return dt2;
3426 }
3427
3428 uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3429 {
3430 uint64_t dt2;
3431
3432 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
3433 if (get_float_exception_flags(&env->active_fpu.fp_status)
3434 & float_flag_invalid) {
3435 if (float32_is_any_nan(fst0)) {
3436 dt2 = 0;
3437 }
3438 }
3439 update_fcr31(env, GETPC());
3440 return dt2;
3441 }
3442
3443 uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3444 {
3445 uint32_t wt2;
3446
3447 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
3448 if (get_float_exception_flags(&env->active_fpu.fp_status)
3449 & float_flag_invalid) {
3450 if (float64_is_any_nan(fdt0)) {
3451 wt2 = 0;
3452 }
3453 }
3454 update_fcr31(env, GETPC());
3455 return wt2;
3456 }
3457
3458 uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3459 {
3460 uint32_t wt2;
3461
3462 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
3463 if (get_float_exception_flags(&env->active_fpu.fp_status)
3464 & float_flag_invalid) {
3465 if (float32_is_any_nan(fst0)) {
3466 wt2 = 0;
3467 }
3468 }
3469 update_fcr31(env, GETPC());
3470 return wt2;
3471 }
3472
3473 uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3474 {
3475 uint64_t dt2;
3476
3477 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3478 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3479 restore_rounding_mode(env);
3480 if (get_float_exception_flags(&env->active_fpu.fp_status)
3481 & float_flag_invalid) {
3482 if (float64_is_any_nan(fdt0)) {
3483 dt2 = 0;
3484 }
3485 }
3486 update_fcr31(env, GETPC());
3487 return dt2;
3488 }
3489
3490 uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3491 {
3492 uint64_t dt2;
3493
3494 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3495 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3496 restore_rounding_mode(env);
3497 if (get_float_exception_flags(&env->active_fpu.fp_status)
3498 & float_flag_invalid) {
3499 if (float32_is_any_nan(fst0)) {
3500 dt2 = 0;
3501 }
3502 }
3503 update_fcr31(env, GETPC());
3504 return dt2;
3505 }
3506
3507 uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3508 {
3509 uint32_t wt2;
3510
3511 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3512 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3513 restore_rounding_mode(env);
3514 if (get_float_exception_flags(&env->active_fpu.fp_status)
3515 & float_flag_invalid) {
3516 if (float64_is_any_nan(fdt0)) {
3517 wt2 = 0;
3518 }
3519 }
3520 update_fcr31(env, GETPC());
3521 return wt2;
3522 }
3523
3524 uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3525 {
3526 uint32_t wt2;
3527
3528 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3529 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3530 restore_rounding_mode(env);
3531 if (get_float_exception_flags(&env->active_fpu.fp_status)
3532 & float_flag_invalid) {
3533 if (float32_is_any_nan(fst0)) {
3534 wt2 = 0;
3535 }
3536 }
3537 update_fcr31(env, GETPC());
3538 return wt2;
3539 }
3540
3541 uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3542 {
3543 uint64_t dt2;
3544
3545 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3546 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3547 restore_rounding_mode(env);
3548 if (get_float_exception_flags(&env->active_fpu.fp_status)
3549 & float_flag_invalid) {
3550 if (float64_is_any_nan(fdt0)) {
3551 dt2 = 0;
3552 }
3553 }
3554 update_fcr31(env, GETPC());
3555 return dt2;
3556 }
3557
3558 uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3559 {
3560 uint64_t dt2;
3561
3562 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3563 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3564 restore_rounding_mode(env);
3565 if (get_float_exception_flags(&env->active_fpu.fp_status)
3566 & float_flag_invalid) {
3567 if (float32_is_any_nan(fst0)) {
3568 dt2 = 0;
3569 }
3570 }
3571 update_fcr31(env, GETPC());
3572 return dt2;
3573 }
3574
3575 uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3576 {
3577 uint32_t wt2;
3578
3579 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3580 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3581 restore_rounding_mode(env);
3582 if (get_float_exception_flags(&env->active_fpu.fp_status)
3583 & float_flag_invalid) {
3584 if (float64_is_any_nan(fdt0)) {
3585 wt2 = 0;
3586 }
3587 }
3588 update_fcr31(env, GETPC());
3589 return wt2;
3590 }
3591
3592 uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3593 {
3594 uint32_t wt2;
3595
3596 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3597 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3598 restore_rounding_mode(env);
3599 if (get_float_exception_flags(&env->active_fpu.fp_status)
3600 & float_flag_invalid) {
3601 if (float32_is_any_nan(fst0)) {
3602 wt2 = 0;
3603 }
3604 }
3605 update_fcr31(env, GETPC());
3606 return wt2;
3607 }
3608
3609 /* unary operations, not modifying fp status */
3610 #define FLOAT_UNOP(name) \
3611 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
3612 { \
3613 return float64_ ## name(fdt0); \
3614 } \
3615 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
3616 { \
3617 return float32_ ## name(fst0); \
3618 } \
3619 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
3620 { \
3621 uint32_t wt0; \
3622 uint32_t wth0; \
3623 \
3624 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
3625 wth0 = float32_ ## name(fdt0 >> 32); \
3626 return ((uint64_t)wth0 << 32) | wt0; \
3627 }
3628 FLOAT_UNOP(abs)
3629 FLOAT_UNOP(chs)
3630 #undef FLOAT_UNOP
3631
3632 /* MIPS specific unary operations */
3633 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
3634 {
3635 uint64_t fdt2;
3636
3637 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3638 update_fcr31(env, GETPC());
3639 return fdt2;
3640 }
3641
3642 uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
3643 {
3644 uint32_t fst2;
3645
3646 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3647 update_fcr31(env, GETPC());
3648 return fst2;
3649 }
3650
3651 uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
3652 {
3653 uint64_t fdt2;
3654
3655 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3656 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3657 update_fcr31(env, GETPC());
3658 return fdt2;
3659 }
3660
3661 uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
3662 {
3663 uint32_t fst2;
3664
3665 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3666 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3667 update_fcr31(env, GETPC());
3668 return fst2;
3669 }
3670
3671 uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
3672 {
3673 uint64_t fdt2;
3674
3675 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3676 update_fcr31(env, GETPC());
3677 return fdt2;
3678 }
3679
3680 uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
3681 {
3682 uint32_t fst2;
3683
3684 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3685 update_fcr31(env, GETPC());
3686 return fst2;
3687 }
3688
3689 uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
3690 {
3691 uint32_t fst2;
3692 uint32_t fsth2;
3693
3694 fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3695 fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
3696 update_fcr31(env, GETPC());
3697 return ((uint64_t)fsth2 << 32) | fst2;
3698 }
3699
3700 uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
3701 {
3702 uint64_t fdt2;
3703
3704 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3705 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3706 update_fcr31(env, GETPC());
3707 return fdt2;
3708 }
3709
3710 uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
3711 {
3712 uint32_t fst2;
3713
3714 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3715 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3716 update_fcr31(env, GETPC());
3717 return fst2;
3718 }
3719
3720 uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
3721 {
3722 uint32_t fst2;
3723 uint32_t fsth2;
3724
3725 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3726 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
3727 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3728 fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
3729 update_fcr31(env, GETPC());
3730 return ((uint64_t)fsth2 << 32) | fst2;
3731 }
3732
3733 #define FLOAT_RINT(name, bits) \
3734 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3735 uint ## bits ## _t fs) \
3736 { \
3737 uint ## bits ## _t fdret; \
3738 \
3739 fdret = float ## bits ## _round_to_int(fs, &env->active_fpu.fp_status); \
3740 update_fcr31(env, GETPC()); \
3741 return fdret; \
3742 }
3743
3744 FLOAT_RINT(rint_s, 32)
3745 FLOAT_RINT(rint_d, 64)
3746 #undef FLOAT_RINT
3747
3748 #define FLOAT_CLASS_SIGNALING_NAN 0x001
3749 #define FLOAT_CLASS_QUIET_NAN 0x002
3750 #define FLOAT_CLASS_NEGATIVE_INFINITY 0x004
3751 #define FLOAT_CLASS_NEGATIVE_NORMAL 0x008
3752 #define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010
3753 #define FLOAT_CLASS_NEGATIVE_ZERO 0x020
3754 #define FLOAT_CLASS_POSITIVE_INFINITY 0x040
3755 #define FLOAT_CLASS_POSITIVE_NORMAL 0x080
3756 #define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100
3757 #define FLOAT_CLASS_POSITIVE_ZERO 0x200
3758
3759 #define FLOAT_CLASS(name, bits) \
3760 uint ## bits ## _t float_ ## name (uint ## bits ## _t arg, \
3761 float_status *status) \
3762 { \
3763 if (float ## bits ## _is_signaling_nan(arg, status)) { \
3764 return FLOAT_CLASS_SIGNALING_NAN; \
3765 } else if (float ## bits ## _is_quiet_nan(arg, status)) { \
3766 return FLOAT_CLASS_QUIET_NAN; \
3767 } else if (float ## bits ## _is_neg(arg)) { \
3768 if (float ## bits ## _is_infinity(arg)) { \
3769 return FLOAT_CLASS_NEGATIVE_INFINITY; \
3770 } else if (float ## bits ## _is_zero(arg)) { \
3771 return FLOAT_CLASS_NEGATIVE_ZERO; \
3772 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3773 return FLOAT_CLASS_NEGATIVE_SUBNORMAL; \
3774 } else { \
3775 return FLOAT_CLASS_NEGATIVE_NORMAL; \
3776 } \
3777 } else { \
3778 if (float ## bits ## _is_infinity(arg)) { \
3779 return FLOAT_CLASS_POSITIVE_INFINITY; \
3780 } else if (float ## bits ## _is_zero(arg)) { \
3781 return FLOAT_CLASS_POSITIVE_ZERO; \
3782 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3783 return FLOAT_CLASS_POSITIVE_SUBNORMAL; \
3784 } else { \
3785 return FLOAT_CLASS_POSITIVE_NORMAL; \
3786 } \
3787 } \
3788 } \
3789 \
3790 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3791 uint ## bits ## _t arg) \
3792 { \
3793 return float_ ## name(arg, &env->active_fpu.fp_status); \
3794 }
3795
3796 FLOAT_CLASS(class_s, 32)
3797 FLOAT_CLASS(class_d, 64)
3798 #undef FLOAT_CLASS
3799
3800 /* binary operations */
3801 #define FLOAT_BINOP(name) \
3802 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3803 uint64_t fdt0, uint64_t fdt1) \
3804 { \
3805 uint64_t dt2; \
3806 \
3807 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
3808 update_fcr31(env, GETPC()); \
3809 return dt2; \
3810 } \
3811 \
3812 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3813 uint32_t fst0, uint32_t fst1) \
3814 { \
3815 uint32_t wt2; \
3816 \
3817 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3818 update_fcr31(env, GETPC()); \
3819 return wt2; \
3820 } \
3821 \
3822 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3823 uint64_t fdt0, \
3824 uint64_t fdt1) \
3825 { \
3826 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3827 uint32_t fsth0 = fdt0 >> 32; \
3828 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3829 uint32_t fsth1 = fdt1 >> 32; \
3830 uint32_t wt2; \
3831 uint32_t wth2; \
3832 \
3833 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3834 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
3835 update_fcr31(env, GETPC()); \
3836 return ((uint64_t)wth2 << 32) | wt2; \
3837 }
3838
3839 FLOAT_BINOP(add)
3840 FLOAT_BINOP(sub)
3841 FLOAT_BINOP(mul)
3842 FLOAT_BINOP(div)
3843 #undef FLOAT_BINOP
3844
3845 /* MIPS specific binary operations */
3846 uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3847 {
3848 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3849 fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
3850 update_fcr31(env, GETPC());
3851 return fdt2;
3852 }
3853
3854 uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3855 {
3856 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3857 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3858 update_fcr31(env, GETPC());
3859 return fst2;
3860 }
3861
3862 uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3863 {
3864 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3865 uint32_t fsth0 = fdt0 >> 32;
3866 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3867 uint32_t fsth2 = fdt2 >> 32;
3868
3869 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3870 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3871 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3872 fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
3873 update_fcr31(env, GETPC());
3874 return ((uint64_t)fsth2 << 32) | fst2;
3875 }
3876
3877 uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3878 {
3879 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3880 fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
3881 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
3882 update_fcr31(env, GETPC());
3883 return fdt2;
3884 }
3885
3886 uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3887 {
3888 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3889 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3890 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3891 update_fcr31(env, GETPC());
3892 return fst2;
3893 }
3894
3895 uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3896 {
3897 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3898 uint32_t fsth0 = fdt0 >> 32;
3899 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3900 uint32_t fsth2 = fdt2 >> 32;
3901
3902 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3903 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3904 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3905 fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
3906 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3907 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
3908 update_fcr31(env, GETPC());
3909 return ((uint64_t)fsth2 << 32) | fst2;
3910 }
3911
3912 uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3913 {
3914 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3915 uint32_t fsth0 = fdt0 >> 32;
3916 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3917 uint32_t fsth1 = fdt1 >> 32;
3918 uint32_t fst2;
3919 uint32_t fsth2;
3920
3921 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
3922 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
3923 update_fcr31(env, GETPC());
3924 return ((uint64_t)fsth2 << 32) | fst2;
3925 }
3926
3927 uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3928 {
3929 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3930 uint32_t fsth0 = fdt0 >> 32;
3931 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3932 uint32_t fsth1 = fdt1 >> 32;
3933 uint32_t fst2;
3934 uint32_t fsth2;
3935
3936 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3937 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3938 update_fcr31(env, GETPC());
3939 return ((uint64_t)fsth2 << 32) | fst2;
3940 }
3941
3942 #define FLOAT_MINMAX(name, bits, minmaxfunc) \
3943 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3944 uint ## bits ## _t fs, \
3945 uint ## bits ## _t ft) \
3946 { \
3947 uint ## bits ## _t fdret; \
3948 \
3949 fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \
3950 &env->active_fpu.fp_status); \
3951 update_fcr31(env, GETPC()); \
3952 return fdret; \
3953 }
3954
3955 FLOAT_MINMAX(max_s, 32, maxnum)
3956 FLOAT_MINMAX(max_d, 64, maxnum)
3957 FLOAT_MINMAX(maxa_s, 32, maxnummag)
3958 FLOAT_MINMAX(maxa_d, 64, maxnummag)
3959
3960 FLOAT_MINMAX(min_s, 32, minnum)
3961 FLOAT_MINMAX(min_d, 64, minnum)
3962 FLOAT_MINMAX(mina_s, 32, minnummag)
3963 FLOAT_MINMAX(mina_d, 64, minnummag)
3964 #undef FLOAT_MINMAX
3965
3966 /* ternary operations */
3967 #define UNFUSED_FMA(prefix, a, b, c, flags) \
3968 { \
3969 a = prefix##_mul(a, b, &env->active_fpu.fp_status); \
3970 if ((flags) & float_muladd_negate_c) { \
3971 a = prefix##_sub(a, c, &env->active_fpu.fp_status); \
3972 } else { \
3973 a = prefix##_add(a, c, &env->active_fpu.fp_status); \
3974 } \
3975 if ((flags) & float_muladd_negate_result) { \
3976 a = prefix##_chs(a); \
3977 } \
3978 }
3979
3980 /* FMA based operations */
3981 #define FLOAT_FMA(name, type) \
3982 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3983 uint64_t fdt0, uint64_t fdt1, \
3984 uint64_t fdt2) \
3985 { \
3986 UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \
3987 update_fcr31(env, GETPC()); \
3988 return fdt0; \
3989 } \
3990 \
3991 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3992 uint32_t fst0, uint32_t fst1, \
3993 uint32_t fst2) \
3994 { \
3995 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3996 update_fcr31(env, GETPC()); \
3997 return fst0; \
3998 } \
3999 \
4000 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
4001 uint64_t fdt0, uint64_t fdt1, \
4002 uint64_t fdt2) \
4003 { \
4004 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
4005 uint32_t fsth0 = fdt0 >> 32; \
4006 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
4007 uint32_t fsth1 = fdt1 >> 32; \
4008 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
4009 uint32_t fsth2 = fdt2 >> 32; \
4010 \
4011 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
4012 UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \
4013 update_fcr31(env, GETPC()); \
4014 return ((uint64_t)fsth0 << 32) | fst0; \
4015 }
4016 FLOAT_FMA(madd, 0)
4017 FLOAT_FMA(msub, float_muladd_negate_c)
4018 FLOAT_FMA(nmadd, float_muladd_negate_result)
4019 FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
4020 #undef FLOAT_FMA
4021
4022 #define FLOAT_FMADDSUB(name, bits, muladd_arg) \
4023 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
4024 uint ## bits ## _t fs, \
4025 uint ## bits ## _t ft, \
4026 uint ## bits ## _t fd) \
4027 { \
4028 uint ## bits ## _t fdret; \
4029 \
4030 fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \
4031 &env->active_fpu.fp_status); \
4032 update_fcr31(env, GETPC()); \
4033 return fdret; \
4034 }
4035
4036 FLOAT_FMADDSUB(maddf_s, 32, 0)
4037 FLOAT_FMADDSUB(maddf_d, 64, 0)
4038 FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product)
4039 FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product)
4040 #undef FLOAT_FMADDSUB
4041
4042 /* compare operations */
4043 #define FOP_COND_D(op, cond) \
4044 void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
4045 uint64_t fdt1, int cc) \
4046 { \
4047 int c; \
4048 c = cond; \
4049 update_fcr31(env, GETPC()); \
4050 if (c) \
4051 SET_FP_COND(cc, env->active_fpu); \
4052 else \
4053 CLEAR_FP_COND(cc, env->active_fpu); \
4054 } \
4055 void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
4056 uint64_t fdt1, int cc) \
4057 { \
4058 int c; \
4059 fdt0 = float64_abs(fdt0); \
4060 fdt1 = float64_abs(fdt1); \
4061 c = cond; \
4062 update_fcr31(env, GETPC()); \
4063 if (c) \
4064 SET_FP_COND(cc, env->active_fpu); \
4065 else \
4066 CLEAR_FP_COND(cc, env->active_fpu); \
4067 }
4068
4069 /* NOTE: the comma operator will make "cond" to eval to false,
4070 * but float64_unordered_quiet() is still called. */
4071 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4072 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
4073 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
4074 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
4075 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
4076 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
4077 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
4078 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
4079 /* NOTE: the comma operator will make "cond" to eval to false,
4080 * but float64_unordered() is still called. */
4081 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4082 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
4083 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
4084 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
4085 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
4086 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
4087 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
4088 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
4089
4090 #define FOP_COND_S(op, cond) \
4091 void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
4092 uint32_t fst1, int cc) \
4093 { \
4094 int c; \
4095 c = cond; \
4096 update_fcr31(env, GETPC()); \
4097 if (c) \
4098 SET_FP_COND(cc, env->active_fpu); \
4099 else \
4100 CLEAR_FP_COND(cc, env->active_fpu); \
4101 } \
4102 void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
4103 uint32_t fst1, int cc) \
4104 { \
4105 int c; \
4106 fst0 = float32_abs(fst0); \
4107 fst1 = float32_abs(fst1); \
4108 c = cond; \
4109 update_fcr31(env, GETPC()); \
4110 if (c) \
4111 SET_FP_COND(cc, env->active_fpu); \
4112 else \
4113 CLEAR_FP_COND(cc, env->active_fpu); \
4114 }
4115
4116 /* NOTE: the comma operator will make "cond" to eval to false,
4117 * but float32_unordered_quiet() is still called. */
4118 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
4119 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
4120 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
4121 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
4122 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
4123 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
4124 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
4125 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
4126 /* NOTE: the comma operator will make "cond" to eval to false,
4127 * but float32_unordered() is still called. */
4128 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
4129 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
4130 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
4131 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
4132 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
4133 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
4134 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
4135 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
4136
4137 #define FOP_COND_PS(op, condl, condh) \
4138 void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
4139 uint64_t fdt1, int cc) \
4140 { \
4141 uint32_t fst0, fsth0, fst1, fsth1; \
4142 int ch, cl; \
4143 fst0 = fdt0 & 0XFFFFFFFF; \
4144 fsth0 = fdt0 >> 32; \
4145 fst1 = fdt1 & 0XFFFFFFFF; \
4146 fsth1 = fdt1 >> 32; \
4147 cl = condl; \
4148 ch = condh; \
4149 update_fcr31(env, GETPC()); \
4150 if (cl) \
4151 SET_FP_COND(cc, env->active_fpu); \
4152 else \
4153 CLEAR_FP_COND(cc, env->active_fpu); \
4154 if (ch) \
4155 SET_FP_COND(cc + 1, env->active_fpu); \
4156 else \
4157 CLEAR_FP_COND(cc + 1, env->active_fpu); \
4158 } \
4159 void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
4160 uint64_t fdt1, int cc) \
4161 { \
4162 uint32_t fst0, fsth0, fst1, fsth1; \
4163 int ch, cl; \
4164 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
4165 fsth0 = float32_abs(fdt0 >> 32); \
4166 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
4167 fsth1 = float32_abs(fdt1 >> 32); \
4168 cl = condl; \
4169 ch = condh; \
4170 update_fcr31(env, GETPC()); \
4171 if (cl) \
4172 SET_FP_COND(cc, env->active_fpu); \
4173 else \
4174 CLEAR_FP_COND(cc, env->active_fpu); \
4175 if (ch) \
4176 SET_FP_COND(cc + 1, env->active_fpu); \
4177 else \
4178 CLEAR_FP_COND(cc + 1, env->active_fpu); \
4179 }
4180
4181 /* NOTE: the comma operator will make "cond" to eval to false,
4182 * but float32_unordered_quiet() is still called. */
4183 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
4184 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
4185 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
4186 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
4187 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
4188 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4189 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
4190 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4191 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
4192 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4193 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
4194 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4195 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
4196 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4197 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
4198 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4199 /* NOTE: the comma operator will make "cond" to eval to false,
4200 * but float32_unordered() is still called. */
4201 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
4202 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
4203 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
4204 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
4205 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
4206 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
4207 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
4208 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
4209 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
4210 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
4211 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
4212 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
4213 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
4214 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
4215 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
4216 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
4217
4218 /* R6 compare operations */
4219 #define FOP_CONDN_D(op, cond) \
4220 uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState * env, uint64_t fdt0, \
4221 uint64_t fdt1) \
4222 { \
4223 uint64_t c; \
4224 c = cond; \
4225 update_fcr31(env, GETPC()); \
4226 if (c) { \
4227 return -1; \
4228 } else { \
4229 return 0; \
4230 } \
4231 }
4232
4233 /* NOTE: the comma operator will make "cond" to eval to false,
4234 * but float64_unordered_quiet() is still called. */
4235 FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4236 FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)))
4237 FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4238 FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4239 || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4240 FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4241 FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4242 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4243 FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4244 FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4245 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4246 /* NOTE: the comma operator will make "cond" to eval to false,
4247 * but float64_unordered() is still called. */
4248 FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4249 FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)))
4250 FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
4251 FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4252 || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
4253 FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4254 FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4255 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4256 FOP_CONDN_D(sle, (float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4257 FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4258 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4259 FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4260 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4261 FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4262 || float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4263 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4264 FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4265 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4266 FOP_CONDN_D(sor, (float64_le(fdt1, fdt0, &env->active_fpu.fp_status)
4267 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4268 FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4269 || float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4270 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4271 FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4272 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4273
4274 #define FOP_CONDN_S(op, cond) \
4275 uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState * env, uint32_t fst0, \
4276 uint32_t fst1) \
4277 { \
4278 uint64_t c; \
4279 c = cond; \
4280 update_fcr31(env, GETPC()); \
4281 if (c) { \
4282 return -1; \
4283 } else { \
4284 return 0; \
4285 } \
4286 }
4287
4288 /* NOTE: the comma operator will make "cond" to eval to false,
4289 * but float32_unordered_quiet() is still called. */
4290 FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
4291 FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)))
4292 FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4293 FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4294 || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4295 FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4296 FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4297 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4298 FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4299 FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4300 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4301 /* NOTE: the comma operator will make "cond" to eval to false,
4302 * but float32_unordered() is still called. */
4303 FOP_CONDN_S(saf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
4304 FOP_CONDN_S(sun, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)))
4305 FOP_CONDN_S(seq, (float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4306 FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4307 || float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4308 FOP_CONDN_S(slt, (float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4309 FOP_CONDN_S(sult, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4310 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4311 FOP_CONDN_S(sle, (float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4312 FOP_CONDN_S(sule, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4313 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4314 FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0, &env->active_fpu.fp_status)
4315 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4316 FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4317 || float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4318 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4319 FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4320 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4321 FOP_CONDN_S(sor, (float32_le(fst1, fst0, &env->active_fpu.fp_status)
4322 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4323 FOP_CONDN_S(sune, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4324 || float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4325 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4326 FOP_CONDN_S(sne, (float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4327 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4328
4329 /* MSA */
4330 /* Data format min and max values */
4331 #define DF_BITS(df) (1 << ((df) + 3))
4332
4333 /* Element-by-element access macros */
4334 #define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df))
4335
4336 #if !defined(CONFIG_USER_ONLY)
4337 #define MEMOP_IDX(DF) \
4338 TCGMemOpIdx oi = make_memop_idx(MO_TE | DF | MO_UNALN, \
4339 cpu_mmu_index(env, false));
4340 #else
4341 #define MEMOP_IDX(DF)
4342 #endif
4343
4344 #define MSA_LD_DF(DF, TYPE, LD_INSN, ...) \
4345 void helper_msa_ld_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4346 target_ulong addr) \
4347 { \
4348 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4349 wr_t wx; \
4350 int i; \
4351 MEMOP_IDX(DF) \
4352 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4353 wx.TYPE[i] = LD_INSN(env, addr + (i << DF), ##__VA_ARGS__); \
4354 } \
4355 memcpy(pwd, &wx, sizeof(wr_t)); \
4356 }
4357
4358 #if !defined(CONFIG_USER_ONLY)
4359 MSA_LD_DF(DF_BYTE, b, helper_ret_ldub_mmu, oi, GETPC())
4360 MSA_LD_DF(DF_HALF, h, helper_ret_lduw_mmu, oi, GETPC())
4361 MSA_LD_DF(DF_WORD, w, helper_ret_ldul_mmu, oi, GETPC())
4362 MSA_LD_DF(DF_DOUBLE, d, helper_ret_ldq_mmu, oi, GETPC())
4363 #else
4364 MSA_LD_DF(DF_BYTE, b, cpu_ldub_data)
4365 MSA_LD_DF(DF_HALF, h, cpu_lduw_data)
4366 MSA_LD_DF(DF_WORD, w, cpu_ldl_data)
4367 MSA_LD_DF(DF_DOUBLE, d, cpu_ldq_data)
4368 #endif
4369
4370 #define MSA_PAGESPAN(x) \
4371 ((((x) & ~TARGET_PAGE_MASK) + MSA_WRLEN/8 - 1) >= TARGET_PAGE_SIZE)
4372
4373 static inline void ensure_writable_pages(CPUMIPSState *env,
4374 target_ulong addr,
4375 int mmu_idx,
4376 uintptr_t retaddr)
4377 {
4378 #if !defined(CONFIG_USER_ONLY)
4379 target_ulong page_addr;
4380 if (unlikely(MSA_PAGESPAN(addr))) {
4381 /* first page */
4382 probe_write(env, addr, 0, mmu_idx, retaddr);
4383 /* second page */
4384 page_addr = (addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
4385 probe_write(env, page_addr, 0, mmu_idx, retaddr);
4386 }
4387 #endif
4388 }
4389
4390 #define MSA_ST_DF(DF, TYPE, ST_INSN, ...) \
4391 void helper_msa_st_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4392 target_ulong addr) \
4393 { \
4394 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4395 int mmu_idx = cpu_mmu_index(env, false); \
4396 int i; \
4397 MEMOP_IDX(DF) \
4398 ensure_writable_pages(env, addr, mmu_idx, GETPC()); \
4399 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4400 ST_INSN(env, addr + (i << DF), pwd->TYPE[i], ##__VA_ARGS__); \
4401 } \
4402 }
4403
4404 #if !defined(CONFIG_USER_ONLY)
4405 MSA_ST_DF(DF_BYTE, b, helper_ret_stb_mmu, oi, GETPC())
4406 MSA_ST_DF(DF_HALF, h, helper_ret_stw_mmu, oi, GETPC())
4407 MSA_ST_DF(DF_WORD, w, helper_ret_stl_mmu, oi, GETPC())
4408 MSA_ST_DF(DF_DOUBLE, d, helper_ret_stq_mmu, oi, GETPC())
4409 #else
4410 MSA_ST_DF(DF_BYTE, b, cpu_stb_data)
4411 MSA_ST_DF(DF_HALF, h, cpu_stw_data)
4412 MSA_ST_DF(DF_WORD, w, cpu_stl_data)
4413 MSA_ST_DF(DF_DOUBLE, d, cpu_stq_data)
4414 #endif
4415
4416 void helper_cache(CPUMIPSState *env, target_ulong addr, uint32_t op)
4417 {
4418 #ifndef CONFIG_USER_ONLY
4419 target_ulong index = addr & 0x1fffffff;
4420 if (op == 9) {
4421 /* Index Store Tag */
4422 memory_region_dispatch_write(env->itc_tag, index, env->CP0_TagLo,
4423 8, MEMTXATTRS_UNSPECIFIED);
4424 } else if (op == 5) {
4425 /* Index Load Tag */
4426 memory_region_dispatch_read(env->itc_tag, index, &env->CP0_TagLo,
4427 8, MEMTXATTRS_UNSPECIFIED);
4428 }
4429 #endif
4430 }