]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/op_helper.c
target/mips: Remove floatX_maybe_silence_nan from conversions
[mirror_qemu.git] / target / mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "qemu/host-utils.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "sysemu/kvm.h"
28
29 /*****************************************************************************/
30 /* Exceptions processing helpers */
31
32 void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
33 int error_code)
34 {
35 do_raise_exception_err(env, exception, error_code, 0);
36 }
37
38 void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
39 {
40 do_raise_exception(env, exception, GETPC());
41 }
42
43 void helper_raise_exception_debug(CPUMIPSState *env)
44 {
45 do_raise_exception(env, EXCP_DEBUG, 0);
46 }
47
48 static void raise_exception(CPUMIPSState *env, uint32_t exception)
49 {
50 do_raise_exception(env, exception, 0);
51 }
52
53 #if defined(CONFIG_USER_ONLY)
54 #define HELPER_LD(name, insn, type) \
55 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
56 int mem_idx, uintptr_t retaddr) \
57 { \
58 return (type) cpu_##insn##_data_ra(env, addr, retaddr); \
59 }
60 #else
61 #define HELPER_LD(name, insn, type) \
62 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
63 int mem_idx, uintptr_t retaddr) \
64 { \
65 switch (mem_idx) \
66 { \
67 case 0: return (type) cpu_##insn##_kernel_ra(env, addr, retaddr); \
68 case 1: return (type) cpu_##insn##_super_ra(env, addr, retaddr); \
69 default: \
70 case 2: return (type) cpu_##insn##_user_ra(env, addr, retaddr); \
71 case 3: return (type) cpu_##insn##_error_ra(env, addr, retaddr); \
72 } \
73 }
74 #endif
75 HELPER_LD(lw, ldl, int32_t)
76 #if defined(TARGET_MIPS64)
77 HELPER_LD(ld, ldq, int64_t)
78 #endif
79 #undef HELPER_LD
80
81 #if defined(CONFIG_USER_ONLY)
82 #define HELPER_ST(name, insn, type) \
83 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
84 type val, int mem_idx, uintptr_t retaddr) \
85 { \
86 cpu_##insn##_data_ra(env, addr, val, retaddr); \
87 }
88 #else
89 #define HELPER_ST(name, insn, type) \
90 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
91 type val, int mem_idx, uintptr_t retaddr) \
92 { \
93 switch (mem_idx) \
94 { \
95 case 0: cpu_##insn##_kernel_ra(env, addr, val, retaddr); break; \
96 case 1: cpu_##insn##_super_ra(env, addr, val, retaddr); break; \
97 default: \
98 case 2: cpu_##insn##_user_ra(env, addr, val, retaddr); break; \
99 case 3: \
100 cpu_##insn##_error_ra(env, addr, val, retaddr); \
101 break; \
102 } \
103 }
104 #endif
105 HELPER_ST(sb, stb, uint8_t)
106 HELPER_ST(sw, stl, uint32_t)
107 #if defined(TARGET_MIPS64)
108 HELPER_ST(sd, stq, uint64_t)
109 #endif
110 #undef HELPER_ST
111
112 /* 64 bits arithmetic for 32 bits hosts */
113 static inline uint64_t get_HILO(CPUMIPSState *env)
114 {
115 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
116 }
117
118 static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
119 {
120 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
121 return env->active_tc.HI[0] = (int32_t)(HILO >> 32);
122 }
123
124 static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
125 {
126 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
127 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
128 return tmp;
129 }
130
131 /* Multiplication variants of the vr54xx. */
132 target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
133 target_ulong arg2)
134 {
135 return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
136 (int64_t)(int32_t)arg2));
137 }
138
139 target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
140 target_ulong arg2)
141 {
142 return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
143 (uint64_t)(uint32_t)arg2);
144 }
145
146 target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
147 target_ulong arg2)
148 {
149 return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
150 (int64_t)(int32_t)arg2);
151 }
152
153 target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
154 target_ulong arg2)
155 {
156 return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
157 (int64_t)(int32_t)arg2);
158 }
159
160 target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
161 target_ulong arg2)
162 {
163 return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
164 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
165 }
166
167 target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
168 target_ulong arg2)
169 {
170 return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
171 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
172 }
173
174 target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
175 target_ulong arg2)
176 {
177 return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
178 (int64_t)(int32_t)arg2);
179 }
180
181 target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
182 target_ulong arg2)
183 {
184 return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
185 (int64_t)(int32_t)arg2);
186 }
187
188 target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
189 target_ulong arg2)
190 {
191 return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
192 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
193 }
194
195 target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
196 target_ulong arg2)
197 {
198 return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
199 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
200 }
201
202 target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
203 target_ulong arg2)
204 {
205 return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
206 }
207
208 target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
209 target_ulong arg2)
210 {
211 return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
212 (uint64_t)(uint32_t)arg2);
213 }
214
215 target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
216 target_ulong arg2)
217 {
218 return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
219 (int64_t)(int32_t)arg2);
220 }
221
222 target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
223 target_ulong arg2)
224 {
225 return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
226 (uint64_t)(uint32_t)arg2);
227 }
228
229 static inline target_ulong bitswap(target_ulong v)
230 {
231 v = ((v >> 1) & (target_ulong)0x5555555555555555ULL) |
232 ((v & (target_ulong)0x5555555555555555ULL) << 1);
233 v = ((v >> 2) & (target_ulong)0x3333333333333333ULL) |
234 ((v & (target_ulong)0x3333333333333333ULL) << 2);
235 v = ((v >> 4) & (target_ulong)0x0F0F0F0F0F0F0F0FULL) |
236 ((v & (target_ulong)0x0F0F0F0F0F0F0F0FULL) << 4);
237 return v;
238 }
239
240 #ifdef TARGET_MIPS64
241 target_ulong helper_dbitswap(target_ulong rt)
242 {
243 return bitswap(rt);
244 }
245 #endif
246
247 target_ulong helper_bitswap(target_ulong rt)
248 {
249 return (int32_t)bitswap(rt);
250 }
251
252 #ifndef CONFIG_USER_ONLY
253
254 static inline hwaddr do_translate_address(CPUMIPSState *env,
255 target_ulong address,
256 int rw, uintptr_t retaddr)
257 {
258 hwaddr lladdr;
259 CPUState *cs = CPU(mips_env_get_cpu(env));
260
261 lladdr = cpu_mips_translate_address(env, address, rw);
262
263 if (lladdr == -1LL) {
264 cpu_loop_exit_restore(cs, retaddr);
265 } else {
266 return lladdr;
267 }
268 }
269
270 #define HELPER_LD_ATOMIC(name, insn, almask) \
271 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
272 { \
273 if (arg & almask) { \
274 env->CP0_BadVAddr = arg; \
275 do_raise_exception(env, EXCP_AdEL, GETPC()); \
276 } \
277 env->lladdr = do_translate_address(env, arg, 0, GETPC()); \
278 env->llval = do_##insn(env, arg, mem_idx, GETPC()); \
279 return env->llval; \
280 }
281 HELPER_LD_ATOMIC(ll, lw, 0x3)
282 #ifdef TARGET_MIPS64
283 HELPER_LD_ATOMIC(lld, ld, 0x7)
284 #endif
285 #undef HELPER_LD_ATOMIC
286
287 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
288 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
289 target_ulong arg2, int mem_idx) \
290 { \
291 target_long tmp; \
292 \
293 if (arg2 & almask) { \
294 env->CP0_BadVAddr = arg2; \
295 do_raise_exception(env, EXCP_AdES, GETPC()); \
296 } \
297 if (do_translate_address(env, arg2, 1, GETPC()) == env->lladdr) { \
298 tmp = do_##ld_insn(env, arg2, mem_idx, GETPC()); \
299 if (tmp == env->llval) { \
300 do_##st_insn(env, arg2, arg1, mem_idx, GETPC()); \
301 return 1; \
302 } \
303 } \
304 return 0; \
305 }
306 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
307 #ifdef TARGET_MIPS64
308 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
309 #endif
310 #undef HELPER_ST_ATOMIC
311 #endif
312
313 #ifdef TARGET_WORDS_BIGENDIAN
314 #define GET_LMASK(v) ((v) & 3)
315 #define GET_OFFSET(addr, offset) (addr + (offset))
316 #else
317 #define GET_LMASK(v) (((v) & 3) ^ 3)
318 #define GET_OFFSET(addr, offset) (addr - (offset))
319 #endif
320
321 void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
322 int mem_idx)
323 {
324 do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx, GETPC());
325
326 if (GET_LMASK(arg2) <= 2) {
327 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx,
328 GETPC());
329 }
330
331 if (GET_LMASK(arg2) <= 1) {
332 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx,
333 GETPC());
334 }
335
336 if (GET_LMASK(arg2) == 0) {
337 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx,
338 GETPC());
339 }
340 }
341
342 void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
343 int mem_idx)
344 {
345 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
346
347 if (GET_LMASK(arg2) >= 1) {
348 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
349 GETPC());
350 }
351
352 if (GET_LMASK(arg2) >= 2) {
353 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
354 GETPC());
355 }
356
357 if (GET_LMASK(arg2) == 3) {
358 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
359 GETPC());
360 }
361 }
362
363 #if defined(TARGET_MIPS64)
364 /* "half" load and stores. We must do the memory access inline,
365 or fault handling won't work. */
366
367 #ifdef TARGET_WORDS_BIGENDIAN
368 #define GET_LMASK64(v) ((v) & 7)
369 #else
370 #define GET_LMASK64(v) (((v) & 7) ^ 7)
371 #endif
372
373 void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
374 int mem_idx)
375 {
376 do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx, GETPC());
377
378 if (GET_LMASK64(arg2) <= 6) {
379 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx,
380 GETPC());
381 }
382
383 if (GET_LMASK64(arg2) <= 5) {
384 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx,
385 GETPC());
386 }
387
388 if (GET_LMASK64(arg2) <= 4) {
389 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx,
390 GETPC());
391 }
392
393 if (GET_LMASK64(arg2) <= 3) {
394 do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx,
395 GETPC());
396 }
397
398 if (GET_LMASK64(arg2) <= 2) {
399 do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx,
400 GETPC());
401 }
402
403 if (GET_LMASK64(arg2) <= 1) {
404 do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx,
405 GETPC());
406 }
407
408 if (GET_LMASK64(arg2) <= 0) {
409 do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx,
410 GETPC());
411 }
412 }
413
414 void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
415 int mem_idx)
416 {
417 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
418
419 if (GET_LMASK64(arg2) >= 1) {
420 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
421 GETPC());
422 }
423
424 if (GET_LMASK64(arg2) >= 2) {
425 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
426 GETPC());
427 }
428
429 if (GET_LMASK64(arg2) >= 3) {
430 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
431 GETPC());
432 }
433
434 if (GET_LMASK64(arg2) >= 4) {
435 do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx,
436 GETPC());
437 }
438
439 if (GET_LMASK64(arg2) >= 5) {
440 do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx,
441 GETPC());
442 }
443
444 if (GET_LMASK64(arg2) >= 6) {
445 do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx,
446 GETPC());
447 }
448
449 if (GET_LMASK64(arg2) == 7) {
450 do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx,
451 GETPC());
452 }
453 }
454 #endif /* TARGET_MIPS64 */
455
456 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
457
458 void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
459 uint32_t mem_idx)
460 {
461 target_ulong base_reglist = reglist & 0xf;
462 target_ulong do_r31 = reglist & 0x10;
463
464 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
465 target_ulong i;
466
467 for (i = 0; i < base_reglist; i++) {
468 env->active_tc.gpr[multiple_regs[i]] =
469 (target_long)do_lw(env, addr, mem_idx, GETPC());
470 addr += 4;
471 }
472 }
473
474 if (do_r31) {
475 env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx,
476 GETPC());
477 }
478 }
479
480 void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
481 uint32_t mem_idx)
482 {
483 target_ulong base_reglist = reglist & 0xf;
484 target_ulong do_r31 = reglist & 0x10;
485
486 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
487 target_ulong i;
488
489 for (i = 0; i < base_reglist; i++) {
490 do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
491 GETPC());
492 addr += 4;
493 }
494 }
495
496 if (do_r31) {
497 do_sw(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
498 }
499 }
500
501 #if defined(TARGET_MIPS64)
502 void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
503 uint32_t mem_idx)
504 {
505 target_ulong base_reglist = reglist & 0xf;
506 target_ulong do_r31 = reglist & 0x10;
507
508 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
509 target_ulong i;
510
511 for (i = 0; i < base_reglist; i++) {
512 env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx,
513 GETPC());
514 addr += 8;
515 }
516 }
517
518 if (do_r31) {
519 env->active_tc.gpr[31] = do_ld(env, addr, mem_idx, GETPC());
520 }
521 }
522
523 void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
524 uint32_t mem_idx)
525 {
526 target_ulong base_reglist = reglist & 0xf;
527 target_ulong do_r31 = reglist & 0x10;
528
529 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
530 target_ulong i;
531
532 for (i = 0; i < base_reglist; i++) {
533 do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
534 GETPC());
535 addr += 8;
536 }
537 }
538
539 if (do_r31) {
540 do_sd(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
541 }
542 }
543 #endif
544
545 #ifndef CONFIG_USER_ONLY
546 /* SMP helpers. */
547 static bool mips_vpe_is_wfi(MIPSCPU *c)
548 {
549 CPUState *cpu = CPU(c);
550 CPUMIPSState *env = &c->env;
551
552 /* If the VPE is halted but otherwise active, it means it's waiting for
553 an interrupt. */
554 return cpu->halted && mips_vpe_active(env);
555 }
556
557 static bool mips_vp_is_wfi(MIPSCPU *c)
558 {
559 CPUState *cpu = CPU(c);
560 CPUMIPSState *env = &c->env;
561
562 return cpu->halted && mips_vp_active(env);
563 }
564
565 static inline void mips_vpe_wake(MIPSCPU *c)
566 {
567 /* Don't set ->halted = 0 directly, let it be done via cpu_has_work
568 because there might be other conditions that state that c should
569 be sleeping. */
570 cpu_interrupt(CPU(c), CPU_INTERRUPT_WAKE);
571 }
572
573 static inline void mips_vpe_sleep(MIPSCPU *cpu)
574 {
575 CPUState *cs = CPU(cpu);
576
577 /* The VPE was shut off, really go to bed.
578 Reset any old _WAKE requests. */
579 cs->halted = 1;
580 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
581 }
582
583 static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
584 {
585 CPUMIPSState *c = &cpu->env;
586
587 /* FIXME: TC reschedule. */
588 if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
589 mips_vpe_wake(cpu);
590 }
591 }
592
593 static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
594 {
595 CPUMIPSState *c = &cpu->env;
596
597 /* FIXME: TC reschedule. */
598 if (!mips_vpe_active(c)) {
599 mips_vpe_sleep(cpu);
600 }
601 }
602
603 /**
604 * mips_cpu_map_tc:
605 * @env: CPU from which mapping is performed.
606 * @tc: Should point to an int with the value of the global TC index.
607 *
608 * This function will transform @tc into a local index within the
609 * returned #CPUMIPSState.
610 */
611 /* FIXME: This code assumes that all VPEs have the same number of TCs,
612 which depends on runtime setup. Can probably be fixed by
613 walking the list of CPUMIPSStates. */
614 static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
615 {
616 MIPSCPU *cpu;
617 CPUState *cs;
618 CPUState *other_cs;
619 int vpe_idx;
620 int tc_idx = *tc;
621
622 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
623 /* Not allowed to address other CPUs. */
624 *tc = env->current_tc;
625 return env;
626 }
627
628 cs = CPU(mips_env_get_cpu(env));
629 vpe_idx = tc_idx / cs->nr_threads;
630 *tc = tc_idx % cs->nr_threads;
631 other_cs = qemu_get_cpu(vpe_idx);
632 if (other_cs == NULL) {
633 return env;
634 }
635 cpu = MIPS_CPU(other_cs);
636 return &cpu->env;
637 }
638
639 /* The per VPE CP0_Status register shares some fields with the per TC
640 CP0_TCStatus registers. These fields are wired to the same registers,
641 so changes to either of them should be reflected on both registers.
642
643 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
644
645 These helper call synchronizes the regs for a given cpu. */
646
647 /* Called for updates to CP0_Status. Defined in "cpu.h" for gdbstub.c. */
648 /* static inline void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu,
649 int tc); */
650
651 /* Called for updates to CP0_TCStatus. */
652 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
653 target_ulong v)
654 {
655 uint32_t status;
656 uint32_t tcu, tmx, tasid, tksu;
657 uint32_t mask = ((1U << CP0St_CU3)
658 | (1 << CP0St_CU2)
659 | (1 << CP0St_CU1)
660 | (1 << CP0St_CU0)
661 | (1 << CP0St_MX)
662 | (3 << CP0St_KSU));
663
664 tcu = (v >> CP0TCSt_TCU0) & 0xf;
665 tmx = (v >> CP0TCSt_TMX) & 0x1;
666 tasid = v & cpu->CP0_EntryHi_ASID_mask;
667 tksu = (v >> CP0TCSt_TKSU) & 0x3;
668
669 status = tcu << CP0St_CU0;
670 status |= tmx << CP0St_MX;
671 status |= tksu << CP0St_KSU;
672
673 cpu->CP0_Status &= ~mask;
674 cpu->CP0_Status |= status;
675
676 /* Sync the TASID with EntryHi. */
677 cpu->CP0_EntryHi &= ~cpu->CP0_EntryHi_ASID_mask;
678 cpu->CP0_EntryHi |= tasid;
679
680 compute_hflags(cpu);
681 }
682
683 /* Called for updates to CP0_EntryHi. */
684 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
685 {
686 int32_t *tcst;
687 uint32_t asid, v = cpu->CP0_EntryHi;
688
689 asid = v & cpu->CP0_EntryHi_ASID_mask;
690
691 if (tc == cpu->current_tc) {
692 tcst = &cpu->active_tc.CP0_TCStatus;
693 } else {
694 tcst = &cpu->tcs[tc].CP0_TCStatus;
695 }
696
697 *tcst &= ~cpu->CP0_EntryHi_ASID_mask;
698 *tcst |= asid;
699 }
700
701 /* CP0 helpers */
702 target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
703 {
704 return env->mvp->CP0_MVPControl;
705 }
706
707 target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
708 {
709 return env->mvp->CP0_MVPConf0;
710 }
711
712 target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
713 {
714 return env->mvp->CP0_MVPConf1;
715 }
716
717 target_ulong helper_mfc0_random(CPUMIPSState *env)
718 {
719 return (int32_t)cpu_mips_get_random(env);
720 }
721
722 target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
723 {
724 return env->active_tc.CP0_TCStatus;
725 }
726
727 target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
728 {
729 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
730 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
731
732 if (other_tc == other->current_tc)
733 return other->active_tc.CP0_TCStatus;
734 else
735 return other->tcs[other_tc].CP0_TCStatus;
736 }
737
738 target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
739 {
740 return env->active_tc.CP0_TCBind;
741 }
742
743 target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
744 {
745 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
746 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
747
748 if (other_tc == other->current_tc)
749 return other->active_tc.CP0_TCBind;
750 else
751 return other->tcs[other_tc].CP0_TCBind;
752 }
753
754 target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
755 {
756 return env->active_tc.PC;
757 }
758
759 target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
760 {
761 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
762 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
763
764 if (other_tc == other->current_tc)
765 return other->active_tc.PC;
766 else
767 return other->tcs[other_tc].PC;
768 }
769
770 target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
771 {
772 return env->active_tc.CP0_TCHalt;
773 }
774
775 target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
776 {
777 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
778 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
779
780 if (other_tc == other->current_tc)
781 return other->active_tc.CP0_TCHalt;
782 else
783 return other->tcs[other_tc].CP0_TCHalt;
784 }
785
786 target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
787 {
788 return env->active_tc.CP0_TCContext;
789 }
790
791 target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
792 {
793 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
794 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
795
796 if (other_tc == other->current_tc)
797 return other->active_tc.CP0_TCContext;
798 else
799 return other->tcs[other_tc].CP0_TCContext;
800 }
801
802 target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
803 {
804 return env->active_tc.CP0_TCSchedule;
805 }
806
807 target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
808 {
809 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
810 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
811
812 if (other_tc == other->current_tc)
813 return other->active_tc.CP0_TCSchedule;
814 else
815 return other->tcs[other_tc].CP0_TCSchedule;
816 }
817
818 target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
819 {
820 return env->active_tc.CP0_TCScheFBack;
821 }
822
823 target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
824 {
825 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
826 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
827
828 if (other_tc == other->current_tc)
829 return other->active_tc.CP0_TCScheFBack;
830 else
831 return other->tcs[other_tc].CP0_TCScheFBack;
832 }
833
834 target_ulong helper_mfc0_count(CPUMIPSState *env)
835 {
836 int32_t count;
837 qemu_mutex_lock_iothread();
838 count = (int32_t) cpu_mips_get_count(env);
839 qemu_mutex_unlock_iothread();
840 return count;
841 }
842
843 target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
844 {
845 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
846 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
847
848 return other->CP0_EntryHi;
849 }
850
851 target_ulong helper_mftc0_cause(CPUMIPSState *env)
852 {
853 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
854 int32_t tccause;
855 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
856
857 if (other_tc == other->current_tc) {
858 tccause = other->CP0_Cause;
859 } else {
860 tccause = other->CP0_Cause;
861 }
862
863 return tccause;
864 }
865
866 target_ulong helper_mftc0_status(CPUMIPSState *env)
867 {
868 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
869 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
870
871 return other->CP0_Status;
872 }
873
874 target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
875 {
876 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
877 }
878
879 target_ulong helper_mfc0_maar(CPUMIPSState *env)
880 {
881 return (int32_t) env->CP0_MAAR[env->CP0_MAARI];
882 }
883
884 target_ulong helper_mfhc0_maar(CPUMIPSState *env)
885 {
886 return env->CP0_MAAR[env->CP0_MAARI] >> 32;
887 }
888
889 target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
890 {
891 return (int32_t)env->CP0_WatchLo[sel];
892 }
893
894 target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
895 {
896 return env->CP0_WatchHi[sel];
897 }
898
899 target_ulong helper_mfc0_debug(CPUMIPSState *env)
900 {
901 target_ulong t0 = env->CP0_Debug;
902 if (env->hflags & MIPS_HFLAG_DM)
903 t0 |= 1 << CP0DB_DM;
904
905 return t0;
906 }
907
908 target_ulong helper_mftc0_debug(CPUMIPSState *env)
909 {
910 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
911 int32_t tcstatus;
912 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
913
914 if (other_tc == other->current_tc)
915 tcstatus = other->active_tc.CP0_Debug_tcstatus;
916 else
917 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
918
919 /* XXX: Might be wrong, check with EJTAG spec. */
920 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
921 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
922 }
923
924 #if defined(TARGET_MIPS64)
925 target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
926 {
927 return env->active_tc.PC;
928 }
929
930 target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
931 {
932 return env->active_tc.CP0_TCHalt;
933 }
934
935 target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
936 {
937 return env->active_tc.CP0_TCContext;
938 }
939
940 target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
941 {
942 return env->active_tc.CP0_TCSchedule;
943 }
944
945 target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
946 {
947 return env->active_tc.CP0_TCScheFBack;
948 }
949
950 target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
951 {
952 return env->lladdr >> env->CP0_LLAddr_shift;
953 }
954
955 target_ulong helper_dmfc0_maar(CPUMIPSState *env)
956 {
957 return env->CP0_MAAR[env->CP0_MAARI];
958 }
959
960 target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
961 {
962 return env->CP0_WatchLo[sel];
963 }
964 #endif /* TARGET_MIPS64 */
965
966 void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
967 {
968 uint32_t index_p = env->CP0_Index & 0x80000000;
969 uint32_t tlb_index = arg1 & 0x7fffffff;
970 if (tlb_index < env->tlb->nb_tlb) {
971 if (env->insn_flags & ISA_MIPS32R6) {
972 index_p |= arg1 & 0x80000000;
973 }
974 env->CP0_Index = index_p | tlb_index;
975 }
976 }
977
978 void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
979 {
980 uint32_t mask = 0;
981 uint32_t newval;
982
983 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
984 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
985 (1 << CP0MVPCo_EVP);
986 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
987 mask |= (1 << CP0MVPCo_STLB);
988 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
989
990 // TODO: Enable/disable shared TLB, enable/disable VPEs.
991
992 env->mvp->CP0_MVPControl = newval;
993 }
994
995 void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
996 {
997 uint32_t mask;
998 uint32_t newval;
999
1000 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1001 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1002 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
1003
1004 /* Yield scheduler intercept not implemented. */
1005 /* Gating storage scheduler intercept not implemented. */
1006
1007 // TODO: Enable/disable TCs.
1008
1009 env->CP0_VPEControl = newval;
1010 }
1011
1012 void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
1013 {
1014 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1015 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1016 uint32_t mask;
1017 uint32_t newval;
1018
1019 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1020 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1021 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
1022
1023 /* TODO: Enable/disable TCs. */
1024
1025 other->CP0_VPEControl = newval;
1026 }
1027
1028 target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
1029 {
1030 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1031 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1032 /* FIXME: Mask away return zero on read bits. */
1033 return other->CP0_VPEControl;
1034 }
1035
1036 target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
1037 {
1038 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1039 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1040
1041 return other->CP0_VPEConf0;
1042 }
1043
1044 void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1045 {
1046 uint32_t mask = 0;
1047 uint32_t newval;
1048
1049 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1050 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1051 mask |= (0xff << CP0VPEC0_XTC);
1052 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1053 }
1054 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1055
1056 // TODO: TC exclusive handling due to ERL/EXL.
1057
1058 env->CP0_VPEConf0 = newval;
1059 }
1060
1061 void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1062 {
1063 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1064 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1065 uint32_t mask = 0;
1066 uint32_t newval;
1067
1068 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1069 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1070
1071 /* TODO: TC exclusive handling due to ERL/EXL. */
1072 other->CP0_VPEConf0 = newval;
1073 }
1074
1075 void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
1076 {
1077 uint32_t mask = 0;
1078 uint32_t newval;
1079
1080 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1081 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1082 (0xff << CP0VPEC1_NCP1);
1083 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1084
1085 /* UDI not implemented. */
1086 /* CP2 not implemented. */
1087
1088 // TODO: Handle FPU (CP1) binding.
1089
1090 env->CP0_VPEConf1 = newval;
1091 }
1092
1093 void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
1094 {
1095 /* Yield qualifier inputs not implemented. */
1096 env->CP0_YQMask = 0x00000000;
1097 }
1098
1099 void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
1100 {
1101 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1102 }
1103
1104 #define MTC0_ENTRYLO_MASK(env) ((env->PAMask >> 6) & 0x3FFFFFFF)
1105
1106 void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
1107 {
1108 /* 1k pages not implemented */
1109 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1110 env->CP0_EntryLo0 = (arg1 & MTC0_ENTRYLO_MASK(env))
1111 | (rxi << (CP0EnLo_XI - 30));
1112 }
1113
1114 #if defined(TARGET_MIPS64)
1115 #define DMTC0_ENTRYLO_MASK(env) (env->PAMask >> 6)
1116
1117 void helper_dmtc0_entrylo0(CPUMIPSState *env, uint64_t arg1)
1118 {
1119 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1120 env->CP0_EntryLo0 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1121 }
1122 #endif
1123
1124 void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1125 {
1126 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1127 uint32_t newval;
1128
1129 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1130
1131 env->active_tc.CP0_TCStatus = newval;
1132 sync_c0_tcstatus(env, env->current_tc, newval);
1133 }
1134
1135 void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1136 {
1137 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1138 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1139
1140 if (other_tc == other->current_tc)
1141 other->active_tc.CP0_TCStatus = arg1;
1142 else
1143 other->tcs[other_tc].CP0_TCStatus = arg1;
1144 sync_c0_tcstatus(other, other_tc, arg1);
1145 }
1146
1147 void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1148 {
1149 uint32_t mask = (1 << CP0TCBd_TBE);
1150 uint32_t newval;
1151
1152 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1153 mask |= (1 << CP0TCBd_CurVPE);
1154 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1155 env->active_tc.CP0_TCBind = newval;
1156 }
1157
1158 void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1159 {
1160 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1161 uint32_t mask = (1 << CP0TCBd_TBE);
1162 uint32_t newval;
1163 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1164
1165 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1166 mask |= (1 << CP0TCBd_CurVPE);
1167 if (other_tc == other->current_tc) {
1168 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1169 other->active_tc.CP0_TCBind = newval;
1170 } else {
1171 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1172 other->tcs[other_tc].CP0_TCBind = newval;
1173 }
1174 }
1175
1176 void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1177 {
1178 env->active_tc.PC = arg1;
1179 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1180 env->lladdr = 0ULL;
1181 /* MIPS16 not implemented. */
1182 }
1183
1184 void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1185 {
1186 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1187 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1188
1189 if (other_tc == other->current_tc) {
1190 other->active_tc.PC = arg1;
1191 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1192 other->lladdr = 0ULL;
1193 /* MIPS16 not implemented. */
1194 } else {
1195 other->tcs[other_tc].PC = arg1;
1196 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1197 other->lladdr = 0ULL;
1198 /* MIPS16 not implemented. */
1199 }
1200 }
1201
1202 void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1203 {
1204 MIPSCPU *cpu = mips_env_get_cpu(env);
1205
1206 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1207
1208 // TODO: Halt TC / Restart (if allocated+active) TC.
1209 if (env->active_tc.CP0_TCHalt & 1) {
1210 mips_tc_sleep(cpu, env->current_tc);
1211 } else {
1212 mips_tc_wake(cpu, env->current_tc);
1213 }
1214 }
1215
1216 void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1217 {
1218 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1219 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1220 MIPSCPU *other_cpu = mips_env_get_cpu(other);
1221
1222 // TODO: Halt TC / Restart (if allocated+active) TC.
1223
1224 if (other_tc == other->current_tc)
1225 other->active_tc.CP0_TCHalt = arg1;
1226 else
1227 other->tcs[other_tc].CP0_TCHalt = arg1;
1228
1229 if (arg1 & 1) {
1230 mips_tc_sleep(other_cpu, other_tc);
1231 } else {
1232 mips_tc_wake(other_cpu, other_tc);
1233 }
1234 }
1235
1236 void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1237 {
1238 env->active_tc.CP0_TCContext = arg1;
1239 }
1240
1241 void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1242 {
1243 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1244 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1245
1246 if (other_tc == other->current_tc)
1247 other->active_tc.CP0_TCContext = arg1;
1248 else
1249 other->tcs[other_tc].CP0_TCContext = arg1;
1250 }
1251
1252 void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1253 {
1254 env->active_tc.CP0_TCSchedule = arg1;
1255 }
1256
1257 void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1258 {
1259 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1260 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1261
1262 if (other_tc == other->current_tc)
1263 other->active_tc.CP0_TCSchedule = arg1;
1264 else
1265 other->tcs[other_tc].CP0_TCSchedule = arg1;
1266 }
1267
1268 void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1269 {
1270 env->active_tc.CP0_TCScheFBack = arg1;
1271 }
1272
1273 void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1274 {
1275 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1276 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1277
1278 if (other_tc == other->current_tc)
1279 other->active_tc.CP0_TCScheFBack = arg1;
1280 else
1281 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1282 }
1283
1284 void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
1285 {
1286 /* 1k pages not implemented */
1287 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1288 env->CP0_EntryLo1 = (arg1 & MTC0_ENTRYLO_MASK(env))
1289 | (rxi << (CP0EnLo_XI - 30));
1290 }
1291
1292 #if defined(TARGET_MIPS64)
1293 void helper_dmtc0_entrylo1(CPUMIPSState *env, uint64_t arg1)
1294 {
1295 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1296 env->CP0_EntryLo1 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1297 }
1298 #endif
1299
1300 void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
1301 {
1302 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1303 }
1304
1305 void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
1306 {
1307 uint64_t mask = arg1 >> (TARGET_PAGE_BITS + 1);
1308 if (!(env->insn_flags & ISA_MIPS32R6) || (arg1 == ~0) ||
1309 (mask == 0x0000 || mask == 0x0003 || mask == 0x000F ||
1310 mask == 0x003F || mask == 0x00FF || mask == 0x03FF ||
1311 mask == 0x0FFF || mask == 0x3FFF || mask == 0xFFFF)) {
1312 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1313 }
1314 }
1315
1316 void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
1317 {
1318 /* SmartMIPS not implemented */
1319 /* 1k pages not implemented */
1320 env->CP0_PageGrain = (arg1 & env->CP0_PageGrain_rw_bitmask) |
1321 (env->CP0_PageGrain & ~env->CP0_PageGrain_rw_bitmask);
1322 compute_hflags(env);
1323 restore_pamask(env);
1324 }
1325
1326 void helper_mtc0_segctl0(CPUMIPSState *env, target_ulong arg1)
1327 {
1328 CPUState *cs = CPU(mips_env_get_cpu(env));
1329
1330 env->CP0_SegCtl0 = arg1 & CP0SC0_MASK;
1331 tlb_flush(cs);
1332 }
1333
1334 void helper_mtc0_segctl1(CPUMIPSState *env, target_ulong arg1)
1335 {
1336 CPUState *cs = CPU(mips_env_get_cpu(env));
1337
1338 env->CP0_SegCtl1 = arg1 & CP0SC1_MASK;
1339 tlb_flush(cs);
1340 }
1341
1342 void helper_mtc0_segctl2(CPUMIPSState *env, target_ulong arg1)
1343 {
1344 CPUState *cs = CPU(mips_env_get_cpu(env));
1345
1346 env->CP0_SegCtl2 = arg1 & CP0SC2_MASK;
1347 tlb_flush(cs);
1348 }
1349
1350 void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
1351 {
1352 if (env->insn_flags & ISA_MIPS32R6) {
1353 if (arg1 < env->tlb->nb_tlb) {
1354 env->CP0_Wired = arg1;
1355 }
1356 } else {
1357 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1358 }
1359 }
1360
1361 void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
1362 {
1363 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1364 }
1365
1366 void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
1367 {
1368 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1369 }
1370
1371 void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
1372 {
1373 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1374 }
1375
1376 void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
1377 {
1378 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1379 }
1380
1381 void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
1382 {
1383 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1384 }
1385
1386 void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
1387 {
1388 uint32_t mask = 0x0000000F;
1389
1390 if ((env->CP0_Config1 & (1 << CP0C1_PC)) &&
1391 (env->insn_flags & ISA_MIPS32R6)) {
1392 mask |= (1 << 4);
1393 }
1394 if (env->insn_flags & ISA_MIPS32R6) {
1395 mask |= (1 << 5);
1396 }
1397 if (env->CP0_Config3 & (1 << CP0C3_ULRI)) {
1398 mask |= (1 << 29);
1399
1400 if (arg1 & (1 << 29)) {
1401 env->hflags |= MIPS_HFLAG_HWRENA_ULR;
1402 } else {
1403 env->hflags &= ~MIPS_HFLAG_HWRENA_ULR;
1404 }
1405 }
1406
1407 env->CP0_HWREna = arg1 & mask;
1408 }
1409
1410 void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
1411 {
1412 qemu_mutex_lock_iothread();
1413 cpu_mips_store_count(env, arg1);
1414 qemu_mutex_unlock_iothread();
1415 }
1416
1417 void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1418 {
1419 target_ulong old, val, mask;
1420 mask = (TARGET_PAGE_MASK << 1) | env->CP0_EntryHi_ASID_mask;
1421 if (((env->CP0_Config4 >> CP0C4_IE) & 0x3) >= 2) {
1422 mask |= 1 << CP0EnHi_EHINV;
1423 }
1424
1425 /* 1k pages not implemented */
1426 #if defined(TARGET_MIPS64)
1427 if (env->insn_flags & ISA_MIPS32R6) {
1428 int entryhi_r = extract64(arg1, 62, 2);
1429 int config0_at = extract32(env->CP0_Config0, 13, 2);
1430 bool no_supervisor = (env->CP0_Status_rw_bitmask & 0x8) == 0;
1431 if ((entryhi_r == 2) ||
1432 (entryhi_r == 1 && (no_supervisor || config0_at == 1))) {
1433 /* skip EntryHi.R field if new value is reserved */
1434 mask &= ~(0x3ull << 62);
1435 }
1436 }
1437 mask &= env->SEGMask;
1438 #endif
1439 old = env->CP0_EntryHi;
1440 val = (arg1 & mask) | (old & ~mask);
1441 env->CP0_EntryHi = val;
1442 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1443 sync_c0_entryhi(env, env->current_tc);
1444 }
1445 /* If the ASID changes, flush qemu's TLB. */
1446 if ((old & env->CP0_EntryHi_ASID_mask) !=
1447 (val & env->CP0_EntryHi_ASID_mask)) {
1448 tlb_flush(CPU(mips_env_get_cpu(env)));
1449 }
1450 }
1451
1452 void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1453 {
1454 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1455 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1456
1457 other->CP0_EntryHi = arg1;
1458 sync_c0_entryhi(other, other_tc);
1459 }
1460
1461 void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
1462 {
1463 qemu_mutex_lock_iothread();
1464 cpu_mips_store_compare(env, arg1);
1465 qemu_mutex_unlock_iothread();
1466 }
1467
1468 void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
1469 {
1470 MIPSCPU *cpu = mips_env_get_cpu(env);
1471 uint32_t val, old;
1472
1473 old = env->CP0_Status;
1474 cpu_mips_store_status(env, arg1);
1475 val = env->CP0_Status;
1476
1477 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1478 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1479 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1480 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1481 env->CP0_Cause);
1482 switch (cpu_mmu_index(env, false)) {
1483 case 3:
1484 qemu_log(", ERL\n");
1485 break;
1486 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1487 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1488 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1489 default:
1490 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
1491 break;
1492 }
1493 }
1494 }
1495
1496 void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
1497 {
1498 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1499 uint32_t mask = env->CP0_Status_rw_bitmask & ~0xf1000018;
1500 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1501
1502 other->CP0_Status = (other->CP0_Status & ~mask) | (arg1 & mask);
1503 sync_c0_status(env, other, other_tc);
1504 }
1505
1506 void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
1507 {
1508 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1509 }
1510
1511 void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
1512 {
1513 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1514 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1515 }
1516
1517 void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
1518 {
1519 qemu_mutex_lock_iothread();
1520 cpu_mips_store_cause(env, arg1);
1521 qemu_mutex_unlock_iothread();
1522 }
1523
1524 void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
1525 {
1526 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1527 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1528
1529 cpu_mips_store_cause(other, arg1);
1530 }
1531
1532 target_ulong helper_mftc0_epc(CPUMIPSState *env)
1533 {
1534 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1535 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1536
1537 return other->CP0_EPC;
1538 }
1539
1540 target_ulong helper_mftc0_ebase(CPUMIPSState *env)
1541 {
1542 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1543 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1544
1545 return other->CP0_EBase;
1546 }
1547
1548 void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
1549 {
1550 target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask;
1551 if (arg1 & env->CP0_EBaseWG_rw_bitmask) {
1552 mask |= ~0x3FFFFFFF;
1553 }
1554 env->CP0_EBase = (env->CP0_EBase & ~mask) | (arg1 & mask);
1555 }
1556
1557 void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
1558 {
1559 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1560 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1561 target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask;
1562 if (arg1 & env->CP0_EBaseWG_rw_bitmask) {
1563 mask |= ~0x3FFFFFFF;
1564 }
1565 other->CP0_EBase = (other->CP0_EBase & ~mask) | (arg1 & mask);
1566 }
1567
1568 target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
1569 {
1570 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1571 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1572
1573 switch (idx) {
1574 case 0: return other->CP0_Config0;
1575 case 1: return other->CP0_Config1;
1576 case 2: return other->CP0_Config2;
1577 case 3: return other->CP0_Config3;
1578 /* 4 and 5 are reserved. */
1579 case 6: return other->CP0_Config6;
1580 case 7: return other->CP0_Config7;
1581 default:
1582 break;
1583 }
1584 return 0;
1585 }
1586
1587 void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
1588 {
1589 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1590 }
1591
1592 void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
1593 {
1594 /* tertiary/secondary caches not implemented */
1595 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1596 }
1597
1598 void helper_mtc0_config3(CPUMIPSState *env, target_ulong arg1)
1599 {
1600 if (env->insn_flags & ASE_MICROMIPS) {
1601 env->CP0_Config3 = (env->CP0_Config3 & ~(1 << CP0C3_ISA_ON_EXC)) |
1602 (arg1 & (1 << CP0C3_ISA_ON_EXC));
1603 }
1604 }
1605
1606 void helper_mtc0_config4(CPUMIPSState *env, target_ulong arg1)
1607 {
1608 env->CP0_Config4 = (env->CP0_Config4 & (~env->CP0_Config4_rw_bitmask)) |
1609 (arg1 & env->CP0_Config4_rw_bitmask);
1610 }
1611
1612 void helper_mtc0_config5(CPUMIPSState *env, target_ulong arg1)
1613 {
1614 env->CP0_Config5 = (env->CP0_Config5 & (~env->CP0_Config5_rw_bitmask)) |
1615 (arg1 & env->CP0_Config5_rw_bitmask);
1616 compute_hflags(env);
1617 }
1618
1619 void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
1620 {
1621 target_long mask = env->CP0_LLAddr_rw_bitmask;
1622 arg1 = arg1 << env->CP0_LLAddr_shift;
1623 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1624 }
1625
1626 #define MTC0_MAAR_MASK(env) \
1627 ((0x1ULL << 63) | ((env->PAMask >> 4) & ~0xFFFull) | 0x3)
1628
1629 void helper_mtc0_maar(CPUMIPSState *env, target_ulong arg1)
1630 {
1631 env->CP0_MAAR[env->CP0_MAARI] = arg1 & MTC0_MAAR_MASK(env);
1632 }
1633
1634 void helper_mthc0_maar(CPUMIPSState *env, target_ulong arg1)
1635 {
1636 env->CP0_MAAR[env->CP0_MAARI] =
1637 (((uint64_t) arg1 << 32) & MTC0_MAAR_MASK(env)) |
1638 (env->CP0_MAAR[env->CP0_MAARI] & 0x00000000ffffffffULL);
1639 }
1640
1641 void helper_mtc0_maari(CPUMIPSState *env, target_ulong arg1)
1642 {
1643 int index = arg1 & 0x3f;
1644 if (index == 0x3f) {
1645 /* Software may write all ones to INDEX to determine the
1646 maximum value supported. */
1647 env->CP0_MAARI = MIPS_MAAR_MAX - 1;
1648 } else if (index < MIPS_MAAR_MAX) {
1649 env->CP0_MAARI = index;
1650 }
1651 /* Other than the all ones, if the
1652 value written is not supported, then INDEX is unchanged
1653 from its previous value. */
1654 }
1655
1656 void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1657 {
1658 /* Watch exceptions for instructions, data loads, data stores
1659 not implemented. */
1660 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1661 }
1662
1663 void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1664 {
1665 int mask = 0x40000FF8 | (env->CP0_EntryHi_ASID_mask << CP0WH_ASID);
1666 env->CP0_WatchHi[sel] = arg1 & mask;
1667 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1668 }
1669
1670 void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
1671 {
1672 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1673 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1674 }
1675
1676 void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
1677 {
1678 env->CP0_Framemask = arg1; /* XXX */
1679 }
1680
1681 void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
1682 {
1683 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1684 if (arg1 & (1 << CP0DB_DM))
1685 env->hflags |= MIPS_HFLAG_DM;
1686 else
1687 env->hflags &= ~MIPS_HFLAG_DM;
1688 }
1689
1690 void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
1691 {
1692 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1693 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1694 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1695
1696 /* XXX: Might be wrong, check with EJTAG spec. */
1697 if (other_tc == other->current_tc)
1698 other->active_tc.CP0_Debug_tcstatus = val;
1699 else
1700 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1701 other->CP0_Debug = (other->CP0_Debug &
1702 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1703 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1704 }
1705
1706 void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
1707 {
1708 env->CP0_Performance0 = arg1 & 0x000007ff;
1709 }
1710
1711 void helper_mtc0_errctl(CPUMIPSState *env, target_ulong arg1)
1712 {
1713 int32_t wst = arg1 & (1 << CP0EC_WST);
1714 int32_t spr = arg1 & (1 << CP0EC_SPR);
1715 int32_t itc = env->itc_tag ? (arg1 & (1 << CP0EC_ITC)) : 0;
1716
1717 env->CP0_ErrCtl = wst | spr | itc;
1718
1719 if (itc && !wst && !spr) {
1720 env->hflags |= MIPS_HFLAG_ITC_CACHE;
1721 } else {
1722 env->hflags &= ~MIPS_HFLAG_ITC_CACHE;
1723 }
1724 }
1725
1726 void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
1727 {
1728 if (env->hflags & MIPS_HFLAG_ITC_CACHE) {
1729 /* If CACHE instruction is configured for ITC tags then make all
1730 CP0.TagLo bits writable. The actual write to ITC Configuration
1731 Tag will take care of the read-only bits. */
1732 env->CP0_TagLo = arg1;
1733 } else {
1734 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1735 }
1736 }
1737
1738 void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
1739 {
1740 env->CP0_DataLo = arg1; /* XXX */
1741 }
1742
1743 void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
1744 {
1745 env->CP0_TagHi = arg1; /* XXX */
1746 }
1747
1748 void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
1749 {
1750 env->CP0_DataHi = arg1; /* XXX */
1751 }
1752
1753 /* MIPS MT functions */
1754 target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
1755 {
1756 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1757 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1758
1759 if (other_tc == other->current_tc)
1760 return other->active_tc.gpr[sel];
1761 else
1762 return other->tcs[other_tc].gpr[sel];
1763 }
1764
1765 target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
1766 {
1767 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1768 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1769
1770 if (other_tc == other->current_tc)
1771 return other->active_tc.LO[sel];
1772 else
1773 return other->tcs[other_tc].LO[sel];
1774 }
1775
1776 target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
1777 {
1778 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1779 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1780
1781 if (other_tc == other->current_tc)
1782 return other->active_tc.HI[sel];
1783 else
1784 return other->tcs[other_tc].HI[sel];
1785 }
1786
1787 target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
1788 {
1789 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1790 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1791
1792 if (other_tc == other->current_tc)
1793 return other->active_tc.ACX[sel];
1794 else
1795 return other->tcs[other_tc].ACX[sel];
1796 }
1797
1798 target_ulong helper_mftdsp(CPUMIPSState *env)
1799 {
1800 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1801 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1802
1803 if (other_tc == other->current_tc)
1804 return other->active_tc.DSPControl;
1805 else
1806 return other->tcs[other_tc].DSPControl;
1807 }
1808
1809 void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1810 {
1811 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1812 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1813
1814 if (other_tc == other->current_tc)
1815 other->active_tc.gpr[sel] = arg1;
1816 else
1817 other->tcs[other_tc].gpr[sel] = arg1;
1818 }
1819
1820 void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1821 {
1822 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1823 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1824
1825 if (other_tc == other->current_tc)
1826 other->active_tc.LO[sel] = arg1;
1827 else
1828 other->tcs[other_tc].LO[sel] = arg1;
1829 }
1830
1831 void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1832 {
1833 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1834 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1835
1836 if (other_tc == other->current_tc)
1837 other->active_tc.HI[sel] = arg1;
1838 else
1839 other->tcs[other_tc].HI[sel] = arg1;
1840 }
1841
1842 void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1843 {
1844 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1845 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1846
1847 if (other_tc == other->current_tc)
1848 other->active_tc.ACX[sel] = arg1;
1849 else
1850 other->tcs[other_tc].ACX[sel] = arg1;
1851 }
1852
1853 void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
1854 {
1855 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1856 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1857
1858 if (other_tc == other->current_tc)
1859 other->active_tc.DSPControl = arg1;
1860 else
1861 other->tcs[other_tc].DSPControl = arg1;
1862 }
1863
1864 /* MIPS MT functions */
1865 target_ulong helper_dmt(void)
1866 {
1867 // TODO
1868 return 0;
1869 }
1870
1871 target_ulong helper_emt(void)
1872 {
1873 // TODO
1874 return 0;
1875 }
1876
1877 target_ulong helper_dvpe(CPUMIPSState *env)
1878 {
1879 CPUState *other_cs = first_cpu;
1880 target_ulong prev = env->mvp->CP0_MVPControl;
1881
1882 CPU_FOREACH(other_cs) {
1883 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1884 /* Turn off all VPEs except the one executing the dvpe. */
1885 if (&other_cpu->env != env) {
1886 other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
1887 mips_vpe_sleep(other_cpu);
1888 }
1889 }
1890 return prev;
1891 }
1892
1893 target_ulong helper_evpe(CPUMIPSState *env)
1894 {
1895 CPUState *other_cs = first_cpu;
1896 target_ulong prev = env->mvp->CP0_MVPControl;
1897
1898 CPU_FOREACH(other_cs) {
1899 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1900
1901 if (&other_cpu->env != env
1902 /* If the VPE is WFI, don't disturb its sleep. */
1903 && !mips_vpe_is_wfi(other_cpu)) {
1904 /* Enable the VPE. */
1905 other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
1906 mips_vpe_wake(other_cpu); /* And wake it up. */
1907 }
1908 }
1909 return prev;
1910 }
1911 #endif /* !CONFIG_USER_ONLY */
1912
1913 void helper_fork(target_ulong arg1, target_ulong arg2)
1914 {
1915 // arg1 = rt, arg2 = rs
1916 // TODO: store to TC register
1917 }
1918
1919 target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
1920 {
1921 target_long arg1 = arg;
1922
1923 if (arg1 < 0) {
1924 /* No scheduling policy implemented. */
1925 if (arg1 != -2) {
1926 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1927 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1928 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1929 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1930 do_raise_exception(env, EXCP_THREAD, GETPC());
1931 }
1932 }
1933 } else if (arg1 == 0) {
1934 if (0 /* TODO: TC underflow */) {
1935 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1936 do_raise_exception(env, EXCP_THREAD, GETPC());
1937 } else {
1938 // TODO: Deallocate TC
1939 }
1940 } else if (arg1 > 0) {
1941 /* Yield qualifier inputs not implemented. */
1942 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1943 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1944 do_raise_exception(env, EXCP_THREAD, GETPC());
1945 }
1946 return env->CP0_YQMask;
1947 }
1948
1949 /* R6 Multi-threading */
1950 #ifndef CONFIG_USER_ONLY
1951 target_ulong helper_dvp(CPUMIPSState *env)
1952 {
1953 CPUState *other_cs = first_cpu;
1954 target_ulong prev = env->CP0_VPControl;
1955
1956 if (!((env->CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
1957 CPU_FOREACH(other_cs) {
1958 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1959 /* Turn off all VPs except the one executing the dvp. */
1960 if (&other_cpu->env != env) {
1961 mips_vpe_sleep(other_cpu);
1962 }
1963 }
1964 env->CP0_VPControl |= (1 << CP0VPCtl_DIS);
1965 }
1966 return prev;
1967 }
1968
1969 target_ulong helper_evp(CPUMIPSState *env)
1970 {
1971 CPUState *other_cs = first_cpu;
1972 target_ulong prev = env->CP0_VPControl;
1973
1974 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
1975 CPU_FOREACH(other_cs) {
1976 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1977 if ((&other_cpu->env != env) && !mips_vp_is_wfi(other_cpu)) {
1978 /* If the VP is WFI, don't disturb its sleep.
1979 * Otherwise, wake it up. */
1980 mips_vpe_wake(other_cpu);
1981 }
1982 }
1983 env->CP0_VPControl &= ~(1 << CP0VPCtl_DIS);
1984 }
1985 return prev;
1986 }
1987 #endif /* !CONFIG_USER_ONLY */
1988
1989 #ifndef CONFIG_USER_ONLY
1990 /* TLB management */
1991 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
1992 {
1993 /* Discard entries from env->tlb[first] onwards. */
1994 while (env->tlb->tlb_in_use > first) {
1995 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1996 }
1997 }
1998
1999 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
2000 {
2001 #if defined(TARGET_MIPS64)
2002 return extract64(entrylo, 6, 54);
2003 #else
2004 return extract64(entrylo, 6, 24) | /* PFN */
2005 (extract64(entrylo, 32, 32) << 24); /* PFNX */
2006 #endif
2007 }
2008
2009 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
2010 {
2011 r4k_tlb_t *tlb;
2012 uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
2013
2014 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
2015 tlb = &env->tlb->mmu.r4k.tlb[idx];
2016 if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
2017 tlb->EHINV = 1;
2018 return;
2019 }
2020 tlb->EHINV = 0;
2021 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
2022 #if defined(TARGET_MIPS64)
2023 tlb->VPN &= env->SEGMask;
2024 #endif
2025 tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2026 tlb->PageMask = env->CP0_PageMask;
2027 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
2028 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
2029 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
2030 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
2031 tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
2032 tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
2033 tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
2034 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
2035 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
2036 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
2037 tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
2038 tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
2039 tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
2040 }
2041
2042 void r4k_helper_tlbinv(CPUMIPSState *env)
2043 {
2044 int idx;
2045 r4k_tlb_t *tlb;
2046 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2047
2048 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2049 tlb = &env->tlb->mmu.r4k.tlb[idx];
2050 if (!tlb->G && tlb->ASID == ASID) {
2051 tlb->EHINV = 1;
2052 }
2053 }
2054 cpu_mips_tlb_flush(env);
2055 }
2056
2057 void r4k_helper_tlbinvf(CPUMIPSState *env)
2058 {
2059 int idx;
2060
2061 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2062 env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
2063 }
2064 cpu_mips_tlb_flush(env);
2065 }
2066
2067 void r4k_helper_tlbwi(CPUMIPSState *env)
2068 {
2069 r4k_tlb_t *tlb;
2070 int idx;
2071 target_ulong VPN;
2072 uint16_t ASID;
2073 bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
2074
2075 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2076 tlb = &env->tlb->mmu.r4k.tlb[idx];
2077 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
2078 #if defined(TARGET_MIPS64)
2079 VPN &= env->SEGMask;
2080 #endif
2081 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2082 EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
2083 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
2084 V0 = (env->CP0_EntryLo0 & 2) != 0;
2085 D0 = (env->CP0_EntryLo0 & 4) != 0;
2086 XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
2087 RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
2088 V1 = (env->CP0_EntryLo1 & 2) != 0;
2089 D1 = (env->CP0_EntryLo1 & 4) != 0;
2090 XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
2091 RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
2092
2093 /* Discard cached TLB entries, unless tlbwi is just upgrading access
2094 permissions on the current entry. */
2095 if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
2096 (!tlb->EHINV && EHINV) ||
2097 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
2098 (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
2099 (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
2100 (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
2101 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2102 }
2103
2104 r4k_invalidate_tlb(env, idx, 0);
2105 r4k_fill_tlb(env, idx);
2106 }
2107
2108 void r4k_helper_tlbwr(CPUMIPSState *env)
2109 {
2110 int r = cpu_mips_get_random(env);
2111
2112 r4k_invalidate_tlb(env, r, 1);
2113 r4k_fill_tlb(env, r);
2114 }
2115
2116 void r4k_helper_tlbp(CPUMIPSState *env)
2117 {
2118 r4k_tlb_t *tlb;
2119 target_ulong mask;
2120 target_ulong tag;
2121 target_ulong VPN;
2122 uint16_t ASID;
2123 int i;
2124
2125 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2126 for (i = 0; i < env->tlb->nb_tlb; i++) {
2127 tlb = &env->tlb->mmu.r4k.tlb[i];
2128 /* 1k pages are not supported. */
2129 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2130 tag = env->CP0_EntryHi & ~mask;
2131 VPN = tlb->VPN & ~mask;
2132 #if defined(TARGET_MIPS64)
2133 tag &= env->SEGMask;
2134 #endif
2135 /* Check ASID, virtual page number & size */
2136 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
2137 /* TLB match */
2138 env->CP0_Index = i;
2139 break;
2140 }
2141 }
2142 if (i == env->tlb->nb_tlb) {
2143 /* No match. Discard any shadow entries, if any of them match. */
2144 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
2145 tlb = &env->tlb->mmu.r4k.tlb[i];
2146 /* 1k pages are not supported. */
2147 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2148 tag = env->CP0_EntryHi & ~mask;
2149 VPN = tlb->VPN & ~mask;
2150 #if defined(TARGET_MIPS64)
2151 tag &= env->SEGMask;
2152 #endif
2153 /* Check ASID, virtual page number & size */
2154 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
2155 r4k_mips_tlb_flush_extra (env, i);
2156 break;
2157 }
2158 }
2159
2160 env->CP0_Index |= 0x80000000;
2161 }
2162 }
2163
2164 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
2165 {
2166 #if defined(TARGET_MIPS64)
2167 return tlb_pfn << 6;
2168 #else
2169 return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
2170 (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
2171 #endif
2172 }
2173
2174 void r4k_helper_tlbr(CPUMIPSState *env)
2175 {
2176 r4k_tlb_t *tlb;
2177 uint16_t ASID;
2178 int idx;
2179
2180 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2181 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2182 tlb = &env->tlb->mmu.r4k.tlb[idx];
2183
2184 /* If this will change the current ASID, flush qemu's TLB. */
2185 if (ASID != tlb->ASID)
2186 cpu_mips_tlb_flush(env);
2187
2188 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2189
2190 if (tlb->EHINV) {
2191 env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
2192 env->CP0_PageMask = 0;
2193 env->CP0_EntryLo0 = 0;
2194 env->CP0_EntryLo1 = 0;
2195 } else {
2196 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
2197 env->CP0_PageMask = tlb->PageMask;
2198 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
2199 ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
2200 ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
2201 get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
2202 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
2203 ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
2204 ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
2205 get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
2206 }
2207 }
2208
2209 void helper_tlbwi(CPUMIPSState *env)
2210 {
2211 env->tlb->helper_tlbwi(env);
2212 }
2213
2214 void helper_tlbwr(CPUMIPSState *env)
2215 {
2216 env->tlb->helper_tlbwr(env);
2217 }
2218
2219 void helper_tlbp(CPUMIPSState *env)
2220 {
2221 env->tlb->helper_tlbp(env);
2222 }
2223
2224 void helper_tlbr(CPUMIPSState *env)
2225 {
2226 env->tlb->helper_tlbr(env);
2227 }
2228
2229 void helper_tlbinv(CPUMIPSState *env)
2230 {
2231 env->tlb->helper_tlbinv(env);
2232 }
2233
2234 void helper_tlbinvf(CPUMIPSState *env)
2235 {
2236 env->tlb->helper_tlbinvf(env);
2237 }
2238
2239 /* Specials */
2240 target_ulong helper_di(CPUMIPSState *env)
2241 {
2242 target_ulong t0 = env->CP0_Status;
2243
2244 env->CP0_Status = t0 & ~(1 << CP0St_IE);
2245 return t0;
2246 }
2247
2248 target_ulong helper_ei(CPUMIPSState *env)
2249 {
2250 target_ulong t0 = env->CP0_Status;
2251
2252 env->CP0_Status = t0 | (1 << CP0St_IE);
2253 return t0;
2254 }
2255
2256 static void debug_pre_eret(CPUMIPSState *env)
2257 {
2258 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2259 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2260 env->active_tc.PC, env->CP0_EPC);
2261 if (env->CP0_Status & (1 << CP0St_ERL))
2262 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2263 if (env->hflags & MIPS_HFLAG_DM)
2264 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2265 qemu_log("\n");
2266 }
2267 }
2268
2269 static void debug_post_eret(CPUMIPSState *env)
2270 {
2271 MIPSCPU *cpu = mips_env_get_cpu(env);
2272
2273 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2274 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2275 env->active_tc.PC, env->CP0_EPC);
2276 if (env->CP0_Status & (1 << CP0St_ERL))
2277 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2278 if (env->hflags & MIPS_HFLAG_DM)
2279 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2280 switch (cpu_mmu_index(env, false)) {
2281 case 3:
2282 qemu_log(", ERL\n");
2283 break;
2284 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
2285 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
2286 case MIPS_HFLAG_KM: qemu_log("\n"); break;
2287 default:
2288 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
2289 break;
2290 }
2291 }
2292 }
2293
2294 static void set_pc(CPUMIPSState *env, target_ulong error_pc)
2295 {
2296 env->active_tc.PC = error_pc & ~(target_ulong)1;
2297 if (error_pc & 1) {
2298 env->hflags |= MIPS_HFLAG_M16;
2299 } else {
2300 env->hflags &= ~(MIPS_HFLAG_M16);
2301 }
2302 }
2303
2304 static inline void exception_return(CPUMIPSState *env)
2305 {
2306 debug_pre_eret(env);
2307 if (env->CP0_Status & (1 << CP0St_ERL)) {
2308 set_pc(env, env->CP0_ErrorEPC);
2309 env->CP0_Status &= ~(1 << CP0St_ERL);
2310 } else {
2311 set_pc(env, env->CP0_EPC);
2312 env->CP0_Status &= ~(1 << CP0St_EXL);
2313 }
2314 compute_hflags(env);
2315 debug_post_eret(env);
2316 }
2317
2318 void helper_eret(CPUMIPSState *env)
2319 {
2320 exception_return(env);
2321 env->lladdr = 1;
2322 }
2323
2324 void helper_eretnc(CPUMIPSState *env)
2325 {
2326 exception_return(env);
2327 }
2328
2329 void helper_deret(CPUMIPSState *env)
2330 {
2331 debug_pre_eret(env);
2332 set_pc(env, env->CP0_DEPC);
2333
2334 env->hflags &= ~MIPS_HFLAG_DM;
2335 compute_hflags(env);
2336 debug_post_eret(env);
2337 }
2338 #endif /* !CONFIG_USER_ONLY */
2339
2340 static inline void check_hwrena(CPUMIPSState *env, int reg, uintptr_t pc)
2341 {
2342 if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << reg))) {
2343 return;
2344 }
2345 do_raise_exception(env, EXCP_RI, pc);
2346 }
2347
2348 target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
2349 {
2350 check_hwrena(env, 0, GETPC());
2351 return env->CP0_EBase & 0x3ff;
2352 }
2353
2354 target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
2355 {
2356 check_hwrena(env, 1, GETPC());
2357 return env->SYNCI_Step;
2358 }
2359
2360 target_ulong helper_rdhwr_cc(CPUMIPSState *env)
2361 {
2362 int32_t count;
2363 check_hwrena(env, 2, GETPC());
2364 #ifdef CONFIG_USER_ONLY
2365 count = env->CP0_Count;
2366 #else
2367 qemu_mutex_lock_iothread();
2368 count = (int32_t)cpu_mips_get_count(env);
2369 qemu_mutex_unlock_iothread();
2370 #endif
2371 return count;
2372 }
2373
2374 target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
2375 {
2376 check_hwrena(env, 3, GETPC());
2377 return env->CCRes;
2378 }
2379
2380 target_ulong helper_rdhwr_performance(CPUMIPSState *env)
2381 {
2382 check_hwrena(env, 4, GETPC());
2383 return env->CP0_Performance0;
2384 }
2385
2386 target_ulong helper_rdhwr_xnp(CPUMIPSState *env)
2387 {
2388 check_hwrena(env, 5, GETPC());
2389 return (env->CP0_Config5 >> CP0C5_XNP) & 1;
2390 }
2391
2392 void helper_pmon(CPUMIPSState *env, int function)
2393 {
2394 function /= 2;
2395 switch (function) {
2396 case 2: /* TODO: char inbyte(int waitflag); */
2397 if (env->active_tc.gpr[4] == 0)
2398 env->active_tc.gpr[2] = -1;
2399 /* Fall through */
2400 case 11: /* TODO: char inbyte (void); */
2401 env->active_tc.gpr[2] = -1;
2402 break;
2403 case 3:
2404 case 12:
2405 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2406 break;
2407 case 17:
2408 break;
2409 case 158:
2410 {
2411 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2412 printf("%s", fmt);
2413 }
2414 break;
2415 }
2416 }
2417
2418 void helper_wait(CPUMIPSState *env)
2419 {
2420 CPUState *cs = CPU(mips_env_get_cpu(env));
2421
2422 cs->halted = 1;
2423 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
2424 /* Last instruction in the block, PC was updated before
2425 - no need to recover PC and icount */
2426 raise_exception(env, EXCP_HLT);
2427 }
2428
2429 #if !defined(CONFIG_USER_ONLY)
2430
2431 void mips_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
2432 MMUAccessType access_type,
2433 int mmu_idx, uintptr_t retaddr)
2434 {
2435 MIPSCPU *cpu = MIPS_CPU(cs);
2436 CPUMIPSState *env = &cpu->env;
2437 int error_code = 0;
2438 int excp;
2439
2440 env->CP0_BadVAddr = addr;
2441
2442 if (access_type == MMU_DATA_STORE) {
2443 excp = EXCP_AdES;
2444 } else {
2445 excp = EXCP_AdEL;
2446 if (access_type == MMU_INST_FETCH) {
2447 error_code |= EXCP_INST_NOTAVAIL;
2448 }
2449 }
2450
2451 do_raise_exception_err(env, excp, error_code, retaddr);
2452 }
2453
2454 void tlb_fill(CPUState *cs, target_ulong addr, int size,
2455 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
2456 {
2457 int ret;
2458
2459 ret = mips_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
2460 if (ret) {
2461 MIPSCPU *cpu = MIPS_CPU(cs);
2462 CPUMIPSState *env = &cpu->env;
2463
2464 do_raise_exception_err(env, cs->exception_index,
2465 env->error_code, retaddr);
2466 }
2467 }
2468
2469 void mips_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2470 bool is_write, bool is_exec, int unused,
2471 unsigned size)
2472 {
2473 MIPSCPU *cpu = MIPS_CPU(cs);
2474 CPUMIPSState *env = &cpu->env;
2475
2476 /*
2477 * Raising an exception with KVM enabled will crash because it won't be from
2478 * the main execution loop so the longjmp won't have a matching setjmp.
2479 * Until we can trigger a bus error exception through KVM lets just ignore
2480 * the access.
2481 */
2482 if (kvm_enabled()) {
2483 return;
2484 }
2485
2486 if (is_exec) {
2487 raise_exception(env, EXCP_IBE);
2488 } else {
2489 raise_exception(env, EXCP_DBE);
2490 }
2491 }
2492 #endif /* !CONFIG_USER_ONLY */
2493
2494 /* Complex FPU operations which may need stack space. */
2495
2496 #define FLOAT_TWO32 make_float32(1 << 30)
2497 #define FLOAT_TWO64 make_float64(1ULL << 62)
2498
2499 #define FP_TO_INT32_OVERFLOW 0x7fffffff
2500 #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
2501
2502 /* convert MIPS rounding mode in FCR31 to IEEE library */
2503 unsigned int ieee_rm[] = {
2504 float_round_nearest_even,
2505 float_round_to_zero,
2506 float_round_up,
2507 float_round_down
2508 };
2509
2510 target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
2511 {
2512 target_ulong arg1 = 0;
2513
2514 switch (reg) {
2515 case 0:
2516 arg1 = (int32_t)env->active_fpu.fcr0;
2517 break;
2518 case 1:
2519 /* UFR Support - Read Status FR */
2520 if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) {
2521 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2522 arg1 = (int32_t)
2523 ((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR);
2524 } else {
2525 do_raise_exception(env, EXCP_RI, GETPC());
2526 }
2527 }
2528 break;
2529 case 5:
2530 /* FRE Support - read Config5.FRE bit */
2531 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
2532 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2533 arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1;
2534 } else {
2535 helper_raise_exception(env, EXCP_RI);
2536 }
2537 }
2538 break;
2539 case 25:
2540 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2541 break;
2542 case 26:
2543 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2544 break;
2545 case 28:
2546 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2547 break;
2548 default:
2549 arg1 = (int32_t)env->active_fpu.fcr31;
2550 break;
2551 }
2552
2553 return arg1;
2554 }
2555
2556 void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt)
2557 {
2558 switch (fs) {
2559 case 1:
2560 /* UFR Alias - Reset Status FR */
2561 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2562 return;
2563 }
2564 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2565 env->CP0_Status &= ~(1 << CP0St_FR);
2566 compute_hflags(env);
2567 } else {
2568 do_raise_exception(env, EXCP_RI, GETPC());
2569 }
2570 break;
2571 case 4:
2572 /* UNFR Alias - Set Status FR */
2573 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2574 return;
2575 }
2576 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2577 env->CP0_Status |= (1 << CP0St_FR);
2578 compute_hflags(env);
2579 } else {
2580 do_raise_exception(env, EXCP_RI, GETPC());
2581 }
2582 break;
2583 case 5:
2584 /* FRE Support - clear Config5.FRE bit */
2585 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2586 return;
2587 }
2588 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2589 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
2590 compute_hflags(env);
2591 } else {
2592 helper_raise_exception(env, EXCP_RI);
2593 }
2594 break;
2595 case 6:
2596 /* FRE Support - set Config5.FRE bit */
2597 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2598 return;
2599 }
2600 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2601 env->CP0_Config5 |= (1 << CP0C5_FRE);
2602 compute_hflags(env);
2603 } else {
2604 helper_raise_exception(env, EXCP_RI);
2605 }
2606 break;
2607 case 25:
2608 if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) {
2609 return;
2610 }
2611 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2612 ((arg1 & 0x1) << 23);
2613 break;
2614 case 26:
2615 if (arg1 & 0x007c0000)
2616 return;
2617 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2618 break;
2619 case 28:
2620 if (arg1 & 0x007c0000)
2621 return;
2622 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2623 ((arg1 & 0x4) << 22);
2624 break;
2625 case 31:
2626 env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) |
2627 (env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask));
2628 break;
2629 default:
2630 return;
2631 }
2632 restore_fp_status(env);
2633 set_float_exception_flags(0, &env->active_fpu.fp_status);
2634 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2635 do_raise_exception(env, EXCP_FPE, GETPC());
2636 }
2637
2638 int ieee_ex_to_mips(int xcpt)
2639 {
2640 int ret = 0;
2641 if (xcpt) {
2642 if (xcpt & float_flag_invalid) {
2643 ret |= FP_INVALID;
2644 }
2645 if (xcpt & float_flag_overflow) {
2646 ret |= FP_OVERFLOW;
2647 }
2648 if (xcpt & float_flag_underflow) {
2649 ret |= FP_UNDERFLOW;
2650 }
2651 if (xcpt & float_flag_divbyzero) {
2652 ret |= FP_DIV0;
2653 }
2654 if (xcpt & float_flag_inexact) {
2655 ret |= FP_INEXACT;
2656 }
2657 }
2658 return ret;
2659 }
2660
2661 static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
2662 {
2663 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2664
2665 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2666
2667 if (tmp) {
2668 set_float_exception_flags(0, &env->active_fpu.fp_status);
2669
2670 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
2671 do_raise_exception(env, EXCP_FPE, pc);
2672 } else {
2673 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2674 }
2675 }
2676 }
2677
2678 /* Float support.
2679 Single precition routines have a "s" suffix, double precision a
2680 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2681 paired single lower "pl", paired single upper "pu". */
2682
2683 /* unary operations, modifying fp status */
2684 uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
2685 {
2686 fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2687 update_fcr31(env, GETPC());
2688 return fdt0;
2689 }
2690
2691 uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
2692 {
2693 fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2694 update_fcr31(env, GETPC());
2695 return fst0;
2696 }
2697
2698 uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
2699 {
2700 uint64_t fdt2;
2701
2702 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2703 update_fcr31(env, GETPC());
2704 return fdt2;
2705 }
2706
2707 uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
2708 {
2709 uint64_t fdt2;
2710
2711 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2712 update_fcr31(env, GETPC());
2713 return fdt2;
2714 }
2715
2716 uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
2717 {
2718 uint64_t fdt2;
2719
2720 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2721 update_fcr31(env, GETPC());
2722 return fdt2;
2723 }
2724
2725 uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0)
2726 {
2727 uint64_t dt2;
2728
2729 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2730 if (get_float_exception_flags(&env->active_fpu.fp_status)
2731 & (float_flag_invalid | float_flag_overflow)) {
2732 dt2 = FP_TO_INT64_OVERFLOW;
2733 }
2734 update_fcr31(env, GETPC());
2735 return dt2;
2736 }
2737
2738 uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0)
2739 {
2740 uint64_t dt2;
2741
2742 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2743 if (get_float_exception_flags(&env->active_fpu.fp_status)
2744 & (float_flag_invalid | float_flag_overflow)) {
2745 dt2 = FP_TO_INT64_OVERFLOW;
2746 }
2747 update_fcr31(env, GETPC());
2748 return dt2;
2749 }
2750
2751 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
2752 {
2753 uint32_t fst2;
2754 uint32_t fsth2;
2755
2756 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2757 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2758 update_fcr31(env, GETPC());
2759 return ((uint64_t)fsth2 << 32) | fst2;
2760 }
2761
2762 uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
2763 {
2764 uint32_t wt2;
2765 uint32_t wth2;
2766 int excp, excph;
2767
2768 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2769 excp = get_float_exception_flags(&env->active_fpu.fp_status);
2770 if (excp & (float_flag_overflow | float_flag_invalid)) {
2771 wt2 = FP_TO_INT32_OVERFLOW;
2772 }
2773
2774 set_float_exception_flags(0, &env->active_fpu.fp_status);
2775 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2776 excph = get_float_exception_flags(&env->active_fpu.fp_status);
2777 if (excph & (float_flag_overflow | float_flag_invalid)) {
2778 wth2 = FP_TO_INT32_OVERFLOW;
2779 }
2780
2781 set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
2782 update_fcr31(env, GETPC());
2783
2784 return ((uint64_t)wth2 << 32) | wt2;
2785 }
2786
2787 uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
2788 {
2789 uint32_t fst2;
2790
2791 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2792 update_fcr31(env, GETPC());
2793 return fst2;
2794 }
2795
2796 uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
2797 {
2798 uint32_t fst2;
2799
2800 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2801 update_fcr31(env, GETPC());
2802 return fst2;
2803 }
2804
2805 uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
2806 {
2807 uint32_t fst2;
2808
2809 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2810 update_fcr31(env, GETPC());
2811 return fst2;
2812 }
2813
2814 uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
2815 {
2816 uint32_t wt2;
2817
2818 wt2 = wt0;
2819 update_fcr31(env, GETPC());
2820 return wt2;
2821 }
2822
2823 uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
2824 {
2825 uint32_t wt2;
2826
2827 wt2 = wth0;
2828 update_fcr31(env, GETPC());
2829 return wt2;
2830 }
2831
2832 uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0)
2833 {
2834 uint32_t wt2;
2835
2836 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2837 if (get_float_exception_flags(&env->active_fpu.fp_status)
2838 & (float_flag_invalid | float_flag_overflow)) {
2839 wt2 = FP_TO_INT32_OVERFLOW;
2840 }
2841 update_fcr31(env, GETPC());
2842 return wt2;
2843 }
2844
2845 uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0)
2846 {
2847 uint32_t wt2;
2848
2849 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2850 if (get_float_exception_flags(&env->active_fpu.fp_status)
2851 & (float_flag_invalid | float_flag_overflow)) {
2852 wt2 = FP_TO_INT32_OVERFLOW;
2853 }
2854 update_fcr31(env, GETPC());
2855 return wt2;
2856 }
2857
2858 uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0)
2859 {
2860 uint64_t dt2;
2861
2862 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2863 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2864 restore_rounding_mode(env);
2865 if (get_float_exception_flags(&env->active_fpu.fp_status)
2866 & (float_flag_invalid | float_flag_overflow)) {
2867 dt2 = FP_TO_INT64_OVERFLOW;
2868 }
2869 update_fcr31(env, GETPC());
2870 return dt2;
2871 }
2872
2873 uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0)
2874 {
2875 uint64_t dt2;
2876
2877 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2878 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2879 restore_rounding_mode(env);
2880 if (get_float_exception_flags(&env->active_fpu.fp_status)
2881 & (float_flag_invalid | float_flag_overflow)) {
2882 dt2 = FP_TO_INT64_OVERFLOW;
2883 }
2884 update_fcr31(env, GETPC());
2885 return dt2;
2886 }
2887
2888 uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0)
2889 {
2890 uint32_t wt2;
2891
2892 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2893 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2894 restore_rounding_mode(env);
2895 if (get_float_exception_flags(&env->active_fpu.fp_status)
2896 & (float_flag_invalid | float_flag_overflow)) {
2897 wt2 = FP_TO_INT32_OVERFLOW;
2898 }
2899 update_fcr31(env, GETPC());
2900 return wt2;
2901 }
2902
2903 uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0)
2904 {
2905 uint32_t wt2;
2906
2907 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2908 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2909 restore_rounding_mode(env);
2910 if (get_float_exception_flags(&env->active_fpu.fp_status)
2911 & (float_flag_invalid | float_flag_overflow)) {
2912 wt2 = FP_TO_INT32_OVERFLOW;
2913 }
2914 update_fcr31(env, GETPC());
2915 return wt2;
2916 }
2917
2918 uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0)
2919 {
2920 uint64_t dt2;
2921
2922 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2923 if (get_float_exception_flags(&env->active_fpu.fp_status)
2924 & (float_flag_invalid | float_flag_overflow)) {
2925 dt2 = FP_TO_INT64_OVERFLOW;
2926 }
2927 update_fcr31(env, GETPC());
2928 return dt2;
2929 }
2930
2931 uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0)
2932 {
2933 uint64_t dt2;
2934
2935 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2936 if (get_float_exception_flags(&env->active_fpu.fp_status)
2937 & (float_flag_invalid | float_flag_overflow)) {
2938 dt2 = FP_TO_INT64_OVERFLOW;
2939 }
2940 update_fcr31(env, GETPC());
2941 return dt2;
2942 }
2943
2944 uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0)
2945 {
2946 uint32_t wt2;
2947
2948 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2949 if (get_float_exception_flags(&env->active_fpu.fp_status)
2950 & (float_flag_invalid | float_flag_overflow)) {
2951 wt2 = FP_TO_INT32_OVERFLOW;
2952 }
2953 update_fcr31(env, GETPC());
2954 return wt2;
2955 }
2956
2957 uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0)
2958 {
2959 uint32_t wt2;
2960
2961 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2962 if (get_float_exception_flags(&env->active_fpu.fp_status)
2963 & (float_flag_invalid | float_flag_overflow)) {
2964 wt2 = FP_TO_INT32_OVERFLOW;
2965 }
2966 update_fcr31(env, GETPC());
2967 return wt2;
2968 }
2969
2970 uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0)
2971 {
2972 uint64_t dt2;
2973
2974 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2975 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2976 restore_rounding_mode(env);
2977 if (get_float_exception_flags(&env->active_fpu.fp_status)
2978 & (float_flag_invalid | float_flag_overflow)) {
2979 dt2 = FP_TO_INT64_OVERFLOW;
2980 }
2981 update_fcr31(env, GETPC());
2982 return dt2;
2983 }
2984
2985 uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0)
2986 {
2987 uint64_t dt2;
2988
2989 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2990 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2991 restore_rounding_mode(env);
2992 if (get_float_exception_flags(&env->active_fpu.fp_status)
2993 & (float_flag_invalid | float_flag_overflow)) {
2994 dt2 = FP_TO_INT64_OVERFLOW;
2995 }
2996 update_fcr31(env, GETPC());
2997 return dt2;
2998 }
2999
3000 uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0)
3001 {
3002 uint32_t wt2;
3003
3004 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3005 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3006 restore_rounding_mode(env);
3007 if (get_float_exception_flags(&env->active_fpu.fp_status)
3008 & (float_flag_invalid | float_flag_overflow)) {
3009 wt2 = FP_TO_INT32_OVERFLOW;
3010 }
3011 update_fcr31(env, GETPC());
3012 return wt2;
3013 }
3014
3015 uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0)
3016 {
3017 uint32_t wt2;
3018
3019 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3020 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3021 restore_rounding_mode(env);
3022 if (get_float_exception_flags(&env->active_fpu.fp_status)
3023 & (float_flag_invalid | float_flag_overflow)) {
3024 wt2 = FP_TO_INT32_OVERFLOW;
3025 }
3026 update_fcr31(env, GETPC());
3027 return wt2;
3028 }
3029
3030 uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0)
3031 {
3032 uint64_t dt2;
3033
3034 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3035 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3036 restore_rounding_mode(env);
3037 if (get_float_exception_flags(&env->active_fpu.fp_status)
3038 & (float_flag_invalid | float_flag_overflow)) {
3039 dt2 = FP_TO_INT64_OVERFLOW;
3040 }
3041 update_fcr31(env, GETPC());
3042 return dt2;
3043 }
3044
3045 uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0)
3046 {
3047 uint64_t dt2;
3048
3049 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3050 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3051 restore_rounding_mode(env);
3052 if (get_float_exception_flags(&env->active_fpu.fp_status)
3053 & (float_flag_invalid | float_flag_overflow)) {
3054 dt2 = FP_TO_INT64_OVERFLOW;
3055 }
3056 update_fcr31(env, GETPC());
3057 return dt2;
3058 }
3059
3060 uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0)
3061 {
3062 uint32_t wt2;
3063
3064 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3065 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3066 restore_rounding_mode(env);
3067 if (get_float_exception_flags(&env->active_fpu.fp_status)
3068 & (float_flag_invalid | float_flag_overflow)) {
3069 wt2 = FP_TO_INT32_OVERFLOW;
3070 }
3071 update_fcr31(env, GETPC());
3072 return wt2;
3073 }
3074
3075 uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0)
3076 {
3077 uint32_t wt2;
3078
3079 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3080 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3081 restore_rounding_mode(env);
3082 if (get_float_exception_flags(&env->active_fpu.fp_status)
3083 & (float_flag_invalid | float_flag_overflow)) {
3084 wt2 = FP_TO_INT32_OVERFLOW;
3085 }
3086 update_fcr31(env, GETPC());
3087 return wt2;
3088 }
3089
3090 uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3091 {
3092 uint64_t dt2;
3093
3094 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3095 if (get_float_exception_flags(&env->active_fpu.fp_status)
3096 & float_flag_invalid) {
3097 if (float64_is_any_nan(fdt0)) {
3098 dt2 = 0;
3099 }
3100 }
3101 update_fcr31(env, GETPC());
3102 return dt2;
3103 }
3104
3105 uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3106 {
3107 uint64_t dt2;
3108
3109 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3110 if (get_float_exception_flags(&env->active_fpu.fp_status)
3111 & float_flag_invalid) {
3112 if (float32_is_any_nan(fst0)) {
3113 dt2 = 0;
3114 }
3115 }
3116 update_fcr31(env, GETPC());
3117 return dt2;
3118 }
3119
3120 uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3121 {
3122 uint32_t wt2;
3123
3124 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3125 if (get_float_exception_flags(&env->active_fpu.fp_status)
3126 & float_flag_invalid) {
3127 if (float64_is_any_nan(fdt0)) {
3128 wt2 = 0;
3129 }
3130 }
3131 update_fcr31(env, GETPC());
3132 return wt2;
3133 }
3134
3135 uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3136 {
3137 uint32_t wt2;
3138
3139 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3140 if (get_float_exception_flags(&env->active_fpu.fp_status)
3141 & float_flag_invalid) {
3142 if (float32_is_any_nan(fst0)) {
3143 wt2 = 0;
3144 }
3145 }
3146 update_fcr31(env, GETPC());
3147 return wt2;
3148 }
3149
3150 uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3151 {
3152 uint64_t dt2;
3153
3154 set_float_rounding_mode(float_round_nearest_even,
3155 &env->active_fpu.fp_status);
3156 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3157 restore_rounding_mode(env);
3158 if (get_float_exception_flags(&env->active_fpu.fp_status)
3159 & float_flag_invalid) {
3160 if (float64_is_any_nan(fdt0)) {
3161 dt2 = 0;
3162 }
3163 }
3164 update_fcr31(env, GETPC());
3165 return dt2;
3166 }
3167
3168 uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3169 {
3170 uint64_t dt2;
3171
3172 set_float_rounding_mode(float_round_nearest_even,
3173 &env->active_fpu.fp_status);
3174 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3175 restore_rounding_mode(env);
3176 if (get_float_exception_flags(&env->active_fpu.fp_status)
3177 & float_flag_invalid) {
3178 if (float32_is_any_nan(fst0)) {
3179 dt2 = 0;
3180 }
3181 }
3182 update_fcr31(env, GETPC());
3183 return dt2;
3184 }
3185
3186 uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3187 {
3188 uint32_t wt2;
3189
3190 set_float_rounding_mode(float_round_nearest_even,
3191 &env->active_fpu.fp_status);
3192 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3193 restore_rounding_mode(env);
3194 if (get_float_exception_flags(&env->active_fpu.fp_status)
3195 & float_flag_invalid) {
3196 if (float64_is_any_nan(fdt0)) {
3197 wt2 = 0;
3198 }
3199 }
3200 update_fcr31(env, GETPC());
3201 return wt2;
3202 }
3203
3204 uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3205 {
3206 uint32_t wt2;
3207
3208 set_float_rounding_mode(float_round_nearest_even,
3209 &env->active_fpu.fp_status);
3210 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3211 restore_rounding_mode(env);
3212 if (get_float_exception_flags(&env->active_fpu.fp_status)
3213 & float_flag_invalid) {
3214 if (float32_is_any_nan(fst0)) {
3215 wt2 = 0;
3216 }
3217 }
3218 update_fcr31(env, GETPC());
3219 return wt2;
3220 }
3221
3222 uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3223 {
3224 uint64_t dt2;
3225
3226 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
3227 if (get_float_exception_flags(&env->active_fpu.fp_status)
3228 & float_flag_invalid) {
3229 if (float64_is_any_nan(fdt0)) {
3230 dt2 = 0;
3231 }
3232 }
3233 update_fcr31(env, GETPC());
3234 return dt2;
3235 }
3236
3237 uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3238 {
3239 uint64_t dt2;
3240
3241 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
3242 if (get_float_exception_flags(&env->active_fpu.fp_status)
3243 & float_flag_invalid) {
3244 if (float32_is_any_nan(fst0)) {
3245 dt2 = 0;
3246 }
3247 }
3248 update_fcr31(env, GETPC());
3249 return dt2;
3250 }
3251
3252 uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3253 {
3254 uint32_t wt2;
3255
3256 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
3257 if (get_float_exception_flags(&env->active_fpu.fp_status)
3258 & float_flag_invalid) {
3259 if (float64_is_any_nan(fdt0)) {
3260 wt2 = 0;
3261 }
3262 }
3263 update_fcr31(env, GETPC());
3264 return wt2;
3265 }
3266
3267 uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3268 {
3269 uint32_t wt2;
3270
3271 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
3272 if (get_float_exception_flags(&env->active_fpu.fp_status)
3273 & float_flag_invalid) {
3274 if (float32_is_any_nan(fst0)) {
3275 wt2 = 0;
3276 }
3277 }
3278 update_fcr31(env, GETPC());
3279 return wt2;
3280 }
3281
3282 uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3283 {
3284 uint64_t dt2;
3285
3286 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3287 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3288 restore_rounding_mode(env);
3289 if (get_float_exception_flags(&env->active_fpu.fp_status)
3290 & float_flag_invalid) {
3291 if (float64_is_any_nan(fdt0)) {
3292 dt2 = 0;
3293 }
3294 }
3295 update_fcr31(env, GETPC());
3296 return dt2;
3297 }
3298
3299 uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3300 {
3301 uint64_t dt2;
3302
3303 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3304 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3305 restore_rounding_mode(env);
3306 if (get_float_exception_flags(&env->active_fpu.fp_status)
3307 & float_flag_invalid) {
3308 if (float32_is_any_nan(fst0)) {
3309 dt2 = 0;
3310 }
3311 }
3312 update_fcr31(env, GETPC());
3313 return dt2;
3314 }
3315
3316 uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3317 {
3318 uint32_t wt2;
3319
3320 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3321 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3322 restore_rounding_mode(env);
3323 if (get_float_exception_flags(&env->active_fpu.fp_status)
3324 & float_flag_invalid) {
3325 if (float64_is_any_nan(fdt0)) {
3326 wt2 = 0;
3327 }
3328 }
3329 update_fcr31(env, GETPC());
3330 return wt2;
3331 }
3332
3333 uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3334 {
3335 uint32_t wt2;
3336
3337 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3338 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3339 restore_rounding_mode(env);
3340 if (get_float_exception_flags(&env->active_fpu.fp_status)
3341 & float_flag_invalid) {
3342 if (float32_is_any_nan(fst0)) {
3343 wt2 = 0;
3344 }
3345 }
3346 update_fcr31(env, GETPC());
3347 return wt2;
3348 }
3349
3350 uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3351 {
3352 uint64_t dt2;
3353
3354 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3355 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3356 restore_rounding_mode(env);
3357 if (get_float_exception_flags(&env->active_fpu.fp_status)
3358 & float_flag_invalid) {
3359 if (float64_is_any_nan(fdt0)) {
3360 dt2 = 0;
3361 }
3362 }
3363 update_fcr31(env, GETPC());
3364 return dt2;
3365 }
3366
3367 uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3368 {
3369 uint64_t dt2;
3370
3371 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3372 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3373 restore_rounding_mode(env);
3374 if (get_float_exception_flags(&env->active_fpu.fp_status)
3375 & float_flag_invalid) {
3376 if (float32_is_any_nan(fst0)) {
3377 dt2 = 0;
3378 }
3379 }
3380 update_fcr31(env, GETPC());
3381 return dt2;
3382 }
3383
3384 uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3385 {
3386 uint32_t wt2;
3387
3388 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3389 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3390 restore_rounding_mode(env);
3391 if (get_float_exception_flags(&env->active_fpu.fp_status)
3392 & float_flag_invalid) {
3393 if (float64_is_any_nan(fdt0)) {
3394 wt2 = 0;
3395 }
3396 }
3397 update_fcr31(env, GETPC());
3398 return wt2;
3399 }
3400
3401 uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3402 {
3403 uint32_t wt2;
3404
3405 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3406 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3407 restore_rounding_mode(env);
3408 if (get_float_exception_flags(&env->active_fpu.fp_status)
3409 & float_flag_invalid) {
3410 if (float32_is_any_nan(fst0)) {
3411 wt2 = 0;
3412 }
3413 }
3414 update_fcr31(env, GETPC());
3415 return wt2;
3416 }
3417
3418 /* unary operations, not modifying fp status */
3419 #define FLOAT_UNOP(name) \
3420 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
3421 { \
3422 return float64_ ## name(fdt0); \
3423 } \
3424 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
3425 { \
3426 return float32_ ## name(fst0); \
3427 } \
3428 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
3429 { \
3430 uint32_t wt0; \
3431 uint32_t wth0; \
3432 \
3433 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
3434 wth0 = float32_ ## name(fdt0 >> 32); \
3435 return ((uint64_t)wth0 << 32) | wt0; \
3436 }
3437 FLOAT_UNOP(abs)
3438 FLOAT_UNOP(chs)
3439 #undef FLOAT_UNOP
3440
3441 /* MIPS specific unary operations */
3442 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
3443 {
3444 uint64_t fdt2;
3445
3446 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3447 update_fcr31(env, GETPC());
3448 return fdt2;
3449 }
3450
3451 uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
3452 {
3453 uint32_t fst2;
3454
3455 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3456 update_fcr31(env, GETPC());
3457 return fst2;
3458 }
3459
3460 uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
3461 {
3462 uint64_t fdt2;
3463
3464 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3465 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3466 update_fcr31(env, GETPC());
3467 return fdt2;
3468 }
3469
3470 uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
3471 {
3472 uint32_t fst2;
3473
3474 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3475 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3476 update_fcr31(env, GETPC());
3477 return fst2;
3478 }
3479
3480 uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
3481 {
3482 uint64_t fdt2;
3483
3484 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3485 update_fcr31(env, GETPC());
3486 return fdt2;
3487 }
3488
3489 uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
3490 {
3491 uint32_t fst2;
3492
3493 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3494 update_fcr31(env, GETPC());
3495 return fst2;
3496 }
3497
3498 uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
3499 {
3500 uint32_t fst2;
3501 uint32_t fsth2;
3502
3503 fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3504 fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
3505 update_fcr31(env, GETPC());
3506 return ((uint64_t)fsth2 << 32) | fst2;
3507 }
3508
3509 uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
3510 {
3511 uint64_t fdt2;
3512
3513 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3514 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3515 update_fcr31(env, GETPC());
3516 return fdt2;
3517 }
3518
3519 uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
3520 {
3521 uint32_t fst2;
3522
3523 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3524 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3525 update_fcr31(env, GETPC());
3526 return fst2;
3527 }
3528
3529 uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
3530 {
3531 uint32_t fst2;
3532 uint32_t fsth2;
3533
3534 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3535 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
3536 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3537 fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
3538 update_fcr31(env, GETPC());
3539 return ((uint64_t)fsth2 << 32) | fst2;
3540 }
3541
3542 #define FLOAT_RINT(name, bits) \
3543 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3544 uint ## bits ## _t fs) \
3545 { \
3546 uint ## bits ## _t fdret; \
3547 \
3548 fdret = float ## bits ## _round_to_int(fs, &env->active_fpu.fp_status); \
3549 update_fcr31(env, GETPC()); \
3550 return fdret; \
3551 }
3552
3553 FLOAT_RINT(rint_s, 32)
3554 FLOAT_RINT(rint_d, 64)
3555 #undef FLOAT_RINT
3556
3557 #define FLOAT_CLASS_SIGNALING_NAN 0x001
3558 #define FLOAT_CLASS_QUIET_NAN 0x002
3559 #define FLOAT_CLASS_NEGATIVE_INFINITY 0x004
3560 #define FLOAT_CLASS_NEGATIVE_NORMAL 0x008
3561 #define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010
3562 #define FLOAT_CLASS_NEGATIVE_ZERO 0x020
3563 #define FLOAT_CLASS_POSITIVE_INFINITY 0x040
3564 #define FLOAT_CLASS_POSITIVE_NORMAL 0x080
3565 #define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100
3566 #define FLOAT_CLASS_POSITIVE_ZERO 0x200
3567
3568 #define FLOAT_CLASS(name, bits) \
3569 uint ## bits ## _t float_ ## name (uint ## bits ## _t arg, \
3570 float_status *status) \
3571 { \
3572 if (float ## bits ## _is_signaling_nan(arg, status)) { \
3573 return FLOAT_CLASS_SIGNALING_NAN; \
3574 } else if (float ## bits ## _is_quiet_nan(arg, status)) { \
3575 return FLOAT_CLASS_QUIET_NAN; \
3576 } else if (float ## bits ## _is_neg(arg)) { \
3577 if (float ## bits ## _is_infinity(arg)) { \
3578 return FLOAT_CLASS_NEGATIVE_INFINITY; \
3579 } else if (float ## bits ## _is_zero(arg)) { \
3580 return FLOAT_CLASS_NEGATIVE_ZERO; \
3581 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3582 return FLOAT_CLASS_NEGATIVE_SUBNORMAL; \
3583 } else { \
3584 return FLOAT_CLASS_NEGATIVE_NORMAL; \
3585 } \
3586 } else { \
3587 if (float ## bits ## _is_infinity(arg)) { \
3588 return FLOAT_CLASS_POSITIVE_INFINITY; \
3589 } else if (float ## bits ## _is_zero(arg)) { \
3590 return FLOAT_CLASS_POSITIVE_ZERO; \
3591 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3592 return FLOAT_CLASS_POSITIVE_SUBNORMAL; \
3593 } else { \
3594 return FLOAT_CLASS_POSITIVE_NORMAL; \
3595 } \
3596 } \
3597 } \
3598 \
3599 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3600 uint ## bits ## _t arg) \
3601 { \
3602 return float_ ## name(arg, &env->active_fpu.fp_status); \
3603 }
3604
3605 FLOAT_CLASS(class_s, 32)
3606 FLOAT_CLASS(class_d, 64)
3607 #undef FLOAT_CLASS
3608
3609 /* binary operations */
3610 #define FLOAT_BINOP(name) \
3611 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3612 uint64_t fdt0, uint64_t fdt1) \
3613 { \
3614 uint64_t dt2; \
3615 \
3616 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
3617 update_fcr31(env, GETPC()); \
3618 return dt2; \
3619 } \
3620 \
3621 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3622 uint32_t fst0, uint32_t fst1) \
3623 { \
3624 uint32_t wt2; \
3625 \
3626 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3627 update_fcr31(env, GETPC()); \
3628 return wt2; \
3629 } \
3630 \
3631 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3632 uint64_t fdt0, \
3633 uint64_t fdt1) \
3634 { \
3635 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3636 uint32_t fsth0 = fdt0 >> 32; \
3637 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3638 uint32_t fsth1 = fdt1 >> 32; \
3639 uint32_t wt2; \
3640 uint32_t wth2; \
3641 \
3642 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3643 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
3644 update_fcr31(env, GETPC()); \
3645 return ((uint64_t)wth2 << 32) | wt2; \
3646 }
3647
3648 FLOAT_BINOP(add)
3649 FLOAT_BINOP(sub)
3650 FLOAT_BINOP(mul)
3651 FLOAT_BINOP(div)
3652 #undef FLOAT_BINOP
3653
3654 /* MIPS specific binary operations */
3655 uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3656 {
3657 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3658 fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
3659 update_fcr31(env, GETPC());
3660 return fdt2;
3661 }
3662
3663 uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3664 {
3665 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3666 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3667 update_fcr31(env, GETPC());
3668 return fst2;
3669 }
3670
3671 uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3672 {
3673 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3674 uint32_t fsth0 = fdt0 >> 32;
3675 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3676 uint32_t fsth2 = fdt2 >> 32;
3677
3678 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3679 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3680 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3681 fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
3682 update_fcr31(env, GETPC());
3683 return ((uint64_t)fsth2 << 32) | fst2;
3684 }
3685
3686 uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3687 {
3688 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3689 fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
3690 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
3691 update_fcr31(env, GETPC());
3692 return fdt2;
3693 }
3694
3695 uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3696 {
3697 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3698 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3699 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3700 update_fcr31(env, GETPC());
3701 return fst2;
3702 }
3703
3704 uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3705 {
3706 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3707 uint32_t fsth0 = fdt0 >> 32;
3708 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3709 uint32_t fsth2 = fdt2 >> 32;
3710
3711 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3712 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3713 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3714 fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
3715 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3716 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
3717 update_fcr31(env, GETPC());
3718 return ((uint64_t)fsth2 << 32) | fst2;
3719 }
3720
3721 uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3722 {
3723 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3724 uint32_t fsth0 = fdt0 >> 32;
3725 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3726 uint32_t fsth1 = fdt1 >> 32;
3727 uint32_t fst2;
3728 uint32_t fsth2;
3729
3730 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
3731 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
3732 update_fcr31(env, GETPC());
3733 return ((uint64_t)fsth2 << 32) | fst2;
3734 }
3735
3736 uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3737 {
3738 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3739 uint32_t fsth0 = fdt0 >> 32;
3740 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3741 uint32_t fsth1 = fdt1 >> 32;
3742 uint32_t fst2;
3743 uint32_t fsth2;
3744
3745 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3746 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3747 update_fcr31(env, GETPC());
3748 return ((uint64_t)fsth2 << 32) | fst2;
3749 }
3750
3751 #define FLOAT_MINMAX(name, bits, minmaxfunc) \
3752 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3753 uint ## bits ## _t fs, \
3754 uint ## bits ## _t ft) \
3755 { \
3756 uint ## bits ## _t fdret; \
3757 \
3758 fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \
3759 &env->active_fpu.fp_status); \
3760 update_fcr31(env, GETPC()); \
3761 return fdret; \
3762 }
3763
3764 FLOAT_MINMAX(max_s, 32, maxnum)
3765 FLOAT_MINMAX(max_d, 64, maxnum)
3766 FLOAT_MINMAX(maxa_s, 32, maxnummag)
3767 FLOAT_MINMAX(maxa_d, 64, maxnummag)
3768
3769 FLOAT_MINMAX(min_s, 32, minnum)
3770 FLOAT_MINMAX(min_d, 64, minnum)
3771 FLOAT_MINMAX(mina_s, 32, minnummag)
3772 FLOAT_MINMAX(mina_d, 64, minnummag)
3773 #undef FLOAT_MINMAX
3774
3775 /* ternary operations */
3776 #define UNFUSED_FMA(prefix, a, b, c, flags) \
3777 { \
3778 a = prefix##_mul(a, b, &env->active_fpu.fp_status); \
3779 if ((flags) & float_muladd_negate_c) { \
3780 a = prefix##_sub(a, c, &env->active_fpu.fp_status); \
3781 } else { \
3782 a = prefix##_add(a, c, &env->active_fpu.fp_status); \
3783 } \
3784 if ((flags) & float_muladd_negate_result) { \
3785 a = prefix##_chs(a); \
3786 } \
3787 }
3788
3789 /* FMA based operations */
3790 #define FLOAT_FMA(name, type) \
3791 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3792 uint64_t fdt0, uint64_t fdt1, \
3793 uint64_t fdt2) \
3794 { \
3795 UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \
3796 update_fcr31(env, GETPC()); \
3797 return fdt0; \
3798 } \
3799 \
3800 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3801 uint32_t fst0, uint32_t fst1, \
3802 uint32_t fst2) \
3803 { \
3804 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3805 update_fcr31(env, GETPC()); \
3806 return fst0; \
3807 } \
3808 \
3809 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3810 uint64_t fdt0, uint64_t fdt1, \
3811 uint64_t fdt2) \
3812 { \
3813 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3814 uint32_t fsth0 = fdt0 >> 32; \
3815 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3816 uint32_t fsth1 = fdt1 >> 32; \
3817 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
3818 uint32_t fsth2 = fdt2 >> 32; \
3819 \
3820 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3821 UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \
3822 update_fcr31(env, GETPC()); \
3823 return ((uint64_t)fsth0 << 32) | fst0; \
3824 }
3825 FLOAT_FMA(madd, 0)
3826 FLOAT_FMA(msub, float_muladd_negate_c)
3827 FLOAT_FMA(nmadd, float_muladd_negate_result)
3828 FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
3829 #undef FLOAT_FMA
3830
3831 #define FLOAT_FMADDSUB(name, bits, muladd_arg) \
3832 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3833 uint ## bits ## _t fs, \
3834 uint ## bits ## _t ft, \
3835 uint ## bits ## _t fd) \
3836 { \
3837 uint ## bits ## _t fdret; \
3838 \
3839 fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \
3840 &env->active_fpu.fp_status); \
3841 update_fcr31(env, GETPC()); \
3842 return fdret; \
3843 }
3844
3845 FLOAT_FMADDSUB(maddf_s, 32, 0)
3846 FLOAT_FMADDSUB(maddf_d, 64, 0)
3847 FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product)
3848 FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product)
3849 #undef FLOAT_FMADDSUB
3850
3851 /* compare operations */
3852 #define FOP_COND_D(op, cond) \
3853 void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3854 uint64_t fdt1, int cc) \
3855 { \
3856 int c; \
3857 c = cond; \
3858 update_fcr31(env, GETPC()); \
3859 if (c) \
3860 SET_FP_COND(cc, env->active_fpu); \
3861 else \
3862 CLEAR_FP_COND(cc, env->active_fpu); \
3863 } \
3864 void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3865 uint64_t fdt1, int cc) \
3866 { \
3867 int c; \
3868 fdt0 = float64_abs(fdt0); \
3869 fdt1 = float64_abs(fdt1); \
3870 c = cond; \
3871 update_fcr31(env, GETPC()); \
3872 if (c) \
3873 SET_FP_COND(cc, env->active_fpu); \
3874 else \
3875 CLEAR_FP_COND(cc, env->active_fpu); \
3876 }
3877
3878 /* NOTE: the comma operator will make "cond" to eval to false,
3879 * but float64_unordered_quiet() is still called. */
3880 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3881 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
3882 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3883 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3884 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3885 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3886 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3887 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3888 /* NOTE: the comma operator will make "cond" to eval to false,
3889 * but float64_unordered() is still called. */
3890 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3891 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
3892 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3893 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3894 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3895 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3896 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3897 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3898
3899 #define FOP_COND_S(op, cond) \
3900 void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3901 uint32_t fst1, int cc) \
3902 { \
3903 int c; \
3904 c = cond; \
3905 update_fcr31(env, GETPC()); \
3906 if (c) \
3907 SET_FP_COND(cc, env->active_fpu); \
3908 else \
3909 CLEAR_FP_COND(cc, env->active_fpu); \
3910 } \
3911 void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3912 uint32_t fst1, int cc) \
3913 { \
3914 int c; \
3915 fst0 = float32_abs(fst0); \
3916 fst1 = float32_abs(fst1); \
3917 c = cond; \
3918 update_fcr31(env, GETPC()); \
3919 if (c) \
3920 SET_FP_COND(cc, env->active_fpu); \
3921 else \
3922 CLEAR_FP_COND(cc, env->active_fpu); \
3923 }
3924
3925 /* NOTE: the comma operator will make "cond" to eval to false,
3926 * but float32_unordered_quiet() is still called. */
3927 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
3928 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
3929 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3930 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3931 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3932 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3933 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3934 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3935 /* NOTE: the comma operator will make "cond" to eval to false,
3936 * but float32_unordered() is still called. */
3937 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
3938 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
3939 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3940 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3941 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3942 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3943 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
3944 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3945
3946 #define FOP_COND_PS(op, condl, condh) \
3947 void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3948 uint64_t fdt1, int cc) \
3949 { \
3950 uint32_t fst0, fsth0, fst1, fsth1; \
3951 int ch, cl; \
3952 fst0 = fdt0 & 0XFFFFFFFF; \
3953 fsth0 = fdt0 >> 32; \
3954 fst1 = fdt1 & 0XFFFFFFFF; \
3955 fsth1 = fdt1 >> 32; \
3956 cl = condl; \
3957 ch = condh; \
3958 update_fcr31(env, GETPC()); \
3959 if (cl) \
3960 SET_FP_COND(cc, env->active_fpu); \
3961 else \
3962 CLEAR_FP_COND(cc, env->active_fpu); \
3963 if (ch) \
3964 SET_FP_COND(cc + 1, env->active_fpu); \
3965 else \
3966 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3967 } \
3968 void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3969 uint64_t fdt1, int cc) \
3970 { \
3971 uint32_t fst0, fsth0, fst1, fsth1; \
3972 int ch, cl; \
3973 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3974 fsth0 = float32_abs(fdt0 >> 32); \
3975 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3976 fsth1 = float32_abs(fdt1 >> 32); \
3977 cl = condl; \
3978 ch = condh; \
3979 update_fcr31(env, GETPC()); \
3980 if (cl) \
3981 SET_FP_COND(cc, env->active_fpu); \
3982 else \
3983 CLEAR_FP_COND(cc, env->active_fpu); \
3984 if (ch) \
3985 SET_FP_COND(cc + 1, env->active_fpu); \
3986 else \
3987 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3988 }
3989
3990 /* NOTE: the comma operator will make "cond" to eval to false,
3991 * but float32_unordered_quiet() is still called. */
3992 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
3993 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3994 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
3995 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
3996 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3997 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3998 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3999 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4000 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
4001 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4002 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
4003 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4004 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
4005 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4006 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
4007 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4008 /* NOTE: the comma operator will make "cond" to eval to false,
4009 * but float32_unordered() is still called. */
4010 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
4011 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
4012 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
4013 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
4014 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
4015 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
4016 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
4017 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
4018 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
4019 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
4020 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
4021 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
4022 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
4023 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
4024 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
4025 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
4026
4027 /* R6 compare operations */
4028 #define FOP_CONDN_D(op, cond) \
4029 uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState * env, uint64_t fdt0, \
4030 uint64_t fdt1) \
4031 { \
4032 uint64_t c; \
4033 c = cond; \
4034 update_fcr31(env, GETPC()); \
4035 if (c) { \
4036 return -1; \
4037 } else { \
4038 return 0; \
4039 } \
4040 }
4041
4042 /* NOTE: the comma operator will make "cond" to eval to false,
4043 * but float64_unordered_quiet() is still called. */
4044 FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4045 FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)))
4046 FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4047 FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4048 || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4049 FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4050 FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4051 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4052 FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4053 FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4054 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4055 /* NOTE: the comma operator will make "cond" to eval to false,
4056 * but float64_unordered() is still called. */
4057 FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4058 FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)))
4059 FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
4060 FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4061 || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
4062 FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4063 FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4064 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4065 FOP_CONDN_D(sle, (float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4066 FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4067 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4068 FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4069 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4070 FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4071 || float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4072 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4073 FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4074 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4075 FOP_CONDN_D(sor, (float64_le(fdt1, fdt0, &env->active_fpu.fp_status)
4076 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4077 FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4078 || float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4079 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4080 FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4081 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4082
4083 #define FOP_CONDN_S(op, cond) \
4084 uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState * env, uint32_t fst0, \
4085 uint32_t fst1) \
4086 { \
4087 uint64_t c; \
4088 c = cond; \
4089 update_fcr31(env, GETPC()); \
4090 if (c) { \
4091 return -1; \
4092 } else { \
4093 return 0; \
4094 } \
4095 }
4096
4097 /* NOTE: the comma operator will make "cond" to eval to false,
4098 * but float32_unordered_quiet() is still called. */
4099 FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
4100 FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)))
4101 FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4102 FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4103 || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4104 FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4105 FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4106 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4107 FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4108 FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4109 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4110 /* NOTE: the comma operator will make "cond" to eval to false,
4111 * but float32_unordered() is still called. */
4112 FOP_CONDN_S(saf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
4113 FOP_CONDN_S(sun, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)))
4114 FOP_CONDN_S(seq, (float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4115 FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4116 || float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4117 FOP_CONDN_S(slt, (float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4118 FOP_CONDN_S(sult, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4119 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4120 FOP_CONDN_S(sle, (float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4121 FOP_CONDN_S(sule, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4122 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4123 FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0, &env->active_fpu.fp_status)
4124 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4125 FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4126 || float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4127 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4128 FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4129 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4130 FOP_CONDN_S(sor, (float32_le(fst1, fst0, &env->active_fpu.fp_status)
4131 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4132 FOP_CONDN_S(sune, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4133 || float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4134 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4135 FOP_CONDN_S(sne, (float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4136 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4137
4138 /* MSA */
4139 /* Data format min and max values */
4140 #define DF_BITS(df) (1 << ((df) + 3))
4141
4142 /* Element-by-element access macros */
4143 #define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df))
4144
4145 #if !defined(CONFIG_USER_ONLY)
4146 #define MEMOP_IDX(DF) \
4147 TCGMemOpIdx oi = make_memop_idx(MO_TE | DF | MO_UNALN, \
4148 cpu_mmu_index(env, false));
4149 #else
4150 #define MEMOP_IDX(DF)
4151 #endif
4152
4153 #define MSA_LD_DF(DF, TYPE, LD_INSN, ...) \
4154 void helper_msa_ld_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4155 target_ulong addr) \
4156 { \
4157 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4158 wr_t wx; \
4159 int i; \
4160 MEMOP_IDX(DF) \
4161 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4162 wx.TYPE[i] = LD_INSN(env, addr + (i << DF), ##__VA_ARGS__); \
4163 } \
4164 memcpy(pwd, &wx, sizeof(wr_t)); \
4165 }
4166
4167 #if !defined(CONFIG_USER_ONLY)
4168 MSA_LD_DF(DF_BYTE, b, helper_ret_ldub_mmu, oi, GETPC())
4169 MSA_LD_DF(DF_HALF, h, helper_ret_lduw_mmu, oi, GETPC())
4170 MSA_LD_DF(DF_WORD, w, helper_ret_ldul_mmu, oi, GETPC())
4171 MSA_LD_DF(DF_DOUBLE, d, helper_ret_ldq_mmu, oi, GETPC())
4172 #else
4173 MSA_LD_DF(DF_BYTE, b, cpu_ldub_data)
4174 MSA_LD_DF(DF_HALF, h, cpu_lduw_data)
4175 MSA_LD_DF(DF_WORD, w, cpu_ldl_data)
4176 MSA_LD_DF(DF_DOUBLE, d, cpu_ldq_data)
4177 #endif
4178
4179 #define MSA_PAGESPAN(x) \
4180 ((((x) & ~TARGET_PAGE_MASK) + MSA_WRLEN/8 - 1) >= TARGET_PAGE_SIZE)
4181
4182 static inline void ensure_writable_pages(CPUMIPSState *env,
4183 target_ulong addr,
4184 int mmu_idx,
4185 uintptr_t retaddr)
4186 {
4187 #if !defined(CONFIG_USER_ONLY)
4188 target_ulong page_addr;
4189 if (unlikely(MSA_PAGESPAN(addr))) {
4190 /* first page */
4191 probe_write(env, addr, 0, mmu_idx, retaddr);
4192 /* second page */
4193 page_addr = (addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
4194 probe_write(env, page_addr, 0, mmu_idx, retaddr);
4195 }
4196 #endif
4197 }
4198
4199 #define MSA_ST_DF(DF, TYPE, ST_INSN, ...) \
4200 void helper_msa_st_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4201 target_ulong addr) \
4202 { \
4203 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4204 int mmu_idx = cpu_mmu_index(env, false); \
4205 int i; \
4206 MEMOP_IDX(DF) \
4207 ensure_writable_pages(env, addr, mmu_idx, GETPC()); \
4208 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4209 ST_INSN(env, addr + (i << DF), pwd->TYPE[i], ##__VA_ARGS__); \
4210 } \
4211 }
4212
4213 #if !defined(CONFIG_USER_ONLY)
4214 MSA_ST_DF(DF_BYTE, b, helper_ret_stb_mmu, oi, GETPC())
4215 MSA_ST_DF(DF_HALF, h, helper_ret_stw_mmu, oi, GETPC())
4216 MSA_ST_DF(DF_WORD, w, helper_ret_stl_mmu, oi, GETPC())
4217 MSA_ST_DF(DF_DOUBLE, d, helper_ret_stq_mmu, oi, GETPC())
4218 #else
4219 MSA_ST_DF(DF_BYTE, b, cpu_stb_data)
4220 MSA_ST_DF(DF_HALF, h, cpu_stw_data)
4221 MSA_ST_DF(DF_WORD, w, cpu_stl_data)
4222 MSA_ST_DF(DF_DOUBLE, d, cpu_stq_data)
4223 #endif
4224
4225 void helper_cache(CPUMIPSState *env, target_ulong addr, uint32_t op)
4226 {
4227 #ifndef CONFIG_USER_ONLY
4228 target_ulong index = addr & 0x1fffffff;
4229 if (op == 9) {
4230 /* Index Store Tag */
4231 memory_region_dispatch_write(env->itc_tag, index, env->CP0_TagLo,
4232 8, MEMTXATTRS_UNSPECIFIED);
4233 } else if (op == 5) {
4234 /* Index Load Tag */
4235 memory_region_dispatch_read(env->itc_tag, index, &env->CP0_TagLo,
4236 8, MEMTXATTRS_UNSPECIFIED);
4237 }
4238 #endif
4239 }