]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/op_helper.c
target/mips: Weaken TLB flush on UX,SX,KX,ASID changes
[mirror_qemu.git] / target / mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
21 #include "cpu.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
26 #include "sysemu/kvm.h"
27
28 /*****************************************************************************/
29 /* Exceptions processing helpers */
30
31 void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
32 int error_code)
33 {
34 do_raise_exception_err(env, exception, error_code, 0);
35 }
36
37 void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
38 {
39 do_raise_exception(env, exception, GETPC());
40 }
41
42 void helper_raise_exception_debug(CPUMIPSState *env)
43 {
44 do_raise_exception(env, EXCP_DEBUG, 0);
45 }
46
47 static void raise_exception(CPUMIPSState *env, uint32_t exception)
48 {
49 do_raise_exception(env, exception, 0);
50 }
51
52 #if defined(CONFIG_USER_ONLY)
53 #define HELPER_LD(name, insn, type) \
54 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
55 int mem_idx, uintptr_t retaddr) \
56 { \
57 return (type) cpu_##insn##_data_ra(env, addr, retaddr); \
58 }
59 #else
60 #define HELPER_LD(name, insn, type) \
61 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
62 int mem_idx, uintptr_t retaddr) \
63 { \
64 switch (mem_idx) \
65 { \
66 case 0: return (type) cpu_##insn##_kernel_ra(env, addr, retaddr); \
67 case 1: return (type) cpu_##insn##_super_ra(env, addr, retaddr); \
68 default: \
69 case 2: return (type) cpu_##insn##_user_ra(env, addr, retaddr); \
70 } \
71 }
72 #endif
73 HELPER_LD(lw, ldl, int32_t)
74 #if defined(TARGET_MIPS64)
75 HELPER_LD(ld, ldq, int64_t)
76 #endif
77 #undef HELPER_LD
78
79 #if defined(CONFIG_USER_ONLY)
80 #define HELPER_ST(name, insn, type) \
81 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
82 type val, int mem_idx, uintptr_t retaddr) \
83 { \
84 cpu_##insn##_data_ra(env, addr, val, retaddr); \
85 }
86 #else
87 #define HELPER_ST(name, insn, type) \
88 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
89 type val, int mem_idx, uintptr_t retaddr) \
90 { \
91 switch (mem_idx) \
92 { \
93 case 0: cpu_##insn##_kernel_ra(env, addr, val, retaddr); break; \
94 case 1: cpu_##insn##_super_ra(env, addr, val, retaddr); break; \
95 default: \
96 case 2: cpu_##insn##_user_ra(env, addr, val, retaddr); break; \
97 } \
98 }
99 #endif
100 HELPER_ST(sb, stb, uint8_t)
101 HELPER_ST(sw, stl, uint32_t)
102 #if defined(TARGET_MIPS64)
103 HELPER_ST(sd, stq, uint64_t)
104 #endif
105 #undef HELPER_ST
106
107 /* 64 bits arithmetic for 32 bits hosts */
108 static inline uint64_t get_HILO(CPUMIPSState *env)
109 {
110 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
111 }
112
113 static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
114 {
115 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
116 return env->active_tc.HI[0] = (int32_t)(HILO >> 32);
117 }
118
119 static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
120 {
121 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
122 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
123 return tmp;
124 }
125
126 /* Multiplication variants of the vr54xx. */
127 target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
128 target_ulong arg2)
129 {
130 return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
131 (int64_t)(int32_t)arg2));
132 }
133
134 target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
135 target_ulong arg2)
136 {
137 return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
138 (uint64_t)(uint32_t)arg2);
139 }
140
141 target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
142 target_ulong arg2)
143 {
144 return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
145 (int64_t)(int32_t)arg2);
146 }
147
148 target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
149 target_ulong arg2)
150 {
151 return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
152 (int64_t)(int32_t)arg2);
153 }
154
155 target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
156 target_ulong arg2)
157 {
158 return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
159 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
160 }
161
162 target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
163 target_ulong arg2)
164 {
165 return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
166 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
167 }
168
169 target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
170 target_ulong arg2)
171 {
172 return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
173 (int64_t)(int32_t)arg2);
174 }
175
176 target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
177 target_ulong arg2)
178 {
179 return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
180 (int64_t)(int32_t)arg2);
181 }
182
183 target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
184 target_ulong arg2)
185 {
186 return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
187 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
188 }
189
190 target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
191 target_ulong arg2)
192 {
193 return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
194 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
195 }
196
197 target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
198 target_ulong arg2)
199 {
200 return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
201 }
202
203 target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
204 target_ulong arg2)
205 {
206 return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
207 (uint64_t)(uint32_t)arg2);
208 }
209
210 target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
211 target_ulong arg2)
212 {
213 return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
214 (int64_t)(int32_t)arg2);
215 }
216
217 target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
218 target_ulong arg2)
219 {
220 return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
221 (uint64_t)(uint32_t)arg2);
222 }
223
224 static inline target_ulong bitswap(target_ulong v)
225 {
226 v = ((v >> 1) & (target_ulong)0x5555555555555555ULL) |
227 ((v & (target_ulong)0x5555555555555555ULL) << 1);
228 v = ((v >> 2) & (target_ulong)0x3333333333333333ULL) |
229 ((v & (target_ulong)0x3333333333333333ULL) << 2);
230 v = ((v >> 4) & (target_ulong)0x0F0F0F0F0F0F0F0FULL) |
231 ((v & (target_ulong)0x0F0F0F0F0F0F0F0FULL) << 4);
232 return v;
233 }
234
235 #ifdef TARGET_MIPS64
236 target_ulong helper_dbitswap(target_ulong rt)
237 {
238 return bitswap(rt);
239 }
240 #endif
241
242 target_ulong helper_bitswap(target_ulong rt)
243 {
244 return (int32_t)bitswap(rt);
245 }
246
247 #ifndef CONFIG_USER_ONLY
248
249 static inline hwaddr do_translate_address(CPUMIPSState *env,
250 target_ulong address,
251 int rw, uintptr_t retaddr)
252 {
253 hwaddr lladdr;
254 CPUState *cs = CPU(mips_env_get_cpu(env));
255
256 lladdr = cpu_mips_translate_address(env, address, rw);
257
258 if (lladdr == -1LL) {
259 cpu_loop_exit_restore(cs, retaddr);
260 } else {
261 return lladdr;
262 }
263 }
264
265 #define HELPER_LD_ATOMIC(name, insn, almask) \
266 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
267 { \
268 if (arg & almask) { \
269 env->CP0_BadVAddr = arg; \
270 do_raise_exception(env, EXCP_AdEL, GETPC()); \
271 } \
272 env->lladdr = do_translate_address(env, arg, 0, GETPC()); \
273 env->llval = do_##insn(env, arg, mem_idx, GETPC()); \
274 return env->llval; \
275 }
276 HELPER_LD_ATOMIC(ll, lw, 0x3)
277 #ifdef TARGET_MIPS64
278 HELPER_LD_ATOMIC(lld, ld, 0x7)
279 #endif
280 #undef HELPER_LD_ATOMIC
281
282 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
283 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
284 target_ulong arg2, int mem_idx) \
285 { \
286 target_long tmp; \
287 \
288 if (arg2 & almask) { \
289 env->CP0_BadVAddr = arg2; \
290 do_raise_exception(env, EXCP_AdES, GETPC()); \
291 } \
292 if (do_translate_address(env, arg2, 1, GETPC()) == env->lladdr) { \
293 tmp = do_##ld_insn(env, arg2, mem_idx, GETPC()); \
294 if (tmp == env->llval) { \
295 do_##st_insn(env, arg2, arg1, mem_idx, GETPC()); \
296 return 1; \
297 } \
298 } \
299 return 0; \
300 }
301 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
302 #ifdef TARGET_MIPS64
303 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
304 #endif
305 #undef HELPER_ST_ATOMIC
306 #endif
307
308 #ifdef TARGET_WORDS_BIGENDIAN
309 #define GET_LMASK(v) ((v) & 3)
310 #define GET_OFFSET(addr, offset) (addr + (offset))
311 #else
312 #define GET_LMASK(v) (((v) & 3) ^ 3)
313 #define GET_OFFSET(addr, offset) (addr - (offset))
314 #endif
315
316 void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
317 int mem_idx)
318 {
319 do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx, GETPC());
320
321 if (GET_LMASK(arg2) <= 2) {
322 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx,
323 GETPC());
324 }
325
326 if (GET_LMASK(arg2) <= 1) {
327 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx,
328 GETPC());
329 }
330
331 if (GET_LMASK(arg2) == 0) {
332 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx,
333 GETPC());
334 }
335 }
336
337 void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
338 int mem_idx)
339 {
340 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
341
342 if (GET_LMASK(arg2) >= 1) {
343 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
344 GETPC());
345 }
346
347 if (GET_LMASK(arg2) >= 2) {
348 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
349 GETPC());
350 }
351
352 if (GET_LMASK(arg2) == 3) {
353 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
354 GETPC());
355 }
356 }
357
358 #if defined(TARGET_MIPS64)
359 /* "half" load and stores. We must do the memory access inline,
360 or fault handling won't work. */
361
362 #ifdef TARGET_WORDS_BIGENDIAN
363 #define GET_LMASK64(v) ((v) & 7)
364 #else
365 #define GET_LMASK64(v) (((v) & 7) ^ 7)
366 #endif
367
368 void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
369 int mem_idx)
370 {
371 do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx, GETPC());
372
373 if (GET_LMASK64(arg2) <= 6) {
374 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx,
375 GETPC());
376 }
377
378 if (GET_LMASK64(arg2) <= 5) {
379 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx,
380 GETPC());
381 }
382
383 if (GET_LMASK64(arg2) <= 4) {
384 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx,
385 GETPC());
386 }
387
388 if (GET_LMASK64(arg2) <= 3) {
389 do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx,
390 GETPC());
391 }
392
393 if (GET_LMASK64(arg2) <= 2) {
394 do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx,
395 GETPC());
396 }
397
398 if (GET_LMASK64(arg2) <= 1) {
399 do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx,
400 GETPC());
401 }
402
403 if (GET_LMASK64(arg2) <= 0) {
404 do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx,
405 GETPC());
406 }
407 }
408
409 void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
410 int mem_idx)
411 {
412 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
413
414 if (GET_LMASK64(arg2) >= 1) {
415 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
416 GETPC());
417 }
418
419 if (GET_LMASK64(arg2) >= 2) {
420 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
421 GETPC());
422 }
423
424 if (GET_LMASK64(arg2) >= 3) {
425 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
426 GETPC());
427 }
428
429 if (GET_LMASK64(arg2) >= 4) {
430 do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx,
431 GETPC());
432 }
433
434 if (GET_LMASK64(arg2) >= 5) {
435 do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx,
436 GETPC());
437 }
438
439 if (GET_LMASK64(arg2) >= 6) {
440 do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx,
441 GETPC());
442 }
443
444 if (GET_LMASK64(arg2) == 7) {
445 do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx,
446 GETPC());
447 }
448 }
449 #endif /* TARGET_MIPS64 */
450
451 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
452
453 void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
454 uint32_t mem_idx)
455 {
456 target_ulong base_reglist = reglist & 0xf;
457 target_ulong do_r31 = reglist & 0x10;
458
459 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
460 target_ulong i;
461
462 for (i = 0; i < base_reglist; i++) {
463 env->active_tc.gpr[multiple_regs[i]] =
464 (target_long)do_lw(env, addr, mem_idx, GETPC());
465 addr += 4;
466 }
467 }
468
469 if (do_r31) {
470 env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx,
471 GETPC());
472 }
473 }
474
475 void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
476 uint32_t mem_idx)
477 {
478 target_ulong base_reglist = reglist & 0xf;
479 target_ulong do_r31 = reglist & 0x10;
480
481 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
482 target_ulong i;
483
484 for (i = 0; i < base_reglist; i++) {
485 do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
486 GETPC());
487 addr += 4;
488 }
489 }
490
491 if (do_r31) {
492 do_sw(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
493 }
494 }
495
496 #if defined(TARGET_MIPS64)
497 void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
498 uint32_t mem_idx)
499 {
500 target_ulong base_reglist = reglist & 0xf;
501 target_ulong do_r31 = reglist & 0x10;
502
503 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
504 target_ulong i;
505
506 for (i = 0; i < base_reglist; i++) {
507 env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx,
508 GETPC());
509 addr += 8;
510 }
511 }
512
513 if (do_r31) {
514 env->active_tc.gpr[31] = do_ld(env, addr, mem_idx, GETPC());
515 }
516 }
517
518 void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
519 uint32_t mem_idx)
520 {
521 target_ulong base_reglist = reglist & 0xf;
522 target_ulong do_r31 = reglist & 0x10;
523
524 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
525 target_ulong i;
526
527 for (i = 0; i < base_reglist; i++) {
528 do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
529 GETPC());
530 addr += 8;
531 }
532 }
533
534 if (do_r31) {
535 do_sd(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
536 }
537 }
538 #endif
539
540 #ifndef CONFIG_USER_ONLY
541 /* SMP helpers. */
542 static bool mips_vpe_is_wfi(MIPSCPU *c)
543 {
544 CPUState *cpu = CPU(c);
545 CPUMIPSState *env = &c->env;
546
547 /* If the VPE is halted but otherwise active, it means it's waiting for
548 an interrupt. */
549 return cpu->halted && mips_vpe_active(env);
550 }
551
552 static bool mips_vp_is_wfi(MIPSCPU *c)
553 {
554 CPUState *cpu = CPU(c);
555 CPUMIPSState *env = &c->env;
556
557 return cpu->halted && mips_vp_active(env);
558 }
559
560 static inline void mips_vpe_wake(MIPSCPU *c)
561 {
562 /* Don't set ->halted = 0 directly, let it be done via cpu_has_work
563 because there might be other conditions that state that c should
564 be sleeping. */
565 cpu_interrupt(CPU(c), CPU_INTERRUPT_WAKE);
566 }
567
568 static inline void mips_vpe_sleep(MIPSCPU *cpu)
569 {
570 CPUState *cs = CPU(cpu);
571
572 /* The VPE was shut off, really go to bed.
573 Reset any old _WAKE requests. */
574 cs->halted = 1;
575 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
576 }
577
578 static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
579 {
580 CPUMIPSState *c = &cpu->env;
581
582 /* FIXME: TC reschedule. */
583 if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
584 mips_vpe_wake(cpu);
585 }
586 }
587
588 static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
589 {
590 CPUMIPSState *c = &cpu->env;
591
592 /* FIXME: TC reschedule. */
593 if (!mips_vpe_active(c)) {
594 mips_vpe_sleep(cpu);
595 }
596 }
597
598 /**
599 * mips_cpu_map_tc:
600 * @env: CPU from which mapping is performed.
601 * @tc: Should point to an int with the value of the global TC index.
602 *
603 * This function will transform @tc into a local index within the
604 * returned #CPUMIPSState.
605 */
606 /* FIXME: This code assumes that all VPEs have the same number of TCs,
607 which depends on runtime setup. Can probably be fixed by
608 walking the list of CPUMIPSStates. */
609 static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
610 {
611 MIPSCPU *cpu;
612 CPUState *cs;
613 CPUState *other_cs;
614 int vpe_idx;
615 int tc_idx = *tc;
616
617 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
618 /* Not allowed to address other CPUs. */
619 *tc = env->current_tc;
620 return env;
621 }
622
623 cs = CPU(mips_env_get_cpu(env));
624 vpe_idx = tc_idx / cs->nr_threads;
625 *tc = tc_idx % cs->nr_threads;
626 other_cs = qemu_get_cpu(vpe_idx);
627 if (other_cs == NULL) {
628 return env;
629 }
630 cpu = MIPS_CPU(other_cs);
631 return &cpu->env;
632 }
633
634 /* The per VPE CP0_Status register shares some fields with the per TC
635 CP0_TCStatus registers. These fields are wired to the same registers,
636 so changes to either of them should be reflected on both registers.
637
638 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
639
640 These helper call synchronizes the regs for a given cpu. */
641
642 /* Called for updates to CP0_Status. Defined in "cpu.h" for gdbstub.c. */
643 /* static inline void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu,
644 int tc); */
645
646 /* Called for updates to CP0_TCStatus. */
647 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
648 target_ulong v)
649 {
650 uint32_t status;
651 uint32_t tcu, tmx, tasid, tksu;
652 uint32_t mask = ((1U << CP0St_CU3)
653 | (1 << CP0St_CU2)
654 | (1 << CP0St_CU1)
655 | (1 << CP0St_CU0)
656 | (1 << CP0St_MX)
657 | (3 << CP0St_KSU));
658
659 tcu = (v >> CP0TCSt_TCU0) & 0xf;
660 tmx = (v >> CP0TCSt_TMX) & 0x1;
661 tasid = v & cpu->CP0_EntryHi_ASID_mask;
662 tksu = (v >> CP0TCSt_TKSU) & 0x3;
663
664 status = tcu << CP0St_CU0;
665 status |= tmx << CP0St_MX;
666 status |= tksu << CP0St_KSU;
667
668 cpu->CP0_Status &= ~mask;
669 cpu->CP0_Status |= status;
670
671 /* Sync the TASID with EntryHi. */
672 cpu->CP0_EntryHi &= ~cpu->CP0_EntryHi_ASID_mask;
673 cpu->CP0_EntryHi |= tasid;
674
675 compute_hflags(cpu);
676 }
677
678 /* Called for updates to CP0_EntryHi. */
679 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
680 {
681 int32_t *tcst;
682 uint32_t asid, v = cpu->CP0_EntryHi;
683
684 asid = v & cpu->CP0_EntryHi_ASID_mask;
685
686 if (tc == cpu->current_tc) {
687 tcst = &cpu->active_tc.CP0_TCStatus;
688 } else {
689 tcst = &cpu->tcs[tc].CP0_TCStatus;
690 }
691
692 *tcst &= ~cpu->CP0_EntryHi_ASID_mask;
693 *tcst |= asid;
694 }
695
696 /* CP0 helpers */
697 target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
698 {
699 return env->mvp->CP0_MVPControl;
700 }
701
702 target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
703 {
704 return env->mvp->CP0_MVPConf0;
705 }
706
707 target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
708 {
709 return env->mvp->CP0_MVPConf1;
710 }
711
712 target_ulong helper_mfc0_random(CPUMIPSState *env)
713 {
714 return (int32_t)cpu_mips_get_random(env);
715 }
716
717 target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
718 {
719 return env->active_tc.CP0_TCStatus;
720 }
721
722 target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
723 {
724 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
725 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
726
727 if (other_tc == other->current_tc)
728 return other->active_tc.CP0_TCStatus;
729 else
730 return other->tcs[other_tc].CP0_TCStatus;
731 }
732
733 target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
734 {
735 return env->active_tc.CP0_TCBind;
736 }
737
738 target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
739 {
740 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
741 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
742
743 if (other_tc == other->current_tc)
744 return other->active_tc.CP0_TCBind;
745 else
746 return other->tcs[other_tc].CP0_TCBind;
747 }
748
749 target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
750 {
751 return env->active_tc.PC;
752 }
753
754 target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
755 {
756 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
757 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
758
759 if (other_tc == other->current_tc)
760 return other->active_tc.PC;
761 else
762 return other->tcs[other_tc].PC;
763 }
764
765 target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
766 {
767 return env->active_tc.CP0_TCHalt;
768 }
769
770 target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
771 {
772 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
773 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
774
775 if (other_tc == other->current_tc)
776 return other->active_tc.CP0_TCHalt;
777 else
778 return other->tcs[other_tc].CP0_TCHalt;
779 }
780
781 target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
782 {
783 return env->active_tc.CP0_TCContext;
784 }
785
786 target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
787 {
788 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
789 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
790
791 if (other_tc == other->current_tc)
792 return other->active_tc.CP0_TCContext;
793 else
794 return other->tcs[other_tc].CP0_TCContext;
795 }
796
797 target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
798 {
799 return env->active_tc.CP0_TCSchedule;
800 }
801
802 target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
803 {
804 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
805 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
806
807 if (other_tc == other->current_tc)
808 return other->active_tc.CP0_TCSchedule;
809 else
810 return other->tcs[other_tc].CP0_TCSchedule;
811 }
812
813 target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
814 {
815 return env->active_tc.CP0_TCScheFBack;
816 }
817
818 target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
819 {
820 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
821 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
822
823 if (other_tc == other->current_tc)
824 return other->active_tc.CP0_TCScheFBack;
825 else
826 return other->tcs[other_tc].CP0_TCScheFBack;
827 }
828
829 target_ulong helper_mfc0_count(CPUMIPSState *env)
830 {
831 int32_t count;
832 qemu_mutex_lock_iothread();
833 count = (int32_t) cpu_mips_get_count(env);
834 qemu_mutex_unlock_iothread();
835 return count;
836 }
837
838 target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
839 {
840 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
841 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
842
843 return other->CP0_EntryHi;
844 }
845
846 target_ulong helper_mftc0_cause(CPUMIPSState *env)
847 {
848 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
849 int32_t tccause;
850 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
851
852 if (other_tc == other->current_tc) {
853 tccause = other->CP0_Cause;
854 } else {
855 tccause = other->CP0_Cause;
856 }
857
858 return tccause;
859 }
860
861 target_ulong helper_mftc0_status(CPUMIPSState *env)
862 {
863 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
864 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
865
866 return other->CP0_Status;
867 }
868
869 target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
870 {
871 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
872 }
873
874 target_ulong helper_mfc0_maar(CPUMIPSState *env)
875 {
876 return (int32_t) env->CP0_MAAR[env->CP0_MAARI];
877 }
878
879 target_ulong helper_mfhc0_maar(CPUMIPSState *env)
880 {
881 return env->CP0_MAAR[env->CP0_MAARI] >> 32;
882 }
883
884 target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
885 {
886 return (int32_t)env->CP0_WatchLo[sel];
887 }
888
889 target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
890 {
891 return env->CP0_WatchHi[sel];
892 }
893
894 target_ulong helper_mfc0_debug(CPUMIPSState *env)
895 {
896 target_ulong t0 = env->CP0_Debug;
897 if (env->hflags & MIPS_HFLAG_DM)
898 t0 |= 1 << CP0DB_DM;
899
900 return t0;
901 }
902
903 target_ulong helper_mftc0_debug(CPUMIPSState *env)
904 {
905 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
906 int32_t tcstatus;
907 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
908
909 if (other_tc == other->current_tc)
910 tcstatus = other->active_tc.CP0_Debug_tcstatus;
911 else
912 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
913
914 /* XXX: Might be wrong, check with EJTAG spec. */
915 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
916 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
917 }
918
919 #if defined(TARGET_MIPS64)
920 target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
921 {
922 return env->active_tc.PC;
923 }
924
925 target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
926 {
927 return env->active_tc.CP0_TCHalt;
928 }
929
930 target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
931 {
932 return env->active_tc.CP0_TCContext;
933 }
934
935 target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
936 {
937 return env->active_tc.CP0_TCSchedule;
938 }
939
940 target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
941 {
942 return env->active_tc.CP0_TCScheFBack;
943 }
944
945 target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
946 {
947 return env->lladdr >> env->CP0_LLAddr_shift;
948 }
949
950 target_ulong helper_dmfc0_maar(CPUMIPSState *env)
951 {
952 return env->CP0_MAAR[env->CP0_MAARI];
953 }
954
955 target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
956 {
957 return env->CP0_WatchLo[sel];
958 }
959 #endif /* TARGET_MIPS64 */
960
961 void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
962 {
963 uint32_t index_p = env->CP0_Index & 0x80000000;
964 uint32_t tlb_index = arg1 & 0x7fffffff;
965 if (tlb_index < env->tlb->nb_tlb) {
966 if (env->insn_flags & ISA_MIPS32R6) {
967 index_p |= arg1 & 0x80000000;
968 }
969 env->CP0_Index = index_p | tlb_index;
970 }
971 }
972
973 void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
974 {
975 uint32_t mask = 0;
976 uint32_t newval;
977
978 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
979 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
980 (1 << CP0MVPCo_EVP);
981 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
982 mask |= (1 << CP0MVPCo_STLB);
983 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
984
985 // TODO: Enable/disable shared TLB, enable/disable VPEs.
986
987 env->mvp->CP0_MVPControl = newval;
988 }
989
990 void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
991 {
992 uint32_t mask;
993 uint32_t newval;
994
995 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
996 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
997 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
998
999 /* Yield scheduler intercept not implemented. */
1000 /* Gating storage scheduler intercept not implemented. */
1001
1002 // TODO: Enable/disable TCs.
1003
1004 env->CP0_VPEControl = newval;
1005 }
1006
1007 void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
1008 {
1009 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1010 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1011 uint32_t mask;
1012 uint32_t newval;
1013
1014 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1015 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1016 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
1017
1018 /* TODO: Enable/disable TCs. */
1019
1020 other->CP0_VPEControl = newval;
1021 }
1022
1023 target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
1024 {
1025 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1026 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1027 /* FIXME: Mask away return zero on read bits. */
1028 return other->CP0_VPEControl;
1029 }
1030
1031 target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
1032 {
1033 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1034 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1035
1036 return other->CP0_VPEConf0;
1037 }
1038
1039 void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1040 {
1041 uint32_t mask = 0;
1042 uint32_t newval;
1043
1044 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1045 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1046 mask |= (0xff << CP0VPEC0_XTC);
1047 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1048 }
1049 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1050
1051 // TODO: TC exclusive handling due to ERL/EXL.
1052
1053 env->CP0_VPEConf0 = newval;
1054 }
1055
1056 void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1057 {
1058 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1059 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1060 uint32_t mask = 0;
1061 uint32_t newval;
1062
1063 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1064 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1065
1066 /* TODO: TC exclusive handling due to ERL/EXL. */
1067 other->CP0_VPEConf0 = newval;
1068 }
1069
1070 void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
1071 {
1072 uint32_t mask = 0;
1073 uint32_t newval;
1074
1075 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1076 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1077 (0xff << CP0VPEC1_NCP1);
1078 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1079
1080 /* UDI not implemented. */
1081 /* CP2 not implemented. */
1082
1083 // TODO: Handle FPU (CP1) binding.
1084
1085 env->CP0_VPEConf1 = newval;
1086 }
1087
1088 void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
1089 {
1090 /* Yield qualifier inputs not implemented. */
1091 env->CP0_YQMask = 0x00000000;
1092 }
1093
1094 void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
1095 {
1096 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1097 }
1098
1099 #define MTC0_ENTRYLO_MASK(env) ((env->PAMask >> 6) & 0x3FFFFFFF)
1100
1101 void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
1102 {
1103 /* 1k pages not implemented */
1104 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1105 env->CP0_EntryLo0 = (arg1 & MTC0_ENTRYLO_MASK(env))
1106 | (rxi << (CP0EnLo_XI - 30));
1107 }
1108
1109 #if defined(TARGET_MIPS64)
1110 #define DMTC0_ENTRYLO_MASK(env) (env->PAMask >> 6)
1111
1112 void helper_dmtc0_entrylo0(CPUMIPSState *env, uint64_t arg1)
1113 {
1114 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1115 env->CP0_EntryLo0 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1116 }
1117 #endif
1118
1119 void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1120 {
1121 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1122 uint32_t newval;
1123
1124 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1125
1126 env->active_tc.CP0_TCStatus = newval;
1127 sync_c0_tcstatus(env, env->current_tc, newval);
1128 }
1129
1130 void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1131 {
1132 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1133 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1134
1135 if (other_tc == other->current_tc)
1136 other->active_tc.CP0_TCStatus = arg1;
1137 else
1138 other->tcs[other_tc].CP0_TCStatus = arg1;
1139 sync_c0_tcstatus(other, other_tc, arg1);
1140 }
1141
1142 void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1143 {
1144 uint32_t mask = (1 << CP0TCBd_TBE);
1145 uint32_t newval;
1146
1147 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1148 mask |= (1 << CP0TCBd_CurVPE);
1149 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1150 env->active_tc.CP0_TCBind = newval;
1151 }
1152
1153 void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1154 {
1155 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1156 uint32_t mask = (1 << CP0TCBd_TBE);
1157 uint32_t newval;
1158 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1159
1160 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1161 mask |= (1 << CP0TCBd_CurVPE);
1162 if (other_tc == other->current_tc) {
1163 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1164 other->active_tc.CP0_TCBind = newval;
1165 } else {
1166 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1167 other->tcs[other_tc].CP0_TCBind = newval;
1168 }
1169 }
1170
1171 void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1172 {
1173 env->active_tc.PC = arg1;
1174 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1175 env->lladdr = 0ULL;
1176 /* MIPS16 not implemented. */
1177 }
1178
1179 void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1180 {
1181 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1182 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1183
1184 if (other_tc == other->current_tc) {
1185 other->active_tc.PC = arg1;
1186 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1187 other->lladdr = 0ULL;
1188 /* MIPS16 not implemented. */
1189 } else {
1190 other->tcs[other_tc].PC = arg1;
1191 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1192 other->lladdr = 0ULL;
1193 /* MIPS16 not implemented. */
1194 }
1195 }
1196
1197 void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1198 {
1199 MIPSCPU *cpu = mips_env_get_cpu(env);
1200
1201 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1202
1203 // TODO: Halt TC / Restart (if allocated+active) TC.
1204 if (env->active_tc.CP0_TCHalt & 1) {
1205 mips_tc_sleep(cpu, env->current_tc);
1206 } else {
1207 mips_tc_wake(cpu, env->current_tc);
1208 }
1209 }
1210
1211 void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1212 {
1213 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1214 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1215 MIPSCPU *other_cpu = mips_env_get_cpu(other);
1216
1217 // TODO: Halt TC / Restart (if allocated+active) TC.
1218
1219 if (other_tc == other->current_tc)
1220 other->active_tc.CP0_TCHalt = arg1;
1221 else
1222 other->tcs[other_tc].CP0_TCHalt = arg1;
1223
1224 if (arg1 & 1) {
1225 mips_tc_sleep(other_cpu, other_tc);
1226 } else {
1227 mips_tc_wake(other_cpu, other_tc);
1228 }
1229 }
1230
1231 void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1232 {
1233 env->active_tc.CP0_TCContext = arg1;
1234 }
1235
1236 void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1237 {
1238 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1239 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1240
1241 if (other_tc == other->current_tc)
1242 other->active_tc.CP0_TCContext = arg1;
1243 else
1244 other->tcs[other_tc].CP0_TCContext = arg1;
1245 }
1246
1247 void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1248 {
1249 env->active_tc.CP0_TCSchedule = arg1;
1250 }
1251
1252 void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1253 {
1254 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1255 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1256
1257 if (other_tc == other->current_tc)
1258 other->active_tc.CP0_TCSchedule = arg1;
1259 else
1260 other->tcs[other_tc].CP0_TCSchedule = arg1;
1261 }
1262
1263 void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1264 {
1265 env->active_tc.CP0_TCScheFBack = arg1;
1266 }
1267
1268 void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1269 {
1270 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1271 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1272
1273 if (other_tc == other->current_tc)
1274 other->active_tc.CP0_TCScheFBack = arg1;
1275 else
1276 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1277 }
1278
1279 void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
1280 {
1281 /* 1k pages not implemented */
1282 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1283 env->CP0_EntryLo1 = (arg1 & MTC0_ENTRYLO_MASK(env))
1284 | (rxi << (CP0EnLo_XI - 30));
1285 }
1286
1287 #if defined(TARGET_MIPS64)
1288 void helper_dmtc0_entrylo1(CPUMIPSState *env, uint64_t arg1)
1289 {
1290 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1291 env->CP0_EntryLo1 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1292 }
1293 #endif
1294
1295 void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
1296 {
1297 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1298 }
1299
1300 void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
1301 {
1302 uint64_t mask = arg1 >> (TARGET_PAGE_BITS + 1);
1303 if (!(env->insn_flags & ISA_MIPS32R6) || (arg1 == ~0) ||
1304 (mask == 0x0000 || mask == 0x0003 || mask == 0x000F ||
1305 mask == 0x003F || mask == 0x00FF || mask == 0x03FF ||
1306 mask == 0x0FFF || mask == 0x3FFF || mask == 0xFFFF)) {
1307 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1308 }
1309 }
1310
1311 void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
1312 {
1313 /* SmartMIPS not implemented */
1314 /* 1k pages not implemented */
1315 env->CP0_PageGrain = (arg1 & env->CP0_PageGrain_rw_bitmask) |
1316 (env->CP0_PageGrain & ~env->CP0_PageGrain_rw_bitmask);
1317 compute_hflags(env);
1318 restore_pamask(env);
1319 }
1320
1321 void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
1322 {
1323 if (env->insn_flags & ISA_MIPS32R6) {
1324 if (arg1 < env->tlb->nb_tlb) {
1325 env->CP0_Wired = arg1;
1326 }
1327 } else {
1328 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1329 }
1330 }
1331
1332 void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
1333 {
1334 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1335 }
1336
1337 void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
1338 {
1339 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1340 }
1341
1342 void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
1343 {
1344 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1345 }
1346
1347 void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
1348 {
1349 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1350 }
1351
1352 void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
1353 {
1354 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1355 }
1356
1357 void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
1358 {
1359 uint32_t mask = 0x0000000F;
1360
1361 if ((env->CP0_Config1 & (1 << CP0C1_PC)) &&
1362 (env->insn_flags & ISA_MIPS32R6)) {
1363 mask |= (1 << 4);
1364 }
1365 if (env->insn_flags & ISA_MIPS32R6) {
1366 mask |= (1 << 5);
1367 }
1368 if (env->CP0_Config3 & (1 << CP0C3_ULRI)) {
1369 mask |= (1 << 29);
1370
1371 if (arg1 & (1 << 29)) {
1372 env->hflags |= MIPS_HFLAG_HWRENA_ULR;
1373 } else {
1374 env->hflags &= ~MIPS_HFLAG_HWRENA_ULR;
1375 }
1376 }
1377
1378 env->CP0_HWREna = arg1 & mask;
1379 }
1380
1381 void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
1382 {
1383 qemu_mutex_lock_iothread();
1384 cpu_mips_store_count(env, arg1);
1385 qemu_mutex_unlock_iothread();
1386 }
1387
1388 void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1389 {
1390 target_ulong old, val, mask;
1391 mask = (TARGET_PAGE_MASK << 1) | env->CP0_EntryHi_ASID_mask;
1392 if (((env->CP0_Config4 >> CP0C4_IE) & 0x3) >= 2) {
1393 mask |= 1 << CP0EnHi_EHINV;
1394 }
1395
1396 /* 1k pages not implemented */
1397 #if defined(TARGET_MIPS64)
1398 if (env->insn_flags & ISA_MIPS32R6) {
1399 int entryhi_r = extract64(arg1, 62, 2);
1400 int config0_at = extract32(env->CP0_Config0, 13, 2);
1401 bool no_supervisor = (env->CP0_Status_rw_bitmask & 0x8) == 0;
1402 if ((entryhi_r == 2) ||
1403 (entryhi_r == 1 && (no_supervisor || config0_at == 1))) {
1404 /* skip EntryHi.R field if new value is reserved */
1405 mask &= ~(0x3ull << 62);
1406 }
1407 }
1408 mask &= env->SEGMask;
1409 #endif
1410 old = env->CP0_EntryHi;
1411 val = (arg1 & mask) | (old & ~mask);
1412 env->CP0_EntryHi = val;
1413 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1414 sync_c0_entryhi(env, env->current_tc);
1415 }
1416 /* If the ASID changes, flush qemu's TLB. */
1417 if ((old & env->CP0_EntryHi_ASID_mask) !=
1418 (val & env->CP0_EntryHi_ASID_mask)) {
1419 tlb_flush(CPU(mips_env_get_cpu(env)));
1420 }
1421 }
1422
1423 void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1424 {
1425 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1426 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1427
1428 other->CP0_EntryHi = arg1;
1429 sync_c0_entryhi(other, other_tc);
1430 }
1431
1432 void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
1433 {
1434 qemu_mutex_lock_iothread();
1435 cpu_mips_store_compare(env, arg1);
1436 qemu_mutex_unlock_iothread();
1437 }
1438
1439 void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
1440 {
1441 MIPSCPU *cpu = mips_env_get_cpu(env);
1442 uint32_t val, old;
1443
1444 old = env->CP0_Status;
1445 cpu_mips_store_status(env, arg1);
1446 val = env->CP0_Status;
1447
1448 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1449 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1450 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1451 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1452 env->CP0_Cause);
1453 switch (env->hflags & MIPS_HFLAG_KSU) {
1454 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1455 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1456 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1457 default:
1458 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
1459 break;
1460 }
1461 }
1462 }
1463
1464 void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
1465 {
1466 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1467 uint32_t mask = env->CP0_Status_rw_bitmask & ~0xf1000018;
1468 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1469
1470 other->CP0_Status = (other->CP0_Status & ~mask) | (arg1 & mask);
1471 sync_c0_status(env, other, other_tc);
1472 }
1473
1474 void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
1475 {
1476 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1477 }
1478
1479 void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
1480 {
1481 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1482 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1483 }
1484
1485 void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
1486 {
1487 qemu_mutex_lock_iothread();
1488 cpu_mips_store_cause(env, arg1);
1489 qemu_mutex_unlock_iothread();
1490 }
1491
1492 void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
1493 {
1494 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1495 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1496
1497 cpu_mips_store_cause(other, arg1);
1498 }
1499
1500 target_ulong helper_mftc0_epc(CPUMIPSState *env)
1501 {
1502 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1503 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1504
1505 return other->CP0_EPC;
1506 }
1507
1508 target_ulong helper_mftc0_ebase(CPUMIPSState *env)
1509 {
1510 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1511 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1512
1513 return other->CP0_EBase;
1514 }
1515
1516 void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
1517 {
1518 env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1519 }
1520
1521 void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
1522 {
1523 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1524 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1525 other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1526 }
1527
1528 target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
1529 {
1530 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1531 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1532
1533 switch (idx) {
1534 case 0: return other->CP0_Config0;
1535 case 1: return other->CP0_Config1;
1536 case 2: return other->CP0_Config2;
1537 case 3: return other->CP0_Config3;
1538 /* 4 and 5 are reserved. */
1539 case 6: return other->CP0_Config6;
1540 case 7: return other->CP0_Config7;
1541 default:
1542 break;
1543 }
1544 return 0;
1545 }
1546
1547 void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
1548 {
1549 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1550 }
1551
1552 void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
1553 {
1554 /* tertiary/secondary caches not implemented */
1555 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1556 }
1557
1558 void helper_mtc0_config3(CPUMIPSState *env, target_ulong arg1)
1559 {
1560 if (env->insn_flags & ASE_MICROMIPS) {
1561 env->CP0_Config3 = (env->CP0_Config3 & ~(1 << CP0C3_ISA_ON_EXC)) |
1562 (arg1 & (1 << CP0C3_ISA_ON_EXC));
1563 }
1564 }
1565
1566 void helper_mtc0_config4(CPUMIPSState *env, target_ulong arg1)
1567 {
1568 env->CP0_Config4 = (env->CP0_Config4 & (~env->CP0_Config4_rw_bitmask)) |
1569 (arg1 & env->CP0_Config4_rw_bitmask);
1570 }
1571
1572 void helper_mtc0_config5(CPUMIPSState *env, target_ulong arg1)
1573 {
1574 env->CP0_Config5 = (env->CP0_Config5 & (~env->CP0_Config5_rw_bitmask)) |
1575 (arg1 & env->CP0_Config5_rw_bitmask);
1576 compute_hflags(env);
1577 }
1578
1579 void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
1580 {
1581 target_long mask = env->CP0_LLAddr_rw_bitmask;
1582 arg1 = arg1 << env->CP0_LLAddr_shift;
1583 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1584 }
1585
1586 #define MTC0_MAAR_MASK(env) \
1587 ((0x1ULL << 63) | ((env->PAMask >> 4) & ~0xFFFull) | 0x3)
1588
1589 void helper_mtc0_maar(CPUMIPSState *env, target_ulong arg1)
1590 {
1591 env->CP0_MAAR[env->CP0_MAARI] = arg1 & MTC0_MAAR_MASK(env);
1592 }
1593
1594 void helper_mthc0_maar(CPUMIPSState *env, target_ulong arg1)
1595 {
1596 env->CP0_MAAR[env->CP0_MAARI] =
1597 (((uint64_t) arg1 << 32) & MTC0_MAAR_MASK(env)) |
1598 (env->CP0_MAAR[env->CP0_MAARI] & 0x00000000ffffffffULL);
1599 }
1600
1601 void helper_mtc0_maari(CPUMIPSState *env, target_ulong arg1)
1602 {
1603 int index = arg1 & 0x3f;
1604 if (index == 0x3f) {
1605 /* Software may write all ones to INDEX to determine the
1606 maximum value supported. */
1607 env->CP0_MAARI = MIPS_MAAR_MAX - 1;
1608 } else if (index < MIPS_MAAR_MAX) {
1609 env->CP0_MAARI = index;
1610 }
1611 /* Other than the all ones, if the
1612 value written is not supported, then INDEX is unchanged
1613 from its previous value. */
1614 }
1615
1616 void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1617 {
1618 /* Watch exceptions for instructions, data loads, data stores
1619 not implemented. */
1620 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1621 }
1622
1623 void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1624 {
1625 int mask = 0x40000FF8 | (env->CP0_EntryHi_ASID_mask << CP0WH_ASID);
1626 env->CP0_WatchHi[sel] = arg1 & mask;
1627 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1628 }
1629
1630 void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
1631 {
1632 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1633 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1634 }
1635
1636 void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
1637 {
1638 env->CP0_Framemask = arg1; /* XXX */
1639 }
1640
1641 void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
1642 {
1643 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1644 if (arg1 & (1 << CP0DB_DM))
1645 env->hflags |= MIPS_HFLAG_DM;
1646 else
1647 env->hflags &= ~MIPS_HFLAG_DM;
1648 }
1649
1650 void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
1651 {
1652 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1653 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1654 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1655
1656 /* XXX: Might be wrong, check with EJTAG spec. */
1657 if (other_tc == other->current_tc)
1658 other->active_tc.CP0_Debug_tcstatus = val;
1659 else
1660 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1661 other->CP0_Debug = (other->CP0_Debug &
1662 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1663 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1664 }
1665
1666 void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
1667 {
1668 env->CP0_Performance0 = arg1 & 0x000007ff;
1669 }
1670
1671 void helper_mtc0_errctl(CPUMIPSState *env, target_ulong arg1)
1672 {
1673 int32_t wst = arg1 & (1 << CP0EC_WST);
1674 int32_t spr = arg1 & (1 << CP0EC_SPR);
1675 int32_t itc = env->itc_tag ? (arg1 & (1 << CP0EC_ITC)) : 0;
1676
1677 env->CP0_ErrCtl = wst | spr | itc;
1678
1679 if (itc && !wst && !spr) {
1680 env->hflags |= MIPS_HFLAG_ITC_CACHE;
1681 } else {
1682 env->hflags &= ~MIPS_HFLAG_ITC_CACHE;
1683 }
1684 }
1685
1686 void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
1687 {
1688 if (env->hflags & MIPS_HFLAG_ITC_CACHE) {
1689 /* If CACHE instruction is configured for ITC tags then make all
1690 CP0.TagLo bits writable. The actual write to ITC Configuration
1691 Tag will take care of the read-only bits. */
1692 env->CP0_TagLo = arg1;
1693 } else {
1694 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1695 }
1696 }
1697
1698 void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
1699 {
1700 env->CP0_DataLo = arg1; /* XXX */
1701 }
1702
1703 void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
1704 {
1705 env->CP0_TagHi = arg1; /* XXX */
1706 }
1707
1708 void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
1709 {
1710 env->CP0_DataHi = arg1; /* XXX */
1711 }
1712
1713 /* MIPS MT functions */
1714 target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
1715 {
1716 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1717 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1718
1719 if (other_tc == other->current_tc)
1720 return other->active_tc.gpr[sel];
1721 else
1722 return other->tcs[other_tc].gpr[sel];
1723 }
1724
1725 target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
1726 {
1727 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1728 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1729
1730 if (other_tc == other->current_tc)
1731 return other->active_tc.LO[sel];
1732 else
1733 return other->tcs[other_tc].LO[sel];
1734 }
1735
1736 target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
1737 {
1738 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1739 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1740
1741 if (other_tc == other->current_tc)
1742 return other->active_tc.HI[sel];
1743 else
1744 return other->tcs[other_tc].HI[sel];
1745 }
1746
1747 target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
1748 {
1749 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1750 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1751
1752 if (other_tc == other->current_tc)
1753 return other->active_tc.ACX[sel];
1754 else
1755 return other->tcs[other_tc].ACX[sel];
1756 }
1757
1758 target_ulong helper_mftdsp(CPUMIPSState *env)
1759 {
1760 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1761 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1762
1763 if (other_tc == other->current_tc)
1764 return other->active_tc.DSPControl;
1765 else
1766 return other->tcs[other_tc].DSPControl;
1767 }
1768
1769 void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1770 {
1771 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1772 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1773
1774 if (other_tc == other->current_tc)
1775 other->active_tc.gpr[sel] = arg1;
1776 else
1777 other->tcs[other_tc].gpr[sel] = arg1;
1778 }
1779
1780 void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1781 {
1782 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1783 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1784
1785 if (other_tc == other->current_tc)
1786 other->active_tc.LO[sel] = arg1;
1787 else
1788 other->tcs[other_tc].LO[sel] = arg1;
1789 }
1790
1791 void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1792 {
1793 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1794 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1795
1796 if (other_tc == other->current_tc)
1797 other->active_tc.HI[sel] = arg1;
1798 else
1799 other->tcs[other_tc].HI[sel] = arg1;
1800 }
1801
1802 void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1803 {
1804 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1805 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1806
1807 if (other_tc == other->current_tc)
1808 other->active_tc.ACX[sel] = arg1;
1809 else
1810 other->tcs[other_tc].ACX[sel] = arg1;
1811 }
1812
1813 void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
1814 {
1815 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1816 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1817
1818 if (other_tc == other->current_tc)
1819 other->active_tc.DSPControl = arg1;
1820 else
1821 other->tcs[other_tc].DSPControl = arg1;
1822 }
1823
1824 /* MIPS MT functions */
1825 target_ulong helper_dmt(void)
1826 {
1827 // TODO
1828 return 0;
1829 }
1830
1831 target_ulong helper_emt(void)
1832 {
1833 // TODO
1834 return 0;
1835 }
1836
1837 target_ulong helper_dvpe(CPUMIPSState *env)
1838 {
1839 CPUState *other_cs = first_cpu;
1840 target_ulong prev = env->mvp->CP0_MVPControl;
1841
1842 CPU_FOREACH(other_cs) {
1843 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1844 /* Turn off all VPEs except the one executing the dvpe. */
1845 if (&other_cpu->env != env) {
1846 other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
1847 mips_vpe_sleep(other_cpu);
1848 }
1849 }
1850 return prev;
1851 }
1852
1853 target_ulong helper_evpe(CPUMIPSState *env)
1854 {
1855 CPUState *other_cs = first_cpu;
1856 target_ulong prev = env->mvp->CP0_MVPControl;
1857
1858 CPU_FOREACH(other_cs) {
1859 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1860
1861 if (&other_cpu->env != env
1862 /* If the VPE is WFI, don't disturb its sleep. */
1863 && !mips_vpe_is_wfi(other_cpu)) {
1864 /* Enable the VPE. */
1865 other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
1866 mips_vpe_wake(other_cpu); /* And wake it up. */
1867 }
1868 }
1869 return prev;
1870 }
1871 #endif /* !CONFIG_USER_ONLY */
1872
1873 void helper_fork(target_ulong arg1, target_ulong arg2)
1874 {
1875 // arg1 = rt, arg2 = rs
1876 // TODO: store to TC register
1877 }
1878
1879 target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
1880 {
1881 target_long arg1 = arg;
1882
1883 if (arg1 < 0) {
1884 /* No scheduling policy implemented. */
1885 if (arg1 != -2) {
1886 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1887 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1888 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1889 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1890 do_raise_exception(env, EXCP_THREAD, GETPC());
1891 }
1892 }
1893 } else if (arg1 == 0) {
1894 if (0 /* TODO: TC underflow */) {
1895 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1896 do_raise_exception(env, EXCP_THREAD, GETPC());
1897 } else {
1898 // TODO: Deallocate TC
1899 }
1900 } else if (arg1 > 0) {
1901 /* Yield qualifier inputs not implemented. */
1902 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1903 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1904 do_raise_exception(env, EXCP_THREAD, GETPC());
1905 }
1906 return env->CP0_YQMask;
1907 }
1908
1909 /* R6 Multi-threading */
1910 #ifndef CONFIG_USER_ONLY
1911 target_ulong helper_dvp(CPUMIPSState *env)
1912 {
1913 CPUState *other_cs = first_cpu;
1914 target_ulong prev = env->CP0_VPControl;
1915
1916 if (!((env->CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
1917 CPU_FOREACH(other_cs) {
1918 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1919 /* Turn off all VPs except the one executing the dvp. */
1920 if (&other_cpu->env != env) {
1921 mips_vpe_sleep(other_cpu);
1922 }
1923 }
1924 env->CP0_VPControl |= (1 << CP0VPCtl_DIS);
1925 }
1926 return prev;
1927 }
1928
1929 target_ulong helper_evp(CPUMIPSState *env)
1930 {
1931 CPUState *other_cs = first_cpu;
1932 target_ulong prev = env->CP0_VPControl;
1933
1934 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
1935 CPU_FOREACH(other_cs) {
1936 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1937 if ((&other_cpu->env != env) && !mips_vp_is_wfi(other_cpu)) {
1938 /* If the VP is WFI, don't disturb its sleep.
1939 * Otherwise, wake it up. */
1940 mips_vpe_wake(other_cpu);
1941 }
1942 }
1943 env->CP0_VPControl &= ~(1 << CP0VPCtl_DIS);
1944 }
1945 return prev;
1946 }
1947 #endif /* !CONFIG_USER_ONLY */
1948
1949 #ifndef CONFIG_USER_ONLY
1950 /* TLB management */
1951 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
1952 {
1953 /* Discard entries from env->tlb[first] onwards. */
1954 while (env->tlb->tlb_in_use > first) {
1955 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1956 }
1957 }
1958
1959 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
1960 {
1961 #if defined(TARGET_MIPS64)
1962 return extract64(entrylo, 6, 54);
1963 #else
1964 return extract64(entrylo, 6, 24) | /* PFN */
1965 (extract64(entrylo, 32, 32) << 24); /* PFNX */
1966 #endif
1967 }
1968
1969 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
1970 {
1971 r4k_tlb_t *tlb;
1972
1973 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1974 tlb = &env->tlb->mmu.r4k.tlb[idx];
1975 if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
1976 tlb->EHINV = 1;
1977 return;
1978 }
1979 tlb->EHINV = 0;
1980 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1981 #if defined(TARGET_MIPS64)
1982 tlb->VPN &= env->SEGMask;
1983 #endif
1984 tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1985 tlb->PageMask = env->CP0_PageMask;
1986 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1987 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1988 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1989 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1990 tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
1991 tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
1992 tlb->PFN[0] = get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) << 12;
1993 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1994 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1995 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1996 tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
1997 tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
1998 tlb->PFN[1] = get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) << 12;
1999 }
2000
2001 void r4k_helper_tlbinv(CPUMIPSState *env)
2002 {
2003 int idx;
2004 r4k_tlb_t *tlb;
2005 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2006
2007 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2008 tlb = &env->tlb->mmu.r4k.tlb[idx];
2009 if (!tlb->G && tlb->ASID == ASID) {
2010 tlb->EHINV = 1;
2011 }
2012 }
2013 cpu_mips_tlb_flush(env);
2014 }
2015
2016 void r4k_helper_tlbinvf(CPUMIPSState *env)
2017 {
2018 int idx;
2019
2020 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2021 env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
2022 }
2023 cpu_mips_tlb_flush(env);
2024 }
2025
2026 void r4k_helper_tlbwi(CPUMIPSState *env)
2027 {
2028 r4k_tlb_t *tlb;
2029 int idx;
2030 target_ulong VPN;
2031 uint16_t ASID;
2032 bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
2033
2034 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2035 tlb = &env->tlb->mmu.r4k.tlb[idx];
2036 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
2037 #if defined(TARGET_MIPS64)
2038 VPN &= env->SEGMask;
2039 #endif
2040 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2041 EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
2042 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
2043 V0 = (env->CP0_EntryLo0 & 2) != 0;
2044 D0 = (env->CP0_EntryLo0 & 4) != 0;
2045 XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
2046 RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
2047 V1 = (env->CP0_EntryLo1 & 2) != 0;
2048 D1 = (env->CP0_EntryLo1 & 4) != 0;
2049 XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
2050 RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
2051
2052 /* Discard cached TLB entries, unless tlbwi is just upgrading access
2053 permissions on the current entry. */
2054 if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
2055 (!tlb->EHINV && EHINV) ||
2056 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
2057 (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
2058 (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
2059 (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
2060 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2061 }
2062
2063 r4k_invalidate_tlb(env, idx, 0);
2064 r4k_fill_tlb(env, idx);
2065 }
2066
2067 void r4k_helper_tlbwr(CPUMIPSState *env)
2068 {
2069 int r = cpu_mips_get_random(env);
2070
2071 r4k_invalidate_tlb(env, r, 1);
2072 r4k_fill_tlb(env, r);
2073 }
2074
2075 void r4k_helper_tlbp(CPUMIPSState *env)
2076 {
2077 r4k_tlb_t *tlb;
2078 target_ulong mask;
2079 target_ulong tag;
2080 target_ulong VPN;
2081 uint16_t ASID;
2082 int i;
2083
2084 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2085 for (i = 0; i < env->tlb->nb_tlb; i++) {
2086 tlb = &env->tlb->mmu.r4k.tlb[i];
2087 /* 1k pages are not supported. */
2088 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2089 tag = env->CP0_EntryHi & ~mask;
2090 VPN = tlb->VPN & ~mask;
2091 #if defined(TARGET_MIPS64)
2092 tag &= env->SEGMask;
2093 #endif
2094 /* Check ASID, virtual page number & size */
2095 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
2096 /* TLB match */
2097 env->CP0_Index = i;
2098 break;
2099 }
2100 }
2101 if (i == env->tlb->nb_tlb) {
2102 /* No match. Discard any shadow entries, if any of them match. */
2103 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
2104 tlb = &env->tlb->mmu.r4k.tlb[i];
2105 /* 1k pages are not supported. */
2106 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2107 tag = env->CP0_EntryHi & ~mask;
2108 VPN = tlb->VPN & ~mask;
2109 #if defined(TARGET_MIPS64)
2110 tag &= env->SEGMask;
2111 #endif
2112 /* Check ASID, virtual page number & size */
2113 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
2114 r4k_mips_tlb_flush_extra (env, i);
2115 break;
2116 }
2117 }
2118
2119 env->CP0_Index |= 0x80000000;
2120 }
2121 }
2122
2123 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
2124 {
2125 #if defined(TARGET_MIPS64)
2126 return tlb_pfn << 6;
2127 #else
2128 return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
2129 (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
2130 #endif
2131 }
2132
2133 void r4k_helper_tlbr(CPUMIPSState *env)
2134 {
2135 r4k_tlb_t *tlb;
2136 uint16_t ASID;
2137 int idx;
2138
2139 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2140 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2141 tlb = &env->tlb->mmu.r4k.tlb[idx];
2142
2143 /* If this will change the current ASID, flush qemu's TLB. */
2144 if (ASID != tlb->ASID)
2145 cpu_mips_tlb_flush(env);
2146
2147 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2148
2149 if (tlb->EHINV) {
2150 env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
2151 env->CP0_PageMask = 0;
2152 env->CP0_EntryLo0 = 0;
2153 env->CP0_EntryLo1 = 0;
2154 } else {
2155 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
2156 env->CP0_PageMask = tlb->PageMask;
2157 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
2158 ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
2159 ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
2160 get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
2161 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
2162 ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
2163 ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
2164 get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
2165 }
2166 }
2167
2168 void helper_tlbwi(CPUMIPSState *env)
2169 {
2170 env->tlb->helper_tlbwi(env);
2171 }
2172
2173 void helper_tlbwr(CPUMIPSState *env)
2174 {
2175 env->tlb->helper_tlbwr(env);
2176 }
2177
2178 void helper_tlbp(CPUMIPSState *env)
2179 {
2180 env->tlb->helper_tlbp(env);
2181 }
2182
2183 void helper_tlbr(CPUMIPSState *env)
2184 {
2185 env->tlb->helper_tlbr(env);
2186 }
2187
2188 void helper_tlbinv(CPUMIPSState *env)
2189 {
2190 env->tlb->helper_tlbinv(env);
2191 }
2192
2193 void helper_tlbinvf(CPUMIPSState *env)
2194 {
2195 env->tlb->helper_tlbinvf(env);
2196 }
2197
2198 /* Specials */
2199 target_ulong helper_di(CPUMIPSState *env)
2200 {
2201 target_ulong t0 = env->CP0_Status;
2202
2203 env->CP0_Status = t0 & ~(1 << CP0St_IE);
2204 return t0;
2205 }
2206
2207 target_ulong helper_ei(CPUMIPSState *env)
2208 {
2209 target_ulong t0 = env->CP0_Status;
2210
2211 env->CP0_Status = t0 | (1 << CP0St_IE);
2212 return t0;
2213 }
2214
2215 static void debug_pre_eret(CPUMIPSState *env)
2216 {
2217 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2218 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2219 env->active_tc.PC, env->CP0_EPC);
2220 if (env->CP0_Status & (1 << CP0St_ERL))
2221 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2222 if (env->hflags & MIPS_HFLAG_DM)
2223 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2224 qemu_log("\n");
2225 }
2226 }
2227
2228 static void debug_post_eret(CPUMIPSState *env)
2229 {
2230 MIPSCPU *cpu = mips_env_get_cpu(env);
2231
2232 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2233 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2234 env->active_tc.PC, env->CP0_EPC);
2235 if (env->CP0_Status & (1 << CP0St_ERL))
2236 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2237 if (env->hflags & MIPS_HFLAG_DM)
2238 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2239 switch (env->hflags & MIPS_HFLAG_KSU) {
2240 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
2241 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
2242 case MIPS_HFLAG_KM: qemu_log("\n"); break;
2243 default:
2244 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
2245 break;
2246 }
2247 }
2248 }
2249
2250 static void set_pc(CPUMIPSState *env, target_ulong error_pc)
2251 {
2252 env->active_tc.PC = error_pc & ~(target_ulong)1;
2253 if (error_pc & 1) {
2254 env->hflags |= MIPS_HFLAG_M16;
2255 } else {
2256 env->hflags &= ~(MIPS_HFLAG_M16);
2257 }
2258 }
2259
2260 static inline void exception_return(CPUMIPSState *env)
2261 {
2262 debug_pre_eret(env);
2263 if (env->CP0_Status & (1 << CP0St_ERL)) {
2264 set_pc(env, env->CP0_ErrorEPC);
2265 env->CP0_Status &= ~(1 << CP0St_ERL);
2266 } else {
2267 set_pc(env, env->CP0_EPC);
2268 env->CP0_Status &= ~(1 << CP0St_EXL);
2269 }
2270 compute_hflags(env);
2271 debug_post_eret(env);
2272 }
2273
2274 void helper_eret(CPUMIPSState *env)
2275 {
2276 exception_return(env);
2277 env->lladdr = 1;
2278 }
2279
2280 void helper_eretnc(CPUMIPSState *env)
2281 {
2282 exception_return(env);
2283 }
2284
2285 void helper_deret(CPUMIPSState *env)
2286 {
2287 debug_pre_eret(env);
2288 set_pc(env, env->CP0_DEPC);
2289
2290 env->hflags &= ~MIPS_HFLAG_DM;
2291 compute_hflags(env);
2292 debug_post_eret(env);
2293 }
2294 #endif /* !CONFIG_USER_ONLY */
2295
2296 static inline void check_hwrena(CPUMIPSState *env, int reg, uintptr_t pc)
2297 {
2298 if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << reg))) {
2299 return;
2300 }
2301 do_raise_exception(env, EXCP_RI, pc);
2302 }
2303
2304 target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
2305 {
2306 check_hwrena(env, 0, GETPC());
2307 return env->CP0_EBase & 0x3ff;
2308 }
2309
2310 target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
2311 {
2312 check_hwrena(env, 1, GETPC());
2313 return env->SYNCI_Step;
2314 }
2315
2316 target_ulong helper_rdhwr_cc(CPUMIPSState *env)
2317 {
2318 int32_t count;
2319 check_hwrena(env, 2, GETPC());
2320 #ifdef CONFIG_USER_ONLY
2321 count = env->CP0_Count;
2322 #else
2323 qemu_mutex_lock_iothread();
2324 count = (int32_t)cpu_mips_get_count(env);
2325 qemu_mutex_unlock_iothread();
2326 #endif
2327 return count;
2328 }
2329
2330 target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
2331 {
2332 check_hwrena(env, 3, GETPC());
2333 return env->CCRes;
2334 }
2335
2336 target_ulong helper_rdhwr_performance(CPUMIPSState *env)
2337 {
2338 check_hwrena(env, 4, GETPC());
2339 return env->CP0_Performance0;
2340 }
2341
2342 target_ulong helper_rdhwr_xnp(CPUMIPSState *env)
2343 {
2344 check_hwrena(env, 5, GETPC());
2345 return (env->CP0_Config5 >> CP0C5_XNP) & 1;
2346 }
2347
2348 void helper_pmon(CPUMIPSState *env, int function)
2349 {
2350 function /= 2;
2351 switch (function) {
2352 case 2: /* TODO: char inbyte(int waitflag); */
2353 if (env->active_tc.gpr[4] == 0)
2354 env->active_tc.gpr[2] = -1;
2355 /* Fall through */
2356 case 11: /* TODO: char inbyte (void); */
2357 env->active_tc.gpr[2] = -1;
2358 break;
2359 case 3:
2360 case 12:
2361 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2362 break;
2363 case 17:
2364 break;
2365 case 158:
2366 {
2367 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2368 printf("%s", fmt);
2369 }
2370 break;
2371 }
2372 }
2373
2374 void helper_wait(CPUMIPSState *env)
2375 {
2376 CPUState *cs = CPU(mips_env_get_cpu(env));
2377
2378 cs->halted = 1;
2379 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
2380 /* Last instruction in the block, PC was updated before
2381 - no need to recover PC and icount */
2382 raise_exception(env, EXCP_HLT);
2383 }
2384
2385 #if !defined(CONFIG_USER_ONLY)
2386
2387 void mips_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
2388 MMUAccessType access_type,
2389 int mmu_idx, uintptr_t retaddr)
2390 {
2391 MIPSCPU *cpu = MIPS_CPU(cs);
2392 CPUMIPSState *env = &cpu->env;
2393 int error_code = 0;
2394 int excp;
2395
2396 env->CP0_BadVAddr = addr;
2397
2398 if (access_type == MMU_DATA_STORE) {
2399 excp = EXCP_AdES;
2400 } else {
2401 excp = EXCP_AdEL;
2402 if (access_type == MMU_INST_FETCH) {
2403 error_code |= EXCP_INST_NOTAVAIL;
2404 }
2405 }
2406
2407 do_raise_exception_err(env, excp, error_code, retaddr);
2408 }
2409
2410 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
2411 int mmu_idx, uintptr_t retaddr)
2412 {
2413 int ret;
2414
2415 ret = mips_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
2416 if (ret) {
2417 MIPSCPU *cpu = MIPS_CPU(cs);
2418 CPUMIPSState *env = &cpu->env;
2419
2420 do_raise_exception_err(env, cs->exception_index,
2421 env->error_code, retaddr);
2422 }
2423 }
2424
2425 void mips_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2426 bool is_write, bool is_exec, int unused,
2427 unsigned size)
2428 {
2429 MIPSCPU *cpu = MIPS_CPU(cs);
2430 CPUMIPSState *env = &cpu->env;
2431
2432 /*
2433 * Raising an exception with KVM enabled will crash because it won't be from
2434 * the main execution loop so the longjmp won't have a matching setjmp.
2435 * Until we can trigger a bus error exception through KVM lets just ignore
2436 * the access.
2437 */
2438 if (kvm_enabled()) {
2439 return;
2440 }
2441
2442 if (is_exec) {
2443 raise_exception(env, EXCP_IBE);
2444 } else {
2445 raise_exception(env, EXCP_DBE);
2446 }
2447 }
2448 #endif /* !CONFIG_USER_ONLY */
2449
2450 /* Complex FPU operations which may need stack space. */
2451
2452 #define FLOAT_TWO32 make_float32(1 << 30)
2453 #define FLOAT_TWO64 make_float64(1ULL << 62)
2454
2455 #define FP_TO_INT32_OVERFLOW 0x7fffffff
2456 #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
2457
2458 /* convert MIPS rounding mode in FCR31 to IEEE library */
2459 unsigned int ieee_rm[] = {
2460 float_round_nearest_even,
2461 float_round_to_zero,
2462 float_round_up,
2463 float_round_down
2464 };
2465
2466 target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
2467 {
2468 target_ulong arg1 = 0;
2469
2470 switch (reg) {
2471 case 0:
2472 arg1 = (int32_t)env->active_fpu.fcr0;
2473 break;
2474 case 1:
2475 /* UFR Support - Read Status FR */
2476 if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) {
2477 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2478 arg1 = (int32_t)
2479 ((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR);
2480 } else {
2481 do_raise_exception(env, EXCP_RI, GETPC());
2482 }
2483 }
2484 break;
2485 case 5:
2486 /* FRE Support - read Config5.FRE bit */
2487 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
2488 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2489 arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1;
2490 } else {
2491 helper_raise_exception(env, EXCP_RI);
2492 }
2493 }
2494 break;
2495 case 25:
2496 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2497 break;
2498 case 26:
2499 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2500 break;
2501 case 28:
2502 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2503 break;
2504 default:
2505 arg1 = (int32_t)env->active_fpu.fcr31;
2506 break;
2507 }
2508
2509 return arg1;
2510 }
2511
2512 void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt)
2513 {
2514 switch (fs) {
2515 case 1:
2516 /* UFR Alias - Reset Status FR */
2517 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2518 return;
2519 }
2520 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2521 env->CP0_Status &= ~(1 << CP0St_FR);
2522 compute_hflags(env);
2523 } else {
2524 do_raise_exception(env, EXCP_RI, GETPC());
2525 }
2526 break;
2527 case 4:
2528 /* UNFR Alias - Set Status FR */
2529 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2530 return;
2531 }
2532 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2533 env->CP0_Status |= (1 << CP0St_FR);
2534 compute_hflags(env);
2535 } else {
2536 do_raise_exception(env, EXCP_RI, GETPC());
2537 }
2538 break;
2539 case 5:
2540 /* FRE Support - clear Config5.FRE bit */
2541 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2542 return;
2543 }
2544 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2545 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
2546 compute_hflags(env);
2547 } else {
2548 helper_raise_exception(env, EXCP_RI);
2549 }
2550 break;
2551 case 6:
2552 /* FRE Support - set Config5.FRE bit */
2553 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2554 return;
2555 }
2556 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2557 env->CP0_Config5 |= (1 << CP0C5_FRE);
2558 compute_hflags(env);
2559 } else {
2560 helper_raise_exception(env, EXCP_RI);
2561 }
2562 break;
2563 case 25:
2564 if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) {
2565 return;
2566 }
2567 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2568 ((arg1 & 0x1) << 23);
2569 break;
2570 case 26:
2571 if (arg1 & 0x007c0000)
2572 return;
2573 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2574 break;
2575 case 28:
2576 if (arg1 & 0x007c0000)
2577 return;
2578 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2579 ((arg1 & 0x4) << 22);
2580 break;
2581 case 31:
2582 env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) |
2583 (env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask));
2584 break;
2585 default:
2586 return;
2587 }
2588 restore_fp_status(env);
2589 set_float_exception_flags(0, &env->active_fpu.fp_status);
2590 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2591 do_raise_exception(env, EXCP_FPE, GETPC());
2592 }
2593
2594 int ieee_ex_to_mips(int xcpt)
2595 {
2596 int ret = 0;
2597 if (xcpt) {
2598 if (xcpt & float_flag_invalid) {
2599 ret |= FP_INVALID;
2600 }
2601 if (xcpt & float_flag_overflow) {
2602 ret |= FP_OVERFLOW;
2603 }
2604 if (xcpt & float_flag_underflow) {
2605 ret |= FP_UNDERFLOW;
2606 }
2607 if (xcpt & float_flag_divbyzero) {
2608 ret |= FP_DIV0;
2609 }
2610 if (xcpt & float_flag_inexact) {
2611 ret |= FP_INEXACT;
2612 }
2613 }
2614 return ret;
2615 }
2616
2617 static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
2618 {
2619 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2620
2621 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2622
2623 if (tmp) {
2624 set_float_exception_flags(0, &env->active_fpu.fp_status);
2625
2626 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
2627 do_raise_exception(env, EXCP_FPE, pc);
2628 } else {
2629 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2630 }
2631 }
2632 }
2633
2634 /* Float support.
2635 Single precition routines have a "s" suffix, double precision a
2636 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2637 paired single lower "pl", paired single upper "pu". */
2638
2639 /* unary operations, modifying fp status */
2640 uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
2641 {
2642 fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2643 update_fcr31(env, GETPC());
2644 return fdt0;
2645 }
2646
2647 uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
2648 {
2649 fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2650 update_fcr31(env, GETPC());
2651 return fst0;
2652 }
2653
2654 uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
2655 {
2656 uint64_t fdt2;
2657
2658 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2659 fdt2 = float64_maybe_silence_nan(fdt2, &env->active_fpu.fp_status);
2660 update_fcr31(env, GETPC());
2661 return fdt2;
2662 }
2663
2664 uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
2665 {
2666 uint64_t fdt2;
2667
2668 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2669 update_fcr31(env, GETPC());
2670 return fdt2;
2671 }
2672
2673 uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
2674 {
2675 uint64_t fdt2;
2676
2677 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2678 update_fcr31(env, GETPC());
2679 return fdt2;
2680 }
2681
2682 uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0)
2683 {
2684 uint64_t dt2;
2685
2686 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2687 if (get_float_exception_flags(&env->active_fpu.fp_status)
2688 & (float_flag_invalid | float_flag_overflow)) {
2689 dt2 = FP_TO_INT64_OVERFLOW;
2690 }
2691 update_fcr31(env, GETPC());
2692 return dt2;
2693 }
2694
2695 uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0)
2696 {
2697 uint64_t dt2;
2698
2699 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2700 if (get_float_exception_flags(&env->active_fpu.fp_status)
2701 & (float_flag_invalid | float_flag_overflow)) {
2702 dt2 = FP_TO_INT64_OVERFLOW;
2703 }
2704 update_fcr31(env, GETPC());
2705 return dt2;
2706 }
2707
2708 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
2709 {
2710 uint32_t fst2;
2711 uint32_t fsth2;
2712
2713 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2714 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2715 update_fcr31(env, GETPC());
2716 return ((uint64_t)fsth2 << 32) | fst2;
2717 }
2718
2719 uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
2720 {
2721 uint32_t wt2;
2722 uint32_t wth2;
2723 int excp, excph;
2724
2725 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2726 excp = get_float_exception_flags(&env->active_fpu.fp_status);
2727 if (excp & (float_flag_overflow | float_flag_invalid)) {
2728 wt2 = FP_TO_INT32_OVERFLOW;
2729 }
2730
2731 set_float_exception_flags(0, &env->active_fpu.fp_status);
2732 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2733 excph = get_float_exception_flags(&env->active_fpu.fp_status);
2734 if (excph & (float_flag_overflow | float_flag_invalid)) {
2735 wth2 = FP_TO_INT32_OVERFLOW;
2736 }
2737
2738 set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
2739 update_fcr31(env, GETPC());
2740
2741 return ((uint64_t)wth2 << 32) | wt2;
2742 }
2743
2744 uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
2745 {
2746 uint32_t fst2;
2747
2748 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2749 fst2 = float32_maybe_silence_nan(fst2, &env->active_fpu.fp_status);
2750 update_fcr31(env, GETPC());
2751 return fst2;
2752 }
2753
2754 uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
2755 {
2756 uint32_t fst2;
2757
2758 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2759 update_fcr31(env, GETPC());
2760 return fst2;
2761 }
2762
2763 uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
2764 {
2765 uint32_t fst2;
2766
2767 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2768 update_fcr31(env, GETPC());
2769 return fst2;
2770 }
2771
2772 uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
2773 {
2774 uint32_t wt2;
2775
2776 wt2 = wt0;
2777 update_fcr31(env, GETPC());
2778 return wt2;
2779 }
2780
2781 uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
2782 {
2783 uint32_t wt2;
2784
2785 wt2 = wth0;
2786 update_fcr31(env, GETPC());
2787 return wt2;
2788 }
2789
2790 uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0)
2791 {
2792 uint32_t wt2;
2793
2794 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2795 if (get_float_exception_flags(&env->active_fpu.fp_status)
2796 & (float_flag_invalid | float_flag_overflow)) {
2797 wt2 = FP_TO_INT32_OVERFLOW;
2798 }
2799 update_fcr31(env, GETPC());
2800 return wt2;
2801 }
2802
2803 uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0)
2804 {
2805 uint32_t wt2;
2806
2807 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2808 if (get_float_exception_flags(&env->active_fpu.fp_status)
2809 & (float_flag_invalid | float_flag_overflow)) {
2810 wt2 = FP_TO_INT32_OVERFLOW;
2811 }
2812 update_fcr31(env, GETPC());
2813 return wt2;
2814 }
2815
2816 uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0)
2817 {
2818 uint64_t dt2;
2819
2820 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2821 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2822 restore_rounding_mode(env);
2823 if (get_float_exception_flags(&env->active_fpu.fp_status)
2824 & (float_flag_invalid | float_flag_overflow)) {
2825 dt2 = FP_TO_INT64_OVERFLOW;
2826 }
2827 update_fcr31(env, GETPC());
2828 return dt2;
2829 }
2830
2831 uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0)
2832 {
2833 uint64_t dt2;
2834
2835 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2836 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2837 restore_rounding_mode(env);
2838 if (get_float_exception_flags(&env->active_fpu.fp_status)
2839 & (float_flag_invalid | float_flag_overflow)) {
2840 dt2 = FP_TO_INT64_OVERFLOW;
2841 }
2842 update_fcr31(env, GETPC());
2843 return dt2;
2844 }
2845
2846 uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0)
2847 {
2848 uint32_t wt2;
2849
2850 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2851 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2852 restore_rounding_mode(env);
2853 if (get_float_exception_flags(&env->active_fpu.fp_status)
2854 & (float_flag_invalid | float_flag_overflow)) {
2855 wt2 = FP_TO_INT32_OVERFLOW;
2856 }
2857 update_fcr31(env, GETPC());
2858 return wt2;
2859 }
2860
2861 uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0)
2862 {
2863 uint32_t wt2;
2864
2865 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2866 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2867 restore_rounding_mode(env);
2868 if (get_float_exception_flags(&env->active_fpu.fp_status)
2869 & (float_flag_invalid | float_flag_overflow)) {
2870 wt2 = FP_TO_INT32_OVERFLOW;
2871 }
2872 update_fcr31(env, GETPC());
2873 return wt2;
2874 }
2875
2876 uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0)
2877 {
2878 uint64_t dt2;
2879
2880 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2881 if (get_float_exception_flags(&env->active_fpu.fp_status)
2882 & (float_flag_invalid | float_flag_overflow)) {
2883 dt2 = FP_TO_INT64_OVERFLOW;
2884 }
2885 update_fcr31(env, GETPC());
2886 return dt2;
2887 }
2888
2889 uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0)
2890 {
2891 uint64_t dt2;
2892
2893 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2894 if (get_float_exception_flags(&env->active_fpu.fp_status)
2895 & (float_flag_invalid | float_flag_overflow)) {
2896 dt2 = FP_TO_INT64_OVERFLOW;
2897 }
2898 update_fcr31(env, GETPC());
2899 return dt2;
2900 }
2901
2902 uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0)
2903 {
2904 uint32_t wt2;
2905
2906 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2907 if (get_float_exception_flags(&env->active_fpu.fp_status)
2908 & (float_flag_invalid | float_flag_overflow)) {
2909 wt2 = FP_TO_INT32_OVERFLOW;
2910 }
2911 update_fcr31(env, GETPC());
2912 return wt2;
2913 }
2914
2915 uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0)
2916 {
2917 uint32_t wt2;
2918
2919 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2920 if (get_float_exception_flags(&env->active_fpu.fp_status)
2921 & (float_flag_invalid | float_flag_overflow)) {
2922 wt2 = FP_TO_INT32_OVERFLOW;
2923 }
2924 update_fcr31(env, GETPC());
2925 return wt2;
2926 }
2927
2928 uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0)
2929 {
2930 uint64_t dt2;
2931
2932 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2933 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2934 restore_rounding_mode(env);
2935 if (get_float_exception_flags(&env->active_fpu.fp_status)
2936 & (float_flag_invalid | float_flag_overflow)) {
2937 dt2 = FP_TO_INT64_OVERFLOW;
2938 }
2939 update_fcr31(env, GETPC());
2940 return dt2;
2941 }
2942
2943 uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0)
2944 {
2945 uint64_t dt2;
2946
2947 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2948 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2949 restore_rounding_mode(env);
2950 if (get_float_exception_flags(&env->active_fpu.fp_status)
2951 & (float_flag_invalid | float_flag_overflow)) {
2952 dt2 = FP_TO_INT64_OVERFLOW;
2953 }
2954 update_fcr31(env, GETPC());
2955 return dt2;
2956 }
2957
2958 uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0)
2959 {
2960 uint32_t wt2;
2961
2962 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2963 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2964 restore_rounding_mode(env);
2965 if (get_float_exception_flags(&env->active_fpu.fp_status)
2966 & (float_flag_invalid | float_flag_overflow)) {
2967 wt2 = FP_TO_INT32_OVERFLOW;
2968 }
2969 update_fcr31(env, GETPC());
2970 return wt2;
2971 }
2972
2973 uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0)
2974 {
2975 uint32_t wt2;
2976
2977 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2978 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2979 restore_rounding_mode(env);
2980 if (get_float_exception_flags(&env->active_fpu.fp_status)
2981 & (float_flag_invalid | float_flag_overflow)) {
2982 wt2 = FP_TO_INT32_OVERFLOW;
2983 }
2984 update_fcr31(env, GETPC());
2985 return wt2;
2986 }
2987
2988 uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0)
2989 {
2990 uint64_t dt2;
2991
2992 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2993 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2994 restore_rounding_mode(env);
2995 if (get_float_exception_flags(&env->active_fpu.fp_status)
2996 & (float_flag_invalid | float_flag_overflow)) {
2997 dt2 = FP_TO_INT64_OVERFLOW;
2998 }
2999 update_fcr31(env, GETPC());
3000 return dt2;
3001 }
3002
3003 uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0)
3004 {
3005 uint64_t dt2;
3006
3007 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3008 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3009 restore_rounding_mode(env);
3010 if (get_float_exception_flags(&env->active_fpu.fp_status)
3011 & (float_flag_invalid | float_flag_overflow)) {
3012 dt2 = FP_TO_INT64_OVERFLOW;
3013 }
3014 update_fcr31(env, GETPC());
3015 return dt2;
3016 }
3017
3018 uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0)
3019 {
3020 uint32_t wt2;
3021
3022 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3023 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3024 restore_rounding_mode(env);
3025 if (get_float_exception_flags(&env->active_fpu.fp_status)
3026 & (float_flag_invalid | float_flag_overflow)) {
3027 wt2 = FP_TO_INT32_OVERFLOW;
3028 }
3029 update_fcr31(env, GETPC());
3030 return wt2;
3031 }
3032
3033 uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0)
3034 {
3035 uint32_t wt2;
3036
3037 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3038 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3039 restore_rounding_mode(env);
3040 if (get_float_exception_flags(&env->active_fpu.fp_status)
3041 & (float_flag_invalid | float_flag_overflow)) {
3042 wt2 = FP_TO_INT32_OVERFLOW;
3043 }
3044 update_fcr31(env, GETPC());
3045 return wt2;
3046 }
3047
3048 uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3049 {
3050 uint64_t dt2;
3051
3052 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3053 if (get_float_exception_flags(&env->active_fpu.fp_status)
3054 & float_flag_invalid) {
3055 if (float64_is_any_nan(fdt0)) {
3056 dt2 = 0;
3057 }
3058 }
3059 update_fcr31(env, GETPC());
3060 return dt2;
3061 }
3062
3063 uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3064 {
3065 uint64_t dt2;
3066
3067 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3068 if (get_float_exception_flags(&env->active_fpu.fp_status)
3069 & float_flag_invalid) {
3070 if (float32_is_any_nan(fst0)) {
3071 dt2 = 0;
3072 }
3073 }
3074 update_fcr31(env, GETPC());
3075 return dt2;
3076 }
3077
3078 uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3079 {
3080 uint32_t wt2;
3081
3082 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3083 if (get_float_exception_flags(&env->active_fpu.fp_status)
3084 & float_flag_invalid) {
3085 if (float64_is_any_nan(fdt0)) {
3086 wt2 = 0;
3087 }
3088 }
3089 update_fcr31(env, GETPC());
3090 return wt2;
3091 }
3092
3093 uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3094 {
3095 uint32_t wt2;
3096
3097 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3098 if (get_float_exception_flags(&env->active_fpu.fp_status)
3099 & float_flag_invalid) {
3100 if (float32_is_any_nan(fst0)) {
3101 wt2 = 0;
3102 }
3103 }
3104 update_fcr31(env, GETPC());
3105 return wt2;
3106 }
3107
3108 uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3109 {
3110 uint64_t dt2;
3111
3112 set_float_rounding_mode(float_round_nearest_even,
3113 &env->active_fpu.fp_status);
3114 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3115 restore_rounding_mode(env);
3116 if (get_float_exception_flags(&env->active_fpu.fp_status)
3117 & float_flag_invalid) {
3118 if (float64_is_any_nan(fdt0)) {
3119 dt2 = 0;
3120 }
3121 }
3122 update_fcr31(env, GETPC());
3123 return dt2;
3124 }
3125
3126 uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3127 {
3128 uint64_t dt2;
3129
3130 set_float_rounding_mode(float_round_nearest_even,
3131 &env->active_fpu.fp_status);
3132 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3133 restore_rounding_mode(env);
3134 if (get_float_exception_flags(&env->active_fpu.fp_status)
3135 & float_flag_invalid) {
3136 if (float32_is_any_nan(fst0)) {
3137 dt2 = 0;
3138 }
3139 }
3140 update_fcr31(env, GETPC());
3141 return dt2;
3142 }
3143
3144 uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3145 {
3146 uint32_t wt2;
3147
3148 set_float_rounding_mode(float_round_nearest_even,
3149 &env->active_fpu.fp_status);
3150 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3151 restore_rounding_mode(env);
3152 if (get_float_exception_flags(&env->active_fpu.fp_status)
3153 & float_flag_invalid) {
3154 if (float64_is_any_nan(fdt0)) {
3155 wt2 = 0;
3156 }
3157 }
3158 update_fcr31(env, GETPC());
3159 return wt2;
3160 }
3161
3162 uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3163 {
3164 uint32_t wt2;
3165
3166 set_float_rounding_mode(float_round_nearest_even,
3167 &env->active_fpu.fp_status);
3168 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3169 restore_rounding_mode(env);
3170 if (get_float_exception_flags(&env->active_fpu.fp_status)
3171 & float_flag_invalid) {
3172 if (float32_is_any_nan(fst0)) {
3173 wt2 = 0;
3174 }
3175 }
3176 update_fcr31(env, GETPC());
3177 return wt2;
3178 }
3179
3180 uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3181 {
3182 uint64_t dt2;
3183
3184 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
3185 if (get_float_exception_flags(&env->active_fpu.fp_status)
3186 & float_flag_invalid) {
3187 if (float64_is_any_nan(fdt0)) {
3188 dt2 = 0;
3189 }
3190 }
3191 update_fcr31(env, GETPC());
3192 return dt2;
3193 }
3194
3195 uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3196 {
3197 uint64_t dt2;
3198
3199 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
3200 if (get_float_exception_flags(&env->active_fpu.fp_status)
3201 & float_flag_invalid) {
3202 if (float32_is_any_nan(fst0)) {
3203 dt2 = 0;
3204 }
3205 }
3206 update_fcr31(env, GETPC());
3207 return dt2;
3208 }
3209
3210 uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3211 {
3212 uint32_t wt2;
3213
3214 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
3215 if (get_float_exception_flags(&env->active_fpu.fp_status)
3216 & float_flag_invalid) {
3217 if (float64_is_any_nan(fdt0)) {
3218 wt2 = 0;
3219 }
3220 }
3221 update_fcr31(env, GETPC());
3222 return wt2;
3223 }
3224
3225 uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3226 {
3227 uint32_t wt2;
3228
3229 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
3230 if (get_float_exception_flags(&env->active_fpu.fp_status)
3231 & float_flag_invalid) {
3232 if (float32_is_any_nan(fst0)) {
3233 wt2 = 0;
3234 }
3235 }
3236 update_fcr31(env, GETPC());
3237 return wt2;
3238 }
3239
3240 uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3241 {
3242 uint64_t dt2;
3243
3244 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3245 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3246 restore_rounding_mode(env);
3247 if (get_float_exception_flags(&env->active_fpu.fp_status)
3248 & float_flag_invalid) {
3249 if (float64_is_any_nan(fdt0)) {
3250 dt2 = 0;
3251 }
3252 }
3253 update_fcr31(env, GETPC());
3254 return dt2;
3255 }
3256
3257 uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3258 {
3259 uint64_t dt2;
3260
3261 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3262 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3263 restore_rounding_mode(env);
3264 if (get_float_exception_flags(&env->active_fpu.fp_status)
3265 & float_flag_invalid) {
3266 if (float32_is_any_nan(fst0)) {
3267 dt2 = 0;
3268 }
3269 }
3270 update_fcr31(env, GETPC());
3271 return dt2;
3272 }
3273
3274 uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3275 {
3276 uint32_t wt2;
3277
3278 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3279 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3280 restore_rounding_mode(env);
3281 if (get_float_exception_flags(&env->active_fpu.fp_status)
3282 & float_flag_invalid) {
3283 if (float64_is_any_nan(fdt0)) {
3284 wt2 = 0;
3285 }
3286 }
3287 update_fcr31(env, GETPC());
3288 return wt2;
3289 }
3290
3291 uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3292 {
3293 uint32_t wt2;
3294
3295 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3296 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3297 restore_rounding_mode(env);
3298 if (get_float_exception_flags(&env->active_fpu.fp_status)
3299 & float_flag_invalid) {
3300 if (float32_is_any_nan(fst0)) {
3301 wt2 = 0;
3302 }
3303 }
3304 update_fcr31(env, GETPC());
3305 return wt2;
3306 }
3307
3308 uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3309 {
3310 uint64_t dt2;
3311
3312 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3313 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3314 restore_rounding_mode(env);
3315 if (get_float_exception_flags(&env->active_fpu.fp_status)
3316 & float_flag_invalid) {
3317 if (float64_is_any_nan(fdt0)) {
3318 dt2 = 0;
3319 }
3320 }
3321 update_fcr31(env, GETPC());
3322 return dt2;
3323 }
3324
3325 uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3326 {
3327 uint64_t dt2;
3328
3329 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3330 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3331 restore_rounding_mode(env);
3332 if (get_float_exception_flags(&env->active_fpu.fp_status)
3333 & float_flag_invalid) {
3334 if (float32_is_any_nan(fst0)) {
3335 dt2 = 0;
3336 }
3337 }
3338 update_fcr31(env, GETPC());
3339 return dt2;
3340 }
3341
3342 uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3343 {
3344 uint32_t wt2;
3345
3346 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3347 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3348 restore_rounding_mode(env);
3349 if (get_float_exception_flags(&env->active_fpu.fp_status)
3350 & float_flag_invalid) {
3351 if (float64_is_any_nan(fdt0)) {
3352 wt2 = 0;
3353 }
3354 }
3355 update_fcr31(env, GETPC());
3356 return wt2;
3357 }
3358
3359 uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3360 {
3361 uint32_t wt2;
3362
3363 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3364 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3365 restore_rounding_mode(env);
3366 if (get_float_exception_flags(&env->active_fpu.fp_status)
3367 & float_flag_invalid) {
3368 if (float32_is_any_nan(fst0)) {
3369 wt2 = 0;
3370 }
3371 }
3372 update_fcr31(env, GETPC());
3373 return wt2;
3374 }
3375
3376 /* unary operations, not modifying fp status */
3377 #define FLOAT_UNOP(name) \
3378 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
3379 { \
3380 return float64_ ## name(fdt0); \
3381 } \
3382 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
3383 { \
3384 return float32_ ## name(fst0); \
3385 } \
3386 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
3387 { \
3388 uint32_t wt0; \
3389 uint32_t wth0; \
3390 \
3391 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
3392 wth0 = float32_ ## name(fdt0 >> 32); \
3393 return ((uint64_t)wth0 << 32) | wt0; \
3394 }
3395 FLOAT_UNOP(abs)
3396 FLOAT_UNOP(chs)
3397 #undef FLOAT_UNOP
3398
3399 /* MIPS specific unary operations */
3400 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
3401 {
3402 uint64_t fdt2;
3403
3404 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3405 update_fcr31(env, GETPC());
3406 return fdt2;
3407 }
3408
3409 uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
3410 {
3411 uint32_t fst2;
3412
3413 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3414 update_fcr31(env, GETPC());
3415 return fst2;
3416 }
3417
3418 uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
3419 {
3420 uint64_t fdt2;
3421
3422 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3423 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3424 update_fcr31(env, GETPC());
3425 return fdt2;
3426 }
3427
3428 uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
3429 {
3430 uint32_t fst2;
3431
3432 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3433 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3434 update_fcr31(env, GETPC());
3435 return fst2;
3436 }
3437
3438 uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
3439 {
3440 uint64_t fdt2;
3441
3442 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3443 update_fcr31(env, GETPC());
3444 return fdt2;
3445 }
3446
3447 uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
3448 {
3449 uint32_t fst2;
3450
3451 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3452 update_fcr31(env, GETPC());
3453 return fst2;
3454 }
3455
3456 uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
3457 {
3458 uint32_t fst2;
3459 uint32_t fsth2;
3460
3461 fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3462 fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
3463 update_fcr31(env, GETPC());
3464 return ((uint64_t)fsth2 << 32) | fst2;
3465 }
3466
3467 uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
3468 {
3469 uint64_t fdt2;
3470
3471 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3472 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3473 update_fcr31(env, GETPC());
3474 return fdt2;
3475 }
3476
3477 uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
3478 {
3479 uint32_t fst2;
3480
3481 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3482 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3483 update_fcr31(env, GETPC());
3484 return fst2;
3485 }
3486
3487 uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
3488 {
3489 uint32_t fst2;
3490 uint32_t fsth2;
3491
3492 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3493 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
3494 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3495 fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
3496 update_fcr31(env, GETPC());
3497 return ((uint64_t)fsth2 << 32) | fst2;
3498 }
3499
3500 #define FLOAT_RINT(name, bits) \
3501 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3502 uint ## bits ## _t fs) \
3503 { \
3504 uint ## bits ## _t fdret; \
3505 \
3506 fdret = float ## bits ## _round_to_int(fs, &env->active_fpu.fp_status); \
3507 update_fcr31(env, GETPC()); \
3508 return fdret; \
3509 }
3510
3511 FLOAT_RINT(rint_s, 32)
3512 FLOAT_RINT(rint_d, 64)
3513 #undef FLOAT_RINT
3514
3515 #define FLOAT_CLASS_SIGNALING_NAN 0x001
3516 #define FLOAT_CLASS_QUIET_NAN 0x002
3517 #define FLOAT_CLASS_NEGATIVE_INFINITY 0x004
3518 #define FLOAT_CLASS_NEGATIVE_NORMAL 0x008
3519 #define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010
3520 #define FLOAT_CLASS_NEGATIVE_ZERO 0x020
3521 #define FLOAT_CLASS_POSITIVE_INFINITY 0x040
3522 #define FLOAT_CLASS_POSITIVE_NORMAL 0x080
3523 #define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100
3524 #define FLOAT_CLASS_POSITIVE_ZERO 0x200
3525
3526 #define FLOAT_CLASS(name, bits) \
3527 uint ## bits ## _t float_ ## name (uint ## bits ## _t arg, \
3528 float_status *status) \
3529 { \
3530 if (float ## bits ## _is_signaling_nan(arg, status)) { \
3531 return FLOAT_CLASS_SIGNALING_NAN; \
3532 } else if (float ## bits ## _is_quiet_nan(arg, status)) { \
3533 return FLOAT_CLASS_QUIET_NAN; \
3534 } else if (float ## bits ## _is_neg(arg)) { \
3535 if (float ## bits ## _is_infinity(arg)) { \
3536 return FLOAT_CLASS_NEGATIVE_INFINITY; \
3537 } else if (float ## bits ## _is_zero(arg)) { \
3538 return FLOAT_CLASS_NEGATIVE_ZERO; \
3539 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3540 return FLOAT_CLASS_NEGATIVE_SUBNORMAL; \
3541 } else { \
3542 return FLOAT_CLASS_NEGATIVE_NORMAL; \
3543 } \
3544 } else { \
3545 if (float ## bits ## _is_infinity(arg)) { \
3546 return FLOAT_CLASS_POSITIVE_INFINITY; \
3547 } else if (float ## bits ## _is_zero(arg)) { \
3548 return FLOAT_CLASS_POSITIVE_ZERO; \
3549 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3550 return FLOAT_CLASS_POSITIVE_SUBNORMAL; \
3551 } else { \
3552 return FLOAT_CLASS_POSITIVE_NORMAL; \
3553 } \
3554 } \
3555 } \
3556 \
3557 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3558 uint ## bits ## _t arg) \
3559 { \
3560 return float_ ## name(arg, &env->active_fpu.fp_status); \
3561 }
3562
3563 FLOAT_CLASS(class_s, 32)
3564 FLOAT_CLASS(class_d, 64)
3565 #undef FLOAT_CLASS
3566
3567 /* binary operations */
3568 #define FLOAT_BINOP(name) \
3569 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3570 uint64_t fdt0, uint64_t fdt1) \
3571 { \
3572 uint64_t dt2; \
3573 \
3574 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
3575 update_fcr31(env, GETPC()); \
3576 return dt2; \
3577 } \
3578 \
3579 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3580 uint32_t fst0, uint32_t fst1) \
3581 { \
3582 uint32_t wt2; \
3583 \
3584 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3585 update_fcr31(env, GETPC()); \
3586 return wt2; \
3587 } \
3588 \
3589 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3590 uint64_t fdt0, \
3591 uint64_t fdt1) \
3592 { \
3593 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3594 uint32_t fsth0 = fdt0 >> 32; \
3595 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3596 uint32_t fsth1 = fdt1 >> 32; \
3597 uint32_t wt2; \
3598 uint32_t wth2; \
3599 \
3600 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3601 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
3602 update_fcr31(env, GETPC()); \
3603 return ((uint64_t)wth2 << 32) | wt2; \
3604 }
3605
3606 FLOAT_BINOP(add)
3607 FLOAT_BINOP(sub)
3608 FLOAT_BINOP(mul)
3609 FLOAT_BINOP(div)
3610 #undef FLOAT_BINOP
3611
3612 /* MIPS specific binary operations */
3613 uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3614 {
3615 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3616 fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
3617 update_fcr31(env, GETPC());
3618 return fdt2;
3619 }
3620
3621 uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3622 {
3623 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3624 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3625 update_fcr31(env, GETPC());
3626 return fst2;
3627 }
3628
3629 uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3630 {
3631 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3632 uint32_t fsth0 = fdt0 >> 32;
3633 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3634 uint32_t fsth2 = fdt2 >> 32;
3635
3636 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3637 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3638 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3639 fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
3640 update_fcr31(env, GETPC());
3641 return ((uint64_t)fsth2 << 32) | fst2;
3642 }
3643
3644 uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3645 {
3646 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3647 fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
3648 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
3649 update_fcr31(env, GETPC());
3650 return fdt2;
3651 }
3652
3653 uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3654 {
3655 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3656 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3657 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3658 update_fcr31(env, GETPC());
3659 return fst2;
3660 }
3661
3662 uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3663 {
3664 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3665 uint32_t fsth0 = fdt0 >> 32;
3666 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3667 uint32_t fsth2 = fdt2 >> 32;
3668
3669 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3670 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3671 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3672 fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
3673 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3674 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
3675 update_fcr31(env, GETPC());
3676 return ((uint64_t)fsth2 << 32) | fst2;
3677 }
3678
3679 uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3680 {
3681 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3682 uint32_t fsth0 = fdt0 >> 32;
3683 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3684 uint32_t fsth1 = fdt1 >> 32;
3685 uint32_t fst2;
3686 uint32_t fsth2;
3687
3688 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
3689 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
3690 update_fcr31(env, GETPC());
3691 return ((uint64_t)fsth2 << 32) | fst2;
3692 }
3693
3694 uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3695 {
3696 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3697 uint32_t fsth0 = fdt0 >> 32;
3698 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3699 uint32_t fsth1 = fdt1 >> 32;
3700 uint32_t fst2;
3701 uint32_t fsth2;
3702
3703 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3704 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3705 update_fcr31(env, GETPC());
3706 return ((uint64_t)fsth2 << 32) | fst2;
3707 }
3708
3709 #define FLOAT_MINMAX(name, bits, minmaxfunc) \
3710 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3711 uint ## bits ## _t fs, \
3712 uint ## bits ## _t ft) \
3713 { \
3714 uint ## bits ## _t fdret; \
3715 \
3716 fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \
3717 &env->active_fpu.fp_status); \
3718 update_fcr31(env, GETPC()); \
3719 return fdret; \
3720 }
3721
3722 FLOAT_MINMAX(max_s, 32, maxnum)
3723 FLOAT_MINMAX(max_d, 64, maxnum)
3724 FLOAT_MINMAX(maxa_s, 32, maxnummag)
3725 FLOAT_MINMAX(maxa_d, 64, maxnummag)
3726
3727 FLOAT_MINMAX(min_s, 32, minnum)
3728 FLOAT_MINMAX(min_d, 64, minnum)
3729 FLOAT_MINMAX(mina_s, 32, minnummag)
3730 FLOAT_MINMAX(mina_d, 64, minnummag)
3731 #undef FLOAT_MINMAX
3732
3733 /* ternary operations */
3734 #define UNFUSED_FMA(prefix, a, b, c, flags) \
3735 { \
3736 a = prefix##_mul(a, b, &env->active_fpu.fp_status); \
3737 if ((flags) & float_muladd_negate_c) { \
3738 a = prefix##_sub(a, c, &env->active_fpu.fp_status); \
3739 } else { \
3740 a = prefix##_add(a, c, &env->active_fpu.fp_status); \
3741 } \
3742 if ((flags) & float_muladd_negate_result) { \
3743 a = prefix##_chs(a); \
3744 } \
3745 }
3746
3747 /* FMA based operations */
3748 #define FLOAT_FMA(name, type) \
3749 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3750 uint64_t fdt0, uint64_t fdt1, \
3751 uint64_t fdt2) \
3752 { \
3753 UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \
3754 update_fcr31(env, GETPC()); \
3755 return fdt0; \
3756 } \
3757 \
3758 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3759 uint32_t fst0, uint32_t fst1, \
3760 uint32_t fst2) \
3761 { \
3762 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3763 update_fcr31(env, GETPC()); \
3764 return fst0; \
3765 } \
3766 \
3767 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3768 uint64_t fdt0, uint64_t fdt1, \
3769 uint64_t fdt2) \
3770 { \
3771 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3772 uint32_t fsth0 = fdt0 >> 32; \
3773 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3774 uint32_t fsth1 = fdt1 >> 32; \
3775 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
3776 uint32_t fsth2 = fdt2 >> 32; \
3777 \
3778 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3779 UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \
3780 update_fcr31(env, GETPC()); \
3781 return ((uint64_t)fsth0 << 32) | fst0; \
3782 }
3783 FLOAT_FMA(madd, 0)
3784 FLOAT_FMA(msub, float_muladd_negate_c)
3785 FLOAT_FMA(nmadd, float_muladd_negate_result)
3786 FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
3787 #undef FLOAT_FMA
3788
3789 #define FLOAT_FMADDSUB(name, bits, muladd_arg) \
3790 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3791 uint ## bits ## _t fs, \
3792 uint ## bits ## _t ft, \
3793 uint ## bits ## _t fd) \
3794 { \
3795 uint ## bits ## _t fdret; \
3796 \
3797 fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \
3798 &env->active_fpu.fp_status); \
3799 update_fcr31(env, GETPC()); \
3800 return fdret; \
3801 }
3802
3803 FLOAT_FMADDSUB(maddf_s, 32, 0)
3804 FLOAT_FMADDSUB(maddf_d, 64, 0)
3805 FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product)
3806 FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product)
3807 #undef FLOAT_FMADDSUB
3808
3809 /* compare operations */
3810 #define FOP_COND_D(op, cond) \
3811 void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3812 uint64_t fdt1, int cc) \
3813 { \
3814 int c; \
3815 c = cond; \
3816 update_fcr31(env, GETPC()); \
3817 if (c) \
3818 SET_FP_COND(cc, env->active_fpu); \
3819 else \
3820 CLEAR_FP_COND(cc, env->active_fpu); \
3821 } \
3822 void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3823 uint64_t fdt1, int cc) \
3824 { \
3825 int c; \
3826 fdt0 = float64_abs(fdt0); \
3827 fdt1 = float64_abs(fdt1); \
3828 c = cond; \
3829 update_fcr31(env, GETPC()); \
3830 if (c) \
3831 SET_FP_COND(cc, env->active_fpu); \
3832 else \
3833 CLEAR_FP_COND(cc, env->active_fpu); \
3834 }
3835
3836 /* NOTE: the comma operator will make "cond" to eval to false,
3837 * but float64_unordered_quiet() is still called. */
3838 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3839 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
3840 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3841 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3842 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3843 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3844 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3845 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3846 /* NOTE: the comma operator will make "cond" to eval to false,
3847 * but float64_unordered() is still called. */
3848 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3849 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
3850 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3851 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3852 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3853 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3854 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3855 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3856
3857 #define FOP_COND_S(op, cond) \
3858 void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3859 uint32_t fst1, int cc) \
3860 { \
3861 int c; \
3862 c = cond; \
3863 update_fcr31(env, GETPC()); \
3864 if (c) \
3865 SET_FP_COND(cc, env->active_fpu); \
3866 else \
3867 CLEAR_FP_COND(cc, env->active_fpu); \
3868 } \
3869 void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3870 uint32_t fst1, int cc) \
3871 { \
3872 int c; \
3873 fst0 = float32_abs(fst0); \
3874 fst1 = float32_abs(fst1); \
3875 c = cond; \
3876 update_fcr31(env, GETPC()); \
3877 if (c) \
3878 SET_FP_COND(cc, env->active_fpu); \
3879 else \
3880 CLEAR_FP_COND(cc, env->active_fpu); \
3881 }
3882
3883 /* NOTE: the comma operator will make "cond" to eval to false,
3884 * but float32_unordered_quiet() is still called. */
3885 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
3886 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
3887 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3888 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3889 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3890 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3891 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3892 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3893 /* NOTE: the comma operator will make "cond" to eval to false,
3894 * but float32_unordered() is still called. */
3895 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
3896 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
3897 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3898 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3899 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3900 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3901 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
3902 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3903
3904 #define FOP_COND_PS(op, condl, condh) \
3905 void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3906 uint64_t fdt1, int cc) \
3907 { \
3908 uint32_t fst0, fsth0, fst1, fsth1; \
3909 int ch, cl; \
3910 fst0 = fdt0 & 0XFFFFFFFF; \
3911 fsth0 = fdt0 >> 32; \
3912 fst1 = fdt1 & 0XFFFFFFFF; \
3913 fsth1 = fdt1 >> 32; \
3914 cl = condl; \
3915 ch = condh; \
3916 update_fcr31(env, GETPC()); \
3917 if (cl) \
3918 SET_FP_COND(cc, env->active_fpu); \
3919 else \
3920 CLEAR_FP_COND(cc, env->active_fpu); \
3921 if (ch) \
3922 SET_FP_COND(cc + 1, env->active_fpu); \
3923 else \
3924 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3925 } \
3926 void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3927 uint64_t fdt1, int cc) \
3928 { \
3929 uint32_t fst0, fsth0, fst1, fsth1; \
3930 int ch, cl; \
3931 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3932 fsth0 = float32_abs(fdt0 >> 32); \
3933 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3934 fsth1 = float32_abs(fdt1 >> 32); \
3935 cl = condl; \
3936 ch = condh; \
3937 update_fcr31(env, GETPC()); \
3938 if (cl) \
3939 SET_FP_COND(cc, env->active_fpu); \
3940 else \
3941 CLEAR_FP_COND(cc, env->active_fpu); \
3942 if (ch) \
3943 SET_FP_COND(cc + 1, env->active_fpu); \
3944 else \
3945 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3946 }
3947
3948 /* NOTE: the comma operator will make "cond" to eval to false,
3949 * but float32_unordered_quiet() is still called. */
3950 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
3951 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3952 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
3953 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
3954 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3955 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3956 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3957 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3958 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3959 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3960 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3961 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3962 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3963 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3964 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3965 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3966 /* NOTE: the comma operator will make "cond" to eval to false,
3967 * but float32_unordered() is still called. */
3968 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
3969 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3970 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
3971 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
3972 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3973 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3974 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3975 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3976 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3977 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3978 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3979 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3980 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
3981 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3982 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3983 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3984
3985 /* R6 compare operations */
3986 #define FOP_CONDN_D(op, cond) \
3987 uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState * env, uint64_t fdt0, \
3988 uint64_t fdt1) \
3989 { \
3990 uint64_t c; \
3991 c = cond; \
3992 update_fcr31(env, GETPC()); \
3993 if (c) { \
3994 return -1; \
3995 } else { \
3996 return 0; \
3997 } \
3998 }
3999
4000 /* NOTE: the comma operator will make "cond" to eval to false,
4001 * but float64_unordered_quiet() is still called. */
4002 FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4003 FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)))
4004 FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4005 FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4006 || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4007 FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4008 FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4009 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4010 FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4011 FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4012 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4013 /* NOTE: the comma operator will make "cond" to eval to false,
4014 * but float64_unordered() is still called. */
4015 FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4016 FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)))
4017 FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
4018 FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4019 || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
4020 FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4021 FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4022 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4023 FOP_CONDN_D(sle, (float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4024 FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4025 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4026 FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4027 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4028 FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4029 || float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4030 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4031 FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4032 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4033 FOP_CONDN_D(sor, (float64_le(fdt1, fdt0, &env->active_fpu.fp_status)
4034 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4035 FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4036 || float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4037 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4038 FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4039 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4040
4041 #define FOP_CONDN_S(op, cond) \
4042 uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState * env, uint32_t fst0, \
4043 uint32_t fst1) \
4044 { \
4045 uint64_t c; \
4046 c = cond; \
4047 update_fcr31(env, GETPC()); \
4048 if (c) { \
4049 return -1; \
4050 } else { \
4051 return 0; \
4052 } \
4053 }
4054
4055 /* NOTE: the comma operator will make "cond" to eval to false,
4056 * but float32_unordered_quiet() is still called. */
4057 FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
4058 FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)))
4059 FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4060 FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4061 || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4062 FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4063 FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4064 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4065 FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4066 FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4067 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4068 /* NOTE: the comma operator will make "cond" to eval to false,
4069 * but float32_unordered() is still called. */
4070 FOP_CONDN_S(saf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
4071 FOP_CONDN_S(sun, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)))
4072 FOP_CONDN_S(seq, (float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4073 FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4074 || float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4075 FOP_CONDN_S(slt, (float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4076 FOP_CONDN_S(sult, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4077 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4078 FOP_CONDN_S(sle, (float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4079 FOP_CONDN_S(sule, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4080 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4081 FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0, &env->active_fpu.fp_status)
4082 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4083 FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4084 || float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4085 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4086 FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4087 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4088 FOP_CONDN_S(sor, (float32_le(fst1, fst0, &env->active_fpu.fp_status)
4089 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4090 FOP_CONDN_S(sune, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4091 || float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4092 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4093 FOP_CONDN_S(sne, (float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4094 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4095
4096 /* MSA */
4097 /* Data format min and max values */
4098 #define DF_BITS(df) (1 << ((df) + 3))
4099
4100 /* Element-by-element access macros */
4101 #define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df))
4102
4103 #if !defined(CONFIG_USER_ONLY)
4104 #define MEMOP_IDX(DF) \
4105 TCGMemOpIdx oi = make_memop_idx(MO_TE | DF | MO_UNALN, \
4106 cpu_mmu_index(env, false));
4107 #else
4108 #define MEMOP_IDX(DF)
4109 #endif
4110
4111 #define MSA_LD_DF(DF, TYPE, LD_INSN, ...) \
4112 void helper_msa_ld_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4113 target_ulong addr) \
4114 { \
4115 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4116 wr_t wx; \
4117 int i; \
4118 MEMOP_IDX(DF) \
4119 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4120 wx.TYPE[i] = LD_INSN(env, addr + (i << DF), ##__VA_ARGS__); \
4121 } \
4122 memcpy(pwd, &wx, sizeof(wr_t)); \
4123 }
4124
4125 #if !defined(CONFIG_USER_ONLY)
4126 MSA_LD_DF(DF_BYTE, b, helper_ret_ldub_mmu, oi, GETPC())
4127 MSA_LD_DF(DF_HALF, h, helper_ret_lduw_mmu, oi, GETPC())
4128 MSA_LD_DF(DF_WORD, w, helper_ret_ldul_mmu, oi, GETPC())
4129 MSA_LD_DF(DF_DOUBLE, d, helper_ret_ldq_mmu, oi, GETPC())
4130 #else
4131 MSA_LD_DF(DF_BYTE, b, cpu_ldub_data)
4132 MSA_LD_DF(DF_HALF, h, cpu_lduw_data)
4133 MSA_LD_DF(DF_WORD, w, cpu_ldl_data)
4134 MSA_LD_DF(DF_DOUBLE, d, cpu_ldq_data)
4135 #endif
4136
4137 #define MSA_PAGESPAN(x) \
4138 ((((x) & ~TARGET_PAGE_MASK) + MSA_WRLEN/8 - 1) >= TARGET_PAGE_SIZE)
4139
4140 static inline void ensure_writable_pages(CPUMIPSState *env,
4141 target_ulong addr,
4142 int mmu_idx,
4143 uintptr_t retaddr)
4144 {
4145 #if !defined(CONFIG_USER_ONLY)
4146 target_ulong page_addr;
4147 if (unlikely(MSA_PAGESPAN(addr))) {
4148 /* first page */
4149 probe_write(env, addr, mmu_idx, retaddr);
4150 /* second page */
4151 page_addr = (addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
4152 probe_write(env, page_addr, mmu_idx, retaddr);
4153 }
4154 #endif
4155 }
4156
4157 #define MSA_ST_DF(DF, TYPE, ST_INSN, ...) \
4158 void helper_msa_st_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4159 target_ulong addr) \
4160 { \
4161 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4162 int mmu_idx = cpu_mmu_index(env, false); \
4163 int i; \
4164 MEMOP_IDX(DF) \
4165 ensure_writable_pages(env, addr, mmu_idx, GETPC()); \
4166 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4167 ST_INSN(env, addr + (i << DF), pwd->TYPE[i], ##__VA_ARGS__); \
4168 } \
4169 }
4170
4171 #if !defined(CONFIG_USER_ONLY)
4172 MSA_ST_DF(DF_BYTE, b, helper_ret_stb_mmu, oi, GETPC())
4173 MSA_ST_DF(DF_HALF, h, helper_ret_stw_mmu, oi, GETPC())
4174 MSA_ST_DF(DF_WORD, w, helper_ret_stl_mmu, oi, GETPC())
4175 MSA_ST_DF(DF_DOUBLE, d, helper_ret_stq_mmu, oi, GETPC())
4176 #else
4177 MSA_ST_DF(DF_BYTE, b, cpu_stb_data)
4178 MSA_ST_DF(DF_HALF, h, cpu_stw_data)
4179 MSA_ST_DF(DF_WORD, w, cpu_stl_data)
4180 MSA_ST_DF(DF_DOUBLE, d, cpu_stq_data)
4181 #endif
4182
4183 void helper_cache(CPUMIPSState *env, target_ulong addr, uint32_t op)
4184 {
4185 #ifndef CONFIG_USER_ONLY
4186 target_ulong index = addr & 0x1fffffff;
4187 if (op == 9) {
4188 /* Index Store Tag */
4189 memory_region_dispatch_write(env->itc_tag, index, env->CP0_TagLo,
4190 8, MEMTXATTRS_UNSPECIFIED);
4191 } else if (op == 5) {
4192 /* Index Load Tag */
4193 memory_region_dispatch_read(env->itc_tag, index, &env->CP0_TagLo,
4194 8, MEMTXATTRS_UNSPECIFIED);
4195 }
4196 #endif
4197 }