]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/op_helper.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / target / mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
21 #include "cpu.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
26 #include "sysemu/kvm.h"
27
28 /*****************************************************************************/
29 /* Exceptions processing helpers */
30
31 void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
32 int error_code)
33 {
34 do_raise_exception_err(env, exception, error_code, 0);
35 }
36
37 void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
38 {
39 do_raise_exception(env, exception, GETPC());
40 }
41
42 void helper_raise_exception_debug(CPUMIPSState *env)
43 {
44 do_raise_exception(env, EXCP_DEBUG, 0);
45 }
46
47 static void raise_exception(CPUMIPSState *env, uint32_t exception)
48 {
49 do_raise_exception(env, exception, 0);
50 }
51
52 #if defined(CONFIG_USER_ONLY)
53 #define HELPER_LD(name, insn, type) \
54 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
55 int mem_idx, uintptr_t retaddr) \
56 { \
57 return (type) cpu_##insn##_data_ra(env, addr, retaddr); \
58 }
59 #else
60 #define HELPER_LD(name, insn, type) \
61 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
62 int mem_idx, uintptr_t retaddr) \
63 { \
64 switch (mem_idx) \
65 { \
66 case 0: return (type) cpu_##insn##_kernel_ra(env, addr, retaddr); \
67 case 1: return (type) cpu_##insn##_super_ra(env, addr, retaddr); \
68 default: \
69 case 2: return (type) cpu_##insn##_user_ra(env, addr, retaddr); \
70 case 3: return (type) cpu_##insn##_error_ra(env, addr, retaddr); \
71 } \
72 }
73 #endif
74 HELPER_LD(lw, ldl, int32_t)
75 #if defined(TARGET_MIPS64)
76 HELPER_LD(ld, ldq, int64_t)
77 #endif
78 #undef HELPER_LD
79
80 #if defined(CONFIG_USER_ONLY)
81 #define HELPER_ST(name, insn, type) \
82 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
83 type val, int mem_idx, uintptr_t retaddr) \
84 { \
85 cpu_##insn##_data_ra(env, addr, val, retaddr); \
86 }
87 #else
88 #define HELPER_ST(name, insn, type) \
89 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
90 type val, int mem_idx, uintptr_t retaddr) \
91 { \
92 switch (mem_idx) \
93 { \
94 case 0: cpu_##insn##_kernel_ra(env, addr, val, retaddr); break; \
95 case 1: cpu_##insn##_super_ra(env, addr, val, retaddr); break; \
96 default: \
97 case 2: cpu_##insn##_user_ra(env, addr, val, retaddr); break; \
98 case 3: \
99 cpu_##insn##_error_ra(env, addr, val, retaddr); \
100 break; \
101 } \
102 }
103 #endif
104 HELPER_ST(sb, stb, uint8_t)
105 HELPER_ST(sw, stl, uint32_t)
106 #if defined(TARGET_MIPS64)
107 HELPER_ST(sd, stq, uint64_t)
108 #endif
109 #undef HELPER_ST
110
111 /* 64 bits arithmetic for 32 bits hosts */
112 static inline uint64_t get_HILO(CPUMIPSState *env)
113 {
114 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
115 }
116
117 static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
118 {
119 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
120 return env->active_tc.HI[0] = (int32_t)(HILO >> 32);
121 }
122
123 static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
124 {
125 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
126 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
127 return tmp;
128 }
129
130 /* Multiplication variants of the vr54xx. */
131 target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
132 target_ulong arg2)
133 {
134 return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
135 (int64_t)(int32_t)arg2));
136 }
137
138 target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
139 target_ulong arg2)
140 {
141 return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
142 (uint64_t)(uint32_t)arg2);
143 }
144
145 target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
146 target_ulong arg2)
147 {
148 return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
149 (int64_t)(int32_t)arg2);
150 }
151
152 target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
153 target_ulong arg2)
154 {
155 return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
156 (int64_t)(int32_t)arg2);
157 }
158
159 target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
160 target_ulong arg2)
161 {
162 return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
163 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
164 }
165
166 target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
167 target_ulong arg2)
168 {
169 return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
170 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
171 }
172
173 target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
174 target_ulong arg2)
175 {
176 return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
177 (int64_t)(int32_t)arg2);
178 }
179
180 target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
181 target_ulong arg2)
182 {
183 return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
184 (int64_t)(int32_t)arg2);
185 }
186
187 target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
188 target_ulong arg2)
189 {
190 return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
191 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
192 }
193
194 target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
195 target_ulong arg2)
196 {
197 return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
198 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
199 }
200
201 target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
202 target_ulong arg2)
203 {
204 return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
205 }
206
207 target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
208 target_ulong arg2)
209 {
210 return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
211 (uint64_t)(uint32_t)arg2);
212 }
213
214 target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
215 target_ulong arg2)
216 {
217 return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
218 (int64_t)(int32_t)arg2);
219 }
220
221 target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
222 target_ulong arg2)
223 {
224 return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
225 (uint64_t)(uint32_t)arg2);
226 }
227
228 static inline target_ulong bitswap(target_ulong v)
229 {
230 v = ((v >> 1) & (target_ulong)0x5555555555555555ULL) |
231 ((v & (target_ulong)0x5555555555555555ULL) << 1);
232 v = ((v >> 2) & (target_ulong)0x3333333333333333ULL) |
233 ((v & (target_ulong)0x3333333333333333ULL) << 2);
234 v = ((v >> 4) & (target_ulong)0x0F0F0F0F0F0F0F0FULL) |
235 ((v & (target_ulong)0x0F0F0F0F0F0F0F0FULL) << 4);
236 return v;
237 }
238
239 #ifdef TARGET_MIPS64
240 target_ulong helper_dbitswap(target_ulong rt)
241 {
242 return bitswap(rt);
243 }
244 #endif
245
246 target_ulong helper_bitswap(target_ulong rt)
247 {
248 return (int32_t)bitswap(rt);
249 }
250
251 #ifndef CONFIG_USER_ONLY
252
253 static inline hwaddr do_translate_address(CPUMIPSState *env,
254 target_ulong address,
255 int rw, uintptr_t retaddr)
256 {
257 hwaddr lladdr;
258 CPUState *cs = CPU(mips_env_get_cpu(env));
259
260 lladdr = cpu_mips_translate_address(env, address, rw);
261
262 if (lladdr == -1LL) {
263 cpu_loop_exit_restore(cs, retaddr);
264 } else {
265 return lladdr;
266 }
267 }
268
269 #define HELPER_LD_ATOMIC(name, insn, almask) \
270 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
271 { \
272 if (arg & almask) { \
273 env->CP0_BadVAddr = arg; \
274 do_raise_exception(env, EXCP_AdEL, GETPC()); \
275 } \
276 env->lladdr = do_translate_address(env, arg, 0, GETPC()); \
277 env->llval = do_##insn(env, arg, mem_idx, GETPC()); \
278 return env->llval; \
279 }
280 HELPER_LD_ATOMIC(ll, lw, 0x3)
281 #ifdef TARGET_MIPS64
282 HELPER_LD_ATOMIC(lld, ld, 0x7)
283 #endif
284 #undef HELPER_LD_ATOMIC
285
286 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
287 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
288 target_ulong arg2, int mem_idx) \
289 { \
290 target_long tmp; \
291 \
292 if (arg2 & almask) { \
293 env->CP0_BadVAddr = arg2; \
294 do_raise_exception(env, EXCP_AdES, GETPC()); \
295 } \
296 if (do_translate_address(env, arg2, 1, GETPC()) == env->lladdr) { \
297 tmp = do_##ld_insn(env, arg2, mem_idx, GETPC()); \
298 if (tmp == env->llval) { \
299 do_##st_insn(env, arg2, arg1, mem_idx, GETPC()); \
300 return 1; \
301 } \
302 } \
303 return 0; \
304 }
305 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
306 #ifdef TARGET_MIPS64
307 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
308 #endif
309 #undef HELPER_ST_ATOMIC
310 #endif
311
312 #ifdef TARGET_WORDS_BIGENDIAN
313 #define GET_LMASK(v) ((v) & 3)
314 #define GET_OFFSET(addr, offset) (addr + (offset))
315 #else
316 #define GET_LMASK(v) (((v) & 3) ^ 3)
317 #define GET_OFFSET(addr, offset) (addr - (offset))
318 #endif
319
320 void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
321 int mem_idx)
322 {
323 do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx, GETPC());
324
325 if (GET_LMASK(arg2) <= 2) {
326 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx,
327 GETPC());
328 }
329
330 if (GET_LMASK(arg2) <= 1) {
331 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx,
332 GETPC());
333 }
334
335 if (GET_LMASK(arg2) == 0) {
336 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx,
337 GETPC());
338 }
339 }
340
341 void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
342 int mem_idx)
343 {
344 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
345
346 if (GET_LMASK(arg2) >= 1) {
347 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
348 GETPC());
349 }
350
351 if (GET_LMASK(arg2) >= 2) {
352 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
353 GETPC());
354 }
355
356 if (GET_LMASK(arg2) == 3) {
357 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
358 GETPC());
359 }
360 }
361
362 #if defined(TARGET_MIPS64)
363 /* "half" load and stores. We must do the memory access inline,
364 or fault handling won't work. */
365
366 #ifdef TARGET_WORDS_BIGENDIAN
367 #define GET_LMASK64(v) ((v) & 7)
368 #else
369 #define GET_LMASK64(v) (((v) & 7) ^ 7)
370 #endif
371
372 void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
373 int mem_idx)
374 {
375 do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx, GETPC());
376
377 if (GET_LMASK64(arg2) <= 6) {
378 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx,
379 GETPC());
380 }
381
382 if (GET_LMASK64(arg2) <= 5) {
383 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx,
384 GETPC());
385 }
386
387 if (GET_LMASK64(arg2) <= 4) {
388 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx,
389 GETPC());
390 }
391
392 if (GET_LMASK64(arg2) <= 3) {
393 do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx,
394 GETPC());
395 }
396
397 if (GET_LMASK64(arg2) <= 2) {
398 do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx,
399 GETPC());
400 }
401
402 if (GET_LMASK64(arg2) <= 1) {
403 do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx,
404 GETPC());
405 }
406
407 if (GET_LMASK64(arg2) <= 0) {
408 do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx,
409 GETPC());
410 }
411 }
412
413 void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
414 int mem_idx)
415 {
416 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
417
418 if (GET_LMASK64(arg2) >= 1) {
419 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
420 GETPC());
421 }
422
423 if (GET_LMASK64(arg2) >= 2) {
424 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
425 GETPC());
426 }
427
428 if (GET_LMASK64(arg2) >= 3) {
429 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
430 GETPC());
431 }
432
433 if (GET_LMASK64(arg2) >= 4) {
434 do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx,
435 GETPC());
436 }
437
438 if (GET_LMASK64(arg2) >= 5) {
439 do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx,
440 GETPC());
441 }
442
443 if (GET_LMASK64(arg2) >= 6) {
444 do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx,
445 GETPC());
446 }
447
448 if (GET_LMASK64(arg2) == 7) {
449 do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx,
450 GETPC());
451 }
452 }
453 #endif /* TARGET_MIPS64 */
454
455 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
456
457 void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
458 uint32_t mem_idx)
459 {
460 target_ulong base_reglist = reglist & 0xf;
461 target_ulong do_r31 = reglist & 0x10;
462
463 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
464 target_ulong i;
465
466 for (i = 0; i < base_reglist; i++) {
467 env->active_tc.gpr[multiple_regs[i]] =
468 (target_long)do_lw(env, addr, mem_idx, GETPC());
469 addr += 4;
470 }
471 }
472
473 if (do_r31) {
474 env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx,
475 GETPC());
476 }
477 }
478
479 void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
480 uint32_t mem_idx)
481 {
482 target_ulong base_reglist = reglist & 0xf;
483 target_ulong do_r31 = reglist & 0x10;
484
485 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
486 target_ulong i;
487
488 for (i = 0; i < base_reglist; i++) {
489 do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
490 GETPC());
491 addr += 4;
492 }
493 }
494
495 if (do_r31) {
496 do_sw(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
497 }
498 }
499
500 #if defined(TARGET_MIPS64)
501 void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
502 uint32_t mem_idx)
503 {
504 target_ulong base_reglist = reglist & 0xf;
505 target_ulong do_r31 = reglist & 0x10;
506
507 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
508 target_ulong i;
509
510 for (i = 0; i < base_reglist; i++) {
511 env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx,
512 GETPC());
513 addr += 8;
514 }
515 }
516
517 if (do_r31) {
518 env->active_tc.gpr[31] = do_ld(env, addr, mem_idx, GETPC());
519 }
520 }
521
522 void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
523 uint32_t mem_idx)
524 {
525 target_ulong base_reglist = reglist & 0xf;
526 target_ulong do_r31 = reglist & 0x10;
527
528 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
529 target_ulong i;
530
531 for (i = 0; i < base_reglist; i++) {
532 do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
533 GETPC());
534 addr += 8;
535 }
536 }
537
538 if (do_r31) {
539 do_sd(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
540 }
541 }
542 #endif
543
544 #ifndef CONFIG_USER_ONLY
545 /* SMP helpers. */
546 static bool mips_vpe_is_wfi(MIPSCPU *c)
547 {
548 CPUState *cpu = CPU(c);
549 CPUMIPSState *env = &c->env;
550
551 /* If the VPE is halted but otherwise active, it means it's waiting for
552 an interrupt. */
553 return cpu->halted && mips_vpe_active(env);
554 }
555
556 static bool mips_vp_is_wfi(MIPSCPU *c)
557 {
558 CPUState *cpu = CPU(c);
559 CPUMIPSState *env = &c->env;
560
561 return cpu->halted && mips_vp_active(env);
562 }
563
564 static inline void mips_vpe_wake(MIPSCPU *c)
565 {
566 /* Don't set ->halted = 0 directly, let it be done via cpu_has_work
567 because there might be other conditions that state that c should
568 be sleeping. */
569 cpu_interrupt(CPU(c), CPU_INTERRUPT_WAKE);
570 }
571
572 static inline void mips_vpe_sleep(MIPSCPU *cpu)
573 {
574 CPUState *cs = CPU(cpu);
575
576 /* The VPE was shut off, really go to bed.
577 Reset any old _WAKE requests. */
578 cs->halted = 1;
579 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
580 }
581
582 static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
583 {
584 CPUMIPSState *c = &cpu->env;
585
586 /* FIXME: TC reschedule. */
587 if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
588 mips_vpe_wake(cpu);
589 }
590 }
591
592 static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
593 {
594 CPUMIPSState *c = &cpu->env;
595
596 /* FIXME: TC reschedule. */
597 if (!mips_vpe_active(c)) {
598 mips_vpe_sleep(cpu);
599 }
600 }
601
602 /**
603 * mips_cpu_map_tc:
604 * @env: CPU from which mapping is performed.
605 * @tc: Should point to an int with the value of the global TC index.
606 *
607 * This function will transform @tc into a local index within the
608 * returned #CPUMIPSState.
609 */
610 /* FIXME: This code assumes that all VPEs have the same number of TCs,
611 which depends on runtime setup. Can probably be fixed by
612 walking the list of CPUMIPSStates. */
613 static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
614 {
615 MIPSCPU *cpu;
616 CPUState *cs;
617 CPUState *other_cs;
618 int vpe_idx;
619 int tc_idx = *tc;
620
621 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
622 /* Not allowed to address other CPUs. */
623 *tc = env->current_tc;
624 return env;
625 }
626
627 cs = CPU(mips_env_get_cpu(env));
628 vpe_idx = tc_idx / cs->nr_threads;
629 *tc = tc_idx % cs->nr_threads;
630 other_cs = qemu_get_cpu(vpe_idx);
631 if (other_cs == NULL) {
632 return env;
633 }
634 cpu = MIPS_CPU(other_cs);
635 return &cpu->env;
636 }
637
638 /* The per VPE CP0_Status register shares some fields with the per TC
639 CP0_TCStatus registers. These fields are wired to the same registers,
640 so changes to either of them should be reflected on both registers.
641
642 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
643
644 These helper call synchronizes the regs for a given cpu. */
645
646 /* Called for updates to CP0_Status. Defined in "cpu.h" for gdbstub.c. */
647 /* static inline void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu,
648 int tc); */
649
650 /* Called for updates to CP0_TCStatus. */
651 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
652 target_ulong v)
653 {
654 uint32_t status;
655 uint32_t tcu, tmx, tasid, tksu;
656 uint32_t mask = ((1U << CP0St_CU3)
657 | (1 << CP0St_CU2)
658 | (1 << CP0St_CU1)
659 | (1 << CP0St_CU0)
660 | (1 << CP0St_MX)
661 | (3 << CP0St_KSU));
662
663 tcu = (v >> CP0TCSt_TCU0) & 0xf;
664 tmx = (v >> CP0TCSt_TMX) & 0x1;
665 tasid = v & cpu->CP0_EntryHi_ASID_mask;
666 tksu = (v >> CP0TCSt_TKSU) & 0x3;
667
668 status = tcu << CP0St_CU0;
669 status |= tmx << CP0St_MX;
670 status |= tksu << CP0St_KSU;
671
672 cpu->CP0_Status &= ~mask;
673 cpu->CP0_Status |= status;
674
675 /* Sync the TASID with EntryHi. */
676 cpu->CP0_EntryHi &= ~cpu->CP0_EntryHi_ASID_mask;
677 cpu->CP0_EntryHi |= tasid;
678
679 compute_hflags(cpu);
680 }
681
682 /* Called for updates to CP0_EntryHi. */
683 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
684 {
685 int32_t *tcst;
686 uint32_t asid, v = cpu->CP0_EntryHi;
687
688 asid = v & cpu->CP0_EntryHi_ASID_mask;
689
690 if (tc == cpu->current_tc) {
691 tcst = &cpu->active_tc.CP0_TCStatus;
692 } else {
693 tcst = &cpu->tcs[tc].CP0_TCStatus;
694 }
695
696 *tcst &= ~cpu->CP0_EntryHi_ASID_mask;
697 *tcst |= asid;
698 }
699
700 /* CP0 helpers */
701 target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
702 {
703 return env->mvp->CP0_MVPControl;
704 }
705
706 target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
707 {
708 return env->mvp->CP0_MVPConf0;
709 }
710
711 target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
712 {
713 return env->mvp->CP0_MVPConf1;
714 }
715
716 target_ulong helper_mfc0_random(CPUMIPSState *env)
717 {
718 return (int32_t)cpu_mips_get_random(env);
719 }
720
721 target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
722 {
723 return env->active_tc.CP0_TCStatus;
724 }
725
726 target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
727 {
728 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
729 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
730
731 if (other_tc == other->current_tc)
732 return other->active_tc.CP0_TCStatus;
733 else
734 return other->tcs[other_tc].CP0_TCStatus;
735 }
736
737 target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
738 {
739 return env->active_tc.CP0_TCBind;
740 }
741
742 target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
743 {
744 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
745 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
746
747 if (other_tc == other->current_tc)
748 return other->active_tc.CP0_TCBind;
749 else
750 return other->tcs[other_tc].CP0_TCBind;
751 }
752
753 target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
754 {
755 return env->active_tc.PC;
756 }
757
758 target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
759 {
760 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
761 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
762
763 if (other_tc == other->current_tc)
764 return other->active_tc.PC;
765 else
766 return other->tcs[other_tc].PC;
767 }
768
769 target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
770 {
771 return env->active_tc.CP0_TCHalt;
772 }
773
774 target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
775 {
776 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
777 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
778
779 if (other_tc == other->current_tc)
780 return other->active_tc.CP0_TCHalt;
781 else
782 return other->tcs[other_tc].CP0_TCHalt;
783 }
784
785 target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
786 {
787 return env->active_tc.CP0_TCContext;
788 }
789
790 target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
791 {
792 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
793 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
794
795 if (other_tc == other->current_tc)
796 return other->active_tc.CP0_TCContext;
797 else
798 return other->tcs[other_tc].CP0_TCContext;
799 }
800
801 target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
802 {
803 return env->active_tc.CP0_TCSchedule;
804 }
805
806 target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
807 {
808 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
809 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
810
811 if (other_tc == other->current_tc)
812 return other->active_tc.CP0_TCSchedule;
813 else
814 return other->tcs[other_tc].CP0_TCSchedule;
815 }
816
817 target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
818 {
819 return env->active_tc.CP0_TCScheFBack;
820 }
821
822 target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
823 {
824 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
825 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
826
827 if (other_tc == other->current_tc)
828 return other->active_tc.CP0_TCScheFBack;
829 else
830 return other->tcs[other_tc].CP0_TCScheFBack;
831 }
832
833 target_ulong helper_mfc0_count(CPUMIPSState *env)
834 {
835 int32_t count;
836 qemu_mutex_lock_iothread();
837 count = (int32_t) cpu_mips_get_count(env);
838 qemu_mutex_unlock_iothread();
839 return count;
840 }
841
842 target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
843 {
844 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
845 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
846
847 return other->CP0_EntryHi;
848 }
849
850 target_ulong helper_mftc0_cause(CPUMIPSState *env)
851 {
852 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
853 int32_t tccause;
854 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
855
856 if (other_tc == other->current_tc) {
857 tccause = other->CP0_Cause;
858 } else {
859 tccause = other->CP0_Cause;
860 }
861
862 return tccause;
863 }
864
865 target_ulong helper_mftc0_status(CPUMIPSState *env)
866 {
867 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
868 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
869
870 return other->CP0_Status;
871 }
872
873 target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
874 {
875 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
876 }
877
878 target_ulong helper_mfc0_maar(CPUMIPSState *env)
879 {
880 return (int32_t) env->CP0_MAAR[env->CP0_MAARI];
881 }
882
883 target_ulong helper_mfhc0_maar(CPUMIPSState *env)
884 {
885 return env->CP0_MAAR[env->CP0_MAARI] >> 32;
886 }
887
888 target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
889 {
890 return (int32_t)env->CP0_WatchLo[sel];
891 }
892
893 target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
894 {
895 return env->CP0_WatchHi[sel];
896 }
897
898 target_ulong helper_mfc0_debug(CPUMIPSState *env)
899 {
900 target_ulong t0 = env->CP0_Debug;
901 if (env->hflags & MIPS_HFLAG_DM)
902 t0 |= 1 << CP0DB_DM;
903
904 return t0;
905 }
906
907 target_ulong helper_mftc0_debug(CPUMIPSState *env)
908 {
909 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
910 int32_t tcstatus;
911 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
912
913 if (other_tc == other->current_tc)
914 tcstatus = other->active_tc.CP0_Debug_tcstatus;
915 else
916 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
917
918 /* XXX: Might be wrong, check with EJTAG spec. */
919 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
920 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
921 }
922
923 #if defined(TARGET_MIPS64)
924 target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
925 {
926 return env->active_tc.PC;
927 }
928
929 target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
930 {
931 return env->active_tc.CP0_TCHalt;
932 }
933
934 target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
935 {
936 return env->active_tc.CP0_TCContext;
937 }
938
939 target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
940 {
941 return env->active_tc.CP0_TCSchedule;
942 }
943
944 target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
945 {
946 return env->active_tc.CP0_TCScheFBack;
947 }
948
949 target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
950 {
951 return env->lladdr >> env->CP0_LLAddr_shift;
952 }
953
954 target_ulong helper_dmfc0_maar(CPUMIPSState *env)
955 {
956 return env->CP0_MAAR[env->CP0_MAARI];
957 }
958
959 target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
960 {
961 return env->CP0_WatchLo[sel];
962 }
963 #endif /* TARGET_MIPS64 */
964
965 void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
966 {
967 uint32_t index_p = env->CP0_Index & 0x80000000;
968 uint32_t tlb_index = arg1 & 0x7fffffff;
969 if (tlb_index < env->tlb->nb_tlb) {
970 if (env->insn_flags & ISA_MIPS32R6) {
971 index_p |= arg1 & 0x80000000;
972 }
973 env->CP0_Index = index_p | tlb_index;
974 }
975 }
976
977 void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
978 {
979 uint32_t mask = 0;
980 uint32_t newval;
981
982 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
983 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
984 (1 << CP0MVPCo_EVP);
985 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
986 mask |= (1 << CP0MVPCo_STLB);
987 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
988
989 // TODO: Enable/disable shared TLB, enable/disable VPEs.
990
991 env->mvp->CP0_MVPControl = newval;
992 }
993
994 void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
995 {
996 uint32_t mask;
997 uint32_t newval;
998
999 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1000 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1001 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
1002
1003 /* Yield scheduler intercept not implemented. */
1004 /* Gating storage scheduler intercept not implemented. */
1005
1006 // TODO: Enable/disable TCs.
1007
1008 env->CP0_VPEControl = newval;
1009 }
1010
1011 void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
1012 {
1013 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1014 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1015 uint32_t mask;
1016 uint32_t newval;
1017
1018 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1019 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1020 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
1021
1022 /* TODO: Enable/disable TCs. */
1023
1024 other->CP0_VPEControl = newval;
1025 }
1026
1027 target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
1028 {
1029 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1030 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1031 /* FIXME: Mask away return zero on read bits. */
1032 return other->CP0_VPEControl;
1033 }
1034
1035 target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
1036 {
1037 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1038 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1039
1040 return other->CP0_VPEConf0;
1041 }
1042
1043 void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1044 {
1045 uint32_t mask = 0;
1046 uint32_t newval;
1047
1048 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1049 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1050 mask |= (0xff << CP0VPEC0_XTC);
1051 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1052 }
1053 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1054
1055 // TODO: TC exclusive handling due to ERL/EXL.
1056
1057 env->CP0_VPEConf0 = newval;
1058 }
1059
1060 void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1061 {
1062 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1063 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1064 uint32_t mask = 0;
1065 uint32_t newval;
1066
1067 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1068 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1069
1070 /* TODO: TC exclusive handling due to ERL/EXL. */
1071 other->CP0_VPEConf0 = newval;
1072 }
1073
1074 void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
1075 {
1076 uint32_t mask = 0;
1077 uint32_t newval;
1078
1079 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1080 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1081 (0xff << CP0VPEC1_NCP1);
1082 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1083
1084 /* UDI not implemented. */
1085 /* CP2 not implemented. */
1086
1087 // TODO: Handle FPU (CP1) binding.
1088
1089 env->CP0_VPEConf1 = newval;
1090 }
1091
1092 void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
1093 {
1094 /* Yield qualifier inputs not implemented. */
1095 env->CP0_YQMask = 0x00000000;
1096 }
1097
1098 void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
1099 {
1100 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1101 }
1102
1103 #define MTC0_ENTRYLO_MASK(env) ((env->PAMask >> 6) & 0x3FFFFFFF)
1104
1105 void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
1106 {
1107 /* 1k pages not implemented */
1108 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1109 env->CP0_EntryLo0 = (arg1 & MTC0_ENTRYLO_MASK(env))
1110 | (rxi << (CP0EnLo_XI - 30));
1111 }
1112
1113 #if defined(TARGET_MIPS64)
1114 #define DMTC0_ENTRYLO_MASK(env) (env->PAMask >> 6)
1115
1116 void helper_dmtc0_entrylo0(CPUMIPSState *env, uint64_t arg1)
1117 {
1118 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1119 env->CP0_EntryLo0 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1120 }
1121 #endif
1122
1123 void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1124 {
1125 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1126 uint32_t newval;
1127
1128 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1129
1130 env->active_tc.CP0_TCStatus = newval;
1131 sync_c0_tcstatus(env, env->current_tc, newval);
1132 }
1133
1134 void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1135 {
1136 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1137 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1138
1139 if (other_tc == other->current_tc)
1140 other->active_tc.CP0_TCStatus = arg1;
1141 else
1142 other->tcs[other_tc].CP0_TCStatus = arg1;
1143 sync_c0_tcstatus(other, other_tc, arg1);
1144 }
1145
1146 void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1147 {
1148 uint32_t mask = (1 << CP0TCBd_TBE);
1149 uint32_t newval;
1150
1151 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1152 mask |= (1 << CP0TCBd_CurVPE);
1153 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1154 env->active_tc.CP0_TCBind = newval;
1155 }
1156
1157 void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1158 {
1159 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1160 uint32_t mask = (1 << CP0TCBd_TBE);
1161 uint32_t newval;
1162 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1163
1164 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1165 mask |= (1 << CP0TCBd_CurVPE);
1166 if (other_tc == other->current_tc) {
1167 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1168 other->active_tc.CP0_TCBind = newval;
1169 } else {
1170 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1171 other->tcs[other_tc].CP0_TCBind = newval;
1172 }
1173 }
1174
1175 void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1176 {
1177 env->active_tc.PC = arg1;
1178 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1179 env->lladdr = 0ULL;
1180 /* MIPS16 not implemented. */
1181 }
1182
1183 void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1184 {
1185 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1186 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1187
1188 if (other_tc == other->current_tc) {
1189 other->active_tc.PC = arg1;
1190 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1191 other->lladdr = 0ULL;
1192 /* MIPS16 not implemented. */
1193 } else {
1194 other->tcs[other_tc].PC = arg1;
1195 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1196 other->lladdr = 0ULL;
1197 /* MIPS16 not implemented. */
1198 }
1199 }
1200
1201 void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1202 {
1203 MIPSCPU *cpu = mips_env_get_cpu(env);
1204
1205 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1206
1207 // TODO: Halt TC / Restart (if allocated+active) TC.
1208 if (env->active_tc.CP0_TCHalt & 1) {
1209 mips_tc_sleep(cpu, env->current_tc);
1210 } else {
1211 mips_tc_wake(cpu, env->current_tc);
1212 }
1213 }
1214
1215 void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1216 {
1217 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1218 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1219 MIPSCPU *other_cpu = mips_env_get_cpu(other);
1220
1221 // TODO: Halt TC / Restart (if allocated+active) TC.
1222
1223 if (other_tc == other->current_tc)
1224 other->active_tc.CP0_TCHalt = arg1;
1225 else
1226 other->tcs[other_tc].CP0_TCHalt = arg1;
1227
1228 if (arg1 & 1) {
1229 mips_tc_sleep(other_cpu, other_tc);
1230 } else {
1231 mips_tc_wake(other_cpu, other_tc);
1232 }
1233 }
1234
1235 void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1236 {
1237 env->active_tc.CP0_TCContext = arg1;
1238 }
1239
1240 void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1241 {
1242 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1243 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1244
1245 if (other_tc == other->current_tc)
1246 other->active_tc.CP0_TCContext = arg1;
1247 else
1248 other->tcs[other_tc].CP0_TCContext = arg1;
1249 }
1250
1251 void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1252 {
1253 env->active_tc.CP0_TCSchedule = arg1;
1254 }
1255
1256 void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1257 {
1258 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1259 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1260
1261 if (other_tc == other->current_tc)
1262 other->active_tc.CP0_TCSchedule = arg1;
1263 else
1264 other->tcs[other_tc].CP0_TCSchedule = arg1;
1265 }
1266
1267 void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1268 {
1269 env->active_tc.CP0_TCScheFBack = arg1;
1270 }
1271
1272 void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1273 {
1274 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1275 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1276
1277 if (other_tc == other->current_tc)
1278 other->active_tc.CP0_TCScheFBack = arg1;
1279 else
1280 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1281 }
1282
1283 void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
1284 {
1285 /* 1k pages not implemented */
1286 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1287 env->CP0_EntryLo1 = (arg1 & MTC0_ENTRYLO_MASK(env))
1288 | (rxi << (CP0EnLo_XI - 30));
1289 }
1290
1291 #if defined(TARGET_MIPS64)
1292 void helper_dmtc0_entrylo1(CPUMIPSState *env, uint64_t arg1)
1293 {
1294 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1295 env->CP0_EntryLo1 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1296 }
1297 #endif
1298
1299 void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
1300 {
1301 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1302 }
1303
1304 void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
1305 {
1306 uint64_t mask = arg1 >> (TARGET_PAGE_BITS + 1);
1307 if (!(env->insn_flags & ISA_MIPS32R6) || (arg1 == ~0) ||
1308 (mask == 0x0000 || mask == 0x0003 || mask == 0x000F ||
1309 mask == 0x003F || mask == 0x00FF || mask == 0x03FF ||
1310 mask == 0x0FFF || mask == 0x3FFF || mask == 0xFFFF)) {
1311 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1312 }
1313 }
1314
1315 void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
1316 {
1317 /* SmartMIPS not implemented */
1318 /* 1k pages not implemented */
1319 env->CP0_PageGrain = (arg1 & env->CP0_PageGrain_rw_bitmask) |
1320 (env->CP0_PageGrain & ~env->CP0_PageGrain_rw_bitmask);
1321 compute_hflags(env);
1322 restore_pamask(env);
1323 }
1324
1325 void helper_mtc0_segctl0(CPUMIPSState *env, target_ulong arg1)
1326 {
1327 CPUState *cs = CPU(mips_env_get_cpu(env));
1328
1329 env->CP0_SegCtl0 = arg1 & CP0SC0_MASK;
1330 tlb_flush(cs);
1331 }
1332
1333 void helper_mtc0_segctl1(CPUMIPSState *env, target_ulong arg1)
1334 {
1335 CPUState *cs = CPU(mips_env_get_cpu(env));
1336
1337 env->CP0_SegCtl1 = arg1 & CP0SC1_MASK;
1338 tlb_flush(cs);
1339 }
1340
1341 void helper_mtc0_segctl2(CPUMIPSState *env, target_ulong arg1)
1342 {
1343 CPUState *cs = CPU(mips_env_get_cpu(env));
1344
1345 env->CP0_SegCtl2 = arg1 & CP0SC2_MASK;
1346 tlb_flush(cs);
1347 }
1348
1349 void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
1350 {
1351 if (env->insn_flags & ISA_MIPS32R6) {
1352 if (arg1 < env->tlb->nb_tlb) {
1353 env->CP0_Wired = arg1;
1354 }
1355 } else {
1356 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1357 }
1358 }
1359
1360 void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
1361 {
1362 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1363 }
1364
1365 void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
1366 {
1367 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1368 }
1369
1370 void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
1371 {
1372 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1373 }
1374
1375 void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
1376 {
1377 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1378 }
1379
1380 void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
1381 {
1382 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1383 }
1384
1385 void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
1386 {
1387 uint32_t mask = 0x0000000F;
1388
1389 if ((env->CP0_Config1 & (1 << CP0C1_PC)) &&
1390 (env->insn_flags & ISA_MIPS32R6)) {
1391 mask |= (1 << 4);
1392 }
1393 if (env->insn_flags & ISA_MIPS32R6) {
1394 mask |= (1 << 5);
1395 }
1396 if (env->CP0_Config3 & (1 << CP0C3_ULRI)) {
1397 mask |= (1 << 29);
1398
1399 if (arg1 & (1 << 29)) {
1400 env->hflags |= MIPS_HFLAG_HWRENA_ULR;
1401 } else {
1402 env->hflags &= ~MIPS_HFLAG_HWRENA_ULR;
1403 }
1404 }
1405
1406 env->CP0_HWREna = arg1 & mask;
1407 }
1408
1409 void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
1410 {
1411 qemu_mutex_lock_iothread();
1412 cpu_mips_store_count(env, arg1);
1413 qemu_mutex_unlock_iothread();
1414 }
1415
1416 void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1417 {
1418 target_ulong old, val, mask;
1419 mask = (TARGET_PAGE_MASK << 1) | env->CP0_EntryHi_ASID_mask;
1420 if (((env->CP0_Config4 >> CP0C4_IE) & 0x3) >= 2) {
1421 mask |= 1 << CP0EnHi_EHINV;
1422 }
1423
1424 /* 1k pages not implemented */
1425 #if defined(TARGET_MIPS64)
1426 if (env->insn_flags & ISA_MIPS32R6) {
1427 int entryhi_r = extract64(arg1, 62, 2);
1428 int config0_at = extract32(env->CP0_Config0, 13, 2);
1429 bool no_supervisor = (env->CP0_Status_rw_bitmask & 0x8) == 0;
1430 if ((entryhi_r == 2) ||
1431 (entryhi_r == 1 && (no_supervisor || config0_at == 1))) {
1432 /* skip EntryHi.R field if new value is reserved */
1433 mask &= ~(0x3ull << 62);
1434 }
1435 }
1436 mask &= env->SEGMask;
1437 #endif
1438 old = env->CP0_EntryHi;
1439 val = (arg1 & mask) | (old & ~mask);
1440 env->CP0_EntryHi = val;
1441 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1442 sync_c0_entryhi(env, env->current_tc);
1443 }
1444 /* If the ASID changes, flush qemu's TLB. */
1445 if ((old & env->CP0_EntryHi_ASID_mask) !=
1446 (val & env->CP0_EntryHi_ASID_mask)) {
1447 tlb_flush(CPU(mips_env_get_cpu(env)));
1448 }
1449 }
1450
1451 void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1452 {
1453 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1454 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1455
1456 other->CP0_EntryHi = arg1;
1457 sync_c0_entryhi(other, other_tc);
1458 }
1459
1460 void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
1461 {
1462 qemu_mutex_lock_iothread();
1463 cpu_mips_store_compare(env, arg1);
1464 qemu_mutex_unlock_iothread();
1465 }
1466
1467 void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
1468 {
1469 MIPSCPU *cpu = mips_env_get_cpu(env);
1470 uint32_t val, old;
1471
1472 old = env->CP0_Status;
1473 cpu_mips_store_status(env, arg1);
1474 val = env->CP0_Status;
1475
1476 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1477 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1478 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1479 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1480 env->CP0_Cause);
1481 switch (cpu_mmu_index(env, false)) {
1482 case 3:
1483 qemu_log(", ERL\n");
1484 break;
1485 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1486 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1487 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1488 default:
1489 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
1490 break;
1491 }
1492 }
1493 }
1494
1495 void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
1496 {
1497 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1498 uint32_t mask = env->CP0_Status_rw_bitmask & ~0xf1000018;
1499 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1500
1501 other->CP0_Status = (other->CP0_Status & ~mask) | (arg1 & mask);
1502 sync_c0_status(env, other, other_tc);
1503 }
1504
1505 void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
1506 {
1507 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1508 }
1509
1510 void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
1511 {
1512 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1513 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1514 }
1515
1516 void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
1517 {
1518 qemu_mutex_lock_iothread();
1519 cpu_mips_store_cause(env, arg1);
1520 qemu_mutex_unlock_iothread();
1521 }
1522
1523 void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
1524 {
1525 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1526 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1527
1528 cpu_mips_store_cause(other, arg1);
1529 }
1530
1531 target_ulong helper_mftc0_epc(CPUMIPSState *env)
1532 {
1533 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1534 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1535
1536 return other->CP0_EPC;
1537 }
1538
1539 target_ulong helper_mftc0_ebase(CPUMIPSState *env)
1540 {
1541 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1542 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1543
1544 return other->CP0_EBase;
1545 }
1546
1547 void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
1548 {
1549 target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask;
1550 if (arg1 & env->CP0_EBaseWG_rw_bitmask) {
1551 mask |= ~0x3FFFFFFF;
1552 }
1553 env->CP0_EBase = (env->CP0_EBase & ~mask) | (arg1 & mask);
1554 }
1555
1556 void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
1557 {
1558 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1559 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1560 target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask;
1561 if (arg1 & env->CP0_EBaseWG_rw_bitmask) {
1562 mask |= ~0x3FFFFFFF;
1563 }
1564 other->CP0_EBase = (other->CP0_EBase & ~mask) | (arg1 & mask);
1565 }
1566
1567 target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
1568 {
1569 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1570 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1571
1572 switch (idx) {
1573 case 0: return other->CP0_Config0;
1574 case 1: return other->CP0_Config1;
1575 case 2: return other->CP0_Config2;
1576 case 3: return other->CP0_Config3;
1577 /* 4 and 5 are reserved. */
1578 case 6: return other->CP0_Config6;
1579 case 7: return other->CP0_Config7;
1580 default:
1581 break;
1582 }
1583 return 0;
1584 }
1585
1586 void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
1587 {
1588 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1589 }
1590
1591 void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
1592 {
1593 /* tertiary/secondary caches not implemented */
1594 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1595 }
1596
1597 void helper_mtc0_config3(CPUMIPSState *env, target_ulong arg1)
1598 {
1599 if (env->insn_flags & ASE_MICROMIPS) {
1600 env->CP0_Config3 = (env->CP0_Config3 & ~(1 << CP0C3_ISA_ON_EXC)) |
1601 (arg1 & (1 << CP0C3_ISA_ON_EXC));
1602 }
1603 }
1604
1605 void helper_mtc0_config4(CPUMIPSState *env, target_ulong arg1)
1606 {
1607 env->CP0_Config4 = (env->CP0_Config4 & (~env->CP0_Config4_rw_bitmask)) |
1608 (arg1 & env->CP0_Config4_rw_bitmask);
1609 }
1610
1611 void helper_mtc0_config5(CPUMIPSState *env, target_ulong arg1)
1612 {
1613 env->CP0_Config5 = (env->CP0_Config5 & (~env->CP0_Config5_rw_bitmask)) |
1614 (arg1 & env->CP0_Config5_rw_bitmask);
1615 compute_hflags(env);
1616 }
1617
1618 void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
1619 {
1620 target_long mask = env->CP0_LLAddr_rw_bitmask;
1621 arg1 = arg1 << env->CP0_LLAddr_shift;
1622 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1623 }
1624
1625 #define MTC0_MAAR_MASK(env) \
1626 ((0x1ULL << 63) | ((env->PAMask >> 4) & ~0xFFFull) | 0x3)
1627
1628 void helper_mtc0_maar(CPUMIPSState *env, target_ulong arg1)
1629 {
1630 env->CP0_MAAR[env->CP0_MAARI] = arg1 & MTC0_MAAR_MASK(env);
1631 }
1632
1633 void helper_mthc0_maar(CPUMIPSState *env, target_ulong arg1)
1634 {
1635 env->CP0_MAAR[env->CP0_MAARI] =
1636 (((uint64_t) arg1 << 32) & MTC0_MAAR_MASK(env)) |
1637 (env->CP0_MAAR[env->CP0_MAARI] & 0x00000000ffffffffULL);
1638 }
1639
1640 void helper_mtc0_maari(CPUMIPSState *env, target_ulong arg1)
1641 {
1642 int index = arg1 & 0x3f;
1643 if (index == 0x3f) {
1644 /* Software may write all ones to INDEX to determine the
1645 maximum value supported. */
1646 env->CP0_MAARI = MIPS_MAAR_MAX - 1;
1647 } else if (index < MIPS_MAAR_MAX) {
1648 env->CP0_MAARI = index;
1649 }
1650 /* Other than the all ones, if the
1651 value written is not supported, then INDEX is unchanged
1652 from its previous value. */
1653 }
1654
1655 void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1656 {
1657 /* Watch exceptions for instructions, data loads, data stores
1658 not implemented. */
1659 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1660 }
1661
1662 void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1663 {
1664 int mask = 0x40000FF8 | (env->CP0_EntryHi_ASID_mask << CP0WH_ASID);
1665 env->CP0_WatchHi[sel] = arg1 & mask;
1666 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1667 }
1668
1669 void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
1670 {
1671 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1672 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1673 }
1674
1675 void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
1676 {
1677 env->CP0_Framemask = arg1; /* XXX */
1678 }
1679
1680 void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
1681 {
1682 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1683 if (arg1 & (1 << CP0DB_DM))
1684 env->hflags |= MIPS_HFLAG_DM;
1685 else
1686 env->hflags &= ~MIPS_HFLAG_DM;
1687 }
1688
1689 void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
1690 {
1691 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1692 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1693 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1694
1695 /* XXX: Might be wrong, check with EJTAG spec. */
1696 if (other_tc == other->current_tc)
1697 other->active_tc.CP0_Debug_tcstatus = val;
1698 else
1699 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1700 other->CP0_Debug = (other->CP0_Debug &
1701 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1702 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1703 }
1704
1705 void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
1706 {
1707 env->CP0_Performance0 = arg1 & 0x000007ff;
1708 }
1709
1710 void helper_mtc0_errctl(CPUMIPSState *env, target_ulong arg1)
1711 {
1712 int32_t wst = arg1 & (1 << CP0EC_WST);
1713 int32_t spr = arg1 & (1 << CP0EC_SPR);
1714 int32_t itc = env->itc_tag ? (arg1 & (1 << CP0EC_ITC)) : 0;
1715
1716 env->CP0_ErrCtl = wst | spr | itc;
1717
1718 if (itc && !wst && !spr) {
1719 env->hflags |= MIPS_HFLAG_ITC_CACHE;
1720 } else {
1721 env->hflags &= ~MIPS_HFLAG_ITC_CACHE;
1722 }
1723 }
1724
1725 void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
1726 {
1727 if (env->hflags & MIPS_HFLAG_ITC_CACHE) {
1728 /* If CACHE instruction is configured for ITC tags then make all
1729 CP0.TagLo bits writable. The actual write to ITC Configuration
1730 Tag will take care of the read-only bits. */
1731 env->CP0_TagLo = arg1;
1732 } else {
1733 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1734 }
1735 }
1736
1737 void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
1738 {
1739 env->CP0_DataLo = arg1; /* XXX */
1740 }
1741
1742 void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
1743 {
1744 env->CP0_TagHi = arg1; /* XXX */
1745 }
1746
1747 void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
1748 {
1749 env->CP0_DataHi = arg1; /* XXX */
1750 }
1751
1752 /* MIPS MT functions */
1753 target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
1754 {
1755 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1756 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1757
1758 if (other_tc == other->current_tc)
1759 return other->active_tc.gpr[sel];
1760 else
1761 return other->tcs[other_tc].gpr[sel];
1762 }
1763
1764 target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
1765 {
1766 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1767 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1768
1769 if (other_tc == other->current_tc)
1770 return other->active_tc.LO[sel];
1771 else
1772 return other->tcs[other_tc].LO[sel];
1773 }
1774
1775 target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
1776 {
1777 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1778 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1779
1780 if (other_tc == other->current_tc)
1781 return other->active_tc.HI[sel];
1782 else
1783 return other->tcs[other_tc].HI[sel];
1784 }
1785
1786 target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
1787 {
1788 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1789 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1790
1791 if (other_tc == other->current_tc)
1792 return other->active_tc.ACX[sel];
1793 else
1794 return other->tcs[other_tc].ACX[sel];
1795 }
1796
1797 target_ulong helper_mftdsp(CPUMIPSState *env)
1798 {
1799 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1800 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1801
1802 if (other_tc == other->current_tc)
1803 return other->active_tc.DSPControl;
1804 else
1805 return other->tcs[other_tc].DSPControl;
1806 }
1807
1808 void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1809 {
1810 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1811 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1812
1813 if (other_tc == other->current_tc)
1814 other->active_tc.gpr[sel] = arg1;
1815 else
1816 other->tcs[other_tc].gpr[sel] = arg1;
1817 }
1818
1819 void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1820 {
1821 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1822 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1823
1824 if (other_tc == other->current_tc)
1825 other->active_tc.LO[sel] = arg1;
1826 else
1827 other->tcs[other_tc].LO[sel] = arg1;
1828 }
1829
1830 void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1831 {
1832 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1833 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1834
1835 if (other_tc == other->current_tc)
1836 other->active_tc.HI[sel] = arg1;
1837 else
1838 other->tcs[other_tc].HI[sel] = arg1;
1839 }
1840
1841 void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1842 {
1843 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1844 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1845
1846 if (other_tc == other->current_tc)
1847 other->active_tc.ACX[sel] = arg1;
1848 else
1849 other->tcs[other_tc].ACX[sel] = arg1;
1850 }
1851
1852 void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
1853 {
1854 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1855 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1856
1857 if (other_tc == other->current_tc)
1858 other->active_tc.DSPControl = arg1;
1859 else
1860 other->tcs[other_tc].DSPControl = arg1;
1861 }
1862
1863 /* MIPS MT functions */
1864 target_ulong helper_dmt(void)
1865 {
1866 // TODO
1867 return 0;
1868 }
1869
1870 target_ulong helper_emt(void)
1871 {
1872 // TODO
1873 return 0;
1874 }
1875
1876 target_ulong helper_dvpe(CPUMIPSState *env)
1877 {
1878 CPUState *other_cs = first_cpu;
1879 target_ulong prev = env->mvp->CP0_MVPControl;
1880
1881 CPU_FOREACH(other_cs) {
1882 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1883 /* Turn off all VPEs except the one executing the dvpe. */
1884 if (&other_cpu->env != env) {
1885 other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
1886 mips_vpe_sleep(other_cpu);
1887 }
1888 }
1889 return prev;
1890 }
1891
1892 target_ulong helper_evpe(CPUMIPSState *env)
1893 {
1894 CPUState *other_cs = first_cpu;
1895 target_ulong prev = env->mvp->CP0_MVPControl;
1896
1897 CPU_FOREACH(other_cs) {
1898 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1899
1900 if (&other_cpu->env != env
1901 /* If the VPE is WFI, don't disturb its sleep. */
1902 && !mips_vpe_is_wfi(other_cpu)) {
1903 /* Enable the VPE. */
1904 other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
1905 mips_vpe_wake(other_cpu); /* And wake it up. */
1906 }
1907 }
1908 return prev;
1909 }
1910 #endif /* !CONFIG_USER_ONLY */
1911
1912 void helper_fork(target_ulong arg1, target_ulong arg2)
1913 {
1914 // arg1 = rt, arg2 = rs
1915 // TODO: store to TC register
1916 }
1917
1918 target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
1919 {
1920 target_long arg1 = arg;
1921
1922 if (arg1 < 0) {
1923 /* No scheduling policy implemented. */
1924 if (arg1 != -2) {
1925 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1926 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1927 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1928 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1929 do_raise_exception(env, EXCP_THREAD, GETPC());
1930 }
1931 }
1932 } else if (arg1 == 0) {
1933 if (0 /* TODO: TC underflow */) {
1934 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1935 do_raise_exception(env, EXCP_THREAD, GETPC());
1936 } else {
1937 // TODO: Deallocate TC
1938 }
1939 } else if (arg1 > 0) {
1940 /* Yield qualifier inputs not implemented. */
1941 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1942 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1943 do_raise_exception(env, EXCP_THREAD, GETPC());
1944 }
1945 return env->CP0_YQMask;
1946 }
1947
1948 /* R6 Multi-threading */
1949 #ifndef CONFIG_USER_ONLY
1950 target_ulong helper_dvp(CPUMIPSState *env)
1951 {
1952 CPUState *other_cs = first_cpu;
1953 target_ulong prev = env->CP0_VPControl;
1954
1955 if (!((env->CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
1956 CPU_FOREACH(other_cs) {
1957 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1958 /* Turn off all VPs except the one executing the dvp. */
1959 if (&other_cpu->env != env) {
1960 mips_vpe_sleep(other_cpu);
1961 }
1962 }
1963 env->CP0_VPControl |= (1 << CP0VPCtl_DIS);
1964 }
1965 return prev;
1966 }
1967
1968 target_ulong helper_evp(CPUMIPSState *env)
1969 {
1970 CPUState *other_cs = first_cpu;
1971 target_ulong prev = env->CP0_VPControl;
1972
1973 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
1974 CPU_FOREACH(other_cs) {
1975 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1976 if ((&other_cpu->env != env) && !mips_vp_is_wfi(other_cpu)) {
1977 /* If the VP is WFI, don't disturb its sleep.
1978 * Otherwise, wake it up. */
1979 mips_vpe_wake(other_cpu);
1980 }
1981 }
1982 env->CP0_VPControl &= ~(1 << CP0VPCtl_DIS);
1983 }
1984 return prev;
1985 }
1986 #endif /* !CONFIG_USER_ONLY */
1987
1988 #ifndef CONFIG_USER_ONLY
1989 /* TLB management */
1990 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
1991 {
1992 /* Discard entries from env->tlb[first] onwards. */
1993 while (env->tlb->tlb_in_use > first) {
1994 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1995 }
1996 }
1997
1998 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
1999 {
2000 #if defined(TARGET_MIPS64)
2001 return extract64(entrylo, 6, 54);
2002 #else
2003 return extract64(entrylo, 6, 24) | /* PFN */
2004 (extract64(entrylo, 32, 32) << 24); /* PFNX */
2005 #endif
2006 }
2007
2008 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
2009 {
2010 r4k_tlb_t *tlb;
2011 uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
2012
2013 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
2014 tlb = &env->tlb->mmu.r4k.tlb[idx];
2015 if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
2016 tlb->EHINV = 1;
2017 return;
2018 }
2019 tlb->EHINV = 0;
2020 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
2021 #if defined(TARGET_MIPS64)
2022 tlb->VPN &= env->SEGMask;
2023 #endif
2024 tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2025 tlb->PageMask = env->CP0_PageMask;
2026 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
2027 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
2028 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
2029 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
2030 tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
2031 tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
2032 tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
2033 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
2034 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
2035 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
2036 tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
2037 tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
2038 tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
2039 }
2040
2041 void r4k_helper_tlbinv(CPUMIPSState *env)
2042 {
2043 int idx;
2044 r4k_tlb_t *tlb;
2045 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2046
2047 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2048 tlb = &env->tlb->mmu.r4k.tlb[idx];
2049 if (!tlb->G && tlb->ASID == ASID) {
2050 tlb->EHINV = 1;
2051 }
2052 }
2053 cpu_mips_tlb_flush(env);
2054 }
2055
2056 void r4k_helper_tlbinvf(CPUMIPSState *env)
2057 {
2058 int idx;
2059
2060 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2061 env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
2062 }
2063 cpu_mips_tlb_flush(env);
2064 }
2065
2066 void r4k_helper_tlbwi(CPUMIPSState *env)
2067 {
2068 r4k_tlb_t *tlb;
2069 int idx;
2070 target_ulong VPN;
2071 uint16_t ASID;
2072 bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
2073
2074 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2075 tlb = &env->tlb->mmu.r4k.tlb[idx];
2076 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
2077 #if defined(TARGET_MIPS64)
2078 VPN &= env->SEGMask;
2079 #endif
2080 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2081 EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
2082 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
2083 V0 = (env->CP0_EntryLo0 & 2) != 0;
2084 D0 = (env->CP0_EntryLo0 & 4) != 0;
2085 XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
2086 RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
2087 V1 = (env->CP0_EntryLo1 & 2) != 0;
2088 D1 = (env->CP0_EntryLo1 & 4) != 0;
2089 XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
2090 RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
2091
2092 /* Discard cached TLB entries, unless tlbwi is just upgrading access
2093 permissions on the current entry. */
2094 if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
2095 (!tlb->EHINV && EHINV) ||
2096 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
2097 (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
2098 (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
2099 (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
2100 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2101 }
2102
2103 r4k_invalidate_tlb(env, idx, 0);
2104 r4k_fill_tlb(env, idx);
2105 }
2106
2107 void r4k_helper_tlbwr(CPUMIPSState *env)
2108 {
2109 int r = cpu_mips_get_random(env);
2110
2111 r4k_invalidate_tlb(env, r, 1);
2112 r4k_fill_tlb(env, r);
2113 }
2114
2115 void r4k_helper_tlbp(CPUMIPSState *env)
2116 {
2117 r4k_tlb_t *tlb;
2118 target_ulong mask;
2119 target_ulong tag;
2120 target_ulong VPN;
2121 uint16_t ASID;
2122 int i;
2123
2124 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2125 for (i = 0; i < env->tlb->nb_tlb; i++) {
2126 tlb = &env->tlb->mmu.r4k.tlb[i];
2127 /* 1k pages are not supported. */
2128 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2129 tag = env->CP0_EntryHi & ~mask;
2130 VPN = tlb->VPN & ~mask;
2131 #if defined(TARGET_MIPS64)
2132 tag &= env->SEGMask;
2133 #endif
2134 /* Check ASID, virtual page number & size */
2135 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
2136 /* TLB match */
2137 env->CP0_Index = i;
2138 break;
2139 }
2140 }
2141 if (i == env->tlb->nb_tlb) {
2142 /* No match. Discard any shadow entries, if any of them match. */
2143 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
2144 tlb = &env->tlb->mmu.r4k.tlb[i];
2145 /* 1k pages are not supported. */
2146 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2147 tag = env->CP0_EntryHi & ~mask;
2148 VPN = tlb->VPN & ~mask;
2149 #if defined(TARGET_MIPS64)
2150 tag &= env->SEGMask;
2151 #endif
2152 /* Check ASID, virtual page number & size */
2153 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
2154 r4k_mips_tlb_flush_extra (env, i);
2155 break;
2156 }
2157 }
2158
2159 env->CP0_Index |= 0x80000000;
2160 }
2161 }
2162
2163 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
2164 {
2165 #if defined(TARGET_MIPS64)
2166 return tlb_pfn << 6;
2167 #else
2168 return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
2169 (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
2170 #endif
2171 }
2172
2173 void r4k_helper_tlbr(CPUMIPSState *env)
2174 {
2175 r4k_tlb_t *tlb;
2176 uint16_t ASID;
2177 int idx;
2178
2179 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2180 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2181 tlb = &env->tlb->mmu.r4k.tlb[idx];
2182
2183 /* If this will change the current ASID, flush qemu's TLB. */
2184 if (ASID != tlb->ASID)
2185 cpu_mips_tlb_flush(env);
2186
2187 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2188
2189 if (tlb->EHINV) {
2190 env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
2191 env->CP0_PageMask = 0;
2192 env->CP0_EntryLo0 = 0;
2193 env->CP0_EntryLo1 = 0;
2194 } else {
2195 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
2196 env->CP0_PageMask = tlb->PageMask;
2197 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
2198 ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
2199 ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
2200 get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
2201 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
2202 ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
2203 ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
2204 get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
2205 }
2206 }
2207
2208 void helper_tlbwi(CPUMIPSState *env)
2209 {
2210 env->tlb->helper_tlbwi(env);
2211 }
2212
2213 void helper_tlbwr(CPUMIPSState *env)
2214 {
2215 env->tlb->helper_tlbwr(env);
2216 }
2217
2218 void helper_tlbp(CPUMIPSState *env)
2219 {
2220 env->tlb->helper_tlbp(env);
2221 }
2222
2223 void helper_tlbr(CPUMIPSState *env)
2224 {
2225 env->tlb->helper_tlbr(env);
2226 }
2227
2228 void helper_tlbinv(CPUMIPSState *env)
2229 {
2230 env->tlb->helper_tlbinv(env);
2231 }
2232
2233 void helper_tlbinvf(CPUMIPSState *env)
2234 {
2235 env->tlb->helper_tlbinvf(env);
2236 }
2237
2238 /* Specials */
2239 target_ulong helper_di(CPUMIPSState *env)
2240 {
2241 target_ulong t0 = env->CP0_Status;
2242
2243 env->CP0_Status = t0 & ~(1 << CP0St_IE);
2244 return t0;
2245 }
2246
2247 target_ulong helper_ei(CPUMIPSState *env)
2248 {
2249 target_ulong t0 = env->CP0_Status;
2250
2251 env->CP0_Status = t0 | (1 << CP0St_IE);
2252 return t0;
2253 }
2254
2255 static void debug_pre_eret(CPUMIPSState *env)
2256 {
2257 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2258 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2259 env->active_tc.PC, env->CP0_EPC);
2260 if (env->CP0_Status & (1 << CP0St_ERL))
2261 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2262 if (env->hflags & MIPS_HFLAG_DM)
2263 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2264 qemu_log("\n");
2265 }
2266 }
2267
2268 static void debug_post_eret(CPUMIPSState *env)
2269 {
2270 MIPSCPU *cpu = mips_env_get_cpu(env);
2271
2272 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2273 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2274 env->active_tc.PC, env->CP0_EPC);
2275 if (env->CP0_Status & (1 << CP0St_ERL))
2276 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2277 if (env->hflags & MIPS_HFLAG_DM)
2278 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2279 switch (cpu_mmu_index(env, false)) {
2280 case 3:
2281 qemu_log(", ERL\n");
2282 break;
2283 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
2284 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
2285 case MIPS_HFLAG_KM: qemu_log("\n"); break;
2286 default:
2287 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
2288 break;
2289 }
2290 }
2291 }
2292
2293 static void set_pc(CPUMIPSState *env, target_ulong error_pc)
2294 {
2295 env->active_tc.PC = error_pc & ~(target_ulong)1;
2296 if (error_pc & 1) {
2297 env->hflags |= MIPS_HFLAG_M16;
2298 } else {
2299 env->hflags &= ~(MIPS_HFLAG_M16);
2300 }
2301 }
2302
2303 static inline void exception_return(CPUMIPSState *env)
2304 {
2305 debug_pre_eret(env);
2306 if (env->CP0_Status & (1 << CP0St_ERL)) {
2307 set_pc(env, env->CP0_ErrorEPC);
2308 env->CP0_Status &= ~(1 << CP0St_ERL);
2309 } else {
2310 set_pc(env, env->CP0_EPC);
2311 env->CP0_Status &= ~(1 << CP0St_EXL);
2312 }
2313 compute_hflags(env);
2314 debug_post_eret(env);
2315 }
2316
2317 void helper_eret(CPUMIPSState *env)
2318 {
2319 exception_return(env);
2320 env->lladdr = 1;
2321 }
2322
2323 void helper_eretnc(CPUMIPSState *env)
2324 {
2325 exception_return(env);
2326 }
2327
2328 void helper_deret(CPUMIPSState *env)
2329 {
2330 debug_pre_eret(env);
2331 set_pc(env, env->CP0_DEPC);
2332
2333 env->hflags &= ~MIPS_HFLAG_DM;
2334 compute_hflags(env);
2335 debug_post_eret(env);
2336 }
2337 #endif /* !CONFIG_USER_ONLY */
2338
2339 static inline void check_hwrena(CPUMIPSState *env, int reg, uintptr_t pc)
2340 {
2341 if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << reg))) {
2342 return;
2343 }
2344 do_raise_exception(env, EXCP_RI, pc);
2345 }
2346
2347 target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
2348 {
2349 check_hwrena(env, 0, GETPC());
2350 return env->CP0_EBase & 0x3ff;
2351 }
2352
2353 target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
2354 {
2355 check_hwrena(env, 1, GETPC());
2356 return env->SYNCI_Step;
2357 }
2358
2359 target_ulong helper_rdhwr_cc(CPUMIPSState *env)
2360 {
2361 int32_t count;
2362 check_hwrena(env, 2, GETPC());
2363 #ifdef CONFIG_USER_ONLY
2364 count = env->CP0_Count;
2365 #else
2366 qemu_mutex_lock_iothread();
2367 count = (int32_t)cpu_mips_get_count(env);
2368 qemu_mutex_unlock_iothread();
2369 #endif
2370 return count;
2371 }
2372
2373 target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
2374 {
2375 check_hwrena(env, 3, GETPC());
2376 return env->CCRes;
2377 }
2378
2379 target_ulong helper_rdhwr_performance(CPUMIPSState *env)
2380 {
2381 check_hwrena(env, 4, GETPC());
2382 return env->CP0_Performance0;
2383 }
2384
2385 target_ulong helper_rdhwr_xnp(CPUMIPSState *env)
2386 {
2387 check_hwrena(env, 5, GETPC());
2388 return (env->CP0_Config5 >> CP0C5_XNP) & 1;
2389 }
2390
2391 void helper_pmon(CPUMIPSState *env, int function)
2392 {
2393 function /= 2;
2394 switch (function) {
2395 case 2: /* TODO: char inbyte(int waitflag); */
2396 if (env->active_tc.gpr[4] == 0)
2397 env->active_tc.gpr[2] = -1;
2398 /* Fall through */
2399 case 11: /* TODO: char inbyte (void); */
2400 env->active_tc.gpr[2] = -1;
2401 break;
2402 case 3:
2403 case 12:
2404 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2405 break;
2406 case 17:
2407 break;
2408 case 158:
2409 {
2410 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2411 printf("%s", fmt);
2412 }
2413 break;
2414 }
2415 }
2416
2417 void helper_wait(CPUMIPSState *env)
2418 {
2419 CPUState *cs = CPU(mips_env_get_cpu(env));
2420
2421 cs->halted = 1;
2422 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
2423 /* Last instruction in the block, PC was updated before
2424 - no need to recover PC and icount */
2425 raise_exception(env, EXCP_HLT);
2426 }
2427
2428 #if !defined(CONFIG_USER_ONLY)
2429
2430 void mips_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
2431 MMUAccessType access_type,
2432 int mmu_idx, uintptr_t retaddr)
2433 {
2434 MIPSCPU *cpu = MIPS_CPU(cs);
2435 CPUMIPSState *env = &cpu->env;
2436 int error_code = 0;
2437 int excp;
2438
2439 env->CP0_BadVAddr = addr;
2440
2441 if (access_type == MMU_DATA_STORE) {
2442 excp = EXCP_AdES;
2443 } else {
2444 excp = EXCP_AdEL;
2445 if (access_type == MMU_INST_FETCH) {
2446 error_code |= EXCP_INST_NOTAVAIL;
2447 }
2448 }
2449
2450 do_raise_exception_err(env, excp, error_code, retaddr);
2451 }
2452
2453 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
2454 int mmu_idx, uintptr_t retaddr)
2455 {
2456 int ret;
2457
2458 ret = mips_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
2459 if (ret) {
2460 MIPSCPU *cpu = MIPS_CPU(cs);
2461 CPUMIPSState *env = &cpu->env;
2462
2463 do_raise_exception_err(env, cs->exception_index,
2464 env->error_code, retaddr);
2465 }
2466 }
2467
2468 void mips_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2469 bool is_write, bool is_exec, int unused,
2470 unsigned size)
2471 {
2472 MIPSCPU *cpu = MIPS_CPU(cs);
2473 CPUMIPSState *env = &cpu->env;
2474
2475 /*
2476 * Raising an exception with KVM enabled will crash because it won't be from
2477 * the main execution loop so the longjmp won't have a matching setjmp.
2478 * Until we can trigger a bus error exception through KVM lets just ignore
2479 * the access.
2480 */
2481 if (kvm_enabled()) {
2482 return;
2483 }
2484
2485 if (is_exec) {
2486 raise_exception(env, EXCP_IBE);
2487 } else {
2488 raise_exception(env, EXCP_DBE);
2489 }
2490 }
2491 #endif /* !CONFIG_USER_ONLY */
2492
2493 /* Complex FPU operations which may need stack space. */
2494
2495 #define FLOAT_TWO32 make_float32(1 << 30)
2496 #define FLOAT_TWO64 make_float64(1ULL << 62)
2497
2498 #define FP_TO_INT32_OVERFLOW 0x7fffffff
2499 #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
2500
2501 /* convert MIPS rounding mode in FCR31 to IEEE library */
2502 unsigned int ieee_rm[] = {
2503 float_round_nearest_even,
2504 float_round_to_zero,
2505 float_round_up,
2506 float_round_down
2507 };
2508
2509 target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
2510 {
2511 target_ulong arg1 = 0;
2512
2513 switch (reg) {
2514 case 0:
2515 arg1 = (int32_t)env->active_fpu.fcr0;
2516 break;
2517 case 1:
2518 /* UFR Support - Read Status FR */
2519 if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) {
2520 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2521 arg1 = (int32_t)
2522 ((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR);
2523 } else {
2524 do_raise_exception(env, EXCP_RI, GETPC());
2525 }
2526 }
2527 break;
2528 case 5:
2529 /* FRE Support - read Config5.FRE bit */
2530 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
2531 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2532 arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1;
2533 } else {
2534 helper_raise_exception(env, EXCP_RI);
2535 }
2536 }
2537 break;
2538 case 25:
2539 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2540 break;
2541 case 26:
2542 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2543 break;
2544 case 28:
2545 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2546 break;
2547 default:
2548 arg1 = (int32_t)env->active_fpu.fcr31;
2549 break;
2550 }
2551
2552 return arg1;
2553 }
2554
2555 void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt)
2556 {
2557 switch (fs) {
2558 case 1:
2559 /* UFR Alias - Reset Status FR */
2560 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2561 return;
2562 }
2563 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2564 env->CP0_Status &= ~(1 << CP0St_FR);
2565 compute_hflags(env);
2566 } else {
2567 do_raise_exception(env, EXCP_RI, GETPC());
2568 }
2569 break;
2570 case 4:
2571 /* UNFR Alias - Set Status FR */
2572 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2573 return;
2574 }
2575 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2576 env->CP0_Status |= (1 << CP0St_FR);
2577 compute_hflags(env);
2578 } else {
2579 do_raise_exception(env, EXCP_RI, GETPC());
2580 }
2581 break;
2582 case 5:
2583 /* FRE Support - clear Config5.FRE bit */
2584 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2585 return;
2586 }
2587 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2588 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
2589 compute_hflags(env);
2590 } else {
2591 helper_raise_exception(env, EXCP_RI);
2592 }
2593 break;
2594 case 6:
2595 /* FRE Support - set Config5.FRE bit */
2596 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2597 return;
2598 }
2599 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2600 env->CP0_Config5 |= (1 << CP0C5_FRE);
2601 compute_hflags(env);
2602 } else {
2603 helper_raise_exception(env, EXCP_RI);
2604 }
2605 break;
2606 case 25:
2607 if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) {
2608 return;
2609 }
2610 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2611 ((arg1 & 0x1) << 23);
2612 break;
2613 case 26:
2614 if (arg1 & 0x007c0000)
2615 return;
2616 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2617 break;
2618 case 28:
2619 if (arg1 & 0x007c0000)
2620 return;
2621 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2622 ((arg1 & 0x4) << 22);
2623 break;
2624 case 31:
2625 env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) |
2626 (env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask));
2627 break;
2628 default:
2629 return;
2630 }
2631 restore_fp_status(env);
2632 set_float_exception_flags(0, &env->active_fpu.fp_status);
2633 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2634 do_raise_exception(env, EXCP_FPE, GETPC());
2635 }
2636
2637 int ieee_ex_to_mips(int xcpt)
2638 {
2639 int ret = 0;
2640 if (xcpt) {
2641 if (xcpt & float_flag_invalid) {
2642 ret |= FP_INVALID;
2643 }
2644 if (xcpt & float_flag_overflow) {
2645 ret |= FP_OVERFLOW;
2646 }
2647 if (xcpt & float_flag_underflow) {
2648 ret |= FP_UNDERFLOW;
2649 }
2650 if (xcpt & float_flag_divbyzero) {
2651 ret |= FP_DIV0;
2652 }
2653 if (xcpt & float_flag_inexact) {
2654 ret |= FP_INEXACT;
2655 }
2656 }
2657 return ret;
2658 }
2659
2660 static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
2661 {
2662 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2663
2664 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2665
2666 if (tmp) {
2667 set_float_exception_flags(0, &env->active_fpu.fp_status);
2668
2669 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
2670 do_raise_exception(env, EXCP_FPE, pc);
2671 } else {
2672 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2673 }
2674 }
2675 }
2676
2677 /* Float support.
2678 Single precition routines have a "s" suffix, double precision a
2679 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2680 paired single lower "pl", paired single upper "pu". */
2681
2682 /* unary operations, modifying fp status */
2683 uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
2684 {
2685 fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2686 update_fcr31(env, GETPC());
2687 return fdt0;
2688 }
2689
2690 uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
2691 {
2692 fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2693 update_fcr31(env, GETPC());
2694 return fst0;
2695 }
2696
2697 uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
2698 {
2699 uint64_t fdt2;
2700
2701 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2702 fdt2 = float64_maybe_silence_nan(fdt2, &env->active_fpu.fp_status);
2703 update_fcr31(env, GETPC());
2704 return fdt2;
2705 }
2706
2707 uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
2708 {
2709 uint64_t fdt2;
2710
2711 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2712 update_fcr31(env, GETPC());
2713 return fdt2;
2714 }
2715
2716 uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
2717 {
2718 uint64_t fdt2;
2719
2720 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2721 update_fcr31(env, GETPC());
2722 return fdt2;
2723 }
2724
2725 uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0)
2726 {
2727 uint64_t dt2;
2728
2729 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2730 if (get_float_exception_flags(&env->active_fpu.fp_status)
2731 & (float_flag_invalid | float_flag_overflow)) {
2732 dt2 = FP_TO_INT64_OVERFLOW;
2733 }
2734 update_fcr31(env, GETPC());
2735 return dt2;
2736 }
2737
2738 uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0)
2739 {
2740 uint64_t dt2;
2741
2742 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2743 if (get_float_exception_flags(&env->active_fpu.fp_status)
2744 & (float_flag_invalid | float_flag_overflow)) {
2745 dt2 = FP_TO_INT64_OVERFLOW;
2746 }
2747 update_fcr31(env, GETPC());
2748 return dt2;
2749 }
2750
2751 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
2752 {
2753 uint32_t fst2;
2754 uint32_t fsth2;
2755
2756 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2757 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2758 update_fcr31(env, GETPC());
2759 return ((uint64_t)fsth2 << 32) | fst2;
2760 }
2761
2762 uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
2763 {
2764 uint32_t wt2;
2765 uint32_t wth2;
2766 int excp, excph;
2767
2768 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2769 excp = get_float_exception_flags(&env->active_fpu.fp_status);
2770 if (excp & (float_flag_overflow | float_flag_invalid)) {
2771 wt2 = FP_TO_INT32_OVERFLOW;
2772 }
2773
2774 set_float_exception_flags(0, &env->active_fpu.fp_status);
2775 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2776 excph = get_float_exception_flags(&env->active_fpu.fp_status);
2777 if (excph & (float_flag_overflow | float_flag_invalid)) {
2778 wth2 = FP_TO_INT32_OVERFLOW;
2779 }
2780
2781 set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
2782 update_fcr31(env, GETPC());
2783
2784 return ((uint64_t)wth2 << 32) | wt2;
2785 }
2786
2787 uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
2788 {
2789 uint32_t fst2;
2790
2791 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2792 fst2 = float32_maybe_silence_nan(fst2, &env->active_fpu.fp_status);
2793 update_fcr31(env, GETPC());
2794 return fst2;
2795 }
2796
2797 uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
2798 {
2799 uint32_t fst2;
2800
2801 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2802 update_fcr31(env, GETPC());
2803 return fst2;
2804 }
2805
2806 uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
2807 {
2808 uint32_t fst2;
2809
2810 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2811 update_fcr31(env, GETPC());
2812 return fst2;
2813 }
2814
2815 uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
2816 {
2817 uint32_t wt2;
2818
2819 wt2 = wt0;
2820 update_fcr31(env, GETPC());
2821 return wt2;
2822 }
2823
2824 uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
2825 {
2826 uint32_t wt2;
2827
2828 wt2 = wth0;
2829 update_fcr31(env, GETPC());
2830 return wt2;
2831 }
2832
2833 uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0)
2834 {
2835 uint32_t wt2;
2836
2837 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2838 if (get_float_exception_flags(&env->active_fpu.fp_status)
2839 & (float_flag_invalid | float_flag_overflow)) {
2840 wt2 = FP_TO_INT32_OVERFLOW;
2841 }
2842 update_fcr31(env, GETPC());
2843 return wt2;
2844 }
2845
2846 uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0)
2847 {
2848 uint32_t wt2;
2849
2850 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2851 if (get_float_exception_flags(&env->active_fpu.fp_status)
2852 & (float_flag_invalid | float_flag_overflow)) {
2853 wt2 = FP_TO_INT32_OVERFLOW;
2854 }
2855 update_fcr31(env, GETPC());
2856 return wt2;
2857 }
2858
2859 uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0)
2860 {
2861 uint64_t dt2;
2862
2863 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2864 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2865 restore_rounding_mode(env);
2866 if (get_float_exception_flags(&env->active_fpu.fp_status)
2867 & (float_flag_invalid | float_flag_overflow)) {
2868 dt2 = FP_TO_INT64_OVERFLOW;
2869 }
2870 update_fcr31(env, GETPC());
2871 return dt2;
2872 }
2873
2874 uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0)
2875 {
2876 uint64_t dt2;
2877
2878 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2879 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2880 restore_rounding_mode(env);
2881 if (get_float_exception_flags(&env->active_fpu.fp_status)
2882 & (float_flag_invalid | float_flag_overflow)) {
2883 dt2 = FP_TO_INT64_OVERFLOW;
2884 }
2885 update_fcr31(env, GETPC());
2886 return dt2;
2887 }
2888
2889 uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0)
2890 {
2891 uint32_t wt2;
2892
2893 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2894 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2895 restore_rounding_mode(env);
2896 if (get_float_exception_flags(&env->active_fpu.fp_status)
2897 & (float_flag_invalid | float_flag_overflow)) {
2898 wt2 = FP_TO_INT32_OVERFLOW;
2899 }
2900 update_fcr31(env, GETPC());
2901 return wt2;
2902 }
2903
2904 uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0)
2905 {
2906 uint32_t wt2;
2907
2908 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2909 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2910 restore_rounding_mode(env);
2911 if (get_float_exception_flags(&env->active_fpu.fp_status)
2912 & (float_flag_invalid | float_flag_overflow)) {
2913 wt2 = FP_TO_INT32_OVERFLOW;
2914 }
2915 update_fcr31(env, GETPC());
2916 return wt2;
2917 }
2918
2919 uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0)
2920 {
2921 uint64_t dt2;
2922
2923 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2924 if (get_float_exception_flags(&env->active_fpu.fp_status)
2925 & (float_flag_invalid | float_flag_overflow)) {
2926 dt2 = FP_TO_INT64_OVERFLOW;
2927 }
2928 update_fcr31(env, GETPC());
2929 return dt2;
2930 }
2931
2932 uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0)
2933 {
2934 uint64_t dt2;
2935
2936 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2937 if (get_float_exception_flags(&env->active_fpu.fp_status)
2938 & (float_flag_invalid | float_flag_overflow)) {
2939 dt2 = FP_TO_INT64_OVERFLOW;
2940 }
2941 update_fcr31(env, GETPC());
2942 return dt2;
2943 }
2944
2945 uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0)
2946 {
2947 uint32_t wt2;
2948
2949 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2950 if (get_float_exception_flags(&env->active_fpu.fp_status)
2951 & (float_flag_invalid | float_flag_overflow)) {
2952 wt2 = FP_TO_INT32_OVERFLOW;
2953 }
2954 update_fcr31(env, GETPC());
2955 return wt2;
2956 }
2957
2958 uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0)
2959 {
2960 uint32_t wt2;
2961
2962 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2963 if (get_float_exception_flags(&env->active_fpu.fp_status)
2964 & (float_flag_invalid | float_flag_overflow)) {
2965 wt2 = FP_TO_INT32_OVERFLOW;
2966 }
2967 update_fcr31(env, GETPC());
2968 return wt2;
2969 }
2970
2971 uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0)
2972 {
2973 uint64_t dt2;
2974
2975 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2976 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2977 restore_rounding_mode(env);
2978 if (get_float_exception_flags(&env->active_fpu.fp_status)
2979 & (float_flag_invalid | float_flag_overflow)) {
2980 dt2 = FP_TO_INT64_OVERFLOW;
2981 }
2982 update_fcr31(env, GETPC());
2983 return dt2;
2984 }
2985
2986 uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0)
2987 {
2988 uint64_t dt2;
2989
2990 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2991 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2992 restore_rounding_mode(env);
2993 if (get_float_exception_flags(&env->active_fpu.fp_status)
2994 & (float_flag_invalid | float_flag_overflow)) {
2995 dt2 = FP_TO_INT64_OVERFLOW;
2996 }
2997 update_fcr31(env, GETPC());
2998 return dt2;
2999 }
3000
3001 uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0)
3002 {
3003 uint32_t wt2;
3004
3005 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3006 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3007 restore_rounding_mode(env);
3008 if (get_float_exception_flags(&env->active_fpu.fp_status)
3009 & (float_flag_invalid | float_flag_overflow)) {
3010 wt2 = FP_TO_INT32_OVERFLOW;
3011 }
3012 update_fcr31(env, GETPC());
3013 return wt2;
3014 }
3015
3016 uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0)
3017 {
3018 uint32_t wt2;
3019
3020 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3021 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3022 restore_rounding_mode(env);
3023 if (get_float_exception_flags(&env->active_fpu.fp_status)
3024 & (float_flag_invalid | float_flag_overflow)) {
3025 wt2 = FP_TO_INT32_OVERFLOW;
3026 }
3027 update_fcr31(env, GETPC());
3028 return wt2;
3029 }
3030
3031 uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0)
3032 {
3033 uint64_t dt2;
3034
3035 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3036 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3037 restore_rounding_mode(env);
3038 if (get_float_exception_flags(&env->active_fpu.fp_status)
3039 & (float_flag_invalid | float_flag_overflow)) {
3040 dt2 = FP_TO_INT64_OVERFLOW;
3041 }
3042 update_fcr31(env, GETPC());
3043 return dt2;
3044 }
3045
3046 uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0)
3047 {
3048 uint64_t dt2;
3049
3050 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3051 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3052 restore_rounding_mode(env);
3053 if (get_float_exception_flags(&env->active_fpu.fp_status)
3054 & (float_flag_invalid | float_flag_overflow)) {
3055 dt2 = FP_TO_INT64_OVERFLOW;
3056 }
3057 update_fcr31(env, GETPC());
3058 return dt2;
3059 }
3060
3061 uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0)
3062 {
3063 uint32_t wt2;
3064
3065 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3066 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3067 restore_rounding_mode(env);
3068 if (get_float_exception_flags(&env->active_fpu.fp_status)
3069 & (float_flag_invalid | float_flag_overflow)) {
3070 wt2 = FP_TO_INT32_OVERFLOW;
3071 }
3072 update_fcr31(env, GETPC());
3073 return wt2;
3074 }
3075
3076 uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0)
3077 {
3078 uint32_t wt2;
3079
3080 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3081 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3082 restore_rounding_mode(env);
3083 if (get_float_exception_flags(&env->active_fpu.fp_status)
3084 & (float_flag_invalid | float_flag_overflow)) {
3085 wt2 = FP_TO_INT32_OVERFLOW;
3086 }
3087 update_fcr31(env, GETPC());
3088 return wt2;
3089 }
3090
3091 uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3092 {
3093 uint64_t dt2;
3094
3095 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3096 if (get_float_exception_flags(&env->active_fpu.fp_status)
3097 & float_flag_invalid) {
3098 if (float64_is_any_nan(fdt0)) {
3099 dt2 = 0;
3100 }
3101 }
3102 update_fcr31(env, GETPC());
3103 return dt2;
3104 }
3105
3106 uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3107 {
3108 uint64_t dt2;
3109
3110 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3111 if (get_float_exception_flags(&env->active_fpu.fp_status)
3112 & float_flag_invalid) {
3113 if (float32_is_any_nan(fst0)) {
3114 dt2 = 0;
3115 }
3116 }
3117 update_fcr31(env, GETPC());
3118 return dt2;
3119 }
3120
3121 uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3122 {
3123 uint32_t wt2;
3124
3125 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3126 if (get_float_exception_flags(&env->active_fpu.fp_status)
3127 & float_flag_invalid) {
3128 if (float64_is_any_nan(fdt0)) {
3129 wt2 = 0;
3130 }
3131 }
3132 update_fcr31(env, GETPC());
3133 return wt2;
3134 }
3135
3136 uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3137 {
3138 uint32_t wt2;
3139
3140 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3141 if (get_float_exception_flags(&env->active_fpu.fp_status)
3142 & float_flag_invalid) {
3143 if (float32_is_any_nan(fst0)) {
3144 wt2 = 0;
3145 }
3146 }
3147 update_fcr31(env, GETPC());
3148 return wt2;
3149 }
3150
3151 uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3152 {
3153 uint64_t dt2;
3154
3155 set_float_rounding_mode(float_round_nearest_even,
3156 &env->active_fpu.fp_status);
3157 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3158 restore_rounding_mode(env);
3159 if (get_float_exception_flags(&env->active_fpu.fp_status)
3160 & float_flag_invalid) {
3161 if (float64_is_any_nan(fdt0)) {
3162 dt2 = 0;
3163 }
3164 }
3165 update_fcr31(env, GETPC());
3166 return dt2;
3167 }
3168
3169 uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3170 {
3171 uint64_t dt2;
3172
3173 set_float_rounding_mode(float_round_nearest_even,
3174 &env->active_fpu.fp_status);
3175 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3176 restore_rounding_mode(env);
3177 if (get_float_exception_flags(&env->active_fpu.fp_status)
3178 & float_flag_invalid) {
3179 if (float32_is_any_nan(fst0)) {
3180 dt2 = 0;
3181 }
3182 }
3183 update_fcr31(env, GETPC());
3184 return dt2;
3185 }
3186
3187 uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3188 {
3189 uint32_t wt2;
3190
3191 set_float_rounding_mode(float_round_nearest_even,
3192 &env->active_fpu.fp_status);
3193 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3194 restore_rounding_mode(env);
3195 if (get_float_exception_flags(&env->active_fpu.fp_status)
3196 & float_flag_invalid) {
3197 if (float64_is_any_nan(fdt0)) {
3198 wt2 = 0;
3199 }
3200 }
3201 update_fcr31(env, GETPC());
3202 return wt2;
3203 }
3204
3205 uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3206 {
3207 uint32_t wt2;
3208
3209 set_float_rounding_mode(float_round_nearest_even,
3210 &env->active_fpu.fp_status);
3211 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3212 restore_rounding_mode(env);
3213 if (get_float_exception_flags(&env->active_fpu.fp_status)
3214 & float_flag_invalid) {
3215 if (float32_is_any_nan(fst0)) {
3216 wt2 = 0;
3217 }
3218 }
3219 update_fcr31(env, GETPC());
3220 return wt2;
3221 }
3222
3223 uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3224 {
3225 uint64_t dt2;
3226
3227 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
3228 if (get_float_exception_flags(&env->active_fpu.fp_status)
3229 & float_flag_invalid) {
3230 if (float64_is_any_nan(fdt0)) {
3231 dt2 = 0;
3232 }
3233 }
3234 update_fcr31(env, GETPC());
3235 return dt2;
3236 }
3237
3238 uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3239 {
3240 uint64_t dt2;
3241
3242 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
3243 if (get_float_exception_flags(&env->active_fpu.fp_status)
3244 & float_flag_invalid) {
3245 if (float32_is_any_nan(fst0)) {
3246 dt2 = 0;
3247 }
3248 }
3249 update_fcr31(env, GETPC());
3250 return dt2;
3251 }
3252
3253 uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3254 {
3255 uint32_t wt2;
3256
3257 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
3258 if (get_float_exception_flags(&env->active_fpu.fp_status)
3259 & float_flag_invalid) {
3260 if (float64_is_any_nan(fdt0)) {
3261 wt2 = 0;
3262 }
3263 }
3264 update_fcr31(env, GETPC());
3265 return wt2;
3266 }
3267
3268 uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3269 {
3270 uint32_t wt2;
3271
3272 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
3273 if (get_float_exception_flags(&env->active_fpu.fp_status)
3274 & float_flag_invalid) {
3275 if (float32_is_any_nan(fst0)) {
3276 wt2 = 0;
3277 }
3278 }
3279 update_fcr31(env, GETPC());
3280 return wt2;
3281 }
3282
3283 uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3284 {
3285 uint64_t dt2;
3286
3287 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3288 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3289 restore_rounding_mode(env);
3290 if (get_float_exception_flags(&env->active_fpu.fp_status)
3291 & float_flag_invalid) {
3292 if (float64_is_any_nan(fdt0)) {
3293 dt2 = 0;
3294 }
3295 }
3296 update_fcr31(env, GETPC());
3297 return dt2;
3298 }
3299
3300 uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3301 {
3302 uint64_t dt2;
3303
3304 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3305 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3306 restore_rounding_mode(env);
3307 if (get_float_exception_flags(&env->active_fpu.fp_status)
3308 & float_flag_invalid) {
3309 if (float32_is_any_nan(fst0)) {
3310 dt2 = 0;
3311 }
3312 }
3313 update_fcr31(env, GETPC());
3314 return dt2;
3315 }
3316
3317 uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3318 {
3319 uint32_t wt2;
3320
3321 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3322 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3323 restore_rounding_mode(env);
3324 if (get_float_exception_flags(&env->active_fpu.fp_status)
3325 & float_flag_invalid) {
3326 if (float64_is_any_nan(fdt0)) {
3327 wt2 = 0;
3328 }
3329 }
3330 update_fcr31(env, GETPC());
3331 return wt2;
3332 }
3333
3334 uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3335 {
3336 uint32_t wt2;
3337
3338 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3339 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3340 restore_rounding_mode(env);
3341 if (get_float_exception_flags(&env->active_fpu.fp_status)
3342 & float_flag_invalid) {
3343 if (float32_is_any_nan(fst0)) {
3344 wt2 = 0;
3345 }
3346 }
3347 update_fcr31(env, GETPC());
3348 return wt2;
3349 }
3350
3351 uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3352 {
3353 uint64_t dt2;
3354
3355 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3356 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3357 restore_rounding_mode(env);
3358 if (get_float_exception_flags(&env->active_fpu.fp_status)
3359 & float_flag_invalid) {
3360 if (float64_is_any_nan(fdt0)) {
3361 dt2 = 0;
3362 }
3363 }
3364 update_fcr31(env, GETPC());
3365 return dt2;
3366 }
3367
3368 uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3369 {
3370 uint64_t dt2;
3371
3372 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3373 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3374 restore_rounding_mode(env);
3375 if (get_float_exception_flags(&env->active_fpu.fp_status)
3376 & float_flag_invalid) {
3377 if (float32_is_any_nan(fst0)) {
3378 dt2 = 0;
3379 }
3380 }
3381 update_fcr31(env, GETPC());
3382 return dt2;
3383 }
3384
3385 uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3386 {
3387 uint32_t wt2;
3388
3389 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3390 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3391 restore_rounding_mode(env);
3392 if (get_float_exception_flags(&env->active_fpu.fp_status)
3393 & float_flag_invalid) {
3394 if (float64_is_any_nan(fdt0)) {
3395 wt2 = 0;
3396 }
3397 }
3398 update_fcr31(env, GETPC());
3399 return wt2;
3400 }
3401
3402 uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3403 {
3404 uint32_t wt2;
3405
3406 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3407 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3408 restore_rounding_mode(env);
3409 if (get_float_exception_flags(&env->active_fpu.fp_status)
3410 & float_flag_invalid) {
3411 if (float32_is_any_nan(fst0)) {
3412 wt2 = 0;
3413 }
3414 }
3415 update_fcr31(env, GETPC());
3416 return wt2;
3417 }
3418
3419 /* unary operations, not modifying fp status */
3420 #define FLOAT_UNOP(name) \
3421 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
3422 { \
3423 return float64_ ## name(fdt0); \
3424 } \
3425 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
3426 { \
3427 return float32_ ## name(fst0); \
3428 } \
3429 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
3430 { \
3431 uint32_t wt0; \
3432 uint32_t wth0; \
3433 \
3434 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
3435 wth0 = float32_ ## name(fdt0 >> 32); \
3436 return ((uint64_t)wth0 << 32) | wt0; \
3437 }
3438 FLOAT_UNOP(abs)
3439 FLOAT_UNOP(chs)
3440 #undef FLOAT_UNOP
3441
3442 /* MIPS specific unary operations */
3443 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
3444 {
3445 uint64_t fdt2;
3446
3447 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3448 update_fcr31(env, GETPC());
3449 return fdt2;
3450 }
3451
3452 uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
3453 {
3454 uint32_t fst2;
3455
3456 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3457 update_fcr31(env, GETPC());
3458 return fst2;
3459 }
3460
3461 uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
3462 {
3463 uint64_t fdt2;
3464
3465 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3466 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3467 update_fcr31(env, GETPC());
3468 return fdt2;
3469 }
3470
3471 uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
3472 {
3473 uint32_t fst2;
3474
3475 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3476 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3477 update_fcr31(env, GETPC());
3478 return fst2;
3479 }
3480
3481 uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
3482 {
3483 uint64_t fdt2;
3484
3485 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3486 update_fcr31(env, GETPC());
3487 return fdt2;
3488 }
3489
3490 uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
3491 {
3492 uint32_t fst2;
3493
3494 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3495 update_fcr31(env, GETPC());
3496 return fst2;
3497 }
3498
3499 uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
3500 {
3501 uint32_t fst2;
3502 uint32_t fsth2;
3503
3504 fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3505 fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
3506 update_fcr31(env, GETPC());
3507 return ((uint64_t)fsth2 << 32) | fst2;
3508 }
3509
3510 uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
3511 {
3512 uint64_t fdt2;
3513
3514 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3515 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3516 update_fcr31(env, GETPC());
3517 return fdt2;
3518 }
3519
3520 uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
3521 {
3522 uint32_t fst2;
3523
3524 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3525 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3526 update_fcr31(env, GETPC());
3527 return fst2;
3528 }
3529
3530 uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
3531 {
3532 uint32_t fst2;
3533 uint32_t fsth2;
3534
3535 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3536 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
3537 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3538 fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
3539 update_fcr31(env, GETPC());
3540 return ((uint64_t)fsth2 << 32) | fst2;
3541 }
3542
3543 #define FLOAT_RINT(name, bits) \
3544 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3545 uint ## bits ## _t fs) \
3546 { \
3547 uint ## bits ## _t fdret; \
3548 \
3549 fdret = float ## bits ## _round_to_int(fs, &env->active_fpu.fp_status); \
3550 update_fcr31(env, GETPC()); \
3551 return fdret; \
3552 }
3553
3554 FLOAT_RINT(rint_s, 32)
3555 FLOAT_RINT(rint_d, 64)
3556 #undef FLOAT_RINT
3557
3558 #define FLOAT_CLASS_SIGNALING_NAN 0x001
3559 #define FLOAT_CLASS_QUIET_NAN 0x002
3560 #define FLOAT_CLASS_NEGATIVE_INFINITY 0x004
3561 #define FLOAT_CLASS_NEGATIVE_NORMAL 0x008
3562 #define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010
3563 #define FLOAT_CLASS_NEGATIVE_ZERO 0x020
3564 #define FLOAT_CLASS_POSITIVE_INFINITY 0x040
3565 #define FLOAT_CLASS_POSITIVE_NORMAL 0x080
3566 #define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100
3567 #define FLOAT_CLASS_POSITIVE_ZERO 0x200
3568
3569 #define FLOAT_CLASS(name, bits) \
3570 uint ## bits ## _t float_ ## name (uint ## bits ## _t arg, \
3571 float_status *status) \
3572 { \
3573 if (float ## bits ## _is_signaling_nan(arg, status)) { \
3574 return FLOAT_CLASS_SIGNALING_NAN; \
3575 } else if (float ## bits ## _is_quiet_nan(arg, status)) { \
3576 return FLOAT_CLASS_QUIET_NAN; \
3577 } else if (float ## bits ## _is_neg(arg)) { \
3578 if (float ## bits ## _is_infinity(arg)) { \
3579 return FLOAT_CLASS_NEGATIVE_INFINITY; \
3580 } else if (float ## bits ## _is_zero(arg)) { \
3581 return FLOAT_CLASS_NEGATIVE_ZERO; \
3582 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3583 return FLOAT_CLASS_NEGATIVE_SUBNORMAL; \
3584 } else { \
3585 return FLOAT_CLASS_NEGATIVE_NORMAL; \
3586 } \
3587 } else { \
3588 if (float ## bits ## _is_infinity(arg)) { \
3589 return FLOAT_CLASS_POSITIVE_INFINITY; \
3590 } else if (float ## bits ## _is_zero(arg)) { \
3591 return FLOAT_CLASS_POSITIVE_ZERO; \
3592 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3593 return FLOAT_CLASS_POSITIVE_SUBNORMAL; \
3594 } else { \
3595 return FLOAT_CLASS_POSITIVE_NORMAL; \
3596 } \
3597 } \
3598 } \
3599 \
3600 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3601 uint ## bits ## _t arg) \
3602 { \
3603 return float_ ## name(arg, &env->active_fpu.fp_status); \
3604 }
3605
3606 FLOAT_CLASS(class_s, 32)
3607 FLOAT_CLASS(class_d, 64)
3608 #undef FLOAT_CLASS
3609
3610 /* binary operations */
3611 #define FLOAT_BINOP(name) \
3612 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3613 uint64_t fdt0, uint64_t fdt1) \
3614 { \
3615 uint64_t dt2; \
3616 \
3617 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
3618 update_fcr31(env, GETPC()); \
3619 return dt2; \
3620 } \
3621 \
3622 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3623 uint32_t fst0, uint32_t fst1) \
3624 { \
3625 uint32_t wt2; \
3626 \
3627 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3628 update_fcr31(env, GETPC()); \
3629 return wt2; \
3630 } \
3631 \
3632 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3633 uint64_t fdt0, \
3634 uint64_t fdt1) \
3635 { \
3636 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3637 uint32_t fsth0 = fdt0 >> 32; \
3638 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3639 uint32_t fsth1 = fdt1 >> 32; \
3640 uint32_t wt2; \
3641 uint32_t wth2; \
3642 \
3643 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3644 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
3645 update_fcr31(env, GETPC()); \
3646 return ((uint64_t)wth2 << 32) | wt2; \
3647 }
3648
3649 FLOAT_BINOP(add)
3650 FLOAT_BINOP(sub)
3651 FLOAT_BINOP(mul)
3652 FLOAT_BINOP(div)
3653 #undef FLOAT_BINOP
3654
3655 /* MIPS specific binary operations */
3656 uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3657 {
3658 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3659 fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
3660 update_fcr31(env, GETPC());
3661 return fdt2;
3662 }
3663
3664 uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3665 {
3666 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3667 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3668 update_fcr31(env, GETPC());
3669 return fst2;
3670 }
3671
3672 uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3673 {
3674 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3675 uint32_t fsth0 = fdt0 >> 32;
3676 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3677 uint32_t fsth2 = fdt2 >> 32;
3678
3679 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3680 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3681 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3682 fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
3683 update_fcr31(env, GETPC());
3684 return ((uint64_t)fsth2 << 32) | fst2;
3685 }
3686
3687 uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3688 {
3689 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3690 fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
3691 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
3692 update_fcr31(env, GETPC());
3693 return fdt2;
3694 }
3695
3696 uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3697 {
3698 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3699 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3700 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3701 update_fcr31(env, GETPC());
3702 return fst2;
3703 }
3704
3705 uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3706 {
3707 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3708 uint32_t fsth0 = fdt0 >> 32;
3709 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3710 uint32_t fsth2 = fdt2 >> 32;
3711
3712 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3713 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3714 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3715 fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
3716 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3717 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
3718 update_fcr31(env, GETPC());
3719 return ((uint64_t)fsth2 << 32) | fst2;
3720 }
3721
3722 uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3723 {
3724 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3725 uint32_t fsth0 = fdt0 >> 32;
3726 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3727 uint32_t fsth1 = fdt1 >> 32;
3728 uint32_t fst2;
3729 uint32_t fsth2;
3730
3731 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
3732 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
3733 update_fcr31(env, GETPC());
3734 return ((uint64_t)fsth2 << 32) | fst2;
3735 }
3736
3737 uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3738 {
3739 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3740 uint32_t fsth0 = fdt0 >> 32;
3741 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3742 uint32_t fsth1 = fdt1 >> 32;
3743 uint32_t fst2;
3744 uint32_t fsth2;
3745
3746 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3747 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3748 update_fcr31(env, GETPC());
3749 return ((uint64_t)fsth2 << 32) | fst2;
3750 }
3751
3752 #define FLOAT_MINMAX(name, bits, minmaxfunc) \
3753 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3754 uint ## bits ## _t fs, \
3755 uint ## bits ## _t ft) \
3756 { \
3757 uint ## bits ## _t fdret; \
3758 \
3759 fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \
3760 &env->active_fpu.fp_status); \
3761 update_fcr31(env, GETPC()); \
3762 return fdret; \
3763 }
3764
3765 FLOAT_MINMAX(max_s, 32, maxnum)
3766 FLOAT_MINMAX(max_d, 64, maxnum)
3767 FLOAT_MINMAX(maxa_s, 32, maxnummag)
3768 FLOAT_MINMAX(maxa_d, 64, maxnummag)
3769
3770 FLOAT_MINMAX(min_s, 32, minnum)
3771 FLOAT_MINMAX(min_d, 64, minnum)
3772 FLOAT_MINMAX(mina_s, 32, minnummag)
3773 FLOAT_MINMAX(mina_d, 64, minnummag)
3774 #undef FLOAT_MINMAX
3775
3776 /* ternary operations */
3777 #define UNFUSED_FMA(prefix, a, b, c, flags) \
3778 { \
3779 a = prefix##_mul(a, b, &env->active_fpu.fp_status); \
3780 if ((flags) & float_muladd_negate_c) { \
3781 a = prefix##_sub(a, c, &env->active_fpu.fp_status); \
3782 } else { \
3783 a = prefix##_add(a, c, &env->active_fpu.fp_status); \
3784 } \
3785 if ((flags) & float_muladd_negate_result) { \
3786 a = prefix##_chs(a); \
3787 } \
3788 }
3789
3790 /* FMA based operations */
3791 #define FLOAT_FMA(name, type) \
3792 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3793 uint64_t fdt0, uint64_t fdt1, \
3794 uint64_t fdt2) \
3795 { \
3796 UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \
3797 update_fcr31(env, GETPC()); \
3798 return fdt0; \
3799 } \
3800 \
3801 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3802 uint32_t fst0, uint32_t fst1, \
3803 uint32_t fst2) \
3804 { \
3805 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3806 update_fcr31(env, GETPC()); \
3807 return fst0; \
3808 } \
3809 \
3810 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3811 uint64_t fdt0, uint64_t fdt1, \
3812 uint64_t fdt2) \
3813 { \
3814 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3815 uint32_t fsth0 = fdt0 >> 32; \
3816 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3817 uint32_t fsth1 = fdt1 >> 32; \
3818 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
3819 uint32_t fsth2 = fdt2 >> 32; \
3820 \
3821 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3822 UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \
3823 update_fcr31(env, GETPC()); \
3824 return ((uint64_t)fsth0 << 32) | fst0; \
3825 }
3826 FLOAT_FMA(madd, 0)
3827 FLOAT_FMA(msub, float_muladd_negate_c)
3828 FLOAT_FMA(nmadd, float_muladd_negate_result)
3829 FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
3830 #undef FLOAT_FMA
3831
3832 #define FLOAT_FMADDSUB(name, bits, muladd_arg) \
3833 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3834 uint ## bits ## _t fs, \
3835 uint ## bits ## _t ft, \
3836 uint ## bits ## _t fd) \
3837 { \
3838 uint ## bits ## _t fdret; \
3839 \
3840 fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \
3841 &env->active_fpu.fp_status); \
3842 update_fcr31(env, GETPC()); \
3843 return fdret; \
3844 }
3845
3846 FLOAT_FMADDSUB(maddf_s, 32, 0)
3847 FLOAT_FMADDSUB(maddf_d, 64, 0)
3848 FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product)
3849 FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product)
3850 #undef FLOAT_FMADDSUB
3851
3852 /* compare operations */
3853 #define FOP_COND_D(op, cond) \
3854 void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3855 uint64_t fdt1, int cc) \
3856 { \
3857 int c; \
3858 c = cond; \
3859 update_fcr31(env, GETPC()); \
3860 if (c) \
3861 SET_FP_COND(cc, env->active_fpu); \
3862 else \
3863 CLEAR_FP_COND(cc, env->active_fpu); \
3864 } \
3865 void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3866 uint64_t fdt1, int cc) \
3867 { \
3868 int c; \
3869 fdt0 = float64_abs(fdt0); \
3870 fdt1 = float64_abs(fdt1); \
3871 c = cond; \
3872 update_fcr31(env, GETPC()); \
3873 if (c) \
3874 SET_FP_COND(cc, env->active_fpu); \
3875 else \
3876 CLEAR_FP_COND(cc, env->active_fpu); \
3877 }
3878
3879 /* NOTE: the comma operator will make "cond" to eval to false,
3880 * but float64_unordered_quiet() is still called. */
3881 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3882 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
3883 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3884 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3885 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3886 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3887 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3888 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3889 /* NOTE: the comma operator will make "cond" to eval to false,
3890 * but float64_unordered() is still called. */
3891 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3892 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
3893 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3894 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3895 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3896 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3897 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3898 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3899
3900 #define FOP_COND_S(op, cond) \
3901 void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3902 uint32_t fst1, int cc) \
3903 { \
3904 int c; \
3905 c = cond; \
3906 update_fcr31(env, GETPC()); \
3907 if (c) \
3908 SET_FP_COND(cc, env->active_fpu); \
3909 else \
3910 CLEAR_FP_COND(cc, env->active_fpu); \
3911 } \
3912 void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3913 uint32_t fst1, int cc) \
3914 { \
3915 int c; \
3916 fst0 = float32_abs(fst0); \
3917 fst1 = float32_abs(fst1); \
3918 c = cond; \
3919 update_fcr31(env, GETPC()); \
3920 if (c) \
3921 SET_FP_COND(cc, env->active_fpu); \
3922 else \
3923 CLEAR_FP_COND(cc, env->active_fpu); \
3924 }
3925
3926 /* NOTE: the comma operator will make "cond" to eval to false,
3927 * but float32_unordered_quiet() is still called. */
3928 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
3929 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
3930 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3931 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3932 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3933 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3934 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3935 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3936 /* NOTE: the comma operator will make "cond" to eval to false,
3937 * but float32_unordered() is still called. */
3938 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
3939 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
3940 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3941 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3942 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3943 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3944 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
3945 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3946
3947 #define FOP_COND_PS(op, condl, condh) \
3948 void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3949 uint64_t fdt1, int cc) \
3950 { \
3951 uint32_t fst0, fsth0, fst1, fsth1; \
3952 int ch, cl; \
3953 fst0 = fdt0 & 0XFFFFFFFF; \
3954 fsth0 = fdt0 >> 32; \
3955 fst1 = fdt1 & 0XFFFFFFFF; \
3956 fsth1 = fdt1 >> 32; \
3957 cl = condl; \
3958 ch = condh; \
3959 update_fcr31(env, GETPC()); \
3960 if (cl) \
3961 SET_FP_COND(cc, env->active_fpu); \
3962 else \
3963 CLEAR_FP_COND(cc, env->active_fpu); \
3964 if (ch) \
3965 SET_FP_COND(cc + 1, env->active_fpu); \
3966 else \
3967 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3968 } \
3969 void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3970 uint64_t fdt1, int cc) \
3971 { \
3972 uint32_t fst0, fsth0, fst1, fsth1; \
3973 int ch, cl; \
3974 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3975 fsth0 = float32_abs(fdt0 >> 32); \
3976 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3977 fsth1 = float32_abs(fdt1 >> 32); \
3978 cl = condl; \
3979 ch = condh; \
3980 update_fcr31(env, GETPC()); \
3981 if (cl) \
3982 SET_FP_COND(cc, env->active_fpu); \
3983 else \
3984 CLEAR_FP_COND(cc, env->active_fpu); \
3985 if (ch) \
3986 SET_FP_COND(cc + 1, env->active_fpu); \
3987 else \
3988 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3989 }
3990
3991 /* NOTE: the comma operator will make "cond" to eval to false,
3992 * but float32_unordered_quiet() is still called. */
3993 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
3994 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3995 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
3996 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
3997 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3998 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3999 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
4000 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4001 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
4002 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4003 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
4004 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4005 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
4006 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4007 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
4008 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4009 /* NOTE: the comma operator will make "cond" to eval to false,
4010 * but float32_unordered() is still called. */
4011 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
4012 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
4013 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
4014 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
4015 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
4016 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
4017 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
4018 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
4019 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
4020 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
4021 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
4022 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
4023 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
4024 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
4025 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
4026 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
4027
4028 /* R6 compare operations */
4029 #define FOP_CONDN_D(op, cond) \
4030 uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState * env, uint64_t fdt0, \
4031 uint64_t fdt1) \
4032 { \
4033 uint64_t c; \
4034 c = cond; \
4035 update_fcr31(env, GETPC()); \
4036 if (c) { \
4037 return -1; \
4038 } else { \
4039 return 0; \
4040 } \
4041 }
4042
4043 /* NOTE: the comma operator will make "cond" to eval to false,
4044 * but float64_unordered_quiet() is still called. */
4045 FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4046 FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)))
4047 FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4048 FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4049 || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4050 FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4051 FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4052 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4053 FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4054 FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4055 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4056 /* NOTE: the comma operator will make "cond" to eval to false,
4057 * but float64_unordered() is still called. */
4058 FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4059 FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)))
4060 FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
4061 FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4062 || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
4063 FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4064 FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4065 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4066 FOP_CONDN_D(sle, (float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4067 FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4068 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4069 FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4070 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4071 FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4072 || float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4073 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4074 FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4075 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4076 FOP_CONDN_D(sor, (float64_le(fdt1, fdt0, &env->active_fpu.fp_status)
4077 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4078 FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4079 || float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4080 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4081 FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4082 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4083
4084 #define FOP_CONDN_S(op, cond) \
4085 uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState * env, uint32_t fst0, \
4086 uint32_t fst1) \
4087 { \
4088 uint64_t c; \
4089 c = cond; \
4090 update_fcr31(env, GETPC()); \
4091 if (c) { \
4092 return -1; \
4093 } else { \
4094 return 0; \
4095 } \
4096 }
4097
4098 /* NOTE: the comma operator will make "cond" to eval to false,
4099 * but float32_unordered_quiet() is still called. */
4100 FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
4101 FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)))
4102 FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4103 FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4104 || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4105 FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4106 FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4107 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4108 FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4109 FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4110 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4111 /* NOTE: the comma operator will make "cond" to eval to false,
4112 * but float32_unordered() is still called. */
4113 FOP_CONDN_S(saf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
4114 FOP_CONDN_S(sun, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)))
4115 FOP_CONDN_S(seq, (float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4116 FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4117 || float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4118 FOP_CONDN_S(slt, (float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4119 FOP_CONDN_S(sult, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4120 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4121 FOP_CONDN_S(sle, (float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4122 FOP_CONDN_S(sule, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4123 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4124 FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0, &env->active_fpu.fp_status)
4125 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4126 FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4127 || float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4128 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4129 FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4130 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4131 FOP_CONDN_S(sor, (float32_le(fst1, fst0, &env->active_fpu.fp_status)
4132 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4133 FOP_CONDN_S(sune, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4134 || float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4135 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4136 FOP_CONDN_S(sne, (float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4137 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4138
4139 /* MSA */
4140 /* Data format min and max values */
4141 #define DF_BITS(df) (1 << ((df) + 3))
4142
4143 /* Element-by-element access macros */
4144 #define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df))
4145
4146 #if !defined(CONFIG_USER_ONLY)
4147 #define MEMOP_IDX(DF) \
4148 TCGMemOpIdx oi = make_memop_idx(MO_TE | DF | MO_UNALN, \
4149 cpu_mmu_index(env, false));
4150 #else
4151 #define MEMOP_IDX(DF)
4152 #endif
4153
4154 #define MSA_LD_DF(DF, TYPE, LD_INSN, ...) \
4155 void helper_msa_ld_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4156 target_ulong addr) \
4157 { \
4158 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4159 wr_t wx; \
4160 int i; \
4161 MEMOP_IDX(DF) \
4162 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4163 wx.TYPE[i] = LD_INSN(env, addr + (i << DF), ##__VA_ARGS__); \
4164 } \
4165 memcpy(pwd, &wx, sizeof(wr_t)); \
4166 }
4167
4168 #if !defined(CONFIG_USER_ONLY)
4169 MSA_LD_DF(DF_BYTE, b, helper_ret_ldub_mmu, oi, GETPC())
4170 MSA_LD_DF(DF_HALF, h, helper_ret_lduw_mmu, oi, GETPC())
4171 MSA_LD_DF(DF_WORD, w, helper_ret_ldul_mmu, oi, GETPC())
4172 MSA_LD_DF(DF_DOUBLE, d, helper_ret_ldq_mmu, oi, GETPC())
4173 #else
4174 MSA_LD_DF(DF_BYTE, b, cpu_ldub_data)
4175 MSA_LD_DF(DF_HALF, h, cpu_lduw_data)
4176 MSA_LD_DF(DF_WORD, w, cpu_ldl_data)
4177 MSA_LD_DF(DF_DOUBLE, d, cpu_ldq_data)
4178 #endif
4179
4180 #define MSA_PAGESPAN(x) \
4181 ((((x) & ~TARGET_PAGE_MASK) + MSA_WRLEN/8 - 1) >= TARGET_PAGE_SIZE)
4182
4183 static inline void ensure_writable_pages(CPUMIPSState *env,
4184 target_ulong addr,
4185 int mmu_idx,
4186 uintptr_t retaddr)
4187 {
4188 #if !defined(CONFIG_USER_ONLY)
4189 target_ulong page_addr;
4190 if (unlikely(MSA_PAGESPAN(addr))) {
4191 /* first page */
4192 probe_write(env, addr, mmu_idx, retaddr);
4193 /* second page */
4194 page_addr = (addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
4195 probe_write(env, page_addr, mmu_idx, retaddr);
4196 }
4197 #endif
4198 }
4199
4200 #define MSA_ST_DF(DF, TYPE, ST_INSN, ...) \
4201 void helper_msa_st_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4202 target_ulong addr) \
4203 { \
4204 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4205 int mmu_idx = cpu_mmu_index(env, false); \
4206 int i; \
4207 MEMOP_IDX(DF) \
4208 ensure_writable_pages(env, addr, mmu_idx, GETPC()); \
4209 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4210 ST_INSN(env, addr + (i << DF), pwd->TYPE[i], ##__VA_ARGS__); \
4211 } \
4212 }
4213
4214 #if !defined(CONFIG_USER_ONLY)
4215 MSA_ST_DF(DF_BYTE, b, helper_ret_stb_mmu, oi, GETPC())
4216 MSA_ST_DF(DF_HALF, h, helper_ret_stw_mmu, oi, GETPC())
4217 MSA_ST_DF(DF_WORD, w, helper_ret_stl_mmu, oi, GETPC())
4218 MSA_ST_DF(DF_DOUBLE, d, helper_ret_stq_mmu, oi, GETPC())
4219 #else
4220 MSA_ST_DF(DF_BYTE, b, cpu_stb_data)
4221 MSA_ST_DF(DF_HALF, h, cpu_stw_data)
4222 MSA_ST_DF(DF_WORD, w, cpu_stl_data)
4223 MSA_ST_DF(DF_DOUBLE, d, cpu_stq_data)
4224 #endif
4225
4226 void helper_cache(CPUMIPSState *env, target_ulong addr, uint32_t op)
4227 {
4228 #ifndef CONFIG_USER_ONLY
4229 target_ulong index = addr & 0x1fffffff;
4230 if (op == 9) {
4231 /* Index Store Tag */
4232 memory_region_dispatch_write(env->itc_tag, index, env->CP0_TagLo,
4233 8, MEMTXATTRS_UNSPECIFIED);
4234 } else if (op == 5) {
4235 /* Index Load Tag */
4236 memory_region_dispatch_read(env->itc_tag, index, &env->CP0_TagLo,
4237 8, MEMTXATTRS_UNSPECIFIED);
4238 }
4239 #endif
4240 }