]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/op_helper.c
target/mips: Add segmentation control registers
[mirror_qemu.git] / target / mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
21 #include "cpu.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
26 #include "sysemu/kvm.h"
27
28 /*****************************************************************************/
29 /* Exceptions processing helpers */
30
31 void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
32 int error_code)
33 {
34 do_raise_exception_err(env, exception, error_code, 0);
35 }
36
37 void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
38 {
39 do_raise_exception(env, exception, GETPC());
40 }
41
42 void helper_raise_exception_debug(CPUMIPSState *env)
43 {
44 do_raise_exception(env, EXCP_DEBUG, 0);
45 }
46
47 static void raise_exception(CPUMIPSState *env, uint32_t exception)
48 {
49 do_raise_exception(env, exception, 0);
50 }
51
52 #if defined(CONFIG_USER_ONLY)
53 #define HELPER_LD(name, insn, type) \
54 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
55 int mem_idx, uintptr_t retaddr) \
56 { \
57 return (type) cpu_##insn##_data_ra(env, addr, retaddr); \
58 }
59 #else
60 #define HELPER_LD(name, insn, type) \
61 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
62 int mem_idx, uintptr_t retaddr) \
63 { \
64 switch (mem_idx) \
65 { \
66 case 0: return (type) cpu_##insn##_kernel_ra(env, addr, retaddr); \
67 case 1: return (type) cpu_##insn##_super_ra(env, addr, retaddr); \
68 default: \
69 case 2: return (type) cpu_##insn##_user_ra(env, addr, retaddr); \
70 case 3: return (type) cpu_##insn##_error_ra(env, addr, retaddr); \
71 } \
72 }
73 #endif
74 HELPER_LD(lw, ldl, int32_t)
75 #if defined(TARGET_MIPS64)
76 HELPER_LD(ld, ldq, int64_t)
77 #endif
78 #undef HELPER_LD
79
80 #if defined(CONFIG_USER_ONLY)
81 #define HELPER_ST(name, insn, type) \
82 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
83 type val, int mem_idx, uintptr_t retaddr) \
84 { \
85 cpu_##insn##_data_ra(env, addr, val, retaddr); \
86 }
87 #else
88 #define HELPER_ST(name, insn, type) \
89 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
90 type val, int mem_idx, uintptr_t retaddr) \
91 { \
92 switch (mem_idx) \
93 { \
94 case 0: cpu_##insn##_kernel_ra(env, addr, val, retaddr); break; \
95 case 1: cpu_##insn##_super_ra(env, addr, val, retaddr); break; \
96 default: \
97 case 2: cpu_##insn##_user_ra(env, addr, val, retaddr); break; \
98 case 3: \
99 cpu_##insn##_error_ra(env, addr, val, retaddr); \
100 break; \
101 } \
102 }
103 #endif
104 HELPER_ST(sb, stb, uint8_t)
105 HELPER_ST(sw, stl, uint32_t)
106 #if defined(TARGET_MIPS64)
107 HELPER_ST(sd, stq, uint64_t)
108 #endif
109 #undef HELPER_ST
110
111 /* 64 bits arithmetic for 32 bits hosts */
112 static inline uint64_t get_HILO(CPUMIPSState *env)
113 {
114 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
115 }
116
117 static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
118 {
119 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
120 return env->active_tc.HI[0] = (int32_t)(HILO >> 32);
121 }
122
123 static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
124 {
125 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
126 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
127 return tmp;
128 }
129
130 /* Multiplication variants of the vr54xx. */
131 target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
132 target_ulong arg2)
133 {
134 return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
135 (int64_t)(int32_t)arg2));
136 }
137
138 target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
139 target_ulong arg2)
140 {
141 return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
142 (uint64_t)(uint32_t)arg2);
143 }
144
145 target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
146 target_ulong arg2)
147 {
148 return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
149 (int64_t)(int32_t)arg2);
150 }
151
152 target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
153 target_ulong arg2)
154 {
155 return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
156 (int64_t)(int32_t)arg2);
157 }
158
159 target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
160 target_ulong arg2)
161 {
162 return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
163 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
164 }
165
166 target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
167 target_ulong arg2)
168 {
169 return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
170 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
171 }
172
173 target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
174 target_ulong arg2)
175 {
176 return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
177 (int64_t)(int32_t)arg2);
178 }
179
180 target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
181 target_ulong arg2)
182 {
183 return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
184 (int64_t)(int32_t)arg2);
185 }
186
187 target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
188 target_ulong arg2)
189 {
190 return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
191 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
192 }
193
194 target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
195 target_ulong arg2)
196 {
197 return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
198 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
199 }
200
201 target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
202 target_ulong arg2)
203 {
204 return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
205 }
206
207 target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
208 target_ulong arg2)
209 {
210 return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
211 (uint64_t)(uint32_t)arg2);
212 }
213
214 target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
215 target_ulong arg2)
216 {
217 return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
218 (int64_t)(int32_t)arg2);
219 }
220
221 target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
222 target_ulong arg2)
223 {
224 return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
225 (uint64_t)(uint32_t)arg2);
226 }
227
228 static inline target_ulong bitswap(target_ulong v)
229 {
230 v = ((v >> 1) & (target_ulong)0x5555555555555555ULL) |
231 ((v & (target_ulong)0x5555555555555555ULL) << 1);
232 v = ((v >> 2) & (target_ulong)0x3333333333333333ULL) |
233 ((v & (target_ulong)0x3333333333333333ULL) << 2);
234 v = ((v >> 4) & (target_ulong)0x0F0F0F0F0F0F0F0FULL) |
235 ((v & (target_ulong)0x0F0F0F0F0F0F0F0FULL) << 4);
236 return v;
237 }
238
239 #ifdef TARGET_MIPS64
240 target_ulong helper_dbitswap(target_ulong rt)
241 {
242 return bitswap(rt);
243 }
244 #endif
245
246 target_ulong helper_bitswap(target_ulong rt)
247 {
248 return (int32_t)bitswap(rt);
249 }
250
251 #ifndef CONFIG_USER_ONLY
252
253 static inline hwaddr do_translate_address(CPUMIPSState *env,
254 target_ulong address,
255 int rw, uintptr_t retaddr)
256 {
257 hwaddr lladdr;
258 CPUState *cs = CPU(mips_env_get_cpu(env));
259
260 lladdr = cpu_mips_translate_address(env, address, rw);
261
262 if (lladdr == -1LL) {
263 cpu_loop_exit_restore(cs, retaddr);
264 } else {
265 return lladdr;
266 }
267 }
268
269 #define HELPER_LD_ATOMIC(name, insn, almask) \
270 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
271 { \
272 if (arg & almask) { \
273 env->CP0_BadVAddr = arg; \
274 do_raise_exception(env, EXCP_AdEL, GETPC()); \
275 } \
276 env->lladdr = do_translate_address(env, arg, 0, GETPC()); \
277 env->llval = do_##insn(env, arg, mem_idx, GETPC()); \
278 return env->llval; \
279 }
280 HELPER_LD_ATOMIC(ll, lw, 0x3)
281 #ifdef TARGET_MIPS64
282 HELPER_LD_ATOMIC(lld, ld, 0x7)
283 #endif
284 #undef HELPER_LD_ATOMIC
285
286 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
287 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
288 target_ulong arg2, int mem_idx) \
289 { \
290 target_long tmp; \
291 \
292 if (arg2 & almask) { \
293 env->CP0_BadVAddr = arg2; \
294 do_raise_exception(env, EXCP_AdES, GETPC()); \
295 } \
296 if (do_translate_address(env, arg2, 1, GETPC()) == env->lladdr) { \
297 tmp = do_##ld_insn(env, arg2, mem_idx, GETPC()); \
298 if (tmp == env->llval) { \
299 do_##st_insn(env, arg2, arg1, mem_idx, GETPC()); \
300 return 1; \
301 } \
302 } \
303 return 0; \
304 }
305 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
306 #ifdef TARGET_MIPS64
307 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
308 #endif
309 #undef HELPER_ST_ATOMIC
310 #endif
311
312 #ifdef TARGET_WORDS_BIGENDIAN
313 #define GET_LMASK(v) ((v) & 3)
314 #define GET_OFFSET(addr, offset) (addr + (offset))
315 #else
316 #define GET_LMASK(v) (((v) & 3) ^ 3)
317 #define GET_OFFSET(addr, offset) (addr - (offset))
318 #endif
319
320 void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
321 int mem_idx)
322 {
323 do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx, GETPC());
324
325 if (GET_LMASK(arg2) <= 2) {
326 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx,
327 GETPC());
328 }
329
330 if (GET_LMASK(arg2) <= 1) {
331 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx,
332 GETPC());
333 }
334
335 if (GET_LMASK(arg2) == 0) {
336 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx,
337 GETPC());
338 }
339 }
340
341 void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
342 int mem_idx)
343 {
344 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
345
346 if (GET_LMASK(arg2) >= 1) {
347 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
348 GETPC());
349 }
350
351 if (GET_LMASK(arg2) >= 2) {
352 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
353 GETPC());
354 }
355
356 if (GET_LMASK(arg2) == 3) {
357 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
358 GETPC());
359 }
360 }
361
362 #if defined(TARGET_MIPS64)
363 /* "half" load and stores. We must do the memory access inline,
364 or fault handling won't work. */
365
366 #ifdef TARGET_WORDS_BIGENDIAN
367 #define GET_LMASK64(v) ((v) & 7)
368 #else
369 #define GET_LMASK64(v) (((v) & 7) ^ 7)
370 #endif
371
372 void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
373 int mem_idx)
374 {
375 do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx, GETPC());
376
377 if (GET_LMASK64(arg2) <= 6) {
378 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx,
379 GETPC());
380 }
381
382 if (GET_LMASK64(arg2) <= 5) {
383 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx,
384 GETPC());
385 }
386
387 if (GET_LMASK64(arg2) <= 4) {
388 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx,
389 GETPC());
390 }
391
392 if (GET_LMASK64(arg2) <= 3) {
393 do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx,
394 GETPC());
395 }
396
397 if (GET_LMASK64(arg2) <= 2) {
398 do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx,
399 GETPC());
400 }
401
402 if (GET_LMASK64(arg2) <= 1) {
403 do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx,
404 GETPC());
405 }
406
407 if (GET_LMASK64(arg2) <= 0) {
408 do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx,
409 GETPC());
410 }
411 }
412
413 void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
414 int mem_idx)
415 {
416 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
417
418 if (GET_LMASK64(arg2) >= 1) {
419 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
420 GETPC());
421 }
422
423 if (GET_LMASK64(arg2) >= 2) {
424 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
425 GETPC());
426 }
427
428 if (GET_LMASK64(arg2) >= 3) {
429 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
430 GETPC());
431 }
432
433 if (GET_LMASK64(arg2) >= 4) {
434 do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx,
435 GETPC());
436 }
437
438 if (GET_LMASK64(arg2) >= 5) {
439 do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx,
440 GETPC());
441 }
442
443 if (GET_LMASK64(arg2) >= 6) {
444 do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx,
445 GETPC());
446 }
447
448 if (GET_LMASK64(arg2) == 7) {
449 do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx,
450 GETPC());
451 }
452 }
453 #endif /* TARGET_MIPS64 */
454
455 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
456
457 void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
458 uint32_t mem_idx)
459 {
460 target_ulong base_reglist = reglist & 0xf;
461 target_ulong do_r31 = reglist & 0x10;
462
463 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
464 target_ulong i;
465
466 for (i = 0; i < base_reglist; i++) {
467 env->active_tc.gpr[multiple_regs[i]] =
468 (target_long)do_lw(env, addr, mem_idx, GETPC());
469 addr += 4;
470 }
471 }
472
473 if (do_r31) {
474 env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx,
475 GETPC());
476 }
477 }
478
479 void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
480 uint32_t mem_idx)
481 {
482 target_ulong base_reglist = reglist & 0xf;
483 target_ulong do_r31 = reglist & 0x10;
484
485 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
486 target_ulong i;
487
488 for (i = 0; i < base_reglist; i++) {
489 do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
490 GETPC());
491 addr += 4;
492 }
493 }
494
495 if (do_r31) {
496 do_sw(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
497 }
498 }
499
500 #if defined(TARGET_MIPS64)
501 void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
502 uint32_t mem_idx)
503 {
504 target_ulong base_reglist = reglist & 0xf;
505 target_ulong do_r31 = reglist & 0x10;
506
507 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
508 target_ulong i;
509
510 for (i = 0; i < base_reglist; i++) {
511 env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx,
512 GETPC());
513 addr += 8;
514 }
515 }
516
517 if (do_r31) {
518 env->active_tc.gpr[31] = do_ld(env, addr, mem_idx, GETPC());
519 }
520 }
521
522 void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
523 uint32_t mem_idx)
524 {
525 target_ulong base_reglist = reglist & 0xf;
526 target_ulong do_r31 = reglist & 0x10;
527
528 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
529 target_ulong i;
530
531 for (i = 0; i < base_reglist; i++) {
532 do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
533 GETPC());
534 addr += 8;
535 }
536 }
537
538 if (do_r31) {
539 do_sd(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
540 }
541 }
542 #endif
543
544 #ifndef CONFIG_USER_ONLY
545 /* SMP helpers. */
546 static bool mips_vpe_is_wfi(MIPSCPU *c)
547 {
548 CPUState *cpu = CPU(c);
549 CPUMIPSState *env = &c->env;
550
551 /* If the VPE is halted but otherwise active, it means it's waiting for
552 an interrupt. */
553 return cpu->halted && mips_vpe_active(env);
554 }
555
556 static bool mips_vp_is_wfi(MIPSCPU *c)
557 {
558 CPUState *cpu = CPU(c);
559 CPUMIPSState *env = &c->env;
560
561 return cpu->halted && mips_vp_active(env);
562 }
563
564 static inline void mips_vpe_wake(MIPSCPU *c)
565 {
566 /* Don't set ->halted = 0 directly, let it be done via cpu_has_work
567 because there might be other conditions that state that c should
568 be sleeping. */
569 cpu_interrupt(CPU(c), CPU_INTERRUPT_WAKE);
570 }
571
572 static inline void mips_vpe_sleep(MIPSCPU *cpu)
573 {
574 CPUState *cs = CPU(cpu);
575
576 /* The VPE was shut off, really go to bed.
577 Reset any old _WAKE requests. */
578 cs->halted = 1;
579 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
580 }
581
582 static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
583 {
584 CPUMIPSState *c = &cpu->env;
585
586 /* FIXME: TC reschedule. */
587 if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
588 mips_vpe_wake(cpu);
589 }
590 }
591
592 static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
593 {
594 CPUMIPSState *c = &cpu->env;
595
596 /* FIXME: TC reschedule. */
597 if (!mips_vpe_active(c)) {
598 mips_vpe_sleep(cpu);
599 }
600 }
601
602 /**
603 * mips_cpu_map_tc:
604 * @env: CPU from which mapping is performed.
605 * @tc: Should point to an int with the value of the global TC index.
606 *
607 * This function will transform @tc into a local index within the
608 * returned #CPUMIPSState.
609 */
610 /* FIXME: This code assumes that all VPEs have the same number of TCs,
611 which depends on runtime setup. Can probably be fixed by
612 walking the list of CPUMIPSStates. */
613 static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
614 {
615 MIPSCPU *cpu;
616 CPUState *cs;
617 CPUState *other_cs;
618 int vpe_idx;
619 int tc_idx = *tc;
620
621 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
622 /* Not allowed to address other CPUs. */
623 *tc = env->current_tc;
624 return env;
625 }
626
627 cs = CPU(mips_env_get_cpu(env));
628 vpe_idx = tc_idx / cs->nr_threads;
629 *tc = tc_idx % cs->nr_threads;
630 other_cs = qemu_get_cpu(vpe_idx);
631 if (other_cs == NULL) {
632 return env;
633 }
634 cpu = MIPS_CPU(other_cs);
635 return &cpu->env;
636 }
637
638 /* The per VPE CP0_Status register shares some fields with the per TC
639 CP0_TCStatus registers. These fields are wired to the same registers,
640 so changes to either of them should be reflected on both registers.
641
642 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
643
644 These helper call synchronizes the regs for a given cpu. */
645
646 /* Called for updates to CP0_Status. Defined in "cpu.h" for gdbstub.c. */
647 /* static inline void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu,
648 int tc); */
649
650 /* Called for updates to CP0_TCStatus. */
651 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
652 target_ulong v)
653 {
654 uint32_t status;
655 uint32_t tcu, tmx, tasid, tksu;
656 uint32_t mask = ((1U << CP0St_CU3)
657 | (1 << CP0St_CU2)
658 | (1 << CP0St_CU1)
659 | (1 << CP0St_CU0)
660 | (1 << CP0St_MX)
661 | (3 << CP0St_KSU));
662
663 tcu = (v >> CP0TCSt_TCU0) & 0xf;
664 tmx = (v >> CP0TCSt_TMX) & 0x1;
665 tasid = v & cpu->CP0_EntryHi_ASID_mask;
666 tksu = (v >> CP0TCSt_TKSU) & 0x3;
667
668 status = tcu << CP0St_CU0;
669 status |= tmx << CP0St_MX;
670 status |= tksu << CP0St_KSU;
671
672 cpu->CP0_Status &= ~mask;
673 cpu->CP0_Status |= status;
674
675 /* Sync the TASID with EntryHi. */
676 cpu->CP0_EntryHi &= ~cpu->CP0_EntryHi_ASID_mask;
677 cpu->CP0_EntryHi |= tasid;
678
679 compute_hflags(cpu);
680 }
681
682 /* Called for updates to CP0_EntryHi. */
683 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
684 {
685 int32_t *tcst;
686 uint32_t asid, v = cpu->CP0_EntryHi;
687
688 asid = v & cpu->CP0_EntryHi_ASID_mask;
689
690 if (tc == cpu->current_tc) {
691 tcst = &cpu->active_tc.CP0_TCStatus;
692 } else {
693 tcst = &cpu->tcs[tc].CP0_TCStatus;
694 }
695
696 *tcst &= ~cpu->CP0_EntryHi_ASID_mask;
697 *tcst |= asid;
698 }
699
700 /* CP0 helpers */
701 target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
702 {
703 return env->mvp->CP0_MVPControl;
704 }
705
706 target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
707 {
708 return env->mvp->CP0_MVPConf0;
709 }
710
711 target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
712 {
713 return env->mvp->CP0_MVPConf1;
714 }
715
716 target_ulong helper_mfc0_random(CPUMIPSState *env)
717 {
718 return (int32_t)cpu_mips_get_random(env);
719 }
720
721 target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
722 {
723 return env->active_tc.CP0_TCStatus;
724 }
725
726 target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
727 {
728 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
729 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
730
731 if (other_tc == other->current_tc)
732 return other->active_tc.CP0_TCStatus;
733 else
734 return other->tcs[other_tc].CP0_TCStatus;
735 }
736
737 target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
738 {
739 return env->active_tc.CP0_TCBind;
740 }
741
742 target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
743 {
744 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
745 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
746
747 if (other_tc == other->current_tc)
748 return other->active_tc.CP0_TCBind;
749 else
750 return other->tcs[other_tc].CP0_TCBind;
751 }
752
753 target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
754 {
755 return env->active_tc.PC;
756 }
757
758 target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
759 {
760 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
761 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
762
763 if (other_tc == other->current_tc)
764 return other->active_tc.PC;
765 else
766 return other->tcs[other_tc].PC;
767 }
768
769 target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
770 {
771 return env->active_tc.CP0_TCHalt;
772 }
773
774 target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
775 {
776 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
777 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
778
779 if (other_tc == other->current_tc)
780 return other->active_tc.CP0_TCHalt;
781 else
782 return other->tcs[other_tc].CP0_TCHalt;
783 }
784
785 target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
786 {
787 return env->active_tc.CP0_TCContext;
788 }
789
790 target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
791 {
792 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
793 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
794
795 if (other_tc == other->current_tc)
796 return other->active_tc.CP0_TCContext;
797 else
798 return other->tcs[other_tc].CP0_TCContext;
799 }
800
801 target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
802 {
803 return env->active_tc.CP0_TCSchedule;
804 }
805
806 target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
807 {
808 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
809 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
810
811 if (other_tc == other->current_tc)
812 return other->active_tc.CP0_TCSchedule;
813 else
814 return other->tcs[other_tc].CP0_TCSchedule;
815 }
816
817 target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
818 {
819 return env->active_tc.CP0_TCScheFBack;
820 }
821
822 target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
823 {
824 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
825 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
826
827 if (other_tc == other->current_tc)
828 return other->active_tc.CP0_TCScheFBack;
829 else
830 return other->tcs[other_tc].CP0_TCScheFBack;
831 }
832
833 target_ulong helper_mfc0_count(CPUMIPSState *env)
834 {
835 int32_t count;
836 qemu_mutex_lock_iothread();
837 count = (int32_t) cpu_mips_get_count(env);
838 qemu_mutex_unlock_iothread();
839 return count;
840 }
841
842 target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
843 {
844 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
845 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
846
847 return other->CP0_EntryHi;
848 }
849
850 target_ulong helper_mftc0_cause(CPUMIPSState *env)
851 {
852 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
853 int32_t tccause;
854 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
855
856 if (other_tc == other->current_tc) {
857 tccause = other->CP0_Cause;
858 } else {
859 tccause = other->CP0_Cause;
860 }
861
862 return tccause;
863 }
864
865 target_ulong helper_mftc0_status(CPUMIPSState *env)
866 {
867 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
868 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
869
870 return other->CP0_Status;
871 }
872
873 target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
874 {
875 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
876 }
877
878 target_ulong helper_mfc0_maar(CPUMIPSState *env)
879 {
880 return (int32_t) env->CP0_MAAR[env->CP0_MAARI];
881 }
882
883 target_ulong helper_mfhc0_maar(CPUMIPSState *env)
884 {
885 return env->CP0_MAAR[env->CP0_MAARI] >> 32;
886 }
887
888 target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
889 {
890 return (int32_t)env->CP0_WatchLo[sel];
891 }
892
893 target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
894 {
895 return env->CP0_WatchHi[sel];
896 }
897
898 target_ulong helper_mfc0_debug(CPUMIPSState *env)
899 {
900 target_ulong t0 = env->CP0_Debug;
901 if (env->hflags & MIPS_HFLAG_DM)
902 t0 |= 1 << CP0DB_DM;
903
904 return t0;
905 }
906
907 target_ulong helper_mftc0_debug(CPUMIPSState *env)
908 {
909 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
910 int32_t tcstatus;
911 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
912
913 if (other_tc == other->current_tc)
914 tcstatus = other->active_tc.CP0_Debug_tcstatus;
915 else
916 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
917
918 /* XXX: Might be wrong, check with EJTAG spec. */
919 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
920 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
921 }
922
923 #if defined(TARGET_MIPS64)
924 target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
925 {
926 return env->active_tc.PC;
927 }
928
929 target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
930 {
931 return env->active_tc.CP0_TCHalt;
932 }
933
934 target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
935 {
936 return env->active_tc.CP0_TCContext;
937 }
938
939 target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
940 {
941 return env->active_tc.CP0_TCSchedule;
942 }
943
944 target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
945 {
946 return env->active_tc.CP0_TCScheFBack;
947 }
948
949 target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
950 {
951 return env->lladdr >> env->CP0_LLAddr_shift;
952 }
953
954 target_ulong helper_dmfc0_maar(CPUMIPSState *env)
955 {
956 return env->CP0_MAAR[env->CP0_MAARI];
957 }
958
959 target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
960 {
961 return env->CP0_WatchLo[sel];
962 }
963 #endif /* TARGET_MIPS64 */
964
965 void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
966 {
967 uint32_t index_p = env->CP0_Index & 0x80000000;
968 uint32_t tlb_index = arg1 & 0x7fffffff;
969 if (tlb_index < env->tlb->nb_tlb) {
970 if (env->insn_flags & ISA_MIPS32R6) {
971 index_p |= arg1 & 0x80000000;
972 }
973 env->CP0_Index = index_p | tlb_index;
974 }
975 }
976
977 void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
978 {
979 uint32_t mask = 0;
980 uint32_t newval;
981
982 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
983 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
984 (1 << CP0MVPCo_EVP);
985 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
986 mask |= (1 << CP0MVPCo_STLB);
987 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
988
989 // TODO: Enable/disable shared TLB, enable/disable VPEs.
990
991 env->mvp->CP0_MVPControl = newval;
992 }
993
994 void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
995 {
996 uint32_t mask;
997 uint32_t newval;
998
999 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1000 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1001 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
1002
1003 /* Yield scheduler intercept not implemented. */
1004 /* Gating storage scheduler intercept not implemented. */
1005
1006 // TODO: Enable/disable TCs.
1007
1008 env->CP0_VPEControl = newval;
1009 }
1010
1011 void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
1012 {
1013 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1014 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1015 uint32_t mask;
1016 uint32_t newval;
1017
1018 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1019 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1020 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
1021
1022 /* TODO: Enable/disable TCs. */
1023
1024 other->CP0_VPEControl = newval;
1025 }
1026
1027 target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
1028 {
1029 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1030 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1031 /* FIXME: Mask away return zero on read bits. */
1032 return other->CP0_VPEControl;
1033 }
1034
1035 target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
1036 {
1037 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1038 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1039
1040 return other->CP0_VPEConf0;
1041 }
1042
1043 void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1044 {
1045 uint32_t mask = 0;
1046 uint32_t newval;
1047
1048 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1049 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1050 mask |= (0xff << CP0VPEC0_XTC);
1051 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1052 }
1053 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1054
1055 // TODO: TC exclusive handling due to ERL/EXL.
1056
1057 env->CP0_VPEConf0 = newval;
1058 }
1059
1060 void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1061 {
1062 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1063 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1064 uint32_t mask = 0;
1065 uint32_t newval;
1066
1067 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1068 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1069
1070 /* TODO: TC exclusive handling due to ERL/EXL. */
1071 other->CP0_VPEConf0 = newval;
1072 }
1073
1074 void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
1075 {
1076 uint32_t mask = 0;
1077 uint32_t newval;
1078
1079 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1080 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1081 (0xff << CP0VPEC1_NCP1);
1082 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1083
1084 /* UDI not implemented. */
1085 /* CP2 not implemented. */
1086
1087 // TODO: Handle FPU (CP1) binding.
1088
1089 env->CP0_VPEConf1 = newval;
1090 }
1091
1092 void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
1093 {
1094 /* Yield qualifier inputs not implemented. */
1095 env->CP0_YQMask = 0x00000000;
1096 }
1097
1098 void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
1099 {
1100 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1101 }
1102
1103 #define MTC0_ENTRYLO_MASK(env) ((env->PAMask >> 6) & 0x3FFFFFFF)
1104
1105 void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
1106 {
1107 /* 1k pages not implemented */
1108 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1109 env->CP0_EntryLo0 = (arg1 & MTC0_ENTRYLO_MASK(env))
1110 | (rxi << (CP0EnLo_XI - 30));
1111 }
1112
1113 #if defined(TARGET_MIPS64)
1114 #define DMTC0_ENTRYLO_MASK(env) (env->PAMask >> 6)
1115
1116 void helper_dmtc0_entrylo0(CPUMIPSState *env, uint64_t arg1)
1117 {
1118 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1119 env->CP0_EntryLo0 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1120 }
1121 #endif
1122
1123 void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1124 {
1125 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1126 uint32_t newval;
1127
1128 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1129
1130 env->active_tc.CP0_TCStatus = newval;
1131 sync_c0_tcstatus(env, env->current_tc, newval);
1132 }
1133
1134 void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1135 {
1136 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1137 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1138
1139 if (other_tc == other->current_tc)
1140 other->active_tc.CP0_TCStatus = arg1;
1141 else
1142 other->tcs[other_tc].CP0_TCStatus = arg1;
1143 sync_c0_tcstatus(other, other_tc, arg1);
1144 }
1145
1146 void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1147 {
1148 uint32_t mask = (1 << CP0TCBd_TBE);
1149 uint32_t newval;
1150
1151 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1152 mask |= (1 << CP0TCBd_CurVPE);
1153 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1154 env->active_tc.CP0_TCBind = newval;
1155 }
1156
1157 void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1158 {
1159 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1160 uint32_t mask = (1 << CP0TCBd_TBE);
1161 uint32_t newval;
1162 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1163
1164 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1165 mask |= (1 << CP0TCBd_CurVPE);
1166 if (other_tc == other->current_tc) {
1167 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1168 other->active_tc.CP0_TCBind = newval;
1169 } else {
1170 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1171 other->tcs[other_tc].CP0_TCBind = newval;
1172 }
1173 }
1174
1175 void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1176 {
1177 env->active_tc.PC = arg1;
1178 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1179 env->lladdr = 0ULL;
1180 /* MIPS16 not implemented. */
1181 }
1182
1183 void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1184 {
1185 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1186 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1187
1188 if (other_tc == other->current_tc) {
1189 other->active_tc.PC = arg1;
1190 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1191 other->lladdr = 0ULL;
1192 /* MIPS16 not implemented. */
1193 } else {
1194 other->tcs[other_tc].PC = arg1;
1195 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1196 other->lladdr = 0ULL;
1197 /* MIPS16 not implemented. */
1198 }
1199 }
1200
1201 void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1202 {
1203 MIPSCPU *cpu = mips_env_get_cpu(env);
1204
1205 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1206
1207 // TODO: Halt TC / Restart (if allocated+active) TC.
1208 if (env->active_tc.CP0_TCHalt & 1) {
1209 mips_tc_sleep(cpu, env->current_tc);
1210 } else {
1211 mips_tc_wake(cpu, env->current_tc);
1212 }
1213 }
1214
1215 void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1216 {
1217 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1218 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1219 MIPSCPU *other_cpu = mips_env_get_cpu(other);
1220
1221 // TODO: Halt TC / Restart (if allocated+active) TC.
1222
1223 if (other_tc == other->current_tc)
1224 other->active_tc.CP0_TCHalt = arg1;
1225 else
1226 other->tcs[other_tc].CP0_TCHalt = arg1;
1227
1228 if (arg1 & 1) {
1229 mips_tc_sleep(other_cpu, other_tc);
1230 } else {
1231 mips_tc_wake(other_cpu, other_tc);
1232 }
1233 }
1234
1235 void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1236 {
1237 env->active_tc.CP0_TCContext = arg1;
1238 }
1239
1240 void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1241 {
1242 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1243 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1244
1245 if (other_tc == other->current_tc)
1246 other->active_tc.CP0_TCContext = arg1;
1247 else
1248 other->tcs[other_tc].CP0_TCContext = arg1;
1249 }
1250
1251 void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1252 {
1253 env->active_tc.CP0_TCSchedule = arg1;
1254 }
1255
1256 void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1257 {
1258 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1259 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1260
1261 if (other_tc == other->current_tc)
1262 other->active_tc.CP0_TCSchedule = arg1;
1263 else
1264 other->tcs[other_tc].CP0_TCSchedule = arg1;
1265 }
1266
1267 void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1268 {
1269 env->active_tc.CP0_TCScheFBack = arg1;
1270 }
1271
1272 void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1273 {
1274 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1275 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1276
1277 if (other_tc == other->current_tc)
1278 other->active_tc.CP0_TCScheFBack = arg1;
1279 else
1280 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1281 }
1282
1283 void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
1284 {
1285 /* 1k pages not implemented */
1286 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1287 env->CP0_EntryLo1 = (arg1 & MTC0_ENTRYLO_MASK(env))
1288 | (rxi << (CP0EnLo_XI - 30));
1289 }
1290
1291 #if defined(TARGET_MIPS64)
1292 void helper_dmtc0_entrylo1(CPUMIPSState *env, uint64_t arg1)
1293 {
1294 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1295 env->CP0_EntryLo1 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1296 }
1297 #endif
1298
1299 void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
1300 {
1301 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1302 }
1303
1304 void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
1305 {
1306 uint64_t mask = arg1 >> (TARGET_PAGE_BITS + 1);
1307 if (!(env->insn_flags & ISA_MIPS32R6) || (arg1 == ~0) ||
1308 (mask == 0x0000 || mask == 0x0003 || mask == 0x000F ||
1309 mask == 0x003F || mask == 0x00FF || mask == 0x03FF ||
1310 mask == 0x0FFF || mask == 0x3FFF || mask == 0xFFFF)) {
1311 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1312 }
1313 }
1314
1315 void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
1316 {
1317 /* SmartMIPS not implemented */
1318 /* 1k pages not implemented */
1319 env->CP0_PageGrain = (arg1 & env->CP0_PageGrain_rw_bitmask) |
1320 (env->CP0_PageGrain & ~env->CP0_PageGrain_rw_bitmask);
1321 compute_hflags(env);
1322 restore_pamask(env);
1323 }
1324
1325 void helper_mtc0_segctl0(CPUMIPSState *env, target_ulong arg1)
1326 {
1327 CPUState *cs = CPU(mips_env_get_cpu(env));
1328
1329 env->CP0_SegCtl0 = arg1 & CP0SC0_MASK;
1330 tlb_flush(cs);
1331 }
1332
1333 void helper_mtc0_segctl1(CPUMIPSState *env, target_ulong arg1)
1334 {
1335 CPUState *cs = CPU(mips_env_get_cpu(env));
1336
1337 env->CP0_SegCtl1 = arg1 & CP0SC1_MASK;
1338 tlb_flush(cs);
1339 }
1340
1341 void helper_mtc0_segctl2(CPUMIPSState *env, target_ulong arg1)
1342 {
1343 CPUState *cs = CPU(mips_env_get_cpu(env));
1344
1345 env->CP0_SegCtl2 = arg1 & CP0SC2_MASK;
1346 tlb_flush(cs);
1347 }
1348
1349 void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
1350 {
1351 if (env->insn_flags & ISA_MIPS32R6) {
1352 if (arg1 < env->tlb->nb_tlb) {
1353 env->CP0_Wired = arg1;
1354 }
1355 } else {
1356 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1357 }
1358 }
1359
1360 void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
1361 {
1362 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1363 }
1364
1365 void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
1366 {
1367 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1368 }
1369
1370 void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
1371 {
1372 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1373 }
1374
1375 void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
1376 {
1377 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1378 }
1379
1380 void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
1381 {
1382 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1383 }
1384
1385 void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
1386 {
1387 uint32_t mask = 0x0000000F;
1388
1389 if ((env->CP0_Config1 & (1 << CP0C1_PC)) &&
1390 (env->insn_flags & ISA_MIPS32R6)) {
1391 mask |= (1 << 4);
1392 }
1393 if (env->insn_flags & ISA_MIPS32R6) {
1394 mask |= (1 << 5);
1395 }
1396 if (env->CP0_Config3 & (1 << CP0C3_ULRI)) {
1397 mask |= (1 << 29);
1398
1399 if (arg1 & (1 << 29)) {
1400 env->hflags |= MIPS_HFLAG_HWRENA_ULR;
1401 } else {
1402 env->hflags &= ~MIPS_HFLAG_HWRENA_ULR;
1403 }
1404 }
1405
1406 env->CP0_HWREna = arg1 & mask;
1407 }
1408
1409 void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
1410 {
1411 qemu_mutex_lock_iothread();
1412 cpu_mips_store_count(env, arg1);
1413 qemu_mutex_unlock_iothread();
1414 }
1415
1416 void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1417 {
1418 target_ulong old, val, mask;
1419 mask = (TARGET_PAGE_MASK << 1) | env->CP0_EntryHi_ASID_mask;
1420 if (((env->CP0_Config4 >> CP0C4_IE) & 0x3) >= 2) {
1421 mask |= 1 << CP0EnHi_EHINV;
1422 }
1423
1424 /* 1k pages not implemented */
1425 #if defined(TARGET_MIPS64)
1426 if (env->insn_flags & ISA_MIPS32R6) {
1427 int entryhi_r = extract64(arg1, 62, 2);
1428 int config0_at = extract32(env->CP0_Config0, 13, 2);
1429 bool no_supervisor = (env->CP0_Status_rw_bitmask & 0x8) == 0;
1430 if ((entryhi_r == 2) ||
1431 (entryhi_r == 1 && (no_supervisor || config0_at == 1))) {
1432 /* skip EntryHi.R field if new value is reserved */
1433 mask &= ~(0x3ull << 62);
1434 }
1435 }
1436 mask &= env->SEGMask;
1437 #endif
1438 old = env->CP0_EntryHi;
1439 val = (arg1 & mask) | (old & ~mask);
1440 env->CP0_EntryHi = val;
1441 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1442 sync_c0_entryhi(env, env->current_tc);
1443 }
1444 /* If the ASID changes, flush qemu's TLB. */
1445 if ((old & env->CP0_EntryHi_ASID_mask) !=
1446 (val & env->CP0_EntryHi_ASID_mask)) {
1447 tlb_flush(CPU(mips_env_get_cpu(env)));
1448 }
1449 }
1450
1451 void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1452 {
1453 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1454 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1455
1456 other->CP0_EntryHi = arg1;
1457 sync_c0_entryhi(other, other_tc);
1458 }
1459
1460 void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
1461 {
1462 qemu_mutex_lock_iothread();
1463 cpu_mips_store_compare(env, arg1);
1464 qemu_mutex_unlock_iothread();
1465 }
1466
1467 void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
1468 {
1469 MIPSCPU *cpu = mips_env_get_cpu(env);
1470 uint32_t val, old;
1471
1472 old = env->CP0_Status;
1473 cpu_mips_store_status(env, arg1);
1474 val = env->CP0_Status;
1475
1476 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1477 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1478 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1479 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1480 env->CP0_Cause);
1481 switch (cpu_mmu_index(env, false)) {
1482 case 3:
1483 qemu_log(", ERL\n");
1484 break;
1485 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1486 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1487 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1488 default:
1489 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
1490 break;
1491 }
1492 }
1493 }
1494
1495 void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
1496 {
1497 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1498 uint32_t mask = env->CP0_Status_rw_bitmask & ~0xf1000018;
1499 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1500
1501 other->CP0_Status = (other->CP0_Status & ~mask) | (arg1 & mask);
1502 sync_c0_status(env, other, other_tc);
1503 }
1504
1505 void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
1506 {
1507 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1508 }
1509
1510 void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
1511 {
1512 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1513 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1514 }
1515
1516 void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
1517 {
1518 qemu_mutex_lock_iothread();
1519 cpu_mips_store_cause(env, arg1);
1520 qemu_mutex_unlock_iothread();
1521 }
1522
1523 void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
1524 {
1525 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1526 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1527
1528 cpu_mips_store_cause(other, arg1);
1529 }
1530
1531 target_ulong helper_mftc0_epc(CPUMIPSState *env)
1532 {
1533 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1534 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1535
1536 return other->CP0_EPC;
1537 }
1538
1539 target_ulong helper_mftc0_ebase(CPUMIPSState *env)
1540 {
1541 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1542 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1543
1544 return other->CP0_EBase;
1545 }
1546
1547 void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
1548 {
1549 target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask;
1550 if (arg1 & env->CP0_EBaseWG_rw_bitmask) {
1551 mask |= ~0x3FFFFFFF;
1552 }
1553 env->CP0_EBase = (env->CP0_EBase & ~mask) | (arg1 & mask);
1554 }
1555
1556 void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
1557 {
1558 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1559 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1560 target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask;
1561 if (arg1 & env->CP0_EBaseWG_rw_bitmask) {
1562 mask |= ~0x3FFFFFFF;
1563 }
1564 other->CP0_EBase = (other->CP0_EBase & ~mask) | (arg1 & mask);
1565 }
1566
1567 target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
1568 {
1569 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1570 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1571
1572 switch (idx) {
1573 case 0: return other->CP0_Config0;
1574 case 1: return other->CP0_Config1;
1575 case 2: return other->CP0_Config2;
1576 case 3: return other->CP0_Config3;
1577 /* 4 and 5 are reserved. */
1578 case 6: return other->CP0_Config6;
1579 case 7: return other->CP0_Config7;
1580 default:
1581 break;
1582 }
1583 return 0;
1584 }
1585
1586 void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
1587 {
1588 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1589 }
1590
1591 void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
1592 {
1593 /* tertiary/secondary caches not implemented */
1594 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1595 }
1596
1597 void helper_mtc0_config3(CPUMIPSState *env, target_ulong arg1)
1598 {
1599 if (env->insn_flags & ASE_MICROMIPS) {
1600 env->CP0_Config3 = (env->CP0_Config3 & ~(1 << CP0C3_ISA_ON_EXC)) |
1601 (arg1 & (1 << CP0C3_ISA_ON_EXC));
1602 }
1603 }
1604
1605 void helper_mtc0_config4(CPUMIPSState *env, target_ulong arg1)
1606 {
1607 env->CP0_Config4 = (env->CP0_Config4 & (~env->CP0_Config4_rw_bitmask)) |
1608 (arg1 & env->CP0_Config4_rw_bitmask);
1609 }
1610
1611 void helper_mtc0_config5(CPUMIPSState *env, target_ulong arg1)
1612 {
1613 env->CP0_Config5 = (env->CP0_Config5 & (~env->CP0_Config5_rw_bitmask)) |
1614 (arg1 & env->CP0_Config5_rw_bitmask);
1615 compute_hflags(env);
1616 }
1617
1618 void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
1619 {
1620 target_long mask = env->CP0_LLAddr_rw_bitmask;
1621 arg1 = arg1 << env->CP0_LLAddr_shift;
1622 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1623 }
1624
1625 #define MTC0_MAAR_MASK(env) \
1626 ((0x1ULL << 63) | ((env->PAMask >> 4) & ~0xFFFull) | 0x3)
1627
1628 void helper_mtc0_maar(CPUMIPSState *env, target_ulong arg1)
1629 {
1630 env->CP0_MAAR[env->CP0_MAARI] = arg1 & MTC0_MAAR_MASK(env);
1631 }
1632
1633 void helper_mthc0_maar(CPUMIPSState *env, target_ulong arg1)
1634 {
1635 env->CP0_MAAR[env->CP0_MAARI] =
1636 (((uint64_t) arg1 << 32) & MTC0_MAAR_MASK(env)) |
1637 (env->CP0_MAAR[env->CP0_MAARI] & 0x00000000ffffffffULL);
1638 }
1639
1640 void helper_mtc0_maari(CPUMIPSState *env, target_ulong arg1)
1641 {
1642 int index = arg1 & 0x3f;
1643 if (index == 0x3f) {
1644 /* Software may write all ones to INDEX to determine the
1645 maximum value supported. */
1646 env->CP0_MAARI = MIPS_MAAR_MAX - 1;
1647 } else if (index < MIPS_MAAR_MAX) {
1648 env->CP0_MAARI = index;
1649 }
1650 /* Other than the all ones, if the
1651 value written is not supported, then INDEX is unchanged
1652 from its previous value. */
1653 }
1654
1655 void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1656 {
1657 /* Watch exceptions for instructions, data loads, data stores
1658 not implemented. */
1659 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1660 }
1661
1662 void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1663 {
1664 int mask = 0x40000FF8 | (env->CP0_EntryHi_ASID_mask << CP0WH_ASID);
1665 env->CP0_WatchHi[sel] = arg1 & mask;
1666 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1667 }
1668
1669 void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
1670 {
1671 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1672 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1673 }
1674
1675 void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
1676 {
1677 env->CP0_Framemask = arg1; /* XXX */
1678 }
1679
1680 void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
1681 {
1682 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1683 if (arg1 & (1 << CP0DB_DM))
1684 env->hflags |= MIPS_HFLAG_DM;
1685 else
1686 env->hflags &= ~MIPS_HFLAG_DM;
1687 }
1688
1689 void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
1690 {
1691 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1692 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1693 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1694
1695 /* XXX: Might be wrong, check with EJTAG spec. */
1696 if (other_tc == other->current_tc)
1697 other->active_tc.CP0_Debug_tcstatus = val;
1698 else
1699 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1700 other->CP0_Debug = (other->CP0_Debug &
1701 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1702 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1703 }
1704
1705 void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
1706 {
1707 env->CP0_Performance0 = arg1 & 0x000007ff;
1708 }
1709
1710 void helper_mtc0_errctl(CPUMIPSState *env, target_ulong arg1)
1711 {
1712 int32_t wst = arg1 & (1 << CP0EC_WST);
1713 int32_t spr = arg1 & (1 << CP0EC_SPR);
1714 int32_t itc = env->itc_tag ? (arg1 & (1 << CP0EC_ITC)) : 0;
1715
1716 env->CP0_ErrCtl = wst | spr | itc;
1717
1718 if (itc && !wst && !spr) {
1719 env->hflags |= MIPS_HFLAG_ITC_CACHE;
1720 } else {
1721 env->hflags &= ~MIPS_HFLAG_ITC_CACHE;
1722 }
1723 }
1724
1725 void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
1726 {
1727 if (env->hflags & MIPS_HFLAG_ITC_CACHE) {
1728 /* If CACHE instruction is configured for ITC tags then make all
1729 CP0.TagLo bits writable. The actual write to ITC Configuration
1730 Tag will take care of the read-only bits. */
1731 env->CP0_TagLo = arg1;
1732 } else {
1733 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1734 }
1735 }
1736
1737 void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
1738 {
1739 env->CP0_DataLo = arg1; /* XXX */
1740 }
1741
1742 void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
1743 {
1744 env->CP0_TagHi = arg1; /* XXX */
1745 }
1746
1747 void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
1748 {
1749 env->CP0_DataHi = arg1; /* XXX */
1750 }
1751
1752 /* MIPS MT functions */
1753 target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
1754 {
1755 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1756 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1757
1758 if (other_tc == other->current_tc)
1759 return other->active_tc.gpr[sel];
1760 else
1761 return other->tcs[other_tc].gpr[sel];
1762 }
1763
1764 target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
1765 {
1766 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1767 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1768
1769 if (other_tc == other->current_tc)
1770 return other->active_tc.LO[sel];
1771 else
1772 return other->tcs[other_tc].LO[sel];
1773 }
1774
1775 target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
1776 {
1777 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1778 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1779
1780 if (other_tc == other->current_tc)
1781 return other->active_tc.HI[sel];
1782 else
1783 return other->tcs[other_tc].HI[sel];
1784 }
1785
1786 target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
1787 {
1788 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1789 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1790
1791 if (other_tc == other->current_tc)
1792 return other->active_tc.ACX[sel];
1793 else
1794 return other->tcs[other_tc].ACX[sel];
1795 }
1796
1797 target_ulong helper_mftdsp(CPUMIPSState *env)
1798 {
1799 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1800 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1801
1802 if (other_tc == other->current_tc)
1803 return other->active_tc.DSPControl;
1804 else
1805 return other->tcs[other_tc].DSPControl;
1806 }
1807
1808 void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1809 {
1810 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1811 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1812
1813 if (other_tc == other->current_tc)
1814 other->active_tc.gpr[sel] = arg1;
1815 else
1816 other->tcs[other_tc].gpr[sel] = arg1;
1817 }
1818
1819 void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1820 {
1821 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1822 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1823
1824 if (other_tc == other->current_tc)
1825 other->active_tc.LO[sel] = arg1;
1826 else
1827 other->tcs[other_tc].LO[sel] = arg1;
1828 }
1829
1830 void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1831 {
1832 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1833 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1834
1835 if (other_tc == other->current_tc)
1836 other->active_tc.HI[sel] = arg1;
1837 else
1838 other->tcs[other_tc].HI[sel] = arg1;
1839 }
1840
1841 void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1842 {
1843 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1844 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1845
1846 if (other_tc == other->current_tc)
1847 other->active_tc.ACX[sel] = arg1;
1848 else
1849 other->tcs[other_tc].ACX[sel] = arg1;
1850 }
1851
1852 void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
1853 {
1854 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1855 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1856
1857 if (other_tc == other->current_tc)
1858 other->active_tc.DSPControl = arg1;
1859 else
1860 other->tcs[other_tc].DSPControl = arg1;
1861 }
1862
1863 /* MIPS MT functions */
1864 target_ulong helper_dmt(void)
1865 {
1866 // TODO
1867 return 0;
1868 }
1869
1870 target_ulong helper_emt(void)
1871 {
1872 // TODO
1873 return 0;
1874 }
1875
1876 target_ulong helper_dvpe(CPUMIPSState *env)
1877 {
1878 CPUState *other_cs = first_cpu;
1879 target_ulong prev = env->mvp->CP0_MVPControl;
1880
1881 CPU_FOREACH(other_cs) {
1882 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1883 /* Turn off all VPEs except the one executing the dvpe. */
1884 if (&other_cpu->env != env) {
1885 other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
1886 mips_vpe_sleep(other_cpu);
1887 }
1888 }
1889 return prev;
1890 }
1891
1892 target_ulong helper_evpe(CPUMIPSState *env)
1893 {
1894 CPUState *other_cs = first_cpu;
1895 target_ulong prev = env->mvp->CP0_MVPControl;
1896
1897 CPU_FOREACH(other_cs) {
1898 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1899
1900 if (&other_cpu->env != env
1901 /* If the VPE is WFI, don't disturb its sleep. */
1902 && !mips_vpe_is_wfi(other_cpu)) {
1903 /* Enable the VPE. */
1904 other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
1905 mips_vpe_wake(other_cpu); /* And wake it up. */
1906 }
1907 }
1908 return prev;
1909 }
1910 #endif /* !CONFIG_USER_ONLY */
1911
1912 void helper_fork(target_ulong arg1, target_ulong arg2)
1913 {
1914 // arg1 = rt, arg2 = rs
1915 // TODO: store to TC register
1916 }
1917
1918 target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
1919 {
1920 target_long arg1 = arg;
1921
1922 if (arg1 < 0) {
1923 /* No scheduling policy implemented. */
1924 if (arg1 != -2) {
1925 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1926 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1927 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1928 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1929 do_raise_exception(env, EXCP_THREAD, GETPC());
1930 }
1931 }
1932 } else if (arg1 == 0) {
1933 if (0 /* TODO: TC underflow */) {
1934 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1935 do_raise_exception(env, EXCP_THREAD, GETPC());
1936 } else {
1937 // TODO: Deallocate TC
1938 }
1939 } else if (arg1 > 0) {
1940 /* Yield qualifier inputs not implemented. */
1941 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1942 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1943 do_raise_exception(env, EXCP_THREAD, GETPC());
1944 }
1945 return env->CP0_YQMask;
1946 }
1947
1948 /* R6 Multi-threading */
1949 #ifndef CONFIG_USER_ONLY
1950 target_ulong helper_dvp(CPUMIPSState *env)
1951 {
1952 CPUState *other_cs = first_cpu;
1953 target_ulong prev = env->CP0_VPControl;
1954
1955 if (!((env->CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
1956 CPU_FOREACH(other_cs) {
1957 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1958 /* Turn off all VPs except the one executing the dvp. */
1959 if (&other_cpu->env != env) {
1960 mips_vpe_sleep(other_cpu);
1961 }
1962 }
1963 env->CP0_VPControl |= (1 << CP0VPCtl_DIS);
1964 }
1965 return prev;
1966 }
1967
1968 target_ulong helper_evp(CPUMIPSState *env)
1969 {
1970 CPUState *other_cs = first_cpu;
1971 target_ulong prev = env->CP0_VPControl;
1972
1973 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
1974 CPU_FOREACH(other_cs) {
1975 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1976 if ((&other_cpu->env != env) && !mips_vp_is_wfi(other_cpu)) {
1977 /* If the VP is WFI, don't disturb its sleep.
1978 * Otherwise, wake it up. */
1979 mips_vpe_wake(other_cpu);
1980 }
1981 }
1982 env->CP0_VPControl &= ~(1 << CP0VPCtl_DIS);
1983 }
1984 return prev;
1985 }
1986 #endif /* !CONFIG_USER_ONLY */
1987
1988 #ifndef CONFIG_USER_ONLY
1989 /* TLB management */
1990 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
1991 {
1992 /* Discard entries from env->tlb[first] onwards. */
1993 while (env->tlb->tlb_in_use > first) {
1994 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1995 }
1996 }
1997
1998 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
1999 {
2000 #if defined(TARGET_MIPS64)
2001 return extract64(entrylo, 6, 54);
2002 #else
2003 return extract64(entrylo, 6, 24) | /* PFN */
2004 (extract64(entrylo, 32, 32) << 24); /* PFNX */
2005 #endif
2006 }
2007
2008 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
2009 {
2010 r4k_tlb_t *tlb;
2011
2012 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
2013 tlb = &env->tlb->mmu.r4k.tlb[idx];
2014 if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
2015 tlb->EHINV = 1;
2016 return;
2017 }
2018 tlb->EHINV = 0;
2019 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
2020 #if defined(TARGET_MIPS64)
2021 tlb->VPN &= env->SEGMask;
2022 #endif
2023 tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2024 tlb->PageMask = env->CP0_PageMask;
2025 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
2026 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
2027 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
2028 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
2029 tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
2030 tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
2031 tlb->PFN[0] = get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) << 12;
2032 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
2033 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
2034 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
2035 tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
2036 tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
2037 tlb->PFN[1] = get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) << 12;
2038 }
2039
2040 void r4k_helper_tlbinv(CPUMIPSState *env)
2041 {
2042 int idx;
2043 r4k_tlb_t *tlb;
2044 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2045
2046 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2047 tlb = &env->tlb->mmu.r4k.tlb[idx];
2048 if (!tlb->G && tlb->ASID == ASID) {
2049 tlb->EHINV = 1;
2050 }
2051 }
2052 cpu_mips_tlb_flush(env);
2053 }
2054
2055 void r4k_helper_tlbinvf(CPUMIPSState *env)
2056 {
2057 int idx;
2058
2059 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2060 env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
2061 }
2062 cpu_mips_tlb_flush(env);
2063 }
2064
2065 void r4k_helper_tlbwi(CPUMIPSState *env)
2066 {
2067 r4k_tlb_t *tlb;
2068 int idx;
2069 target_ulong VPN;
2070 uint16_t ASID;
2071 bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
2072
2073 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2074 tlb = &env->tlb->mmu.r4k.tlb[idx];
2075 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
2076 #if defined(TARGET_MIPS64)
2077 VPN &= env->SEGMask;
2078 #endif
2079 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2080 EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
2081 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
2082 V0 = (env->CP0_EntryLo0 & 2) != 0;
2083 D0 = (env->CP0_EntryLo0 & 4) != 0;
2084 XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
2085 RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
2086 V1 = (env->CP0_EntryLo1 & 2) != 0;
2087 D1 = (env->CP0_EntryLo1 & 4) != 0;
2088 XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
2089 RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
2090
2091 /* Discard cached TLB entries, unless tlbwi is just upgrading access
2092 permissions on the current entry. */
2093 if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
2094 (!tlb->EHINV && EHINV) ||
2095 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
2096 (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
2097 (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
2098 (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
2099 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2100 }
2101
2102 r4k_invalidate_tlb(env, idx, 0);
2103 r4k_fill_tlb(env, idx);
2104 }
2105
2106 void r4k_helper_tlbwr(CPUMIPSState *env)
2107 {
2108 int r = cpu_mips_get_random(env);
2109
2110 r4k_invalidate_tlb(env, r, 1);
2111 r4k_fill_tlb(env, r);
2112 }
2113
2114 void r4k_helper_tlbp(CPUMIPSState *env)
2115 {
2116 r4k_tlb_t *tlb;
2117 target_ulong mask;
2118 target_ulong tag;
2119 target_ulong VPN;
2120 uint16_t ASID;
2121 int i;
2122
2123 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2124 for (i = 0; i < env->tlb->nb_tlb; i++) {
2125 tlb = &env->tlb->mmu.r4k.tlb[i];
2126 /* 1k pages are not supported. */
2127 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2128 tag = env->CP0_EntryHi & ~mask;
2129 VPN = tlb->VPN & ~mask;
2130 #if defined(TARGET_MIPS64)
2131 tag &= env->SEGMask;
2132 #endif
2133 /* Check ASID, virtual page number & size */
2134 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
2135 /* TLB match */
2136 env->CP0_Index = i;
2137 break;
2138 }
2139 }
2140 if (i == env->tlb->nb_tlb) {
2141 /* No match. Discard any shadow entries, if any of them match. */
2142 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
2143 tlb = &env->tlb->mmu.r4k.tlb[i];
2144 /* 1k pages are not supported. */
2145 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2146 tag = env->CP0_EntryHi & ~mask;
2147 VPN = tlb->VPN & ~mask;
2148 #if defined(TARGET_MIPS64)
2149 tag &= env->SEGMask;
2150 #endif
2151 /* Check ASID, virtual page number & size */
2152 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
2153 r4k_mips_tlb_flush_extra (env, i);
2154 break;
2155 }
2156 }
2157
2158 env->CP0_Index |= 0x80000000;
2159 }
2160 }
2161
2162 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
2163 {
2164 #if defined(TARGET_MIPS64)
2165 return tlb_pfn << 6;
2166 #else
2167 return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
2168 (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
2169 #endif
2170 }
2171
2172 void r4k_helper_tlbr(CPUMIPSState *env)
2173 {
2174 r4k_tlb_t *tlb;
2175 uint16_t ASID;
2176 int idx;
2177
2178 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2179 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2180 tlb = &env->tlb->mmu.r4k.tlb[idx];
2181
2182 /* If this will change the current ASID, flush qemu's TLB. */
2183 if (ASID != tlb->ASID)
2184 cpu_mips_tlb_flush(env);
2185
2186 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2187
2188 if (tlb->EHINV) {
2189 env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
2190 env->CP0_PageMask = 0;
2191 env->CP0_EntryLo0 = 0;
2192 env->CP0_EntryLo1 = 0;
2193 } else {
2194 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
2195 env->CP0_PageMask = tlb->PageMask;
2196 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
2197 ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
2198 ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
2199 get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
2200 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
2201 ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
2202 ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
2203 get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
2204 }
2205 }
2206
2207 void helper_tlbwi(CPUMIPSState *env)
2208 {
2209 env->tlb->helper_tlbwi(env);
2210 }
2211
2212 void helper_tlbwr(CPUMIPSState *env)
2213 {
2214 env->tlb->helper_tlbwr(env);
2215 }
2216
2217 void helper_tlbp(CPUMIPSState *env)
2218 {
2219 env->tlb->helper_tlbp(env);
2220 }
2221
2222 void helper_tlbr(CPUMIPSState *env)
2223 {
2224 env->tlb->helper_tlbr(env);
2225 }
2226
2227 void helper_tlbinv(CPUMIPSState *env)
2228 {
2229 env->tlb->helper_tlbinv(env);
2230 }
2231
2232 void helper_tlbinvf(CPUMIPSState *env)
2233 {
2234 env->tlb->helper_tlbinvf(env);
2235 }
2236
2237 /* Specials */
2238 target_ulong helper_di(CPUMIPSState *env)
2239 {
2240 target_ulong t0 = env->CP0_Status;
2241
2242 env->CP0_Status = t0 & ~(1 << CP0St_IE);
2243 return t0;
2244 }
2245
2246 target_ulong helper_ei(CPUMIPSState *env)
2247 {
2248 target_ulong t0 = env->CP0_Status;
2249
2250 env->CP0_Status = t0 | (1 << CP0St_IE);
2251 return t0;
2252 }
2253
2254 static void debug_pre_eret(CPUMIPSState *env)
2255 {
2256 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2257 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2258 env->active_tc.PC, env->CP0_EPC);
2259 if (env->CP0_Status & (1 << CP0St_ERL))
2260 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2261 if (env->hflags & MIPS_HFLAG_DM)
2262 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2263 qemu_log("\n");
2264 }
2265 }
2266
2267 static void debug_post_eret(CPUMIPSState *env)
2268 {
2269 MIPSCPU *cpu = mips_env_get_cpu(env);
2270
2271 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2272 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2273 env->active_tc.PC, env->CP0_EPC);
2274 if (env->CP0_Status & (1 << CP0St_ERL))
2275 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2276 if (env->hflags & MIPS_HFLAG_DM)
2277 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2278 switch (cpu_mmu_index(env, false)) {
2279 case 3:
2280 qemu_log(", ERL\n");
2281 break;
2282 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
2283 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
2284 case MIPS_HFLAG_KM: qemu_log("\n"); break;
2285 default:
2286 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
2287 break;
2288 }
2289 }
2290 }
2291
2292 static void set_pc(CPUMIPSState *env, target_ulong error_pc)
2293 {
2294 env->active_tc.PC = error_pc & ~(target_ulong)1;
2295 if (error_pc & 1) {
2296 env->hflags |= MIPS_HFLAG_M16;
2297 } else {
2298 env->hflags &= ~(MIPS_HFLAG_M16);
2299 }
2300 }
2301
2302 static inline void exception_return(CPUMIPSState *env)
2303 {
2304 debug_pre_eret(env);
2305 if (env->CP0_Status & (1 << CP0St_ERL)) {
2306 set_pc(env, env->CP0_ErrorEPC);
2307 env->CP0_Status &= ~(1 << CP0St_ERL);
2308 } else {
2309 set_pc(env, env->CP0_EPC);
2310 env->CP0_Status &= ~(1 << CP0St_EXL);
2311 }
2312 compute_hflags(env);
2313 debug_post_eret(env);
2314 }
2315
2316 void helper_eret(CPUMIPSState *env)
2317 {
2318 exception_return(env);
2319 env->lladdr = 1;
2320 }
2321
2322 void helper_eretnc(CPUMIPSState *env)
2323 {
2324 exception_return(env);
2325 }
2326
2327 void helper_deret(CPUMIPSState *env)
2328 {
2329 debug_pre_eret(env);
2330 set_pc(env, env->CP0_DEPC);
2331
2332 env->hflags &= ~MIPS_HFLAG_DM;
2333 compute_hflags(env);
2334 debug_post_eret(env);
2335 }
2336 #endif /* !CONFIG_USER_ONLY */
2337
2338 static inline void check_hwrena(CPUMIPSState *env, int reg, uintptr_t pc)
2339 {
2340 if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << reg))) {
2341 return;
2342 }
2343 do_raise_exception(env, EXCP_RI, pc);
2344 }
2345
2346 target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
2347 {
2348 check_hwrena(env, 0, GETPC());
2349 return env->CP0_EBase & 0x3ff;
2350 }
2351
2352 target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
2353 {
2354 check_hwrena(env, 1, GETPC());
2355 return env->SYNCI_Step;
2356 }
2357
2358 target_ulong helper_rdhwr_cc(CPUMIPSState *env)
2359 {
2360 int32_t count;
2361 check_hwrena(env, 2, GETPC());
2362 #ifdef CONFIG_USER_ONLY
2363 count = env->CP0_Count;
2364 #else
2365 qemu_mutex_lock_iothread();
2366 count = (int32_t)cpu_mips_get_count(env);
2367 qemu_mutex_unlock_iothread();
2368 #endif
2369 return count;
2370 }
2371
2372 target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
2373 {
2374 check_hwrena(env, 3, GETPC());
2375 return env->CCRes;
2376 }
2377
2378 target_ulong helper_rdhwr_performance(CPUMIPSState *env)
2379 {
2380 check_hwrena(env, 4, GETPC());
2381 return env->CP0_Performance0;
2382 }
2383
2384 target_ulong helper_rdhwr_xnp(CPUMIPSState *env)
2385 {
2386 check_hwrena(env, 5, GETPC());
2387 return (env->CP0_Config5 >> CP0C5_XNP) & 1;
2388 }
2389
2390 void helper_pmon(CPUMIPSState *env, int function)
2391 {
2392 function /= 2;
2393 switch (function) {
2394 case 2: /* TODO: char inbyte(int waitflag); */
2395 if (env->active_tc.gpr[4] == 0)
2396 env->active_tc.gpr[2] = -1;
2397 /* Fall through */
2398 case 11: /* TODO: char inbyte (void); */
2399 env->active_tc.gpr[2] = -1;
2400 break;
2401 case 3:
2402 case 12:
2403 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2404 break;
2405 case 17:
2406 break;
2407 case 158:
2408 {
2409 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2410 printf("%s", fmt);
2411 }
2412 break;
2413 }
2414 }
2415
2416 void helper_wait(CPUMIPSState *env)
2417 {
2418 CPUState *cs = CPU(mips_env_get_cpu(env));
2419
2420 cs->halted = 1;
2421 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
2422 /* Last instruction in the block, PC was updated before
2423 - no need to recover PC and icount */
2424 raise_exception(env, EXCP_HLT);
2425 }
2426
2427 #if !defined(CONFIG_USER_ONLY)
2428
2429 void mips_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
2430 MMUAccessType access_type,
2431 int mmu_idx, uintptr_t retaddr)
2432 {
2433 MIPSCPU *cpu = MIPS_CPU(cs);
2434 CPUMIPSState *env = &cpu->env;
2435 int error_code = 0;
2436 int excp;
2437
2438 env->CP0_BadVAddr = addr;
2439
2440 if (access_type == MMU_DATA_STORE) {
2441 excp = EXCP_AdES;
2442 } else {
2443 excp = EXCP_AdEL;
2444 if (access_type == MMU_INST_FETCH) {
2445 error_code |= EXCP_INST_NOTAVAIL;
2446 }
2447 }
2448
2449 do_raise_exception_err(env, excp, error_code, retaddr);
2450 }
2451
2452 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
2453 int mmu_idx, uintptr_t retaddr)
2454 {
2455 int ret;
2456
2457 ret = mips_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
2458 if (ret) {
2459 MIPSCPU *cpu = MIPS_CPU(cs);
2460 CPUMIPSState *env = &cpu->env;
2461
2462 do_raise_exception_err(env, cs->exception_index,
2463 env->error_code, retaddr);
2464 }
2465 }
2466
2467 void mips_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2468 bool is_write, bool is_exec, int unused,
2469 unsigned size)
2470 {
2471 MIPSCPU *cpu = MIPS_CPU(cs);
2472 CPUMIPSState *env = &cpu->env;
2473
2474 /*
2475 * Raising an exception with KVM enabled will crash because it won't be from
2476 * the main execution loop so the longjmp won't have a matching setjmp.
2477 * Until we can trigger a bus error exception through KVM lets just ignore
2478 * the access.
2479 */
2480 if (kvm_enabled()) {
2481 return;
2482 }
2483
2484 if (is_exec) {
2485 raise_exception(env, EXCP_IBE);
2486 } else {
2487 raise_exception(env, EXCP_DBE);
2488 }
2489 }
2490 #endif /* !CONFIG_USER_ONLY */
2491
2492 /* Complex FPU operations which may need stack space. */
2493
2494 #define FLOAT_TWO32 make_float32(1 << 30)
2495 #define FLOAT_TWO64 make_float64(1ULL << 62)
2496
2497 #define FP_TO_INT32_OVERFLOW 0x7fffffff
2498 #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
2499
2500 /* convert MIPS rounding mode in FCR31 to IEEE library */
2501 unsigned int ieee_rm[] = {
2502 float_round_nearest_even,
2503 float_round_to_zero,
2504 float_round_up,
2505 float_round_down
2506 };
2507
2508 target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
2509 {
2510 target_ulong arg1 = 0;
2511
2512 switch (reg) {
2513 case 0:
2514 arg1 = (int32_t)env->active_fpu.fcr0;
2515 break;
2516 case 1:
2517 /* UFR Support - Read Status FR */
2518 if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) {
2519 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2520 arg1 = (int32_t)
2521 ((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR);
2522 } else {
2523 do_raise_exception(env, EXCP_RI, GETPC());
2524 }
2525 }
2526 break;
2527 case 5:
2528 /* FRE Support - read Config5.FRE bit */
2529 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
2530 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2531 arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1;
2532 } else {
2533 helper_raise_exception(env, EXCP_RI);
2534 }
2535 }
2536 break;
2537 case 25:
2538 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2539 break;
2540 case 26:
2541 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2542 break;
2543 case 28:
2544 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2545 break;
2546 default:
2547 arg1 = (int32_t)env->active_fpu.fcr31;
2548 break;
2549 }
2550
2551 return arg1;
2552 }
2553
2554 void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt)
2555 {
2556 switch (fs) {
2557 case 1:
2558 /* UFR Alias - Reset Status FR */
2559 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2560 return;
2561 }
2562 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2563 env->CP0_Status &= ~(1 << CP0St_FR);
2564 compute_hflags(env);
2565 } else {
2566 do_raise_exception(env, EXCP_RI, GETPC());
2567 }
2568 break;
2569 case 4:
2570 /* UNFR Alias - Set Status FR */
2571 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2572 return;
2573 }
2574 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2575 env->CP0_Status |= (1 << CP0St_FR);
2576 compute_hflags(env);
2577 } else {
2578 do_raise_exception(env, EXCP_RI, GETPC());
2579 }
2580 break;
2581 case 5:
2582 /* FRE Support - clear Config5.FRE bit */
2583 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2584 return;
2585 }
2586 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2587 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
2588 compute_hflags(env);
2589 } else {
2590 helper_raise_exception(env, EXCP_RI);
2591 }
2592 break;
2593 case 6:
2594 /* FRE Support - set Config5.FRE bit */
2595 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2596 return;
2597 }
2598 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2599 env->CP0_Config5 |= (1 << CP0C5_FRE);
2600 compute_hflags(env);
2601 } else {
2602 helper_raise_exception(env, EXCP_RI);
2603 }
2604 break;
2605 case 25:
2606 if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) {
2607 return;
2608 }
2609 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2610 ((arg1 & 0x1) << 23);
2611 break;
2612 case 26:
2613 if (arg1 & 0x007c0000)
2614 return;
2615 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2616 break;
2617 case 28:
2618 if (arg1 & 0x007c0000)
2619 return;
2620 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2621 ((arg1 & 0x4) << 22);
2622 break;
2623 case 31:
2624 env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) |
2625 (env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask));
2626 break;
2627 default:
2628 return;
2629 }
2630 restore_fp_status(env);
2631 set_float_exception_flags(0, &env->active_fpu.fp_status);
2632 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2633 do_raise_exception(env, EXCP_FPE, GETPC());
2634 }
2635
2636 int ieee_ex_to_mips(int xcpt)
2637 {
2638 int ret = 0;
2639 if (xcpt) {
2640 if (xcpt & float_flag_invalid) {
2641 ret |= FP_INVALID;
2642 }
2643 if (xcpt & float_flag_overflow) {
2644 ret |= FP_OVERFLOW;
2645 }
2646 if (xcpt & float_flag_underflow) {
2647 ret |= FP_UNDERFLOW;
2648 }
2649 if (xcpt & float_flag_divbyzero) {
2650 ret |= FP_DIV0;
2651 }
2652 if (xcpt & float_flag_inexact) {
2653 ret |= FP_INEXACT;
2654 }
2655 }
2656 return ret;
2657 }
2658
2659 static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
2660 {
2661 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2662
2663 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2664
2665 if (tmp) {
2666 set_float_exception_flags(0, &env->active_fpu.fp_status);
2667
2668 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
2669 do_raise_exception(env, EXCP_FPE, pc);
2670 } else {
2671 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2672 }
2673 }
2674 }
2675
2676 /* Float support.
2677 Single precition routines have a "s" suffix, double precision a
2678 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2679 paired single lower "pl", paired single upper "pu". */
2680
2681 /* unary operations, modifying fp status */
2682 uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
2683 {
2684 fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2685 update_fcr31(env, GETPC());
2686 return fdt0;
2687 }
2688
2689 uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
2690 {
2691 fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2692 update_fcr31(env, GETPC());
2693 return fst0;
2694 }
2695
2696 uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
2697 {
2698 uint64_t fdt2;
2699
2700 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2701 fdt2 = float64_maybe_silence_nan(fdt2, &env->active_fpu.fp_status);
2702 update_fcr31(env, GETPC());
2703 return fdt2;
2704 }
2705
2706 uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
2707 {
2708 uint64_t fdt2;
2709
2710 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2711 update_fcr31(env, GETPC());
2712 return fdt2;
2713 }
2714
2715 uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
2716 {
2717 uint64_t fdt2;
2718
2719 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2720 update_fcr31(env, GETPC());
2721 return fdt2;
2722 }
2723
2724 uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0)
2725 {
2726 uint64_t dt2;
2727
2728 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2729 if (get_float_exception_flags(&env->active_fpu.fp_status)
2730 & (float_flag_invalid | float_flag_overflow)) {
2731 dt2 = FP_TO_INT64_OVERFLOW;
2732 }
2733 update_fcr31(env, GETPC());
2734 return dt2;
2735 }
2736
2737 uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0)
2738 {
2739 uint64_t dt2;
2740
2741 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2742 if (get_float_exception_flags(&env->active_fpu.fp_status)
2743 & (float_flag_invalid | float_flag_overflow)) {
2744 dt2 = FP_TO_INT64_OVERFLOW;
2745 }
2746 update_fcr31(env, GETPC());
2747 return dt2;
2748 }
2749
2750 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
2751 {
2752 uint32_t fst2;
2753 uint32_t fsth2;
2754
2755 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2756 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2757 update_fcr31(env, GETPC());
2758 return ((uint64_t)fsth2 << 32) | fst2;
2759 }
2760
2761 uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
2762 {
2763 uint32_t wt2;
2764 uint32_t wth2;
2765 int excp, excph;
2766
2767 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2768 excp = get_float_exception_flags(&env->active_fpu.fp_status);
2769 if (excp & (float_flag_overflow | float_flag_invalid)) {
2770 wt2 = FP_TO_INT32_OVERFLOW;
2771 }
2772
2773 set_float_exception_flags(0, &env->active_fpu.fp_status);
2774 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2775 excph = get_float_exception_flags(&env->active_fpu.fp_status);
2776 if (excph & (float_flag_overflow | float_flag_invalid)) {
2777 wth2 = FP_TO_INT32_OVERFLOW;
2778 }
2779
2780 set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
2781 update_fcr31(env, GETPC());
2782
2783 return ((uint64_t)wth2 << 32) | wt2;
2784 }
2785
2786 uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
2787 {
2788 uint32_t fst2;
2789
2790 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2791 fst2 = float32_maybe_silence_nan(fst2, &env->active_fpu.fp_status);
2792 update_fcr31(env, GETPC());
2793 return fst2;
2794 }
2795
2796 uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
2797 {
2798 uint32_t fst2;
2799
2800 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2801 update_fcr31(env, GETPC());
2802 return fst2;
2803 }
2804
2805 uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
2806 {
2807 uint32_t fst2;
2808
2809 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2810 update_fcr31(env, GETPC());
2811 return fst2;
2812 }
2813
2814 uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
2815 {
2816 uint32_t wt2;
2817
2818 wt2 = wt0;
2819 update_fcr31(env, GETPC());
2820 return wt2;
2821 }
2822
2823 uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
2824 {
2825 uint32_t wt2;
2826
2827 wt2 = wth0;
2828 update_fcr31(env, GETPC());
2829 return wt2;
2830 }
2831
2832 uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0)
2833 {
2834 uint32_t wt2;
2835
2836 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2837 if (get_float_exception_flags(&env->active_fpu.fp_status)
2838 & (float_flag_invalid | float_flag_overflow)) {
2839 wt2 = FP_TO_INT32_OVERFLOW;
2840 }
2841 update_fcr31(env, GETPC());
2842 return wt2;
2843 }
2844
2845 uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0)
2846 {
2847 uint32_t wt2;
2848
2849 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2850 if (get_float_exception_flags(&env->active_fpu.fp_status)
2851 & (float_flag_invalid | float_flag_overflow)) {
2852 wt2 = FP_TO_INT32_OVERFLOW;
2853 }
2854 update_fcr31(env, GETPC());
2855 return wt2;
2856 }
2857
2858 uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0)
2859 {
2860 uint64_t dt2;
2861
2862 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2863 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2864 restore_rounding_mode(env);
2865 if (get_float_exception_flags(&env->active_fpu.fp_status)
2866 & (float_flag_invalid | float_flag_overflow)) {
2867 dt2 = FP_TO_INT64_OVERFLOW;
2868 }
2869 update_fcr31(env, GETPC());
2870 return dt2;
2871 }
2872
2873 uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0)
2874 {
2875 uint64_t dt2;
2876
2877 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2878 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2879 restore_rounding_mode(env);
2880 if (get_float_exception_flags(&env->active_fpu.fp_status)
2881 & (float_flag_invalid | float_flag_overflow)) {
2882 dt2 = FP_TO_INT64_OVERFLOW;
2883 }
2884 update_fcr31(env, GETPC());
2885 return dt2;
2886 }
2887
2888 uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0)
2889 {
2890 uint32_t wt2;
2891
2892 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2893 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2894 restore_rounding_mode(env);
2895 if (get_float_exception_flags(&env->active_fpu.fp_status)
2896 & (float_flag_invalid | float_flag_overflow)) {
2897 wt2 = FP_TO_INT32_OVERFLOW;
2898 }
2899 update_fcr31(env, GETPC());
2900 return wt2;
2901 }
2902
2903 uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0)
2904 {
2905 uint32_t wt2;
2906
2907 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2908 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2909 restore_rounding_mode(env);
2910 if (get_float_exception_flags(&env->active_fpu.fp_status)
2911 & (float_flag_invalid | float_flag_overflow)) {
2912 wt2 = FP_TO_INT32_OVERFLOW;
2913 }
2914 update_fcr31(env, GETPC());
2915 return wt2;
2916 }
2917
2918 uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0)
2919 {
2920 uint64_t dt2;
2921
2922 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2923 if (get_float_exception_flags(&env->active_fpu.fp_status)
2924 & (float_flag_invalid | float_flag_overflow)) {
2925 dt2 = FP_TO_INT64_OVERFLOW;
2926 }
2927 update_fcr31(env, GETPC());
2928 return dt2;
2929 }
2930
2931 uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0)
2932 {
2933 uint64_t dt2;
2934
2935 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2936 if (get_float_exception_flags(&env->active_fpu.fp_status)
2937 & (float_flag_invalid | float_flag_overflow)) {
2938 dt2 = FP_TO_INT64_OVERFLOW;
2939 }
2940 update_fcr31(env, GETPC());
2941 return dt2;
2942 }
2943
2944 uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0)
2945 {
2946 uint32_t wt2;
2947
2948 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2949 if (get_float_exception_flags(&env->active_fpu.fp_status)
2950 & (float_flag_invalid | float_flag_overflow)) {
2951 wt2 = FP_TO_INT32_OVERFLOW;
2952 }
2953 update_fcr31(env, GETPC());
2954 return wt2;
2955 }
2956
2957 uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0)
2958 {
2959 uint32_t wt2;
2960
2961 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2962 if (get_float_exception_flags(&env->active_fpu.fp_status)
2963 & (float_flag_invalid | float_flag_overflow)) {
2964 wt2 = FP_TO_INT32_OVERFLOW;
2965 }
2966 update_fcr31(env, GETPC());
2967 return wt2;
2968 }
2969
2970 uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0)
2971 {
2972 uint64_t dt2;
2973
2974 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2975 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2976 restore_rounding_mode(env);
2977 if (get_float_exception_flags(&env->active_fpu.fp_status)
2978 & (float_flag_invalid | float_flag_overflow)) {
2979 dt2 = FP_TO_INT64_OVERFLOW;
2980 }
2981 update_fcr31(env, GETPC());
2982 return dt2;
2983 }
2984
2985 uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0)
2986 {
2987 uint64_t dt2;
2988
2989 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2990 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2991 restore_rounding_mode(env);
2992 if (get_float_exception_flags(&env->active_fpu.fp_status)
2993 & (float_flag_invalid | float_flag_overflow)) {
2994 dt2 = FP_TO_INT64_OVERFLOW;
2995 }
2996 update_fcr31(env, GETPC());
2997 return dt2;
2998 }
2999
3000 uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0)
3001 {
3002 uint32_t wt2;
3003
3004 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3005 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3006 restore_rounding_mode(env);
3007 if (get_float_exception_flags(&env->active_fpu.fp_status)
3008 & (float_flag_invalid | float_flag_overflow)) {
3009 wt2 = FP_TO_INT32_OVERFLOW;
3010 }
3011 update_fcr31(env, GETPC());
3012 return wt2;
3013 }
3014
3015 uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0)
3016 {
3017 uint32_t wt2;
3018
3019 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3020 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3021 restore_rounding_mode(env);
3022 if (get_float_exception_flags(&env->active_fpu.fp_status)
3023 & (float_flag_invalid | float_flag_overflow)) {
3024 wt2 = FP_TO_INT32_OVERFLOW;
3025 }
3026 update_fcr31(env, GETPC());
3027 return wt2;
3028 }
3029
3030 uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0)
3031 {
3032 uint64_t dt2;
3033
3034 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3035 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3036 restore_rounding_mode(env);
3037 if (get_float_exception_flags(&env->active_fpu.fp_status)
3038 & (float_flag_invalid | float_flag_overflow)) {
3039 dt2 = FP_TO_INT64_OVERFLOW;
3040 }
3041 update_fcr31(env, GETPC());
3042 return dt2;
3043 }
3044
3045 uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0)
3046 {
3047 uint64_t dt2;
3048
3049 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3050 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3051 restore_rounding_mode(env);
3052 if (get_float_exception_flags(&env->active_fpu.fp_status)
3053 & (float_flag_invalid | float_flag_overflow)) {
3054 dt2 = FP_TO_INT64_OVERFLOW;
3055 }
3056 update_fcr31(env, GETPC());
3057 return dt2;
3058 }
3059
3060 uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0)
3061 {
3062 uint32_t wt2;
3063
3064 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3065 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3066 restore_rounding_mode(env);
3067 if (get_float_exception_flags(&env->active_fpu.fp_status)
3068 & (float_flag_invalid | float_flag_overflow)) {
3069 wt2 = FP_TO_INT32_OVERFLOW;
3070 }
3071 update_fcr31(env, GETPC());
3072 return wt2;
3073 }
3074
3075 uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0)
3076 {
3077 uint32_t wt2;
3078
3079 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3080 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3081 restore_rounding_mode(env);
3082 if (get_float_exception_flags(&env->active_fpu.fp_status)
3083 & (float_flag_invalid | float_flag_overflow)) {
3084 wt2 = FP_TO_INT32_OVERFLOW;
3085 }
3086 update_fcr31(env, GETPC());
3087 return wt2;
3088 }
3089
3090 uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3091 {
3092 uint64_t dt2;
3093
3094 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3095 if (get_float_exception_flags(&env->active_fpu.fp_status)
3096 & float_flag_invalid) {
3097 if (float64_is_any_nan(fdt0)) {
3098 dt2 = 0;
3099 }
3100 }
3101 update_fcr31(env, GETPC());
3102 return dt2;
3103 }
3104
3105 uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3106 {
3107 uint64_t dt2;
3108
3109 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3110 if (get_float_exception_flags(&env->active_fpu.fp_status)
3111 & float_flag_invalid) {
3112 if (float32_is_any_nan(fst0)) {
3113 dt2 = 0;
3114 }
3115 }
3116 update_fcr31(env, GETPC());
3117 return dt2;
3118 }
3119
3120 uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3121 {
3122 uint32_t wt2;
3123
3124 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3125 if (get_float_exception_flags(&env->active_fpu.fp_status)
3126 & float_flag_invalid) {
3127 if (float64_is_any_nan(fdt0)) {
3128 wt2 = 0;
3129 }
3130 }
3131 update_fcr31(env, GETPC());
3132 return wt2;
3133 }
3134
3135 uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3136 {
3137 uint32_t wt2;
3138
3139 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3140 if (get_float_exception_flags(&env->active_fpu.fp_status)
3141 & float_flag_invalid) {
3142 if (float32_is_any_nan(fst0)) {
3143 wt2 = 0;
3144 }
3145 }
3146 update_fcr31(env, GETPC());
3147 return wt2;
3148 }
3149
3150 uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3151 {
3152 uint64_t dt2;
3153
3154 set_float_rounding_mode(float_round_nearest_even,
3155 &env->active_fpu.fp_status);
3156 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3157 restore_rounding_mode(env);
3158 if (get_float_exception_flags(&env->active_fpu.fp_status)
3159 & float_flag_invalid) {
3160 if (float64_is_any_nan(fdt0)) {
3161 dt2 = 0;
3162 }
3163 }
3164 update_fcr31(env, GETPC());
3165 return dt2;
3166 }
3167
3168 uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3169 {
3170 uint64_t dt2;
3171
3172 set_float_rounding_mode(float_round_nearest_even,
3173 &env->active_fpu.fp_status);
3174 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3175 restore_rounding_mode(env);
3176 if (get_float_exception_flags(&env->active_fpu.fp_status)
3177 & float_flag_invalid) {
3178 if (float32_is_any_nan(fst0)) {
3179 dt2 = 0;
3180 }
3181 }
3182 update_fcr31(env, GETPC());
3183 return dt2;
3184 }
3185
3186 uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3187 {
3188 uint32_t wt2;
3189
3190 set_float_rounding_mode(float_round_nearest_even,
3191 &env->active_fpu.fp_status);
3192 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3193 restore_rounding_mode(env);
3194 if (get_float_exception_flags(&env->active_fpu.fp_status)
3195 & float_flag_invalid) {
3196 if (float64_is_any_nan(fdt0)) {
3197 wt2 = 0;
3198 }
3199 }
3200 update_fcr31(env, GETPC());
3201 return wt2;
3202 }
3203
3204 uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3205 {
3206 uint32_t wt2;
3207
3208 set_float_rounding_mode(float_round_nearest_even,
3209 &env->active_fpu.fp_status);
3210 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3211 restore_rounding_mode(env);
3212 if (get_float_exception_flags(&env->active_fpu.fp_status)
3213 & float_flag_invalid) {
3214 if (float32_is_any_nan(fst0)) {
3215 wt2 = 0;
3216 }
3217 }
3218 update_fcr31(env, GETPC());
3219 return wt2;
3220 }
3221
3222 uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3223 {
3224 uint64_t dt2;
3225
3226 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
3227 if (get_float_exception_flags(&env->active_fpu.fp_status)
3228 & float_flag_invalid) {
3229 if (float64_is_any_nan(fdt0)) {
3230 dt2 = 0;
3231 }
3232 }
3233 update_fcr31(env, GETPC());
3234 return dt2;
3235 }
3236
3237 uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3238 {
3239 uint64_t dt2;
3240
3241 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
3242 if (get_float_exception_flags(&env->active_fpu.fp_status)
3243 & float_flag_invalid) {
3244 if (float32_is_any_nan(fst0)) {
3245 dt2 = 0;
3246 }
3247 }
3248 update_fcr31(env, GETPC());
3249 return dt2;
3250 }
3251
3252 uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3253 {
3254 uint32_t wt2;
3255
3256 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
3257 if (get_float_exception_flags(&env->active_fpu.fp_status)
3258 & float_flag_invalid) {
3259 if (float64_is_any_nan(fdt0)) {
3260 wt2 = 0;
3261 }
3262 }
3263 update_fcr31(env, GETPC());
3264 return wt2;
3265 }
3266
3267 uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3268 {
3269 uint32_t wt2;
3270
3271 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
3272 if (get_float_exception_flags(&env->active_fpu.fp_status)
3273 & float_flag_invalid) {
3274 if (float32_is_any_nan(fst0)) {
3275 wt2 = 0;
3276 }
3277 }
3278 update_fcr31(env, GETPC());
3279 return wt2;
3280 }
3281
3282 uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3283 {
3284 uint64_t dt2;
3285
3286 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3287 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3288 restore_rounding_mode(env);
3289 if (get_float_exception_flags(&env->active_fpu.fp_status)
3290 & float_flag_invalid) {
3291 if (float64_is_any_nan(fdt0)) {
3292 dt2 = 0;
3293 }
3294 }
3295 update_fcr31(env, GETPC());
3296 return dt2;
3297 }
3298
3299 uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3300 {
3301 uint64_t dt2;
3302
3303 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3304 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3305 restore_rounding_mode(env);
3306 if (get_float_exception_flags(&env->active_fpu.fp_status)
3307 & float_flag_invalid) {
3308 if (float32_is_any_nan(fst0)) {
3309 dt2 = 0;
3310 }
3311 }
3312 update_fcr31(env, GETPC());
3313 return dt2;
3314 }
3315
3316 uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3317 {
3318 uint32_t wt2;
3319
3320 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3321 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3322 restore_rounding_mode(env);
3323 if (get_float_exception_flags(&env->active_fpu.fp_status)
3324 & float_flag_invalid) {
3325 if (float64_is_any_nan(fdt0)) {
3326 wt2 = 0;
3327 }
3328 }
3329 update_fcr31(env, GETPC());
3330 return wt2;
3331 }
3332
3333 uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3334 {
3335 uint32_t wt2;
3336
3337 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3338 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3339 restore_rounding_mode(env);
3340 if (get_float_exception_flags(&env->active_fpu.fp_status)
3341 & float_flag_invalid) {
3342 if (float32_is_any_nan(fst0)) {
3343 wt2 = 0;
3344 }
3345 }
3346 update_fcr31(env, GETPC());
3347 return wt2;
3348 }
3349
3350 uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3351 {
3352 uint64_t dt2;
3353
3354 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3355 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3356 restore_rounding_mode(env);
3357 if (get_float_exception_flags(&env->active_fpu.fp_status)
3358 & float_flag_invalid) {
3359 if (float64_is_any_nan(fdt0)) {
3360 dt2 = 0;
3361 }
3362 }
3363 update_fcr31(env, GETPC());
3364 return dt2;
3365 }
3366
3367 uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3368 {
3369 uint64_t dt2;
3370
3371 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3372 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3373 restore_rounding_mode(env);
3374 if (get_float_exception_flags(&env->active_fpu.fp_status)
3375 & float_flag_invalid) {
3376 if (float32_is_any_nan(fst0)) {
3377 dt2 = 0;
3378 }
3379 }
3380 update_fcr31(env, GETPC());
3381 return dt2;
3382 }
3383
3384 uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3385 {
3386 uint32_t wt2;
3387
3388 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3389 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3390 restore_rounding_mode(env);
3391 if (get_float_exception_flags(&env->active_fpu.fp_status)
3392 & float_flag_invalid) {
3393 if (float64_is_any_nan(fdt0)) {
3394 wt2 = 0;
3395 }
3396 }
3397 update_fcr31(env, GETPC());
3398 return wt2;
3399 }
3400
3401 uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3402 {
3403 uint32_t wt2;
3404
3405 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3406 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3407 restore_rounding_mode(env);
3408 if (get_float_exception_flags(&env->active_fpu.fp_status)
3409 & float_flag_invalid) {
3410 if (float32_is_any_nan(fst0)) {
3411 wt2 = 0;
3412 }
3413 }
3414 update_fcr31(env, GETPC());
3415 return wt2;
3416 }
3417
3418 /* unary operations, not modifying fp status */
3419 #define FLOAT_UNOP(name) \
3420 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
3421 { \
3422 return float64_ ## name(fdt0); \
3423 } \
3424 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
3425 { \
3426 return float32_ ## name(fst0); \
3427 } \
3428 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
3429 { \
3430 uint32_t wt0; \
3431 uint32_t wth0; \
3432 \
3433 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
3434 wth0 = float32_ ## name(fdt0 >> 32); \
3435 return ((uint64_t)wth0 << 32) | wt0; \
3436 }
3437 FLOAT_UNOP(abs)
3438 FLOAT_UNOP(chs)
3439 #undef FLOAT_UNOP
3440
3441 /* MIPS specific unary operations */
3442 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
3443 {
3444 uint64_t fdt2;
3445
3446 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3447 update_fcr31(env, GETPC());
3448 return fdt2;
3449 }
3450
3451 uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
3452 {
3453 uint32_t fst2;
3454
3455 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3456 update_fcr31(env, GETPC());
3457 return fst2;
3458 }
3459
3460 uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
3461 {
3462 uint64_t fdt2;
3463
3464 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3465 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3466 update_fcr31(env, GETPC());
3467 return fdt2;
3468 }
3469
3470 uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
3471 {
3472 uint32_t fst2;
3473
3474 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3475 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3476 update_fcr31(env, GETPC());
3477 return fst2;
3478 }
3479
3480 uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
3481 {
3482 uint64_t fdt2;
3483
3484 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3485 update_fcr31(env, GETPC());
3486 return fdt2;
3487 }
3488
3489 uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
3490 {
3491 uint32_t fst2;
3492
3493 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3494 update_fcr31(env, GETPC());
3495 return fst2;
3496 }
3497
3498 uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
3499 {
3500 uint32_t fst2;
3501 uint32_t fsth2;
3502
3503 fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3504 fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
3505 update_fcr31(env, GETPC());
3506 return ((uint64_t)fsth2 << 32) | fst2;
3507 }
3508
3509 uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
3510 {
3511 uint64_t fdt2;
3512
3513 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3514 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3515 update_fcr31(env, GETPC());
3516 return fdt2;
3517 }
3518
3519 uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
3520 {
3521 uint32_t fst2;
3522
3523 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3524 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3525 update_fcr31(env, GETPC());
3526 return fst2;
3527 }
3528
3529 uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
3530 {
3531 uint32_t fst2;
3532 uint32_t fsth2;
3533
3534 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3535 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
3536 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3537 fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
3538 update_fcr31(env, GETPC());
3539 return ((uint64_t)fsth2 << 32) | fst2;
3540 }
3541
3542 #define FLOAT_RINT(name, bits) \
3543 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3544 uint ## bits ## _t fs) \
3545 { \
3546 uint ## bits ## _t fdret; \
3547 \
3548 fdret = float ## bits ## _round_to_int(fs, &env->active_fpu.fp_status); \
3549 update_fcr31(env, GETPC()); \
3550 return fdret; \
3551 }
3552
3553 FLOAT_RINT(rint_s, 32)
3554 FLOAT_RINT(rint_d, 64)
3555 #undef FLOAT_RINT
3556
3557 #define FLOAT_CLASS_SIGNALING_NAN 0x001
3558 #define FLOAT_CLASS_QUIET_NAN 0x002
3559 #define FLOAT_CLASS_NEGATIVE_INFINITY 0x004
3560 #define FLOAT_CLASS_NEGATIVE_NORMAL 0x008
3561 #define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010
3562 #define FLOAT_CLASS_NEGATIVE_ZERO 0x020
3563 #define FLOAT_CLASS_POSITIVE_INFINITY 0x040
3564 #define FLOAT_CLASS_POSITIVE_NORMAL 0x080
3565 #define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100
3566 #define FLOAT_CLASS_POSITIVE_ZERO 0x200
3567
3568 #define FLOAT_CLASS(name, bits) \
3569 uint ## bits ## _t float_ ## name (uint ## bits ## _t arg, \
3570 float_status *status) \
3571 { \
3572 if (float ## bits ## _is_signaling_nan(arg, status)) { \
3573 return FLOAT_CLASS_SIGNALING_NAN; \
3574 } else if (float ## bits ## _is_quiet_nan(arg, status)) { \
3575 return FLOAT_CLASS_QUIET_NAN; \
3576 } else if (float ## bits ## _is_neg(arg)) { \
3577 if (float ## bits ## _is_infinity(arg)) { \
3578 return FLOAT_CLASS_NEGATIVE_INFINITY; \
3579 } else if (float ## bits ## _is_zero(arg)) { \
3580 return FLOAT_CLASS_NEGATIVE_ZERO; \
3581 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3582 return FLOAT_CLASS_NEGATIVE_SUBNORMAL; \
3583 } else { \
3584 return FLOAT_CLASS_NEGATIVE_NORMAL; \
3585 } \
3586 } else { \
3587 if (float ## bits ## _is_infinity(arg)) { \
3588 return FLOAT_CLASS_POSITIVE_INFINITY; \
3589 } else if (float ## bits ## _is_zero(arg)) { \
3590 return FLOAT_CLASS_POSITIVE_ZERO; \
3591 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3592 return FLOAT_CLASS_POSITIVE_SUBNORMAL; \
3593 } else { \
3594 return FLOAT_CLASS_POSITIVE_NORMAL; \
3595 } \
3596 } \
3597 } \
3598 \
3599 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3600 uint ## bits ## _t arg) \
3601 { \
3602 return float_ ## name(arg, &env->active_fpu.fp_status); \
3603 }
3604
3605 FLOAT_CLASS(class_s, 32)
3606 FLOAT_CLASS(class_d, 64)
3607 #undef FLOAT_CLASS
3608
3609 /* binary operations */
3610 #define FLOAT_BINOP(name) \
3611 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3612 uint64_t fdt0, uint64_t fdt1) \
3613 { \
3614 uint64_t dt2; \
3615 \
3616 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
3617 update_fcr31(env, GETPC()); \
3618 return dt2; \
3619 } \
3620 \
3621 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3622 uint32_t fst0, uint32_t fst1) \
3623 { \
3624 uint32_t wt2; \
3625 \
3626 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3627 update_fcr31(env, GETPC()); \
3628 return wt2; \
3629 } \
3630 \
3631 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3632 uint64_t fdt0, \
3633 uint64_t fdt1) \
3634 { \
3635 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3636 uint32_t fsth0 = fdt0 >> 32; \
3637 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3638 uint32_t fsth1 = fdt1 >> 32; \
3639 uint32_t wt2; \
3640 uint32_t wth2; \
3641 \
3642 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3643 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
3644 update_fcr31(env, GETPC()); \
3645 return ((uint64_t)wth2 << 32) | wt2; \
3646 }
3647
3648 FLOAT_BINOP(add)
3649 FLOAT_BINOP(sub)
3650 FLOAT_BINOP(mul)
3651 FLOAT_BINOP(div)
3652 #undef FLOAT_BINOP
3653
3654 /* MIPS specific binary operations */
3655 uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3656 {
3657 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3658 fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
3659 update_fcr31(env, GETPC());
3660 return fdt2;
3661 }
3662
3663 uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3664 {
3665 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3666 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3667 update_fcr31(env, GETPC());
3668 return fst2;
3669 }
3670
3671 uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3672 {
3673 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3674 uint32_t fsth0 = fdt0 >> 32;
3675 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3676 uint32_t fsth2 = fdt2 >> 32;
3677
3678 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3679 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3680 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3681 fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
3682 update_fcr31(env, GETPC());
3683 return ((uint64_t)fsth2 << 32) | fst2;
3684 }
3685
3686 uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3687 {
3688 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3689 fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
3690 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
3691 update_fcr31(env, GETPC());
3692 return fdt2;
3693 }
3694
3695 uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3696 {
3697 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3698 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3699 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3700 update_fcr31(env, GETPC());
3701 return fst2;
3702 }
3703
3704 uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3705 {
3706 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3707 uint32_t fsth0 = fdt0 >> 32;
3708 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3709 uint32_t fsth2 = fdt2 >> 32;
3710
3711 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3712 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3713 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3714 fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
3715 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3716 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
3717 update_fcr31(env, GETPC());
3718 return ((uint64_t)fsth2 << 32) | fst2;
3719 }
3720
3721 uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3722 {
3723 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3724 uint32_t fsth0 = fdt0 >> 32;
3725 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3726 uint32_t fsth1 = fdt1 >> 32;
3727 uint32_t fst2;
3728 uint32_t fsth2;
3729
3730 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
3731 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
3732 update_fcr31(env, GETPC());
3733 return ((uint64_t)fsth2 << 32) | fst2;
3734 }
3735
3736 uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3737 {
3738 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3739 uint32_t fsth0 = fdt0 >> 32;
3740 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3741 uint32_t fsth1 = fdt1 >> 32;
3742 uint32_t fst2;
3743 uint32_t fsth2;
3744
3745 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3746 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3747 update_fcr31(env, GETPC());
3748 return ((uint64_t)fsth2 << 32) | fst2;
3749 }
3750
3751 #define FLOAT_MINMAX(name, bits, minmaxfunc) \
3752 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3753 uint ## bits ## _t fs, \
3754 uint ## bits ## _t ft) \
3755 { \
3756 uint ## bits ## _t fdret; \
3757 \
3758 fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \
3759 &env->active_fpu.fp_status); \
3760 update_fcr31(env, GETPC()); \
3761 return fdret; \
3762 }
3763
3764 FLOAT_MINMAX(max_s, 32, maxnum)
3765 FLOAT_MINMAX(max_d, 64, maxnum)
3766 FLOAT_MINMAX(maxa_s, 32, maxnummag)
3767 FLOAT_MINMAX(maxa_d, 64, maxnummag)
3768
3769 FLOAT_MINMAX(min_s, 32, minnum)
3770 FLOAT_MINMAX(min_d, 64, minnum)
3771 FLOAT_MINMAX(mina_s, 32, minnummag)
3772 FLOAT_MINMAX(mina_d, 64, minnummag)
3773 #undef FLOAT_MINMAX
3774
3775 /* ternary operations */
3776 #define UNFUSED_FMA(prefix, a, b, c, flags) \
3777 { \
3778 a = prefix##_mul(a, b, &env->active_fpu.fp_status); \
3779 if ((flags) & float_muladd_negate_c) { \
3780 a = prefix##_sub(a, c, &env->active_fpu.fp_status); \
3781 } else { \
3782 a = prefix##_add(a, c, &env->active_fpu.fp_status); \
3783 } \
3784 if ((flags) & float_muladd_negate_result) { \
3785 a = prefix##_chs(a); \
3786 } \
3787 }
3788
3789 /* FMA based operations */
3790 #define FLOAT_FMA(name, type) \
3791 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3792 uint64_t fdt0, uint64_t fdt1, \
3793 uint64_t fdt2) \
3794 { \
3795 UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \
3796 update_fcr31(env, GETPC()); \
3797 return fdt0; \
3798 } \
3799 \
3800 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3801 uint32_t fst0, uint32_t fst1, \
3802 uint32_t fst2) \
3803 { \
3804 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3805 update_fcr31(env, GETPC()); \
3806 return fst0; \
3807 } \
3808 \
3809 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3810 uint64_t fdt0, uint64_t fdt1, \
3811 uint64_t fdt2) \
3812 { \
3813 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3814 uint32_t fsth0 = fdt0 >> 32; \
3815 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3816 uint32_t fsth1 = fdt1 >> 32; \
3817 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
3818 uint32_t fsth2 = fdt2 >> 32; \
3819 \
3820 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3821 UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \
3822 update_fcr31(env, GETPC()); \
3823 return ((uint64_t)fsth0 << 32) | fst0; \
3824 }
3825 FLOAT_FMA(madd, 0)
3826 FLOAT_FMA(msub, float_muladd_negate_c)
3827 FLOAT_FMA(nmadd, float_muladd_negate_result)
3828 FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
3829 #undef FLOAT_FMA
3830
3831 #define FLOAT_FMADDSUB(name, bits, muladd_arg) \
3832 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3833 uint ## bits ## _t fs, \
3834 uint ## bits ## _t ft, \
3835 uint ## bits ## _t fd) \
3836 { \
3837 uint ## bits ## _t fdret; \
3838 \
3839 fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \
3840 &env->active_fpu.fp_status); \
3841 update_fcr31(env, GETPC()); \
3842 return fdret; \
3843 }
3844
3845 FLOAT_FMADDSUB(maddf_s, 32, 0)
3846 FLOAT_FMADDSUB(maddf_d, 64, 0)
3847 FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product)
3848 FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product)
3849 #undef FLOAT_FMADDSUB
3850
3851 /* compare operations */
3852 #define FOP_COND_D(op, cond) \
3853 void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3854 uint64_t fdt1, int cc) \
3855 { \
3856 int c; \
3857 c = cond; \
3858 update_fcr31(env, GETPC()); \
3859 if (c) \
3860 SET_FP_COND(cc, env->active_fpu); \
3861 else \
3862 CLEAR_FP_COND(cc, env->active_fpu); \
3863 } \
3864 void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3865 uint64_t fdt1, int cc) \
3866 { \
3867 int c; \
3868 fdt0 = float64_abs(fdt0); \
3869 fdt1 = float64_abs(fdt1); \
3870 c = cond; \
3871 update_fcr31(env, GETPC()); \
3872 if (c) \
3873 SET_FP_COND(cc, env->active_fpu); \
3874 else \
3875 CLEAR_FP_COND(cc, env->active_fpu); \
3876 }
3877
3878 /* NOTE: the comma operator will make "cond" to eval to false,
3879 * but float64_unordered_quiet() is still called. */
3880 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3881 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
3882 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3883 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3884 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3885 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3886 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3887 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3888 /* NOTE: the comma operator will make "cond" to eval to false,
3889 * but float64_unordered() is still called. */
3890 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3891 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
3892 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3893 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3894 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3895 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3896 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3897 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3898
3899 #define FOP_COND_S(op, cond) \
3900 void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3901 uint32_t fst1, int cc) \
3902 { \
3903 int c; \
3904 c = cond; \
3905 update_fcr31(env, GETPC()); \
3906 if (c) \
3907 SET_FP_COND(cc, env->active_fpu); \
3908 else \
3909 CLEAR_FP_COND(cc, env->active_fpu); \
3910 } \
3911 void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3912 uint32_t fst1, int cc) \
3913 { \
3914 int c; \
3915 fst0 = float32_abs(fst0); \
3916 fst1 = float32_abs(fst1); \
3917 c = cond; \
3918 update_fcr31(env, GETPC()); \
3919 if (c) \
3920 SET_FP_COND(cc, env->active_fpu); \
3921 else \
3922 CLEAR_FP_COND(cc, env->active_fpu); \
3923 }
3924
3925 /* NOTE: the comma operator will make "cond" to eval to false,
3926 * but float32_unordered_quiet() is still called. */
3927 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
3928 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
3929 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3930 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3931 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3932 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3933 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3934 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3935 /* NOTE: the comma operator will make "cond" to eval to false,
3936 * but float32_unordered() is still called. */
3937 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
3938 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
3939 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3940 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3941 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3942 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3943 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
3944 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3945
3946 #define FOP_COND_PS(op, condl, condh) \
3947 void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3948 uint64_t fdt1, int cc) \
3949 { \
3950 uint32_t fst0, fsth0, fst1, fsth1; \
3951 int ch, cl; \
3952 fst0 = fdt0 & 0XFFFFFFFF; \
3953 fsth0 = fdt0 >> 32; \
3954 fst1 = fdt1 & 0XFFFFFFFF; \
3955 fsth1 = fdt1 >> 32; \
3956 cl = condl; \
3957 ch = condh; \
3958 update_fcr31(env, GETPC()); \
3959 if (cl) \
3960 SET_FP_COND(cc, env->active_fpu); \
3961 else \
3962 CLEAR_FP_COND(cc, env->active_fpu); \
3963 if (ch) \
3964 SET_FP_COND(cc + 1, env->active_fpu); \
3965 else \
3966 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3967 } \
3968 void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3969 uint64_t fdt1, int cc) \
3970 { \
3971 uint32_t fst0, fsth0, fst1, fsth1; \
3972 int ch, cl; \
3973 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3974 fsth0 = float32_abs(fdt0 >> 32); \
3975 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3976 fsth1 = float32_abs(fdt1 >> 32); \
3977 cl = condl; \
3978 ch = condh; \
3979 update_fcr31(env, GETPC()); \
3980 if (cl) \
3981 SET_FP_COND(cc, env->active_fpu); \
3982 else \
3983 CLEAR_FP_COND(cc, env->active_fpu); \
3984 if (ch) \
3985 SET_FP_COND(cc + 1, env->active_fpu); \
3986 else \
3987 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3988 }
3989
3990 /* NOTE: the comma operator will make "cond" to eval to false,
3991 * but float32_unordered_quiet() is still called. */
3992 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
3993 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3994 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
3995 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
3996 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3997 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3998 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3999 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4000 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
4001 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4002 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
4003 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4004 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
4005 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4006 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
4007 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4008 /* NOTE: the comma operator will make "cond" to eval to false,
4009 * but float32_unordered() is still called. */
4010 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
4011 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
4012 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
4013 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
4014 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
4015 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
4016 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
4017 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
4018 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
4019 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
4020 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
4021 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
4022 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
4023 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
4024 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
4025 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
4026
4027 /* R6 compare operations */
4028 #define FOP_CONDN_D(op, cond) \
4029 uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState * env, uint64_t fdt0, \
4030 uint64_t fdt1) \
4031 { \
4032 uint64_t c; \
4033 c = cond; \
4034 update_fcr31(env, GETPC()); \
4035 if (c) { \
4036 return -1; \
4037 } else { \
4038 return 0; \
4039 } \
4040 }
4041
4042 /* NOTE: the comma operator will make "cond" to eval to false,
4043 * but float64_unordered_quiet() is still called. */
4044 FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4045 FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)))
4046 FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4047 FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4048 || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4049 FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4050 FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4051 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4052 FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4053 FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4054 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4055 /* NOTE: the comma operator will make "cond" to eval to false,
4056 * but float64_unordered() is still called. */
4057 FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4058 FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)))
4059 FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
4060 FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4061 || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
4062 FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4063 FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4064 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4065 FOP_CONDN_D(sle, (float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4066 FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4067 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4068 FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4069 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4070 FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4071 || float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4072 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4073 FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4074 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4075 FOP_CONDN_D(sor, (float64_le(fdt1, fdt0, &env->active_fpu.fp_status)
4076 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4077 FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4078 || float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4079 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4080 FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4081 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4082
4083 #define FOP_CONDN_S(op, cond) \
4084 uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState * env, uint32_t fst0, \
4085 uint32_t fst1) \
4086 { \
4087 uint64_t c; \
4088 c = cond; \
4089 update_fcr31(env, GETPC()); \
4090 if (c) { \
4091 return -1; \
4092 } else { \
4093 return 0; \
4094 } \
4095 }
4096
4097 /* NOTE: the comma operator will make "cond" to eval to false,
4098 * but float32_unordered_quiet() is still called. */
4099 FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
4100 FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)))
4101 FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4102 FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4103 || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4104 FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4105 FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4106 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4107 FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4108 FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4109 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4110 /* NOTE: the comma operator will make "cond" to eval to false,
4111 * but float32_unordered() is still called. */
4112 FOP_CONDN_S(saf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
4113 FOP_CONDN_S(sun, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)))
4114 FOP_CONDN_S(seq, (float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4115 FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4116 || float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4117 FOP_CONDN_S(slt, (float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4118 FOP_CONDN_S(sult, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4119 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4120 FOP_CONDN_S(sle, (float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4121 FOP_CONDN_S(sule, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4122 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4123 FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0, &env->active_fpu.fp_status)
4124 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4125 FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4126 || float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4127 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4128 FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4129 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4130 FOP_CONDN_S(sor, (float32_le(fst1, fst0, &env->active_fpu.fp_status)
4131 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4132 FOP_CONDN_S(sune, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4133 || float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4134 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4135 FOP_CONDN_S(sne, (float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4136 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4137
4138 /* MSA */
4139 /* Data format min and max values */
4140 #define DF_BITS(df) (1 << ((df) + 3))
4141
4142 /* Element-by-element access macros */
4143 #define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df))
4144
4145 #if !defined(CONFIG_USER_ONLY)
4146 #define MEMOP_IDX(DF) \
4147 TCGMemOpIdx oi = make_memop_idx(MO_TE | DF | MO_UNALN, \
4148 cpu_mmu_index(env, false));
4149 #else
4150 #define MEMOP_IDX(DF)
4151 #endif
4152
4153 #define MSA_LD_DF(DF, TYPE, LD_INSN, ...) \
4154 void helper_msa_ld_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4155 target_ulong addr) \
4156 { \
4157 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4158 wr_t wx; \
4159 int i; \
4160 MEMOP_IDX(DF) \
4161 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4162 wx.TYPE[i] = LD_INSN(env, addr + (i << DF), ##__VA_ARGS__); \
4163 } \
4164 memcpy(pwd, &wx, sizeof(wr_t)); \
4165 }
4166
4167 #if !defined(CONFIG_USER_ONLY)
4168 MSA_LD_DF(DF_BYTE, b, helper_ret_ldub_mmu, oi, GETPC())
4169 MSA_LD_DF(DF_HALF, h, helper_ret_lduw_mmu, oi, GETPC())
4170 MSA_LD_DF(DF_WORD, w, helper_ret_ldul_mmu, oi, GETPC())
4171 MSA_LD_DF(DF_DOUBLE, d, helper_ret_ldq_mmu, oi, GETPC())
4172 #else
4173 MSA_LD_DF(DF_BYTE, b, cpu_ldub_data)
4174 MSA_LD_DF(DF_HALF, h, cpu_lduw_data)
4175 MSA_LD_DF(DF_WORD, w, cpu_ldl_data)
4176 MSA_LD_DF(DF_DOUBLE, d, cpu_ldq_data)
4177 #endif
4178
4179 #define MSA_PAGESPAN(x) \
4180 ((((x) & ~TARGET_PAGE_MASK) + MSA_WRLEN/8 - 1) >= TARGET_PAGE_SIZE)
4181
4182 static inline void ensure_writable_pages(CPUMIPSState *env,
4183 target_ulong addr,
4184 int mmu_idx,
4185 uintptr_t retaddr)
4186 {
4187 #if !defined(CONFIG_USER_ONLY)
4188 target_ulong page_addr;
4189 if (unlikely(MSA_PAGESPAN(addr))) {
4190 /* first page */
4191 probe_write(env, addr, mmu_idx, retaddr);
4192 /* second page */
4193 page_addr = (addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
4194 probe_write(env, page_addr, mmu_idx, retaddr);
4195 }
4196 #endif
4197 }
4198
4199 #define MSA_ST_DF(DF, TYPE, ST_INSN, ...) \
4200 void helper_msa_st_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4201 target_ulong addr) \
4202 { \
4203 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4204 int mmu_idx = cpu_mmu_index(env, false); \
4205 int i; \
4206 MEMOP_IDX(DF) \
4207 ensure_writable_pages(env, addr, mmu_idx, GETPC()); \
4208 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4209 ST_INSN(env, addr + (i << DF), pwd->TYPE[i], ##__VA_ARGS__); \
4210 } \
4211 }
4212
4213 #if !defined(CONFIG_USER_ONLY)
4214 MSA_ST_DF(DF_BYTE, b, helper_ret_stb_mmu, oi, GETPC())
4215 MSA_ST_DF(DF_HALF, h, helper_ret_stw_mmu, oi, GETPC())
4216 MSA_ST_DF(DF_WORD, w, helper_ret_stl_mmu, oi, GETPC())
4217 MSA_ST_DF(DF_DOUBLE, d, helper_ret_stq_mmu, oi, GETPC())
4218 #else
4219 MSA_ST_DF(DF_BYTE, b, cpu_stb_data)
4220 MSA_ST_DF(DF_HALF, h, cpu_stw_data)
4221 MSA_ST_DF(DF_WORD, w, cpu_stl_data)
4222 MSA_ST_DF(DF_DOUBLE, d, cpu_stq_data)
4223 #endif
4224
4225 void helper_cache(CPUMIPSState *env, target_ulong addr, uint32_t op)
4226 {
4227 #ifndef CONFIG_USER_ONLY
4228 target_ulong index = addr & 0x1fffffff;
4229 if (op == 9) {
4230 /* Index Store Tag */
4231 memory_region_dispatch_write(env->itc_tag, index, env->CP0_TagLo,
4232 8, MEMTXATTRS_UNSPECIFIED);
4233 } else if (op == 5) {
4234 /* Index Load Tag */
4235 memory_region_dispatch_read(env->itc_tag, index, &env->CP0_TagLo,
4236 8, MEMTXATTRS_UNSPECIFIED);
4237 }
4238 #endif
4239 }