]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/op_helper.c
cputlb: drop flush_global flag from tlb_flush
[mirror_qemu.git] / target / mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22 #include "exec/helper-proto.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
25 #include "sysemu/kvm.h"
26
27 /*****************************************************************************/
28 /* Exceptions processing helpers */
29
30 void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
31 int error_code)
32 {
33 do_raise_exception_err(env, exception, error_code, 0);
34 }
35
36 void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
37 {
38 do_raise_exception(env, exception, GETPC());
39 }
40
41 void helper_raise_exception_debug(CPUMIPSState *env)
42 {
43 do_raise_exception(env, EXCP_DEBUG, 0);
44 }
45
46 static void raise_exception(CPUMIPSState *env, uint32_t exception)
47 {
48 do_raise_exception(env, exception, 0);
49 }
50
51 #if defined(CONFIG_USER_ONLY)
52 #define HELPER_LD(name, insn, type) \
53 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
54 int mem_idx, uintptr_t retaddr) \
55 { \
56 return (type) cpu_##insn##_data_ra(env, addr, retaddr); \
57 }
58 #else
59 #define HELPER_LD(name, insn, type) \
60 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
61 int mem_idx, uintptr_t retaddr) \
62 { \
63 switch (mem_idx) \
64 { \
65 case 0: return (type) cpu_##insn##_kernel_ra(env, addr, retaddr); \
66 case 1: return (type) cpu_##insn##_super_ra(env, addr, retaddr); \
67 default: \
68 case 2: return (type) cpu_##insn##_user_ra(env, addr, retaddr); \
69 } \
70 }
71 #endif
72 HELPER_LD(lw, ldl, int32_t)
73 #if defined(TARGET_MIPS64)
74 HELPER_LD(ld, ldq, int64_t)
75 #endif
76 #undef HELPER_LD
77
78 #if defined(CONFIG_USER_ONLY)
79 #define HELPER_ST(name, insn, type) \
80 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
81 type val, int mem_idx, uintptr_t retaddr) \
82 { \
83 cpu_##insn##_data_ra(env, addr, val, retaddr); \
84 }
85 #else
86 #define HELPER_ST(name, insn, type) \
87 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
88 type val, int mem_idx, uintptr_t retaddr) \
89 { \
90 switch (mem_idx) \
91 { \
92 case 0: cpu_##insn##_kernel_ra(env, addr, val, retaddr); break; \
93 case 1: cpu_##insn##_super_ra(env, addr, val, retaddr); break; \
94 default: \
95 case 2: cpu_##insn##_user_ra(env, addr, val, retaddr); break; \
96 } \
97 }
98 #endif
99 HELPER_ST(sb, stb, uint8_t)
100 HELPER_ST(sw, stl, uint32_t)
101 #if defined(TARGET_MIPS64)
102 HELPER_ST(sd, stq, uint64_t)
103 #endif
104 #undef HELPER_ST
105
106 /* 64 bits arithmetic for 32 bits hosts */
107 static inline uint64_t get_HILO(CPUMIPSState *env)
108 {
109 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
110 }
111
112 static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
113 {
114 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
115 return env->active_tc.HI[0] = (int32_t)(HILO >> 32);
116 }
117
118 static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
119 {
120 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
121 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
122 return tmp;
123 }
124
125 /* Multiplication variants of the vr54xx. */
126 target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
127 target_ulong arg2)
128 {
129 return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
130 (int64_t)(int32_t)arg2));
131 }
132
133 target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
134 target_ulong arg2)
135 {
136 return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
137 (uint64_t)(uint32_t)arg2);
138 }
139
140 target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
141 target_ulong arg2)
142 {
143 return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
144 (int64_t)(int32_t)arg2);
145 }
146
147 target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
148 target_ulong arg2)
149 {
150 return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
151 (int64_t)(int32_t)arg2);
152 }
153
154 target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
155 target_ulong arg2)
156 {
157 return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
158 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
159 }
160
161 target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
162 target_ulong arg2)
163 {
164 return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
165 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
166 }
167
168 target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
169 target_ulong arg2)
170 {
171 return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
172 (int64_t)(int32_t)arg2);
173 }
174
175 target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
176 target_ulong arg2)
177 {
178 return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
179 (int64_t)(int32_t)arg2);
180 }
181
182 target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
183 target_ulong arg2)
184 {
185 return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
186 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
187 }
188
189 target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
190 target_ulong arg2)
191 {
192 return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
193 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
194 }
195
196 target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
197 target_ulong arg2)
198 {
199 return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
200 }
201
202 target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
203 target_ulong arg2)
204 {
205 return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
206 (uint64_t)(uint32_t)arg2);
207 }
208
209 target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
210 target_ulong arg2)
211 {
212 return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
213 (int64_t)(int32_t)arg2);
214 }
215
216 target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
217 target_ulong arg2)
218 {
219 return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
220 (uint64_t)(uint32_t)arg2);
221 }
222
223 static inline target_ulong bitswap(target_ulong v)
224 {
225 v = ((v >> 1) & (target_ulong)0x5555555555555555ULL) |
226 ((v & (target_ulong)0x5555555555555555ULL) << 1);
227 v = ((v >> 2) & (target_ulong)0x3333333333333333ULL) |
228 ((v & (target_ulong)0x3333333333333333ULL) << 2);
229 v = ((v >> 4) & (target_ulong)0x0F0F0F0F0F0F0F0FULL) |
230 ((v & (target_ulong)0x0F0F0F0F0F0F0F0FULL) << 4);
231 return v;
232 }
233
234 #ifdef TARGET_MIPS64
235 target_ulong helper_dbitswap(target_ulong rt)
236 {
237 return bitswap(rt);
238 }
239 #endif
240
241 target_ulong helper_bitswap(target_ulong rt)
242 {
243 return (int32_t)bitswap(rt);
244 }
245
246 #ifndef CONFIG_USER_ONLY
247
248 static inline hwaddr do_translate_address(CPUMIPSState *env,
249 target_ulong address,
250 int rw, uintptr_t retaddr)
251 {
252 hwaddr lladdr;
253 CPUState *cs = CPU(mips_env_get_cpu(env));
254
255 lladdr = cpu_mips_translate_address(env, address, rw);
256
257 if (lladdr == -1LL) {
258 cpu_loop_exit_restore(cs, retaddr);
259 } else {
260 return lladdr;
261 }
262 }
263
264 #define HELPER_LD_ATOMIC(name, insn, almask) \
265 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
266 { \
267 if (arg & almask) { \
268 env->CP0_BadVAddr = arg; \
269 do_raise_exception(env, EXCP_AdEL, GETPC()); \
270 } \
271 env->lladdr = do_translate_address(env, arg, 0, GETPC()); \
272 env->llval = do_##insn(env, arg, mem_idx, GETPC()); \
273 return env->llval; \
274 }
275 HELPER_LD_ATOMIC(ll, lw, 0x3)
276 #ifdef TARGET_MIPS64
277 HELPER_LD_ATOMIC(lld, ld, 0x7)
278 #endif
279 #undef HELPER_LD_ATOMIC
280
281 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
282 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
283 target_ulong arg2, int mem_idx) \
284 { \
285 target_long tmp; \
286 \
287 if (arg2 & almask) { \
288 env->CP0_BadVAddr = arg2; \
289 do_raise_exception(env, EXCP_AdES, GETPC()); \
290 } \
291 if (do_translate_address(env, arg2, 1, GETPC()) == env->lladdr) { \
292 tmp = do_##ld_insn(env, arg2, mem_idx, GETPC()); \
293 if (tmp == env->llval) { \
294 do_##st_insn(env, arg2, arg1, mem_idx, GETPC()); \
295 return 1; \
296 } \
297 } \
298 return 0; \
299 }
300 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
301 #ifdef TARGET_MIPS64
302 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
303 #endif
304 #undef HELPER_ST_ATOMIC
305 #endif
306
307 #ifdef TARGET_WORDS_BIGENDIAN
308 #define GET_LMASK(v) ((v) & 3)
309 #define GET_OFFSET(addr, offset) (addr + (offset))
310 #else
311 #define GET_LMASK(v) (((v) & 3) ^ 3)
312 #define GET_OFFSET(addr, offset) (addr - (offset))
313 #endif
314
315 void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
316 int mem_idx)
317 {
318 do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx, GETPC());
319
320 if (GET_LMASK(arg2) <= 2) {
321 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx,
322 GETPC());
323 }
324
325 if (GET_LMASK(arg2) <= 1) {
326 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx,
327 GETPC());
328 }
329
330 if (GET_LMASK(arg2) == 0) {
331 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx,
332 GETPC());
333 }
334 }
335
336 void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
337 int mem_idx)
338 {
339 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
340
341 if (GET_LMASK(arg2) >= 1) {
342 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
343 GETPC());
344 }
345
346 if (GET_LMASK(arg2) >= 2) {
347 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
348 GETPC());
349 }
350
351 if (GET_LMASK(arg2) == 3) {
352 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
353 GETPC());
354 }
355 }
356
357 #if defined(TARGET_MIPS64)
358 /* "half" load and stores. We must do the memory access inline,
359 or fault handling won't work. */
360
361 #ifdef TARGET_WORDS_BIGENDIAN
362 #define GET_LMASK64(v) ((v) & 7)
363 #else
364 #define GET_LMASK64(v) (((v) & 7) ^ 7)
365 #endif
366
367 void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
368 int mem_idx)
369 {
370 do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx, GETPC());
371
372 if (GET_LMASK64(arg2) <= 6) {
373 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx,
374 GETPC());
375 }
376
377 if (GET_LMASK64(arg2) <= 5) {
378 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx,
379 GETPC());
380 }
381
382 if (GET_LMASK64(arg2) <= 4) {
383 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx,
384 GETPC());
385 }
386
387 if (GET_LMASK64(arg2) <= 3) {
388 do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx,
389 GETPC());
390 }
391
392 if (GET_LMASK64(arg2) <= 2) {
393 do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx,
394 GETPC());
395 }
396
397 if (GET_LMASK64(arg2) <= 1) {
398 do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx,
399 GETPC());
400 }
401
402 if (GET_LMASK64(arg2) <= 0) {
403 do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx,
404 GETPC());
405 }
406 }
407
408 void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
409 int mem_idx)
410 {
411 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
412
413 if (GET_LMASK64(arg2) >= 1) {
414 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
415 GETPC());
416 }
417
418 if (GET_LMASK64(arg2) >= 2) {
419 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
420 GETPC());
421 }
422
423 if (GET_LMASK64(arg2) >= 3) {
424 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
425 GETPC());
426 }
427
428 if (GET_LMASK64(arg2) >= 4) {
429 do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx,
430 GETPC());
431 }
432
433 if (GET_LMASK64(arg2) >= 5) {
434 do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx,
435 GETPC());
436 }
437
438 if (GET_LMASK64(arg2) >= 6) {
439 do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx,
440 GETPC());
441 }
442
443 if (GET_LMASK64(arg2) == 7) {
444 do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx,
445 GETPC());
446 }
447 }
448 #endif /* TARGET_MIPS64 */
449
450 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
451
452 void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
453 uint32_t mem_idx)
454 {
455 target_ulong base_reglist = reglist & 0xf;
456 target_ulong do_r31 = reglist & 0x10;
457
458 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
459 target_ulong i;
460
461 for (i = 0; i < base_reglist; i++) {
462 env->active_tc.gpr[multiple_regs[i]] =
463 (target_long)do_lw(env, addr, mem_idx, GETPC());
464 addr += 4;
465 }
466 }
467
468 if (do_r31) {
469 env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx,
470 GETPC());
471 }
472 }
473
474 void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
475 uint32_t mem_idx)
476 {
477 target_ulong base_reglist = reglist & 0xf;
478 target_ulong do_r31 = reglist & 0x10;
479
480 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
481 target_ulong i;
482
483 for (i = 0; i < base_reglist; i++) {
484 do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
485 GETPC());
486 addr += 4;
487 }
488 }
489
490 if (do_r31) {
491 do_sw(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
492 }
493 }
494
495 #if defined(TARGET_MIPS64)
496 void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
497 uint32_t mem_idx)
498 {
499 target_ulong base_reglist = reglist & 0xf;
500 target_ulong do_r31 = reglist & 0x10;
501
502 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
503 target_ulong i;
504
505 for (i = 0; i < base_reglist; i++) {
506 env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx,
507 GETPC());
508 addr += 8;
509 }
510 }
511
512 if (do_r31) {
513 env->active_tc.gpr[31] = do_ld(env, addr, mem_idx, GETPC());
514 }
515 }
516
517 void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
518 uint32_t mem_idx)
519 {
520 target_ulong base_reglist = reglist & 0xf;
521 target_ulong do_r31 = reglist & 0x10;
522
523 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
524 target_ulong i;
525
526 for (i = 0; i < base_reglist; i++) {
527 do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
528 GETPC());
529 addr += 8;
530 }
531 }
532
533 if (do_r31) {
534 do_sd(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
535 }
536 }
537 #endif
538
539 #ifndef CONFIG_USER_ONLY
540 /* SMP helpers. */
541 static bool mips_vpe_is_wfi(MIPSCPU *c)
542 {
543 CPUState *cpu = CPU(c);
544 CPUMIPSState *env = &c->env;
545
546 /* If the VPE is halted but otherwise active, it means it's waiting for
547 an interrupt. */
548 return cpu->halted && mips_vpe_active(env);
549 }
550
551 static bool mips_vp_is_wfi(MIPSCPU *c)
552 {
553 CPUState *cpu = CPU(c);
554 CPUMIPSState *env = &c->env;
555
556 return cpu->halted && mips_vp_active(env);
557 }
558
559 static inline void mips_vpe_wake(MIPSCPU *c)
560 {
561 /* Don't set ->halted = 0 directly, let it be done via cpu_has_work
562 because there might be other conditions that state that c should
563 be sleeping. */
564 cpu_interrupt(CPU(c), CPU_INTERRUPT_WAKE);
565 }
566
567 static inline void mips_vpe_sleep(MIPSCPU *cpu)
568 {
569 CPUState *cs = CPU(cpu);
570
571 /* The VPE was shut off, really go to bed.
572 Reset any old _WAKE requests. */
573 cs->halted = 1;
574 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
575 }
576
577 static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
578 {
579 CPUMIPSState *c = &cpu->env;
580
581 /* FIXME: TC reschedule. */
582 if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
583 mips_vpe_wake(cpu);
584 }
585 }
586
587 static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
588 {
589 CPUMIPSState *c = &cpu->env;
590
591 /* FIXME: TC reschedule. */
592 if (!mips_vpe_active(c)) {
593 mips_vpe_sleep(cpu);
594 }
595 }
596
597 /**
598 * mips_cpu_map_tc:
599 * @env: CPU from which mapping is performed.
600 * @tc: Should point to an int with the value of the global TC index.
601 *
602 * This function will transform @tc into a local index within the
603 * returned #CPUMIPSState.
604 */
605 /* FIXME: This code assumes that all VPEs have the same number of TCs,
606 which depends on runtime setup. Can probably be fixed by
607 walking the list of CPUMIPSStates. */
608 static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
609 {
610 MIPSCPU *cpu;
611 CPUState *cs;
612 CPUState *other_cs;
613 int vpe_idx;
614 int tc_idx = *tc;
615
616 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
617 /* Not allowed to address other CPUs. */
618 *tc = env->current_tc;
619 return env;
620 }
621
622 cs = CPU(mips_env_get_cpu(env));
623 vpe_idx = tc_idx / cs->nr_threads;
624 *tc = tc_idx % cs->nr_threads;
625 other_cs = qemu_get_cpu(vpe_idx);
626 if (other_cs == NULL) {
627 return env;
628 }
629 cpu = MIPS_CPU(other_cs);
630 return &cpu->env;
631 }
632
633 /* The per VPE CP0_Status register shares some fields with the per TC
634 CP0_TCStatus registers. These fields are wired to the same registers,
635 so changes to either of them should be reflected on both registers.
636
637 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
638
639 These helper call synchronizes the regs for a given cpu. */
640
641 /* Called for updates to CP0_Status. Defined in "cpu.h" for gdbstub.c. */
642 /* static inline void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu,
643 int tc); */
644
645 /* Called for updates to CP0_TCStatus. */
646 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
647 target_ulong v)
648 {
649 uint32_t status;
650 uint32_t tcu, tmx, tasid, tksu;
651 uint32_t mask = ((1U << CP0St_CU3)
652 | (1 << CP0St_CU2)
653 | (1 << CP0St_CU1)
654 | (1 << CP0St_CU0)
655 | (1 << CP0St_MX)
656 | (3 << CP0St_KSU));
657
658 tcu = (v >> CP0TCSt_TCU0) & 0xf;
659 tmx = (v >> CP0TCSt_TMX) & 0x1;
660 tasid = v & cpu->CP0_EntryHi_ASID_mask;
661 tksu = (v >> CP0TCSt_TKSU) & 0x3;
662
663 status = tcu << CP0St_CU0;
664 status |= tmx << CP0St_MX;
665 status |= tksu << CP0St_KSU;
666
667 cpu->CP0_Status &= ~mask;
668 cpu->CP0_Status |= status;
669
670 /* Sync the TASID with EntryHi. */
671 cpu->CP0_EntryHi &= ~cpu->CP0_EntryHi_ASID_mask;
672 cpu->CP0_EntryHi |= tasid;
673
674 compute_hflags(cpu);
675 }
676
677 /* Called for updates to CP0_EntryHi. */
678 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
679 {
680 int32_t *tcst;
681 uint32_t asid, v = cpu->CP0_EntryHi;
682
683 asid = v & cpu->CP0_EntryHi_ASID_mask;
684
685 if (tc == cpu->current_tc) {
686 tcst = &cpu->active_tc.CP0_TCStatus;
687 } else {
688 tcst = &cpu->tcs[tc].CP0_TCStatus;
689 }
690
691 *tcst &= ~cpu->CP0_EntryHi_ASID_mask;
692 *tcst |= asid;
693 }
694
695 /* CP0 helpers */
696 target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
697 {
698 return env->mvp->CP0_MVPControl;
699 }
700
701 target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
702 {
703 return env->mvp->CP0_MVPConf0;
704 }
705
706 target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
707 {
708 return env->mvp->CP0_MVPConf1;
709 }
710
711 target_ulong helper_mfc0_random(CPUMIPSState *env)
712 {
713 return (int32_t)cpu_mips_get_random(env);
714 }
715
716 target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
717 {
718 return env->active_tc.CP0_TCStatus;
719 }
720
721 target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
722 {
723 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
724 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
725
726 if (other_tc == other->current_tc)
727 return other->active_tc.CP0_TCStatus;
728 else
729 return other->tcs[other_tc].CP0_TCStatus;
730 }
731
732 target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
733 {
734 return env->active_tc.CP0_TCBind;
735 }
736
737 target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
738 {
739 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
740 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
741
742 if (other_tc == other->current_tc)
743 return other->active_tc.CP0_TCBind;
744 else
745 return other->tcs[other_tc].CP0_TCBind;
746 }
747
748 target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
749 {
750 return env->active_tc.PC;
751 }
752
753 target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
754 {
755 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
756 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
757
758 if (other_tc == other->current_tc)
759 return other->active_tc.PC;
760 else
761 return other->tcs[other_tc].PC;
762 }
763
764 target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
765 {
766 return env->active_tc.CP0_TCHalt;
767 }
768
769 target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
770 {
771 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
772 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
773
774 if (other_tc == other->current_tc)
775 return other->active_tc.CP0_TCHalt;
776 else
777 return other->tcs[other_tc].CP0_TCHalt;
778 }
779
780 target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
781 {
782 return env->active_tc.CP0_TCContext;
783 }
784
785 target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
786 {
787 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
788 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
789
790 if (other_tc == other->current_tc)
791 return other->active_tc.CP0_TCContext;
792 else
793 return other->tcs[other_tc].CP0_TCContext;
794 }
795
796 target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
797 {
798 return env->active_tc.CP0_TCSchedule;
799 }
800
801 target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
802 {
803 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
804 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
805
806 if (other_tc == other->current_tc)
807 return other->active_tc.CP0_TCSchedule;
808 else
809 return other->tcs[other_tc].CP0_TCSchedule;
810 }
811
812 target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
813 {
814 return env->active_tc.CP0_TCScheFBack;
815 }
816
817 target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
818 {
819 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
820 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
821
822 if (other_tc == other->current_tc)
823 return other->active_tc.CP0_TCScheFBack;
824 else
825 return other->tcs[other_tc].CP0_TCScheFBack;
826 }
827
828 target_ulong helper_mfc0_count(CPUMIPSState *env)
829 {
830 return (int32_t)cpu_mips_get_count(env);
831 }
832
833 target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
834 {
835 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
836 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
837
838 return other->CP0_EntryHi;
839 }
840
841 target_ulong helper_mftc0_cause(CPUMIPSState *env)
842 {
843 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
844 int32_t tccause;
845 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
846
847 if (other_tc == other->current_tc) {
848 tccause = other->CP0_Cause;
849 } else {
850 tccause = other->CP0_Cause;
851 }
852
853 return tccause;
854 }
855
856 target_ulong helper_mftc0_status(CPUMIPSState *env)
857 {
858 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
859 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
860
861 return other->CP0_Status;
862 }
863
864 target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
865 {
866 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
867 }
868
869 target_ulong helper_mfc0_maar(CPUMIPSState *env)
870 {
871 return (int32_t) env->CP0_MAAR[env->CP0_MAARI];
872 }
873
874 target_ulong helper_mfhc0_maar(CPUMIPSState *env)
875 {
876 return env->CP0_MAAR[env->CP0_MAARI] >> 32;
877 }
878
879 target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
880 {
881 return (int32_t)env->CP0_WatchLo[sel];
882 }
883
884 target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
885 {
886 return env->CP0_WatchHi[sel];
887 }
888
889 target_ulong helper_mfc0_debug(CPUMIPSState *env)
890 {
891 target_ulong t0 = env->CP0_Debug;
892 if (env->hflags & MIPS_HFLAG_DM)
893 t0 |= 1 << CP0DB_DM;
894
895 return t0;
896 }
897
898 target_ulong helper_mftc0_debug(CPUMIPSState *env)
899 {
900 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
901 int32_t tcstatus;
902 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
903
904 if (other_tc == other->current_tc)
905 tcstatus = other->active_tc.CP0_Debug_tcstatus;
906 else
907 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
908
909 /* XXX: Might be wrong, check with EJTAG spec. */
910 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
911 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
912 }
913
914 #if defined(TARGET_MIPS64)
915 target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
916 {
917 return env->active_tc.PC;
918 }
919
920 target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
921 {
922 return env->active_tc.CP0_TCHalt;
923 }
924
925 target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
926 {
927 return env->active_tc.CP0_TCContext;
928 }
929
930 target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
931 {
932 return env->active_tc.CP0_TCSchedule;
933 }
934
935 target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
936 {
937 return env->active_tc.CP0_TCScheFBack;
938 }
939
940 target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
941 {
942 return env->lladdr >> env->CP0_LLAddr_shift;
943 }
944
945 target_ulong helper_dmfc0_maar(CPUMIPSState *env)
946 {
947 return env->CP0_MAAR[env->CP0_MAARI];
948 }
949
950 target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
951 {
952 return env->CP0_WatchLo[sel];
953 }
954 #endif /* TARGET_MIPS64 */
955
956 void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
957 {
958 uint32_t index_p = env->CP0_Index & 0x80000000;
959 uint32_t tlb_index = arg1 & 0x7fffffff;
960 if (tlb_index < env->tlb->nb_tlb) {
961 if (env->insn_flags & ISA_MIPS32R6) {
962 index_p |= arg1 & 0x80000000;
963 }
964 env->CP0_Index = index_p | tlb_index;
965 }
966 }
967
968 void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
969 {
970 uint32_t mask = 0;
971 uint32_t newval;
972
973 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
974 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
975 (1 << CP0MVPCo_EVP);
976 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
977 mask |= (1 << CP0MVPCo_STLB);
978 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
979
980 // TODO: Enable/disable shared TLB, enable/disable VPEs.
981
982 env->mvp->CP0_MVPControl = newval;
983 }
984
985 void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
986 {
987 uint32_t mask;
988 uint32_t newval;
989
990 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
991 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
992 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
993
994 /* Yield scheduler intercept not implemented. */
995 /* Gating storage scheduler intercept not implemented. */
996
997 // TODO: Enable/disable TCs.
998
999 env->CP0_VPEControl = newval;
1000 }
1001
1002 void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
1003 {
1004 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1005 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1006 uint32_t mask;
1007 uint32_t newval;
1008
1009 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1010 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1011 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
1012
1013 /* TODO: Enable/disable TCs. */
1014
1015 other->CP0_VPEControl = newval;
1016 }
1017
1018 target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
1019 {
1020 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1021 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1022 /* FIXME: Mask away return zero on read bits. */
1023 return other->CP0_VPEControl;
1024 }
1025
1026 target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
1027 {
1028 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1029 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1030
1031 return other->CP0_VPEConf0;
1032 }
1033
1034 void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1035 {
1036 uint32_t mask = 0;
1037 uint32_t newval;
1038
1039 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1040 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1041 mask |= (0xff << CP0VPEC0_XTC);
1042 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1043 }
1044 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1045
1046 // TODO: TC exclusive handling due to ERL/EXL.
1047
1048 env->CP0_VPEConf0 = newval;
1049 }
1050
1051 void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1052 {
1053 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1054 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1055 uint32_t mask = 0;
1056 uint32_t newval;
1057
1058 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1059 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1060
1061 /* TODO: TC exclusive handling due to ERL/EXL. */
1062 other->CP0_VPEConf0 = newval;
1063 }
1064
1065 void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
1066 {
1067 uint32_t mask = 0;
1068 uint32_t newval;
1069
1070 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1071 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1072 (0xff << CP0VPEC1_NCP1);
1073 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1074
1075 /* UDI not implemented. */
1076 /* CP2 not implemented. */
1077
1078 // TODO: Handle FPU (CP1) binding.
1079
1080 env->CP0_VPEConf1 = newval;
1081 }
1082
1083 void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
1084 {
1085 /* Yield qualifier inputs not implemented. */
1086 env->CP0_YQMask = 0x00000000;
1087 }
1088
1089 void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
1090 {
1091 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1092 }
1093
1094 #define MTC0_ENTRYLO_MASK(env) ((env->PAMask >> 6) & 0x3FFFFFFF)
1095
1096 void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
1097 {
1098 /* 1k pages not implemented */
1099 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1100 env->CP0_EntryLo0 = (arg1 & MTC0_ENTRYLO_MASK(env))
1101 | (rxi << (CP0EnLo_XI - 30));
1102 }
1103
1104 #if defined(TARGET_MIPS64)
1105 #define DMTC0_ENTRYLO_MASK(env) (env->PAMask >> 6)
1106
1107 void helper_dmtc0_entrylo0(CPUMIPSState *env, uint64_t arg1)
1108 {
1109 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1110 env->CP0_EntryLo0 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1111 }
1112 #endif
1113
1114 void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1115 {
1116 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1117 uint32_t newval;
1118
1119 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1120
1121 env->active_tc.CP0_TCStatus = newval;
1122 sync_c0_tcstatus(env, env->current_tc, newval);
1123 }
1124
1125 void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1126 {
1127 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1128 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1129
1130 if (other_tc == other->current_tc)
1131 other->active_tc.CP0_TCStatus = arg1;
1132 else
1133 other->tcs[other_tc].CP0_TCStatus = arg1;
1134 sync_c0_tcstatus(other, other_tc, arg1);
1135 }
1136
1137 void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1138 {
1139 uint32_t mask = (1 << CP0TCBd_TBE);
1140 uint32_t newval;
1141
1142 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1143 mask |= (1 << CP0TCBd_CurVPE);
1144 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1145 env->active_tc.CP0_TCBind = newval;
1146 }
1147
1148 void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1149 {
1150 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1151 uint32_t mask = (1 << CP0TCBd_TBE);
1152 uint32_t newval;
1153 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1154
1155 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1156 mask |= (1 << CP0TCBd_CurVPE);
1157 if (other_tc == other->current_tc) {
1158 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1159 other->active_tc.CP0_TCBind = newval;
1160 } else {
1161 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1162 other->tcs[other_tc].CP0_TCBind = newval;
1163 }
1164 }
1165
1166 void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1167 {
1168 env->active_tc.PC = arg1;
1169 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1170 env->lladdr = 0ULL;
1171 /* MIPS16 not implemented. */
1172 }
1173
1174 void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1175 {
1176 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1177 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1178
1179 if (other_tc == other->current_tc) {
1180 other->active_tc.PC = arg1;
1181 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1182 other->lladdr = 0ULL;
1183 /* MIPS16 not implemented. */
1184 } else {
1185 other->tcs[other_tc].PC = arg1;
1186 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1187 other->lladdr = 0ULL;
1188 /* MIPS16 not implemented. */
1189 }
1190 }
1191
1192 void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1193 {
1194 MIPSCPU *cpu = mips_env_get_cpu(env);
1195
1196 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1197
1198 // TODO: Halt TC / Restart (if allocated+active) TC.
1199 if (env->active_tc.CP0_TCHalt & 1) {
1200 mips_tc_sleep(cpu, env->current_tc);
1201 } else {
1202 mips_tc_wake(cpu, env->current_tc);
1203 }
1204 }
1205
1206 void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1207 {
1208 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1209 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1210 MIPSCPU *other_cpu = mips_env_get_cpu(other);
1211
1212 // TODO: Halt TC / Restart (if allocated+active) TC.
1213
1214 if (other_tc == other->current_tc)
1215 other->active_tc.CP0_TCHalt = arg1;
1216 else
1217 other->tcs[other_tc].CP0_TCHalt = arg1;
1218
1219 if (arg1 & 1) {
1220 mips_tc_sleep(other_cpu, other_tc);
1221 } else {
1222 mips_tc_wake(other_cpu, other_tc);
1223 }
1224 }
1225
1226 void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1227 {
1228 env->active_tc.CP0_TCContext = arg1;
1229 }
1230
1231 void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1232 {
1233 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1234 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1235
1236 if (other_tc == other->current_tc)
1237 other->active_tc.CP0_TCContext = arg1;
1238 else
1239 other->tcs[other_tc].CP0_TCContext = arg1;
1240 }
1241
1242 void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1243 {
1244 env->active_tc.CP0_TCSchedule = arg1;
1245 }
1246
1247 void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1248 {
1249 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1250 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1251
1252 if (other_tc == other->current_tc)
1253 other->active_tc.CP0_TCSchedule = arg1;
1254 else
1255 other->tcs[other_tc].CP0_TCSchedule = arg1;
1256 }
1257
1258 void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1259 {
1260 env->active_tc.CP0_TCScheFBack = arg1;
1261 }
1262
1263 void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1264 {
1265 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1266 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1267
1268 if (other_tc == other->current_tc)
1269 other->active_tc.CP0_TCScheFBack = arg1;
1270 else
1271 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1272 }
1273
1274 void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
1275 {
1276 /* 1k pages not implemented */
1277 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1278 env->CP0_EntryLo1 = (arg1 & MTC0_ENTRYLO_MASK(env))
1279 | (rxi << (CP0EnLo_XI - 30));
1280 }
1281
1282 #if defined(TARGET_MIPS64)
1283 void helper_dmtc0_entrylo1(CPUMIPSState *env, uint64_t arg1)
1284 {
1285 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1286 env->CP0_EntryLo1 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1287 }
1288 #endif
1289
1290 void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
1291 {
1292 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1293 }
1294
1295 void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
1296 {
1297 uint64_t mask = arg1 >> (TARGET_PAGE_BITS + 1);
1298 if (!(env->insn_flags & ISA_MIPS32R6) || (arg1 == ~0) ||
1299 (mask == 0x0000 || mask == 0x0003 || mask == 0x000F ||
1300 mask == 0x003F || mask == 0x00FF || mask == 0x03FF ||
1301 mask == 0x0FFF || mask == 0x3FFF || mask == 0xFFFF)) {
1302 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1303 }
1304 }
1305
1306 void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
1307 {
1308 /* SmartMIPS not implemented */
1309 /* 1k pages not implemented */
1310 env->CP0_PageGrain = (arg1 & env->CP0_PageGrain_rw_bitmask) |
1311 (env->CP0_PageGrain & ~env->CP0_PageGrain_rw_bitmask);
1312 compute_hflags(env);
1313 restore_pamask(env);
1314 }
1315
1316 void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
1317 {
1318 if (env->insn_flags & ISA_MIPS32R6) {
1319 if (arg1 < env->tlb->nb_tlb) {
1320 env->CP0_Wired = arg1;
1321 }
1322 } else {
1323 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1324 }
1325 }
1326
1327 void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
1328 {
1329 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1330 }
1331
1332 void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
1333 {
1334 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1335 }
1336
1337 void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
1338 {
1339 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1340 }
1341
1342 void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
1343 {
1344 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1345 }
1346
1347 void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
1348 {
1349 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1350 }
1351
1352 void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
1353 {
1354 uint32_t mask = 0x0000000F;
1355
1356 if ((env->CP0_Config1 & (1 << CP0C1_PC)) &&
1357 (env->insn_flags & ISA_MIPS32R6)) {
1358 mask |= (1 << 4);
1359 }
1360 if (env->insn_flags & ISA_MIPS32R6) {
1361 mask |= (1 << 5);
1362 }
1363 if (env->CP0_Config3 & (1 << CP0C3_ULRI)) {
1364 mask |= (1 << 29);
1365
1366 if (arg1 & (1 << 29)) {
1367 env->hflags |= MIPS_HFLAG_HWRENA_ULR;
1368 } else {
1369 env->hflags &= ~MIPS_HFLAG_HWRENA_ULR;
1370 }
1371 }
1372
1373 env->CP0_HWREna = arg1 & mask;
1374 }
1375
1376 void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
1377 {
1378 cpu_mips_store_count(env, arg1);
1379 }
1380
1381 void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1382 {
1383 target_ulong old, val, mask;
1384 mask = (TARGET_PAGE_MASK << 1) | env->CP0_EntryHi_ASID_mask;
1385 if (((env->CP0_Config4 >> CP0C4_IE) & 0x3) >= 2) {
1386 mask |= 1 << CP0EnHi_EHINV;
1387 }
1388
1389 /* 1k pages not implemented */
1390 #if defined(TARGET_MIPS64)
1391 if (env->insn_flags & ISA_MIPS32R6) {
1392 int entryhi_r = extract64(arg1, 62, 2);
1393 int config0_at = extract32(env->CP0_Config0, 13, 2);
1394 bool no_supervisor = (env->CP0_Status_rw_bitmask & 0x8) == 0;
1395 if ((entryhi_r == 2) ||
1396 (entryhi_r == 1 && (no_supervisor || config0_at == 1))) {
1397 /* skip EntryHi.R field if new value is reserved */
1398 mask &= ~(0x3ull << 62);
1399 }
1400 }
1401 mask &= env->SEGMask;
1402 #endif
1403 old = env->CP0_EntryHi;
1404 val = (arg1 & mask) | (old & ~mask);
1405 env->CP0_EntryHi = val;
1406 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1407 sync_c0_entryhi(env, env->current_tc);
1408 }
1409 /* If the ASID changes, flush qemu's TLB. */
1410 if ((old & env->CP0_EntryHi_ASID_mask) !=
1411 (val & env->CP0_EntryHi_ASID_mask)) {
1412 cpu_mips_tlb_flush(env);
1413 }
1414 }
1415
1416 void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1417 {
1418 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1419 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1420
1421 other->CP0_EntryHi = arg1;
1422 sync_c0_entryhi(other, other_tc);
1423 }
1424
1425 void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
1426 {
1427 cpu_mips_store_compare(env, arg1);
1428 }
1429
1430 void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
1431 {
1432 MIPSCPU *cpu = mips_env_get_cpu(env);
1433 uint32_t val, old;
1434
1435 old = env->CP0_Status;
1436 cpu_mips_store_status(env, arg1);
1437 val = env->CP0_Status;
1438
1439 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1440 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1441 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1442 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1443 env->CP0_Cause);
1444 switch (env->hflags & MIPS_HFLAG_KSU) {
1445 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1446 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1447 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1448 default:
1449 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
1450 break;
1451 }
1452 }
1453 }
1454
1455 void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
1456 {
1457 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1458 uint32_t mask = env->CP0_Status_rw_bitmask & ~0xf1000018;
1459 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1460
1461 other->CP0_Status = (other->CP0_Status & ~mask) | (arg1 & mask);
1462 sync_c0_status(env, other, other_tc);
1463 }
1464
1465 void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
1466 {
1467 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1468 }
1469
1470 void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
1471 {
1472 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1473 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1474 }
1475
1476 void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
1477 {
1478 cpu_mips_store_cause(env, arg1);
1479 }
1480
1481 void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
1482 {
1483 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1484 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1485
1486 cpu_mips_store_cause(other, arg1);
1487 }
1488
1489 target_ulong helper_mftc0_epc(CPUMIPSState *env)
1490 {
1491 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1492 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1493
1494 return other->CP0_EPC;
1495 }
1496
1497 target_ulong helper_mftc0_ebase(CPUMIPSState *env)
1498 {
1499 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1500 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1501
1502 return other->CP0_EBase;
1503 }
1504
1505 void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
1506 {
1507 env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1508 }
1509
1510 void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
1511 {
1512 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1513 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1514 other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1515 }
1516
1517 target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
1518 {
1519 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1520 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1521
1522 switch (idx) {
1523 case 0: return other->CP0_Config0;
1524 case 1: return other->CP0_Config1;
1525 case 2: return other->CP0_Config2;
1526 case 3: return other->CP0_Config3;
1527 /* 4 and 5 are reserved. */
1528 case 6: return other->CP0_Config6;
1529 case 7: return other->CP0_Config7;
1530 default:
1531 break;
1532 }
1533 return 0;
1534 }
1535
1536 void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
1537 {
1538 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1539 }
1540
1541 void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
1542 {
1543 /* tertiary/secondary caches not implemented */
1544 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1545 }
1546
1547 void helper_mtc0_config3(CPUMIPSState *env, target_ulong arg1)
1548 {
1549 if (env->insn_flags & ASE_MICROMIPS) {
1550 env->CP0_Config3 = (env->CP0_Config3 & ~(1 << CP0C3_ISA_ON_EXC)) |
1551 (arg1 & (1 << CP0C3_ISA_ON_EXC));
1552 }
1553 }
1554
1555 void helper_mtc0_config4(CPUMIPSState *env, target_ulong arg1)
1556 {
1557 env->CP0_Config4 = (env->CP0_Config4 & (~env->CP0_Config4_rw_bitmask)) |
1558 (arg1 & env->CP0_Config4_rw_bitmask);
1559 }
1560
1561 void helper_mtc0_config5(CPUMIPSState *env, target_ulong arg1)
1562 {
1563 env->CP0_Config5 = (env->CP0_Config5 & (~env->CP0_Config5_rw_bitmask)) |
1564 (arg1 & env->CP0_Config5_rw_bitmask);
1565 compute_hflags(env);
1566 }
1567
1568 void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
1569 {
1570 target_long mask = env->CP0_LLAddr_rw_bitmask;
1571 arg1 = arg1 << env->CP0_LLAddr_shift;
1572 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1573 }
1574
1575 #define MTC0_MAAR_MASK(env) \
1576 ((0x1ULL << 63) | ((env->PAMask >> 4) & ~0xFFFull) | 0x3)
1577
1578 void helper_mtc0_maar(CPUMIPSState *env, target_ulong arg1)
1579 {
1580 env->CP0_MAAR[env->CP0_MAARI] = arg1 & MTC0_MAAR_MASK(env);
1581 }
1582
1583 void helper_mthc0_maar(CPUMIPSState *env, target_ulong arg1)
1584 {
1585 env->CP0_MAAR[env->CP0_MAARI] =
1586 (((uint64_t) arg1 << 32) & MTC0_MAAR_MASK(env)) |
1587 (env->CP0_MAAR[env->CP0_MAARI] & 0x00000000ffffffffULL);
1588 }
1589
1590 void helper_mtc0_maari(CPUMIPSState *env, target_ulong arg1)
1591 {
1592 int index = arg1 & 0x3f;
1593 if (index == 0x3f) {
1594 /* Software may write all ones to INDEX to determine the
1595 maximum value supported. */
1596 env->CP0_MAARI = MIPS_MAAR_MAX - 1;
1597 } else if (index < MIPS_MAAR_MAX) {
1598 env->CP0_MAARI = index;
1599 }
1600 /* Other than the all ones, if the
1601 value written is not supported, then INDEX is unchanged
1602 from its previous value. */
1603 }
1604
1605 void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1606 {
1607 /* Watch exceptions for instructions, data loads, data stores
1608 not implemented. */
1609 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1610 }
1611
1612 void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1613 {
1614 int mask = 0x40000FF8 | (env->CP0_EntryHi_ASID_mask << CP0WH_ASID);
1615 env->CP0_WatchHi[sel] = arg1 & mask;
1616 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1617 }
1618
1619 void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
1620 {
1621 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1622 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1623 }
1624
1625 void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
1626 {
1627 env->CP0_Framemask = arg1; /* XXX */
1628 }
1629
1630 void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
1631 {
1632 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1633 if (arg1 & (1 << CP0DB_DM))
1634 env->hflags |= MIPS_HFLAG_DM;
1635 else
1636 env->hflags &= ~MIPS_HFLAG_DM;
1637 }
1638
1639 void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
1640 {
1641 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1642 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1643 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1644
1645 /* XXX: Might be wrong, check with EJTAG spec. */
1646 if (other_tc == other->current_tc)
1647 other->active_tc.CP0_Debug_tcstatus = val;
1648 else
1649 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1650 other->CP0_Debug = (other->CP0_Debug &
1651 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1652 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1653 }
1654
1655 void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
1656 {
1657 env->CP0_Performance0 = arg1 & 0x000007ff;
1658 }
1659
1660 void helper_mtc0_errctl(CPUMIPSState *env, target_ulong arg1)
1661 {
1662 int32_t wst = arg1 & (1 << CP0EC_WST);
1663 int32_t spr = arg1 & (1 << CP0EC_SPR);
1664 int32_t itc = env->itc_tag ? (arg1 & (1 << CP0EC_ITC)) : 0;
1665
1666 env->CP0_ErrCtl = wst | spr | itc;
1667
1668 if (itc && !wst && !spr) {
1669 env->hflags |= MIPS_HFLAG_ITC_CACHE;
1670 } else {
1671 env->hflags &= ~MIPS_HFLAG_ITC_CACHE;
1672 }
1673 }
1674
1675 void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
1676 {
1677 if (env->hflags & MIPS_HFLAG_ITC_CACHE) {
1678 /* If CACHE instruction is configured for ITC tags then make all
1679 CP0.TagLo bits writable. The actual write to ITC Configuration
1680 Tag will take care of the read-only bits. */
1681 env->CP0_TagLo = arg1;
1682 } else {
1683 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1684 }
1685 }
1686
1687 void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
1688 {
1689 env->CP0_DataLo = arg1; /* XXX */
1690 }
1691
1692 void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
1693 {
1694 env->CP0_TagHi = arg1; /* XXX */
1695 }
1696
1697 void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
1698 {
1699 env->CP0_DataHi = arg1; /* XXX */
1700 }
1701
1702 /* MIPS MT functions */
1703 target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
1704 {
1705 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1706 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1707
1708 if (other_tc == other->current_tc)
1709 return other->active_tc.gpr[sel];
1710 else
1711 return other->tcs[other_tc].gpr[sel];
1712 }
1713
1714 target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
1715 {
1716 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1717 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1718
1719 if (other_tc == other->current_tc)
1720 return other->active_tc.LO[sel];
1721 else
1722 return other->tcs[other_tc].LO[sel];
1723 }
1724
1725 target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
1726 {
1727 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1728 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1729
1730 if (other_tc == other->current_tc)
1731 return other->active_tc.HI[sel];
1732 else
1733 return other->tcs[other_tc].HI[sel];
1734 }
1735
1736 target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
1737 {
1738 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1739 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1740
1741 if (other_tc == other->current_tc)
1742 return other->active_tc.ACX[sel];
1743 else
1744 return other->tcs[other_tc].ACX[sel];
1745 }
1746
1747 target_ulong helper_mftdsp(CPUMIPSState *env)
1748 {
1749 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1750 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1751
1752 if (other_tc == other->current_tc)
1753 return other->active_tc.DSPControl;
1754 else
1755 return other->tcs[other_tc].DSPControl;
1756 }
1757
1758 void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1759 {
1760 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1761 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1762
1763 if (other_tc == other->current_tc)
1764 other->active_tc.gpr[sel] = arg1;
1765 else
1766 other->tcs[other_tc].gpr[sel] = arg1;
1767 }
1768
1769 void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1770 {
1771 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1772 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1773
1774 if (other_tc == other->current_tc)
1775 other->active_tc.LO[sel] = arg1;
1776 else
1777 other->tcs[other_tc].LO[sel] = arg1;
1778 }
1779
1780 void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1781 {
1782 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1783 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1784
1785 if (other_tc == other->current_tc)
1786 other->active_tc.HI[sel] = arg1;
1787 else
1788 other->tcs[other_tc].HI[sel] = arg1;
1789 }
1790
1791 void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1792 {
1793 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1794 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1795
1796 if (other_tc == other->current_tc)
1797 other->active_tc.ACX[sel] = arg1;
1798 else
1799 other->tcs[other_tc].ACX[sel] = arg1;
1800 }
1801
1802 void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
1803 {
1804 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1805 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1806
1807 if (other_tc == other->current_tc)
1808 other->active_tc.DSPControl = arg1;
1809 else
1810 other->tcs[other_tc].DSPControl = arg1;
1811 }
1812
1813 /* MIPS MT functions */
1814 target_ulong helper_dmt(void)
1815 {
1816 // TODO
1817 return 0;
1818 }
1819
1820 target_ulong helper_emt(void)
1821 {
1822 // TODO
1823 return 0;
1824 }
1825
1826 target_ulong helper_dvpe(CPUMIPSState *env)
1827 {
1828 CPUState *other_cs = first_cpu;
1829 target_ulong prev = env->mvp->CP0_MVPControl;
1830
1831 CPU_FOREACH(other_cs) {
1832 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1833 /* Turn off all VPEs except the one executing the dvpe. */
1834 if (&other_cpu->env != env) {
1835 other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
1836 mips_vpe_sleep(other_cpu);
1837 }
1838 }
1839 return prev;
1840 }
1841
1842 target_ulong helper_evpe(CPUMIPSState *env)
1843 {
1844 CPUState *other_cs = first_cpu;
1845 target_ulong prev = env->mvp->CP0_MVPControl;
1846
1847 CPU_FOREACH(other_cs) {
1848 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1849
1850 if (&other_cpu->env != env
1851 /* If the VPE is WFI, don't disturb its sleep. */
1852 && !mips_vpe_is_wfi(other_cpu)) {
1853 /* Enable the VPE. */
1854 other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
1855 mips_vpe_wake(other_cpu); /* And wake it up. */
1856 }
1857 }
1858 return prev;
1859 }
1860 #endif /* !CONFIG_USER_ONLY */
1861
1862 void helper_fork(target_ulong arg1, target_ulong arg2)
1863 {
1864 // arg1 = rt, arg2 = rs
1865 // TODO: store to TC register
1866 }
1867
1868 target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
1869 {
1870 target_long arg1 = arg;
1871
1872 if (arg1 < 0) {
1873 /* No scheduling policy implemented. */
1874 if (arg1 != -2) {
1875 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1876 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1877 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1878 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1879 do_raise_exception(env, EXCP_THREAD, GETPC());
1880 }
1881 }
1882 } else if (arg1 == 0) {
1883 if (0 /* TODO: TC underflow */) {
1884 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1885 do_raise_exception(env, EXCP_THREAD, GETPC());
1886 } else {
1887 // TODO: Deallocate TC
1888 }
1889 } else if (arg1 > 0) {
1890 /* Yield qualifier inputs not implemented. */
1891 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1892 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1893 do_raise_exception(env, EXCP_THREAD, GETPC());
1894 }
1895 return env->CP0_YQMask;
1896 }
1897
1898 /* R6 Multi-threading */
1899 #ifndef CONFIG_USER_ONLY
1900 target_ulong helper_dvp(CPUMIPSState *env)
1901 {
1902 CPUState *other_cs = first_cpu;
1903 target_ulong prev = env->CP0_VPControl;
1904
1905 if (!((env->CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
1906 CPU_FOREACH(other_cs) {
1907 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1908 /* Turn off all VPs except the one executing the dvp. */
1909 if (&other_cpu->env != env) {
1910 mips_vpe_sleep(other_cpu);
1911 }
1912 }
1913 env->CP0_VPControl |= (1 << CP0VPCtl_DIS);
1914 }
1915 return prev;
1916 }
1917
1918 target_ulong helper_evp(CPUMIPSState *env)
1919 {
1920 CPUState *other_cs = first_cpu;
1921 target_ulong prev = env->CP0_VPControl;
1922
1923 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
1924 CPU_FOREACH(other_cs) {
1925 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1926 if ((&other_cpu->env != env) && !mips_vp_is_wfi(other_cpu)) {
1927 /* If the VP is WFI, don't disturb its sleep.
1928 * Otherwise, wake it up. */
1929 mips_vpe_wake(other_cpu);
1930 }
1931 }
1932 env->CP0_VPControl &= ~(1 << CP0VPCtl_DIS);
1933 }
1934 return prev;
1935 }
1936 #endif /* !CONFIG_USER_ONLY */
1937
1938 #ifndef CONFIG_USER_ONLY
1939 /* TLB management */
1940 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
1941 {
1942 /* Discard entries from env->tlb[first] onwards. */
1943 while (env->tlb->tlb_in_use > first) {
1944 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1945 }
1946 }
1947
1948 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
1949 {
1950 #if defined(TARGET_MIPS64)
1951 return extract64(entrylo, 6, 54);
1952 #else
1953 return extract64(entrylo, 6, 24) | /* PFN */
1954 (extract64(entrylo, 32, 32) << 24); /* PFNX */
1955 #endif
1956 }
1957
1958 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
1959 {
1960 r4k_tlb_t *tlb;
1961
1962 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1963 tlb = &env->tlb->mmu.r4k.tlb[idx];
1964 if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
1965 tlb->EHINV = 1;
1966 return;
1967 }
1968 tlb->EHINV = 0;
1969 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1970 #if defined(TARGET_MIPS64)
1971 tlb->VPN &= env->SEGMask;
1972 #endif
1973 tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1974 tlb->PageMask = env->CP0_PageMask;
1975 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1976 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1977 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1978 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1979 tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
1980 tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
1981 tlb->PFN[0] = get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) << 12;
1982 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1983 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1984 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1985 tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
1986 tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
1987 tlb->PFN[1] = get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) << 12;
1988 }
1989
1990 void r4k_helper_tlbinv(CPUMIPSState *env)
1991 {
1992 int idx;
1993 r4k_tlb_t *tlb;
1994 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1995
1996 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
1997 tlb = &env->tlb->mmu.r4k.tlb[idx];
1998 if (!tlb->G && tlb->ASID == ASID) {
1999 tlb->EHINV = 1;
2000 }
2001 }
2002 cpu_mips_tlb_flush(env);
2003 }
2004
2005 void r4k_helper_tlbinvf(CPUMIPSState *env)
2006 {
2007 int idx;
2008
2009 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2010 env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
2011 }
2012 cpu_mips_tlb_flush(env);
2013 }
2014
2015 void r4k_helper_tlbwi(CPUMIPSState *env)
2016 {
2017 r4k_tlb_t *tlb;
2018 int idx;
2019 target_ulong VPN;
2020 uint16_t ASID;
2021 bool G, V0, D0, V1, D1;
2022
2023 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2024 tlb = &env->tlb->mmu.r4k.tlb[idx];
2025 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
2026 #if defined(TARGET_MIPS64)
2027 VPN &= env->SEGMask;
2028 #endif
2029 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2030 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
2031 V0 = (env->CP0_EntryLo0 & 2) != 0;
2032 D0 = (env->CP0_EntryLo0 & 4) != 0;
2033 V1 = (env->CP0_EntryLo1 & 2) != 0;
2034 D1 = (env->CP0_EntryLo1 & 4) != 0;
2035
2036 /* Discard cached TLB entries, unless tlbwi is just upgrading access
2037 permissions on the current entry. */
2038 if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
2039 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
2040 (tlb->V1 && !V1) || (tlb->D1 && !D1)) {
2041 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2042 }
2043
2044 r4k_invalidate_tlb(env, idx, 0);
2045 r4k_fill_tlb(env, idx);
2046 }
2047
2048 void r4k_helper_tlbwr(CPUMIPSState *env)
2049 {
2050 int r = cpu_mips_get_random(env);
2051
2052 r4k_invalidate_tlb(env, r, 1);
2053 r4k_fill_tlb(env, r);
2054 }
2055
2056 void r4k_helper_tlbp(CPUMIPSState *env)
2057 {
2058 r4k_tlb_t *tlb;
2059 target_ulong mask;
2060 target_ulong tag;
2061 target_ulong VPN;
2062 uint16_t ASID;
2063 int i;
2064
2065 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2066 for (i = 0; i < env->tlb->nb_tlb; i++) {
2067 tlb = &env->tlb->mmu.r4k.tlb[i];
2068 /* 1k pages are not supported. */
2069 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2070 tag = env->CP0_EntryHi & ~mask;
2071 VPN = tlb->VPN & ~mask;
2072 #if defined(TARGET_MIPS64)
2073 tag &= env->SEGMask;
2074 #endif
2075 /* Check ASID, virtual page number & size */
2076 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
2077 /* TLB match */
2078 env->CP0_Index = i;
2079 break;
2080 }
2081 }
2082 if (i == env->tlb->nb_tlb) {
2083 /* No match. Discard any shadow entries, if any of them match. */
2084 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
2085 tlb = &env->tlb->mmu.r4k.tlb[i];
2086 /* 1k pages are not supported. */
2087 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2088 tag = env->CP0_EntryHi & ~mask;
2089 VPN = tlb->VPN & ~mask;
2090 #if defined(TARGET_MIPS64)
2091 tag &= env->SEGMask;
2092 #endif
2093 /* Check ASID, virtual page number & size */
2094 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
2095 r4k_mips_tlb_flush_extra (env, i);
2096 break;
2097 }
2098 }
2099
2100 env->CP0_Index |= 0x80000000;
2101 }
2102 }
2103
2104 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
2105 {
2106 #if defined(TARGET_MIPS64)
2107 return tlb_pfn << 6;
2108 #else
2109 return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
2110 (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
2111 #endif
2112 }
2113
2114 void r4k_helper_tlbr(CPUMIPSState *env)
2115 {
2116 r4k_tlb_t *tlb;
2117 uint16_t ASID;
2118 int idx;
2119
2120 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2121 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2122 tlb = &env->tlb->mmu.r4k.tlb[idx];
2123
2124 /* If this will change the current ASID, flush qemu's TLB. */
2125 if (ASID != tlb->ASID)
2126 cpu_mips_tlb_flush(env);
2127
2128 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2129
2130 if (tlb->EHINV) {
2131 env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
2132 env->CP0_PageMask = 0;
2133 env->CP0_EntryLo0 = 0;
2134 env->CP0_EntryLo1 = 0;
2135 } else {
2136 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
2137 env->CP0_PageMask = tlb->PageMask;
2138 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
2139 ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
2140 ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
2141 get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
2142 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
2143 ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
2144 ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
2145 get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
2146 }
2147 }
2148
2149 void helper_tlbwi(CPUMIPSState *env)
2150 {
2151 env->tlb->helper_tlbwi(env);
2152 }
2153
2154 void helper_tlbwr(CPUMIPSState *env)
2155 {
2156 env->tlb->helper_tlbwr(env);
2157 }
2158
2159 void helper_tlbp(CPUMIPSState *env)
2160 {
2161 env->tlb->helper_tlbp(env);
2162 }
2163
2164 void helper_tlbr(CPUMIPSState *env)
2165 {
2166 env->tlb->helper_tlbr(env);
2167 }
2168
2169 void helper_tlbinv(CPUMIPSState *env)
2170 {
2171 env->tlb->helper_tlbinv(env);
2172 }
2173
2174 void helper_tlbinvf(CPUMIPSState *env)
2175 {
2176 env->tlb->helper_tlbinvf(env);
2177 }
2178
2179 /* Specials */
2180 target_ulong helper_di(CPUMIPSState *env)
2181 {
2182 target_ulong t0 = env->CP0_Status;
2183
2184 env->CP0_Status = t0 & ~(1 << CP0St_IE);
2185 return t0;
2186 }
2187
2188 target_ulong helper_ei(CPUMIPSState *env)
2189 {
2190 target_ulong t0 = env->CP0_Status;
2191
2192 env->CP0_Status = t0 | (1 << CP0St_IE);
2193 return t0;
2194 }
2195
2196 static void debug_pre_eret(CPUMIPSState *env)
2197 {
2198 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2199 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2200 env->active_tc.PC, env->CP0_EPC);
2201 if (env->CP0_Status & (1 << CP0St_ERL))
2202 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2203 if (env->hflags & MIPS_HFLAG_DM)
2204 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2205 qemu_log("\n");
2206 }
2207 }
2208
2209 static void debug_post_eret(CPUMIPSState *env)
2210 {
2211 MIPSCPU *cpu = mips_env_get_cpu(env);
2212
2213 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2214 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2215 env->active_tc.PC, env->CP0_EPC);
2216 if (env->CP0_Status & (1 << CP0St_ERL))
2217 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2218 if (env->hflags & MIPS_HFLAG_DM)
2219 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2220 switch (env->hflags & MIPS_HFLAG_KSU) {
2221 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
2222 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
2223 case MIPS_HFLAG_KM: qemu_log("\n"); break;
2224 default:
2225 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
2226 break;
2227 }
2228 }
2229 }
2230
2231 static void set_pc(CPUMIPSState *env, target_ulong error_pc)
2232 {
2233 env->active_tc.PC = error_pc & ~(target_ulong)1;
2234 if (error_pc & 1) {
2235 env->hflags |= MIPS_HFLAG_M16;
2236 } else {
2237 env->hflags &= ~(MIPS_HFLAG_M16);
2238 }
2239 }
2240
2241 static inline void exception_return(CPUMIPSState *env)
2242 {
2243 debug_pre_eret(env);
2244 if (env->CP0_Status & (1 << CP0St_ERL)) {
2245 set_pc(env, env->CP0_ErrorEPC);
2246 env->CP0_Status &= ~(1 << CP0St_ERL);
2247 } else {
2248 set_pc(env, env->CP0_EPC);
2249 env->CP0_Status &= ~(1 << CP0St_EXL);
2250 }
2251 compute_hflags(env);
2252 debug_post_eret(env);
2253 }
2254
2255 void helper_eret(CPUMIPSState *env)
2256 {
2257 exception_return(env);
2258 env->lladdr = 1;
2259 }
2260
2261 void helper_eretnc(CPUMIPSState *env)
2262 {
2263 exception_return(env);
2264 }
2265
2266 void helper_deret(CPUMIPSState *env)
2267 {
2268 debug_pre_eret(env);
2269 set_pc(env, env->CP0_DEPC);
2270
2271 env->hflags &= ~MIPS_HFLAG_DM;
2272 compute_hflags(env);
2273 debug_post_eret(env);
2274 }
2275 #endif /* !CONFIG_USER_ONLY */
2276
2277 static inline void check_hwrena(CPUMIPSState *env, int reg, uintptr_t pc)
2278 {
2279 if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << reg))) {
2280 return;
2281 }
2282 do_raise_exception(env, EXCP_RI, pc);
2283 }
2284
2285 target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
2286 {
2287 check_hwrena(env, 0, GETPC());
2288 return env->CP0_EBase & 0x3ff;
2289 }
2290
2291 target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
2292 {
2293 check_hwrena(env, 1, GETPC());
2294 return env->SYNCI_Step;
2295 }
2296
2297 target_ulong helper_rdhwr_cc(CPUMIPSState *env)
2298 {
2299 check_hwrena(env, 2, GETPC());
2300 #ifdef CONFIG_USER_ONLY
2301 return env->CP0_Count;
2302 #else
2303 return (int32_t)cpu_mips_get_count(env);
2304 #endif
2305 }
2306
2307 target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
2308 {
2309 check_hwrena(env, 3, GETPC());
2310 return env->CCRes;
2311 }
2312
2313 target_ulong helper_rdhwr_performance(CPUMIPSState *env)
2314 {
2315 check_hwrena(env, 4, GETPC());
2316 return env->CP0_Performance0;
2317 }
2318
2319 target_ulong helper_rdhwr_xnp(CPUMIPSState *env)
2320 {
2321 check_hwrena(env, 5, GETPC());
2322 return (env->CP0_Config5 >> CP0C5_XNP) & 1;
2323 }
2324
2325 void helper_pmon(CPUMIPSState *env, int function)
2326 {
2327 function /= 2;
2328 switch (function) {
2329 case 2: /* TODO: char inbyte(int waitflag); */
2330 if (env->active_tc.gpr[4] == 0)
2331 env->active_tc.gpr[2] = -1;
2332 /* Fall through */
2333 case 11: /* TODO: char inbyte (void); */
2334 env->active_tc.gpr[2] = -1;
2335 break;
2336 case 3:
2337 case 12:
2338 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2339 break;
2340 case 17:
2341 break;
2342 case 158:
2343 {
2344 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2345 printf("%s", fmt);
2346 }
2347 break;
2348 }
2349 }
2350
2351 void helper_wait(CPUMIPSState *env)
2352 {
2353 CPUState *cs = CPU(mips_env_get_cpu(env));
2354
2355 cs->halted = 1;
2356 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
2357 /* Last instruction in the block, PC was updated before
2358 - no need to recover PC and icount */
2359 raise_exception(env, EXCP_HLT);
2360 }
2361
2362 #if !defined(CONFIG_USER_ONLY)
2363
2364 void mips_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
2365 MMUAccessType access_type,
2366 int mmu_idx, uintptr_t retaddr)
2367 {
2368 MIPSCPU *cpu = MIPS_CPU(cs);
2369 CPUMIPSState *env = &cpu->env;
2370 int error_code = 0;
2371 int excp;
2372
2373 env->CP0_BadVAddr = addr;
2374
2375 if (access_type == MMU_DATA_STORE) {
2376 excp = EXCP_AdES;
2377 } else {
2378 excp = EXCP_AdEL;
2379 if (access_type == MMU_INST_FETCH) {
2380 error_code |= EXCP_INST_NOTAVAIL;
2381 }
2382 }
2383
2384 do_raise_exception_err(env, excp, error_code, retaddr);
2385 }
2386
2387 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
2388 int mmu_idx, uintptr_t retaddr)
2389 {
2390 int ret;
2391
2392 ret = mips_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
2393 if (ret) {
2394 MIPSCPU *cpu = MIPS_CPU(cs);
2395 CPUMIPSState *env = &cpu->env;
2396
2397 do_raise_exception_err(env, cs->exception_index,
2398 env->error_code, retaddr);
2399 }
2400 }
2401
2402 void mips_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2403 bool is_write, bool is_exec, int unused,
2404 unsigned size)
2405 {
2406 MIPSCPU *cpu = MIPS_CPU(cs);
2407 CPUMIPSState *env = &cpu->env;
2408
2409 /*
2410 * Raising an exception with KVM enabled will crash because it won't be from
2411 * the main execution loop so the longjmp won't have a matching setjmp.
2412 * Until we can trigger a bus error exception through KVM lets just ignore
2413 * the access.
2414 */
2415 if (kvm_enabled()) {
2416 return;
2417 }
2418
2419 if (is_exec) {
2420 raise_exception(env, EXCP_IBE);
2421 } else {
2422 raise_exception(env, EXCP_DBE);
2423 }
2424 }
2425 #endif /* !CONFIG_USER_ONLY */
2426
2427 /* Complex FPU operations which may need stack space. */
2428
2429 #define FLOAT_TWO32 make_float32(1 << 30)
2430 #define FLOAT_TWO64 make_float64(1ULL << 62)
2431
2432 #define FP_TO_INT32_OVERFLOW 0x7fffffff
2433 #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
2434
2435 /* convert MIPS rounding mode in FCR31 to IEEE library */
2436 unsigned int ieee_rm[] = {
2437 float_round_nearest_even,
2438 float_round_to_zero,
2439 float_round_up,
2440 float_round_down
2441 };
2442
2443 target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
2444 {
2445 target_ulong arg1 = 0;
2446
2447 switch (reg) {
2448 case 0:
2449 arg1 = (int32_t)env->active_fpu.fcr0;
2450 break;
2451 case 1:
2452 /* UFR Support - Read Status FR */
2453 if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) {
2454 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2455 arg1 = (int32_t)
2456 ((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR);
2457 } else {
2458 do_raise_exception(env, EXCP_RI, GETPC());
2459 }
2460 }
2461 break;
2462 case 5:
2463 /* FRE Support - read Config5.FRE bit */
2464 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
2465 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2466 arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1;
2467 } else {
2468 helper_raise_exception(env, EXCP_RI);
2469 }
2470 }
2471 break;
2472 case 25:
2473 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2474 break;
2475 case 26:
2476 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2477 break;
2478 case 28:
2479 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2480 break;
2481 default:
2482 arg1 = (int32_t)env->active_fpu.fcr31;
2483 break;
2484 }
2485
2486 return arg1;
2487 }
2488
2489 void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt)
2490 {
2491 switch (fs) {
2492 case 1:
2493 /* UFR Alias - Reset Status FR */
2494 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2495 return;
2496 }
2497 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2498 env->CP0_Status &= ~(1 << CP0St_FR);
2499 compute_hflags(env);
2500 } else {
2501 do_raise_exception(env, EXCP_RI, GETPC());
2502 }
2503 break;
2504 case 4:
2505 /* UNFR Alias - Set Status FR */
2506 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2507 return;
2508 }
2509 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2510 env->CP0_Status |= (1 << CP0St_FR);
2511 compute_hflags(env);
2512 } else {
2513 do_raise_exception(env, EXCP_RI, GETPC());
2514 }
2515 break;
2516 case 5:
2517 /* FRE Support - clear Config5.FRE bit */
2518 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2519 return;
2520 }
2521 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2522 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
2523 compute_hflags(env);
2524 } else {
2525 helper_raise_exception(env, EXCP_RI);
2526 }
2527 break;
2528 case 6:
2529 /* FRE Support - set Config5.FRE bit */
2530 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2531 return;
2532 }
2533 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2534 env->CP0_Config5 |= (1 << CP0C5_FRE);
2535 compute_hflags(env);
2536 } else {
2537 helper_raise_exception(env, EXCP_RI);
2538 }
2539 break;
2540 case 25:
2541 if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) {
2542 return;
2543 }
2544 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2545 ((arg1 & 0x1) << 23);
2546 break;
2547 case 26:
2548 if (arg1 & 0x007c0000)
2549 return;
2550 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2551 break;
2552 case 28:
2553 if (arg1 & 0x007c0000)
2554 return;
2555 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2556 ((arg1 & 0x4) << 22);
2557 break;
2558 case 31:
2559 env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) |
2560 (env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask));
2561 break;
2562 default:
2563 return;
2564 }
2565 restore_fp_status(env);
2566 set_float_exception_flags(0, &env->active_fpu.fp_status);
2567 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2568 do_raise_exception(env, EXCP_FPE, GETPC());
2569 }
2570
2571 int ieee_ex_to_mips(int xcpt)
2572 {
2573 int ret = 0;
2574 if (xcpt) {
2575 if (xcpt & float_flag_invalid) {
2576 ret |= FP_INVALID;
2577 }
2578 if (xcpt & float_flag_overflow) {
2579 ret |= FP_OVERFLOW;
2580 }
2581 if (xcpt & float_flag_underflow) {
2582 ret |= FP_UNDERFLOW;
2583 }
2584 if (xcpt & float_flag_divbyzero) {
2585 ret |= FP_DIV0;
2586 }
2587 if (xcpt & float_flag_inexact) {
2588 ret |= FP_INEXACT;
2589 }
2590 }
2591 return ret;
2592 }
2593
2594 static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
2595 {
2596 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2597
2598 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2599
2600 if (tmp) {
2601 set_float_exception_flags(0, &env->active_fpu.fp_status);
2602
2603 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
2604 do_raise_exception(env, EXCP_FPE, pc);
2605 } else {
2606 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2607 }
2608 }
2609 }
2610
2611 /* Float support.
2612 Single precition routines have a "s" suffix, double precision a
2613 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2614 paired single lower "pl", paired single upper "pu". */
2615
2616 /* unary operations, modifying fp status */
2617 uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
2618 {
2619 fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2620 update_fcr31(env, GETPC());
2621 return fdt0;
2622 }
2623
2624 uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
2625 {
2626 fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2627 update_fcr31(env, GETPC());
2628 return fst0;
2629 }
2630
2631 uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
2632 {
2633 uint64_t fdt2;
2634
2635 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2636 fdt2 = float64_maybe_silence_nan(fdt2, &env->active_fpu.fp_status);
2637 update_fcr31(env, GETPC());
2638 return fdt2;
2639 }
2640
2641 uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
2642 {
2643 uint64_t fdt2;
2644
2645 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2646 update_fcr31(env, GETPC());
2647 return fdt2;
2648 }
2649
2650 uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
2651 {
2652 uint64_t fdt2;
2653
2654 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2655 update_fcr31(env, GETPC());
2656 return fdt2;
2657 }
2658
2659 uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0)
2660 {
2661 uint64_t dt2;
2662
2663 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2664 if (get_float_exception_flags(&env->active_fpu.fp_status)
2665 & (float_flag_invalid | float_flag_overflow)) {
2666 dt2 = FP_TO_INT64_OVERFLOW;
2667 }
2668 update_fcr31(env, GETPC());
2669 return dt2;
2670 }
2671
2672 uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0)
2673 {
2674 uint64_t dt2;
2675
2676 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2677 if (get_float_exception_flags(&env->active_fpu.fp_status)
2678 & (float_flag_invalid | float_flag_overflow)) {
2679 dt2 = FP_TO_INT64_OVERFLOW;
2680 }
2681 update_fcr31(env, GETPC());
2682 return dt2;
2683 }
2684
2685 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
2686 {
2687 uint32_t fst2;
2688 uint32_t fsth2;
2689
2690 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2691 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2692 update_fcr31(env, GETPC());
2693 return ((uint64_t)fsth2 << 32) | fst2;
2694 }
2695
2696 uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
2697 {
2698 uint32_t wt2;
2699 uint32_t wth2;
2700 int excp, excph;
2701
2702 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2703 excp = get_float_exception_flags(&env->active_fpu.fp_status);
2704 if (excp & (float_flag_overflow | float_flag_invalid)) {
2705 wt2 = FP_TO_INT32_OVERFLOW;
2706 }
2707
2708 set_float_exception_flags(0, &env->active_fpu.fp_status);
2709 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2710 excph = get_float_exception_flags(&env->active_fpu.fp_status);
2711 if (excph & (float_flag_overflow | float_flag_invalid)) {
2712 wth2 = FP_TO_INT32_OVERFLOW;
2713 }
2714
2715 set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
2716 update_fcr31(env, GETPC());
2717
2718 return ((uint64_t)wth2 << 32) | wt2;
2719 }
2720
2721 uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
2722 {
2723 uint32_t fst2;
2724
2725 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2726 fst2 = float32_maybe_silence_nan(fst2, &env->active_fpu.fp_status);
2727 update_fcr31(env, GETPC());
2728 return fst2;
2729 }
2730
2731 uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
2732 {
2733 uint32_t fst2;
2734
2735 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2736 update_fcr31(env, GETPC());
2737 return fst2;
2738 }
2739
2740 uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
2741 {
2742 uint32_t fst2;
2743
2744 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2745 update_fcr31(env, GETPC());
2746 return fst2;
2747 }
2748
2749 uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
2750 {
2751 uint32_t wt2;
2752
2753 wt2 = wt0;
2754 update_fcr31(env, GETPC());
2755 return wt2;
2756 }
2757
2758 uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
2759 {
2760 uint32_t wt2;
2761
2762 wt2 = wth0;
2763 update_fcr31(env, GETPC());
2764 return wt2;
2765 }
2766
2767 uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0)
2768 {
2769 uint32_t wt2;
2770
2771 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2772 if (get_float_exception_flags(&env->active_fpu.fp_status)
2773 & (float_flag_invalid | float_flag_overflow)) {
2774 wt2 = FP_TO_INT32_OVERFLOW;
2775 }
2776 update_fcr31(env, GETPC());
2777 return wt2;
2778 }
2779
2780 uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0)
2781 {
2782 uint32_t wt2;
2783
2784 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2785 if (get_float_exception_flags(&env->active_fpu.fp_status)
2786 & (float_flag_invalid | float_flag_overflow)) {
2787 wt2 = FP_TO_INT32_OVERFLOW;
2788 }
2789 update_fcr31(env, GETPC());
2790 return wt2;
2791 }
2792
2793 uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0)
2794 {
2795 uint64_t dt2;
2796
2797 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2798 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2799 restore_rounding_mode(env);
2800 if (get_float_exception_flags(&env->active_fpu.fp_status)
2801 & (float_flag_invalid | float_flag_overflow)) {
2802 dt2 = FP_TO_INT64_OVERFLOW;
2803 }
2804 update_fcr31(env, GETPC());
2805 return dt2;
2806 }
2807
2808 uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0)
2809 {
2810 uint64_t dt2;
2811
2812 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2813 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2814 restore_rounding_mode(env);
2815 if (get_float_exception_flags(&env->active_fpu.fp_status)
2816 & (float_flag_invalid | float_flag_overflow)) {
2817 dt2 = FP_TO_INT64_OVERFLOW;
2818 }
2819 update_fcr31(env, GETPC());
2820 return dt2;
2821 }
2822
2823 uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0)
2824 {
2825 uint32_t wt2;
2826
2827 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2828 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2829 restore_rounding_mode(env);
2830 if (get_float_exception_flags(&env->active_fpu.fp_status)
2831 & (float_flag_invalid | float_flag_overflow)) {
2832 wt2 = FP_TO_INT32_OVERFLOW;
2833 }
2834 update_fcr31(env, GETPC());
2835 return wt2;
2836 }
2837
2838 uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0)
2839 {
2840 uint32_t wt2;
2841
2842 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2843 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2844 restore_rounding_mode(env);
2845 if (get_float_exception_flags(&env->active_fpu.fp_status)
2846 & (float_flag_invalid | float_flag_overflow)) {
2847 wt2 = FP_TO_INT32_OVERFLOW;
2848 }
2849 update_fcr31(env, GETPC());
2850 return wt2;
2851 }
2852
2853 uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0)
2854 {
2855 uint64_t dt2;
2856
2857 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2858 if (get_float_exception_flags(&env->active_fpu.fp_status)
2859 & (float_flag_invalid | float_flag_overflow)) {
2860 dt2 = FP_TO_INT64_OVERFLOW;
2861 }
2862 update_fcr31(env, GETPC());
2863 return dt2;
2864 }
2865
2866 uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0)
2867 {
2868 uint64_t dt2;
2869
2870 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2871 if (get_float_exception_flags(&env->active_fpu.fp_status)
2872 & (float_flag_invalid | float_flag_overflow)) {
2873 dt2 = FP_TO_INT64_OVERFLOW;
2874 }
2875 update_fcr31(env, GETPC());
2876 return dt2;
2877 }
2878
2879 uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0)
2880 {
2881 uint32_t wt2;
2882
2883 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2884 if (get_float_exception_flags(&env->active_fpu.fp_status)
2885 & (float_flag_invalid | float_flag_overflow)) {
2886 wt2 = FP_TO_INT32_OVERFLOW;
2887 }
2888 update_fcr31(env, GETPC());
2889 return wt2;
2890 }
2891
2892 uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0)
2893 {
2894 uint32_t wt2;
2895
2896 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2897 if (get_float_exception_flags(&env->active_fpu.fp_status)
2898 & (float_flag_invalid | float_flag_overflow)) {
2899 wt2 = FP_TO_INT32_OVERFLOW;
2900 }
2901 update_fcr31(env, GETPC());
2902 return wt2;
2903 }
2904
2905 uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0)
2906 {
2907 uint64_t dt2;
2908
2909 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2910 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2911 restore_rounding_mode(env);
2912 if (get_float_exception_flags(&env->active_fpu.fp_status)
2913 & (float_flag_invalid | float_flag_overflow)) {
2914 dt2 = FP_TO_INT64_OVERFLOW;
2915 }
2916 update_fcr31(env, GETPC());
2917 return dt2;
2918 }
2919
2920 uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0)
2921 {
2922 uint64_t dt2;
2923
2924 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2925 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2926 restore_rounding_mode(env);
2927 if (get_float_exception_flags(&env->active_fpu.fp_status)
2928 & (float_flag_invalid | float_flag_overflow)) {
2929 dt2 = FP_TO_INT64_OVERFLOW;
2930 }
2931 update_fcr31(env, GETPC());
2932 return dt2;
2933 }
2934
2935 uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0)
2936 {
2937 uint32_t wt2;
2938
2939 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2940 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2941 restore_rounding_mode(env);
2942 if (get_float_exception_flags(&env->active_fpu.fp_status)
2943 & (float_flag_invalid | float_flag_overflow)) {
2944 wt2 = FP_TO_INT32_OVERFLOW;
2945 }
2946 update_fcr31(env, GETPC());
2947 return wt2;
2948 }
2949
2950 uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0)
2951 {
2952 uint32_t wt2;
2953
2954 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2955 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2956 restore_rounding_mode(env);
2957 if (get_float_exception_flags(&env->active_fpu.fp_status)
2958 & (float_flag_invalid | float_flag_overflow)) {
2959 wt2 = FP_TO_INT32_OVERFLOW;
2960 }
2961 update_fcr31(env, GETPC());
2962 return wt2;
2963 }
2964
2965 uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0)
2966 {
2967 uint64_t dt2;
2968
2969 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2970 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2971 restore_rounding_mode(env);
2972 if (get_float_exception_flags(&env->active_fpu.fp_status)
2973 & (float_flag_invalid | float_flag_overflow)) {
2974 dt2 = FP_TO_INT64_OVERFLOW;
2975 }
2976 update_fcr31(env, GETPC());
2977 return dt2;
2978 }
2979
2980 uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0)
2981 {
2982 uint64_t dt2;
2983
2984 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2985 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2986 restore_rounding_mode(env);
2987 if (get_float_exception_flags(&env->active_fpu.fp_status)
2988 & (float_flag_invalid | float_flag_overflow)) {
2989 dt2 = FP_TO_INT64_OVERFLOW;
2990 }
2991 update_fcr31(env, GETPC());
2992 return dt2;
2993 }
2994
2995 uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0)
2996 {
2997 uint32_t wt2;
2998
2999 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3000 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3001 restore_rounding_mode(env);
3002 if (get_float_exception_flags(&env->active_fpu.fp_status)
3003 & (float_flag_invalid | float_flag_overflow)) {
3004 wt2 = FP_TO_INT32_OVERFLOW;
3005 }
3006 update_fcr31(env, GETPC());
3007 return wt2;
3008 }
3009
3010 uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0)
3011 {
3012 uint32_t wt2;
3013
3014 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3015 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3016 restore_rounding_mode(env);
3017 if (get_float_exception_flags(&env->active_fpu.fp_status)
3018 & (float_flag_invalid | float_flag_overflow)) {
3019 wt2 = FP_TO_INT32_OVERFLOW;
3020 }
3021 update_fcr31(env, GETPC());
3022 return wt2;
3023 }
3024
3025 uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3026 {
3027 uint64_t dt2;
3028
3029 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3030 if (get_float_exception_flags(&env->active_fpu.fp_status)
3031 & float_flag_invalid) {
3032 if (float64_is_any_nan(fdt0)) {
3033 dt2 = 0;
3034 }
3035 }
3036 update_fcr31(env, GETPC());
3037 return dt2;
3038 }
3039
3040 uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3041 {
3042 uint64_t dt2;
3043
3044 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3045 if (get_float_exception_flags(&env->active_fpu.fp_status)
3046 & float_flag_invalid) {
3047 if (float32_is_any_nan(fst0)) {
3048 dt2 = 0;
3049 }
3050 }
3051 update_fcr31(env, GETPC());
3052 return dt2;
3053 }
3054
3055 uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3056 {
3057 uint32_t wt2;
3058
3059 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3060 if (get_float_exception_flags(&env->active_fpu.fp_status)
3061 & float_flag_invalid) {
3062 if (float64_is_any_nan(fdt0)) {
3063 wt2 = 0;
3064 }
3065 }
3066 update_fcr31(env, GETPC());
3067 return wt2;
3068 }
3069
3070 uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3071 {
3072 uint32_t wt2;
3073
3074 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3075 if (get_float_exception_flags(&env->active_fpu.fp_status)
3076 & float_flag_invalid) {
3077 if (float32_is_any_nan(fst0)) {
3078 wt2 = 0;
3079 }
3080 }
3081 update_fcr31(env, GETPC());
3082 return wt2;
3083 }
3084
3085 uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3086 {
3087 uint64_t dt2;
3088
3089 set_float_rounding_mode(float_round_nearest_even,
3090 &env->active_fpu.fp_status);
3091 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3092 restore_rounding_mode(env);
3093 if (get_float_exception_flags(&env->active_fpu.fp_status)
3094 & float_flag_invalid) {
3095 if (float64_is_any_nan(fdt0)) {
3096 dt2 = 0;
3097 }
3098 }
3099 update_fcr31(env, GETPC());
3100 return dt2;
3101 }
3102
3103 uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3104 {
3105 uint64_t dt2;
3106
3107 set_float_rounding_mode(float_round_nearest_even,
3108 &env->active_fpu.fp_status);
3109 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3110 restore_rounding_mode(env);
3111 if (get_float_exception_flags(&env->active_fpu.fp_status)
3112 & float_flag_invalid) {
3113 if (float32_is_any_nan(fst0)) {
3114 dt2 = 0;
3115 }
3116 }
3117 update_fcr31(env, GETPC());
3118 return dt2;
3119 }
3120
3121 uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3122 {
3123 uint32_t wt2;
3124
3125 set_float_rounding_mode(float_round_nearest_even,
3126 &env->active_fpu.fp_status);
3127 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3128 restore_rounding_mode(env);
3129 if (get_float_exception_flags(&env->active_fpu.fp_status)
3130 & float_flag_invalid) {
3131 if (float64_is_any_nan(fdt0)) {
3132 wt2 = 0;
3133 }
3134 }
3135 update_fcr31(env, GETPC());
3136 return wt2;
3137 }
3138
3139 uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3140 {
3141 uint32_t wt2;
3142
3143 set_float_rounding_mode(float_round_nearest_even,
3144 &env->active_fpu.fp_status);
3145 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3146 restore_rounding_mode(env);
3147 if (get_float_exception_flags(&env->active_fpu.fp_status)
3148 & float_flag_invalid) {
3149 if (float32_is_any_nan(fst0)) {
3150 wt2 = 0;
3151 }
3152 }
3153 update_fcr31(env, GETPC());
3154 return wt2;
3155 }
3156
3157 uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3158 {
3159 uint64_t dt2;
3160
3161 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
3162 if (get_float_exception_flags(&env->active_fpu.fp_status)
3163 & float_flag_invalid) {
3164 if (float64_is_any_nan(fdt0)) {
3165 dt2 = 0;
3166 }
3167 }
3168 update_fcr31(env, GETPC());
3169 return dt2;
3170 }
3171
3172 uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3173 {
3174 uint64_t dt2;
3175
3176 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
3177 if (get_float_exception_flags(&env->active_fpu.fp_status)
3178 & float_flag_invalid) {
3179 if (float32_is_any_nan(fst0)) {
3180 dt2 = 0;
3181 }
3182 }
3183 update_fcr31(env, GETPC());
3184 return dt2;
3185 }
3186
3187 uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3188 {
3189 uint32_t wt2;
3190
3191 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
3192 if (get_float_exception_flags(&env->active_fpu.fp_status)
3193 & float_flag_invalid) {
3194 if (float64_is_any_nan(fdt0)) {
3195 wt2 = 0;
3196 }
3197 }
3198 update_fcr31(env, GETPC());
3199 return wt2;
3200 }
3201
3202 uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3203 {
3204 uint32_t wt2;
3205
3206 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
3207 if (get_float_exception_flags(&env->active_fpu.fp_status)
3208 & float_flag_invalid) {
3209 if (float32_is_any_nan(fst0)) {
3210 wt2 = 0;
3211 }
3212 }
3213 update_fcr31(env, GETPC());
3214 return wt2;
3215 }
3216
3217 uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3218 {
3219 uint64_t dt2;
3220
3221 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3222 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3223 restore_rounding_mode(env);
3224 if (get_float_exception_flags(&env->active_fpu.fp_status)
3225 & float_flag_invalid) {
3226 if (float64_is_any_nan(fdt0)) {
3227 dt2 = 0;
3228 }
3229 }
3230 update_fcr31(env, GETPC());
3231 return dt2;
3232 }
3233
3234 uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3235 {
3236 uint64_t dt2;
3237
3238 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3239 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3240 restore_rounding_mode(env);
3241 if (get_float_exception_flags(&env->active_fpu.fp_status)
3242 & float_flag_invalid) {
3243 if (float32_is_any_nan(fst0)) {
3244 dt2 = 0;
3245 }
3246 }
3247 update_fcr31(env, GETPC());
3248 return dt2;
3249 }
3250
3251 uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3252 {
3253 uint32_t wt2;
3254
3255 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3256 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3257 restore_rounding_mode(env);
3258 if (get_float_exception_flags(&env->active_fpu.fp_status)
3259 & float_flag_invalid) {
3260 if (float64_is_any_nan(fdt0)) {
3261 wt2 = 0;
3262 }
3263 }
3264 update_fcr31(env, GETPC());
3265 return wt2;
3266 }
3267
3268 uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3269 {
3270 uint32_t wt2;
3271
3272 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3273 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3274 restore_rounding_mode(env);
3275 if (get_float_exception_flags(&env->active_fpu.fp_status)
3276 & float_flag_invalid) {
3277 if (float32_is_any_nan(fst0)) {
3278 wt2 = 0;
3279 }
3280 }
3281 update_fcr31(env, GETPC());
3282 return wt2;
3283 }
3284
3285 uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3286 {
3287 uint64_t dt2;
3288
3289 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3290 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3291 restore_rounding_mode(env);
3292 if (get_float_exception_flags(&env->active_fpu.fp_status)
3293 & float_flag_invalid) {
3294 if (float64_is_any_nan(fdt0)) {
3295 dt2 = 0;
3296 }
3297 }
3298 update_fcr31(env, GETPC());
3299 return dt2;
3300 }
3301
3302 uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3303 {
3304 uint64_t dt2;
3305
3306 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3307 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3308 restore_rounding_mode(env);
3309 if (get_float_exception_flags(&env->active_fpu.fp_status)
3310 & float_flag_invalid) {
3311 if (float32_is_any_nan(fst0)) {
3312 dt2 = 0;
3313 }
3314 }
3315 update_fcr31(env, GETPC());
3316 return dt2;
3317 }
3318
3319 uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3320 {
3321 uint32_t wt2;
3322
3323 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3324 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3325 restore_rounding_mode(env);
3326 if (get_float_exception_flags(&env->active_fpu.fp_status)
3327 & float_flag_invalid) {
3328 if (float64_is_any_nan(fdt0)) {
3329 wt2 = 0;
3330 }
3331 }
3332 update_fcr31(env, GETPC());
3333 return wt2;
3334 }
3335
3336 uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3337 {
3338 uint32_t wt2;
3339
3340 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3341 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3342 restore_rounding_mode(env);
3343 if (get_float_exception_flags(&env->active_fpu.fp_status)
3344 & float_flag_invalid) {
3345 if (float32_is_any_nan(fst0)) {
3346 wt2 = 0;
3347 }
3348 }
3349 update_fcr31(env, GETPC());
3350 return wt2;
3351 }
3352
3353 /* unary operations, not modifying fp status */
3354 #define FLOAT_UNOP(name) \
3355 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
3356 { \
3357 return float64_ ## name(fdt0); \
3358 } \
3359 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
3360 { \
3361 return float32_ ## name(fst0); \
3362 } \
3363 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
3364 { \
3365 uint32_t wt0; \
3366 uint32_t wth0; \
3367 \
3368 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
3369 wth0 = float32_ ## name(fdt0 >> 32); \
3370 return ((uint64_t)wth0 << 32) | wt0; \
3371 }
3372 FLOAT_UNOP(abs)
3373 FLOAT_UNOP(chs)
3374 #undef FLOAT_UNOP
3375
3376 /* MIPS specific unary operations */
3377 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
3378 {
3379 uint64_t fdt2;
3380
3381 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3382 update_fcr31(env, GETPC());
3383 return fdt2;
3384 }
3385
3386 uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
3387 {
3388 uint32_t fst2;
3389
3390 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3391 update_fcr31(env, GETPC());
3392 return fst2;
3393 }
3394
3395 uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
3396 {
3397 uint64_t fdt2;
3398
3399 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3400 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3401 update_fcr31(env, GETPC());
3402 return fdt2;
3403 }
3404
3405 uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
3406 {
3407 uint32_t fst2;
3408
3409 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3410 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3411 update_fcr31(env, GETPC());
3412 return fst2;
3413 }
3414
3415 uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
3416 {
3417 uint64_t fdt2;
3418
3419 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3420 update_fcr31(env, GETPC());
3421 return fdt2;
3422 }
3423
3424 uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
3425 {
3426 uint32_t fst2;
3427
3428 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3429 update_fcr31(env, GETPC());
3430 return fst2;
3431 }
3432
3433 uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
3434 {
3435 uint32_t fst2;
3436 uint32_t fsth2;
3437
3438 fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3439 fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
3440 update_fcr31(env, GETPC());
3441 return ((uint64_t)fsth2 << 32) | fst2;
3442 }
3443
3444 uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
3445 {
3446 uint64_t fdt2;
3447
3448 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3449 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3450 update_fcr31(env, GETPC());
3451 return fdt2;
3452 }
3453
3454 uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
3455 {
3456 uint32_t fst2;
3457
3458 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3459 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3460 update_fcr31(env, GETPC());
3461 return fst2;
3462 }
3463
3464 uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
3465 {
3466 uint32_t fst2;
3467 uint32_t fsth2;
3468
3469 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3470 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
3471 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3472 fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
3473 update_fcr31(env, GETPC());
3474 return ((uint64_t)fsth2 << 32) | fst2;
3475 }
3476
3477 #define FLOAT_RINT(name, bits) \
3478 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3479 uint ## bits ## _t fs) \
3480 { \
3481 uint ## bits ## _t fdret; \
3482 \
3483 fdret = float ## bits ## _round_to_int(fs, &env->active_fpu.fp_status); \
3484 update_fcr31(env, GETPC()); \
3485 return fdret; \
3486 }
3487
3488 FLOAT_RINT(rint_s, 32)
3489 FLOAT_RINT(rint_d, 64)
3490 #undef FLOAT_RINT
3491
3492 #define FLOAT_CLASS_SIGNALING_NAN 0x001
3493 #define FLOAT_CLASS_QUIET_NAN 0x002
3494 #define FLOAT_CLASS_NEGATIVE_INFINITY 0x004
3495 #define FLOAT_CLASS_NEGATIVE_NORMAL 0x008
3496 #define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010
3497 #define FLOAT_CLASS_NEGATIVE_ZERO 0x020
3498 #define FLOAT_CLASS_POSITIVE_INFINITY 0x040
3499 #define FLOAT_CLASS_POSITIVE_NORMAL 0x080
3500 #define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100
3501 #define FLOAT_CLASS_POSITIVE_ZERO 0x200
3502
3503 #define FLOAT_CLASS(name, bits) \
3504 uint ## bits ## _t float_ ## name (uint ## bits ## _t arg, \
3505 float_status *status) \
3506 { \
3507 if (float ## bits ## _is_signaling_nan(arg, status)) { \
3508 return FLOAT_CLASS_SIGNALING_NAN; \
3509 } else if (float ## bits ## _is_quiet_nan(arg, status)) { \
3510 return FLOAT_CLASS_QUIET_NAN; \
3511 } else if (float ## bits ## _is_neg(arg)) { \
3512 if (float ## bits ## _is_infinity(arg)) { \
3513 return FLOAT_CLASS_NEGATIVE_INFINITY; \
3514 } else if (float ## bits ## _is_zero(arg)) { \
3515 return FLOAT_CLASS_NEGATIVE_ZERO; \
3516 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3517 return FLOAT_CLASS_NEGATIVE_SUBNORMAL; \
3518 } else { \
3519 return FLOAT_CLASS_NEGATIVE_NORMAL; \
3520 } \
3521 } else { \
3522 if (float ## bits ## _is_infinity(arg)) { \
3523 return FLOAT_CLASS_POSITIVE_INFINITY; \
3524 } else if (float ## bits ## _is_zero(arg)) { \
3525 return FLOAT_CLASS_POSITIVE_ZERO; \
3526 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3527 return FLOAT_CLASS_POSITIVE_SUBNORMAL; \
3528 } else { \
3529 return FLOAT_CLASS_POSITIVE_NORMAL; \
3530 } \
3531 } \
3532 } \
3533 \
3534 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3535 uint ## bits ## _t arg) \
3536 { \
3537 return float_ ## name(arg, &env->active_fpu.fp_status); \
3538 }
3539
3540 FLOAT_CLASS(class_s, 32)
3541 FLOAT_CLASS(class_d, 64)
3542 #undef FLOAT_CLASS
3543
3544 /* binary operations */
3545 #define FLOAT_BINOP(name) \
3546 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3547 uint64_t fdt0, uint64_t fdt1) \
3548 { \
3549 uint64_t dt2; \
3550 \
3551 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
3552 update_fcr31(env, GETPC()); \
3553 return dt2; \
3554 } \
3555 \
3556 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3557 uint32_t fst0, uint32_t fst1) \
3558 { \
3559 uint32_t wt2; \
3560 \
3561 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3562 update_fcr31(env, GETPC()); \
3563 return wt2; \
3564 } \
3565 \
3566 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3567 uint64_t fdt0, \
3568 uint64_t fdt1) \
3569 { \
3570 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3571 uint32_t fsth0 = fdt0 >> 32; \
3572 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3573 uint32_t fsth1 = fdt1 >> 32; \
3574 uint32_t wt2; \
3575 uint32_t wth2; \
3576 \
3577 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3578 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
3579 update_fcr31(env, GETPC()); \
3580 return ((uint64_t)wth2 << 32) | wt2; \
3581 }
3582
3583 FLOAT_BINOP(add)
3584 FLOAT_BINOP(sub)
3585 FLOAT_BINOP(mul)
3586 FLOAT_BINOP(div)
3587 #undef FLOAT_BINOP
3588
3589 /* MIPS specific binary operations */
3590 uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3591 {
3592 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3593 fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
3594 update_fcr31(env, GETPC());
3595 return fdt2;
3596 }
3597
3598 uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3599 {
3600 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3601 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3602 update_fcr31(env, GETPC());
3603 return fst2;
3604 }
3605
3606 uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3607 {
3608 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3609 uint32_t fsth0 = fdt0 >> 32;
3610 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3611 uint32_t fsth2 = fdt2 >> 32;
3612
3613 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3614 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3615 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3616 fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
3617 update_fcr31(env, GETPC());
3618 return ((uint64_t)fsth2 << 32) | fst2;
3619 }
3620
3621 uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3622 {
3623 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3624 fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
3625 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
3626 update_fcr31(env, GETPC());
3627 return fdt2;
3628 }
3629
3630 uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3631 {
3632 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3633 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3634 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3635 update_fcr31(env, GETPC());
3636 return fst2;
3637 }
3638
3639 uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3640 {
3641 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3642 uint32_t fsth0 = fdt0 >> 32;
3643 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3644 uint32_t fsth2 = fdt2 >> 32;
3645
3646 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3647 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3648 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3649 fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
3650 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3651 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
3652 update_fcr31(env, GETPC());
3653 return ((uint64_t)fsth2 << 32) | fst2;
3654 }
3655
3656 uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3657 {
3658 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3659 uint32_t fsth0 = fdt0 >> 32;
3660 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3661 uint32_t fsth1 = fdt1 >> 32;
3662 uint32_t fst2;
3663 uint32_t fsth2;
3664
3665 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
3666 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
3667 update_fcr31(env, GETPC());
3668 return ((uint64_t)fsth2 << 32) | fst2;
3669 }
3670
3671 uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3672 {
3673 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3674 uint32_t fsth0 = fdt0 >> 32;
3675 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3676 uint32_t fsth1 = fdt1 >> 32;
3677 uint32_t fst2;
3678 uint32_t fsth2;
3679
3680 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3681 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3682 update_fcr31(env, GETPC());
3683 return ((uint64_t)fsth2 << 32) | fst2;
3684 }
3685
3686 #define FLOAT_MINMAX(name, bits, minmaxfunc) \
3687 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3688 uint ## bits ## _t fs, \
3689 uint ## bits ## _t ft) \
3690 { \
3691 uint ## bits ## _t fdret; \
3692 \
3693 fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \
3694 &env->active_fpu.fp_status); \
3695 update_fcr31(env, GETPC()); \
3696 return fdret; \
3697 }
3698
3699 FLOAT_MINMAX(max_s, 32, maxnum)
3700 FLOAT_MINMAX(max_d, 64, maxnum)
3701 FLOAT_MINMAX(maxa_s, 32, maxnummag)
3702 FLOAT_MINMAX(maxa_d, 64, maxnummag)
3703
3704 FLOAT_MINMAX(min_s, 32, minnum)
3705 FLOAT_MINMAX(min_d, 64, minnum)
3706 FLOAT_MINMAX(mina_s, 32, minnummag)
3707 FLOAT_MINMAX(mina_d, 64, minnummag)
3708 #undef FLOAT_MINMAX
3709
3710 /* ternary operations */
3711 #define UNFUSED_FMA(prefix, a, b, c, flags) \
3712 { \
3713 a = prefix##_mul(a, b, &env->active_fpu.fp_status); \
3714 if ((flags) & float_muladd_negate_c) { \
3715 a = prefix##_sub(a, c, &env->active_fpu.fp_status); \
3716 } else { \
3717 a = prefix##_add(a, c, &env->active_fpu.fp_status); \
3718 } \
3719 if ((flags) & float_muladd_negate_result) { \
3720 a = prefix##_chs(a); \
3721 } \
3722 }
3723
3724 /* FMA based operations */
3725 #define FLOAT_FMA(name, type) \
3726 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3727 uint64_t fdt0, uint64_t fdt1, \
3728 uint64_t fdt2) \
3729 { \
3730 UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \
3731 update_fcr31(env, GETPC()); \
3732 return fdt0; \
3733 } \
3734 \
3735 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3736 uint32_t fst0, uint32_t fst1, \
3737 uint32_t fst2) \
3738 { \
3739 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3740 update_fcr31(env, GETPC()); \
3741 return fst0; \
3742 } \
3743 \
3744 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3745 uint64_t fdt0, uint64_t fdt1, \
3746 uint64_t fdt2) \
3747 { \
3748 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3749 uint32_t fsth0 = fdt0 >> 32; \
3750 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3751 uint32_t fsth1 = fdt1 >> 32; \
3752 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
3753 uint32_t fsth2 = fdt2 >> 32; \
3754 \
3755 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3756 UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \
3757 update_fcr31(env, GETPC()); \
3758 return ((uint64_t)fsth0 << 32) | fst0; \
3759 }
3760 FLOAT_FMA(madd, 0)
3761 FLOAT_FMA(msub, float_muladd_negate_c)
3762 FLOAT_FMA(nmadd, float_muladd_negate_result)
3763 FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
3764 #undef FLOAT_FMA
3765
3766 #define FLOAT_FMADDSUB(name, bits, muladd_arg) \
3767 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3768 uint ## bits ## _t fs, \
3769 uint ## bits ## _t ft, \
3770 uint ## bits ## _t fd) \
3771 { \
3772 uint ## bits ## _t fdret; \
3773 \
3774 fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \
3775 &env->active_fpu.fp_status); \
3776 update_fcr31(env, GETPC()); \
3777 return fdret; \
3778 }
3779
3780 FLOAT_FMADDSUB(maddf_s, 32, 0)
3781 FLOAT_FMADDSUB(maddf_d, 64, 0)
3782 FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product)
3783 FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product)
3784 #undef FLOAT_FMADDSUB
3785
3786 /* compare operations */
3787 #define FOP_COND_D(op, cond) \
3788 void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3789 uint64_t fdt1, int cc) \
3790 { \
3791 int c; \
3792 c = cond; \
3793 update_fcr31(env, GETPC()); \
3794 if (c) \
3795 SET_FP_COND(cc, env->active_fpu); \
3796 else \
3797 CLEAR_FP_COND(cc, env->active_fpu); \
3798 } \
3799 void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3800 uint64_t fdt1, int cc) \
3801 { \
3802 int c; \
3803 fdt0 = float64_abs(fdt0); \
3804 fdt1 = float64_abs(fdt1); \
3805 c = cond; \
3806 update_fcr31(env, GETPC()); \
3807 if (c) \
3808 SET_FP_COND(cc, env->active_fpu); \
3809 else \
3810 CLEAR_FP_COND(cc, env->active_fpu); \
3811 }
3812
3813 /* NOTE: the comma operator will make "cond" to eval to false,
3814 * but float64_unordered_quiet() is still called. */
3815 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3816 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
3817 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3818 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3819 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3820 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3821 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3822 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3823 /* NOTE: the comma operator will make "cond" to eval to false,
3824 * but float64_unordered() is still called. */
3825 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3826 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
3827 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3828 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3829 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3830 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3831 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3832 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3833
3834 #define FOP_COND_S(op, cond) \
3835 void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3836 uint32_t fst1, int cc) \
3837 { \
3838 int c; \
3839 c = cond; \
3840 update_fcr31(env, GETPC()); \
3841 if (c) \
3842 SET_FP_COND(cc, env->active_fpu); \
3843 else \
3844 CLEAR_FP_COND(cc, env->active_fpu); \
3845 } \
3846 void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3847 uint32_t fst1, int cc) \
3848 { \
3849 int c; \
3850 fst0 = float32_abs(fst0); \
3851 fst1 = float32_abs(fst1); \
3852 c = cond; \
3853 update_fcr31(env, GETPC()); \
3854 if (c) \
3855 SET_FP_COND(cc, env->active_fpu); \
3856 else \
3857 CLEAR_FP_COND(cc, env->active_fpu); \
3858 }
3859
3860 /* NOTE: the comma operator will make "cond" to eval to false,
3861 * but float32_unordered_quiet() is still called. */
3862 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
3863 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
3864 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3865 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3866 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3867 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3868 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3869 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3870 /* NOTE: the comma operator will make "cond" to eval to false,
3871 * but float32_unordered() is still called. */
3872 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
3873 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
3874 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3875 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3876 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3877 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3878 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
3879 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3880
3881 #define FOP_COND_PS(op, condl, condh) \
3882 void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3883 uint64_t fdt1, int cc) \
3884 { \
3885 uint32_t fst0, fsth0, fst1, fsth1; \
3886 int ch, cl; \
3887 fst0 = fdt0 & 0XFFFFFFFF; \
3888 fsth0 = fdt0 >> 32; \
3889 fst1 = fdt1 & 0XFFFFFFFF; \
3890 fsth1 = fdt1 >> 32; \
3891 cl = condl; \
3892 ch = condh; \
3893 update_fcr31(env, GETPC()); \
3894 if (cl) \
3895 SET_FP_COND(cc, env->active_fpu); \
3896 else \
3897 CLEAR_FP_COND(cc, env->active_fpu); \
3898 if (ch) \
3899 SET_FP_COND(cc + 1, env->active_fpu); \
3900 else \
3901 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3902 } \
3903 void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3904 uint64_t fdt1, int cc) \
3905 { \
3906 uint32_t fst0, fsth0, fst1, fsth1; \
3907 int ch, cl; \
3908 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3909 fsth0 = float32_abs(fdt0 >> 32); \
3910 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3911 fsth1 = float32_abs(fdt1 >> 32); \
3912 cl = condl; \
3913 ch = condh; \
3914 update_fcr31(env, GETPC()); \
3915 if (cl) \
3916 SET_FP_COND(cc, env->active_fpu); \
3917 else \
3918 CLEAR_FP_COND(cc, env->active_fpu); \
3919 if (ch) \
3920 SET_FP_COND(cc + 1, env->active_fpu); \
3921 else \
3922 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3923 }
3924
3925 /* NOTE: the comma operator will make "cond" to eval to false,
3926 * but float32_unordered_quiet() is still called. */
3927 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
3928 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3929 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
3930 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
3931 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3932 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3933 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3934 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3935 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3936 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3937 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3938 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3939 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3940 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3941 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3942 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3943 /* NOTE: the comma operator will make "cond" to eval to false,
3944 * but float32_unordered() is still called. */
3945 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
3946 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3947 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
3948 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
3949 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3950 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3951 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3952 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3953 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3954 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3955 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3956 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3957 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
3958 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3959 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3960 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3961
3962 /* R6 compare operations */
3963 #define FOP_CONDN_D(op, cond) \
3964 uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState * env, uint64_t fdt0, \
3965 uint64_t fdt1) \
3966 { \
3967 uint64_t c; \
3968 c = cond; \
3969 update_fcr31(env, GETPC()); \
3970 if (c) { \
3971 return -1; \
3972 } else { \
3973 return 0; \
3974 } \
3975 }
3976
3977 /* NOTE: the comma operator will make "cond" to eval to false,
3978 * but float64_unordered_quiet() is still called. */
3979 FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3980 FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)))
3981 FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
3982 FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
3983 || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
3984 FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
3985 FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
3986 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
3987 FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
3988 FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
3989 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
3990 /* NOTE: the comma operator will make "cond" to eval to false,
3991 * but float64_unordered() is still called. */
3992 FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3993 FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)))
3994 FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
3995 FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
3996 || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
3997 FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
3998 FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
3999 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4000 FOP_CONDN_D(sle, (float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4001 FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4002 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4003 FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4004 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4005 FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4006 || float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4007 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4008 FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4009 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4010 FOP_CONDN_D(sor, (float64_le(fdt1, fdt0, &env->active_fpu.fp_status)
4011 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4012 FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4013 || float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4014 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4015 FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4016 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4017
4018 #define FOP_CONDN_S(op, cond) \
4019 uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState * env, uint32_t fst0, \
4020 uint32_t fst1) \
4021 { \
4022 uint64_t c; \
4023 c = cond; \
4024 update_fcr31(env, GETPC()); \
4025 if (c) { \
4026 return -1; \
4027 } else { \
4028 return 0; \
4029 } \
4030 }
4031
4032 /* NOTE: the comma operator will make "cond" to eval to false,
4033 * but float32_unordered_quiet() is still called. */
4034 FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
4035 FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)))
4036 FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4037 FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4038 || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4039 FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4040 FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4041 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4042 FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4043 FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4044 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4045 /* NOTE: the comma operator will make "cond" to eval to false,
4046 * but float32_unordered() is still called. */
4047 FOP_CONDN_S(saf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
4048 FOP_CONDN_S(sun, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)))
4049 FOP_CONDN_S(seq, (float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4050 FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4051 || float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4052 FOP_CONDN_S(slt, (float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4053 FOP_CONDN_S(sult, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4054 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4055 FOP_CONDN_S(sle, (float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4056 FOP_CONDN_S(sule, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4057 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4058 FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0, &env->active_fpu.fp_status)
4059 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4060 FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4061 || float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4062 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4063 FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4064 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4065 FOP_CONDN_S(sor, (float32_le(fst1, fst0, &env->active_fpu.fp_status)
4066 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4067 FOP_CONDN_S(sune, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4068 || float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4069 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4070 FOP_CONDN_S(sne, (float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4071 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4072
4073 /* MSA */
4074 /* Data format min and max values */
4075 #define DF_BITS(df) (1 << ((df) + 3))
4076
4077 /* Element-by-element access macros */
4078 #define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df))
4079
4080 #if !defined(CONFIG_USER_ONLY)
4081 #define MEMOP_IDX(DF) \
4082 TCGMemOpIdx oi = make_memop_idx(MO_TE | DF | MO_UNALN, \
4083 cpu_mmu_index(env, false));
4084 #else
4085 #define MEMOP_IDX(DF)
4086 #endif
4087
4088 #define MSA_LD_DF(DF, TYPE, LD_INSN, ...) \
4089 void helper_msa_ld_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4090 target_ulong addr) \
4091 { \
4092 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4093 wr_t wx; \
4094 int i; \
4095 MEMOP_IDX(DF) \
4096 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4097 wx.TYPE[i] = LD_INSN(env, addr + (i << DF), ##__VA_ARGS__); \
4098 } \
4099 memcpy(pwd, &wx, sizeof(wr_t)); \
4100 }
4101
4102 #if !defined(CONFIG_USER_ONLY)
4103 MSA_LD_DF(DF_BYTE, b, helper_ret_ldub_mmu, oi, GETPC())
4104 MSA_LD_DF(DF_HALF, h, helper_ret_lduw_mmu, oi, GETPC())
4105 MSA_LD_DF(DF_WORD, w, helper_ret_ldul_mmu, oi, GETPC())
4106 MSA_LD_DF(DF_DOUBLE, d, helper_ret_ldq_mmu, oi, GETPC())
4107 #else
4108 MSA_LD_DF(DF_BYTE, b, cpu_ldub_data)
4109 MSA_LD_DF(DF_HALF, h, cpu_lduw_data)
4110 MSA_LD_DF(DF_WORD, w, cpu_ldl_data)
4111 MSA_LD_DF(DF_DOUBLE, d, cpu_ldq_data)
4112 #endif
4113
4114 #define MSA_PAGESPAN(x) \
4115 ((((x) & ~TARGET_PAGE_MASK) + MSA_WRLEN/8 - 1) >= TARGET_PAGE_SIZE)
4116
4117 static inline void ensure_writable_pages(CPUMIPSState *env,
4118 target_ulong addr,
4119 int mmu_idx,
4120 uintptr_t retaddr)
4121 {
4122 #if !defined(CONFIG_USER_ONLY)
4123 target_ulong page_addr;
4124 if (unlikely(MSA_PAGESPAN(addr))) {
4125 /* first page */
4126 probe_write(env, addr, mmu_idx, retaddr);
4127 /* second page */
4128 page_addr = (addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
4129 probe_write(env, page_addr, mmu_idx, retaddr);
4130 }
4131 #endif
4132 }
4133
4134 #define MSA_ST_DF(DF, TYPE, ST_INSN, ...) \
4135 void helper_msa_st_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4136 target_ulong addr) \
4137 { \
4138 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4139 int mmu_idx = cpu_mmu_index(env, false); \
4140 int i; \
4141 MEMOP_IDX(DF) \
4142 ensure_writable_pages(env, addr, mmu_idx, GETPC()); \
4143 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4144 ST_INSN(env, addr + (i << DF), pwd->TYPE[i], ##__VA_ARGS__); \
4145 } \
4146 }
4147
4148 #if !defined(CONFIG_USER_ONLY)
4149 MSA_ST_DF(DF_BYTE, b, helper_ret_stb_mmu, oi, GETPC())
4150 MSA_ST_DF(DF_HALF, h, helper_ret_stw_mmu, oi, GETPC())
4151 MSA_ST_DF(DF_WORD, w, helper_ret_stl_mmu, oi, GETPC())
4152 MSA_ST_DF(DF_DOUBLE, d, helper_ret_stq_mmu, oi, GETPC())
4153 #else
4154 MSA_ST_DF(DF_BYTE, b, cpu_stb_data)
4155 MSA_ST_DF(DF_HALF, h, cpu_stw_data)
4156 MSA_ST_DF(DF_WORD, w, cpu_stl_data)
4157 MSA_ST_DF(DF_DOUBLE, d, cpu_stq_data)
4158 #endif
4159
4160 void helper_cache(CPUMIPSState *env, target_ulong addr, uint32_t op)
4161 {
4162 #ifndef CONFIG_USER_ONLY
4163 target_ulong index = addr & 0x1fffffff;
4164 if (op == 9) {
4165 /* Index Store Tag */
4166 memory_region_dispatch_write(env->itc_tag, index, env->CP0_TagLo,
4167 8, MEMTXATTRS_UNSPECIFIED);
4168 } else if (op == 5) {
4169 /* Index Load Tag */
4170 memory_region_dispatch_read(env->itc_tag, index, &env->CP0_TagLo,
4171 8, MEMTXATTRS_UNSPECIFIED);
4172 }
4173 #endif
4174 }