]> git.proxmox.com Git - mirror_qemu.git/blob - target/mips/op_helper.c
target/mips: Implement emulation of nanoMIPS ROTX instruction
[mirror_qemu.git] / target / mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "qemu/host-utils.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "sysemu/kvm.h"
28
29 /*****************************************************************************/
30 /* Exceptions processing helpers */
31
32 void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
33 int error_code)
34 {
35 do_raise_exception_err(env, exception, error_code, 0);
36 }
37
38 void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
39 {
40 do_raise_exception(env, exception, GETPC());
41 }
42
43 void helper_raise_exception_debug(CPUMIPSState *env)
44 {
45 do_raise_exception(env, EXCP_DEBUG, 0);
46 }
47
48 static void raise_exception(CPUMIPSState *env, uint32_t exception)
49 {
50 do_raise_exception(env, exception, 0);
51 }
52
53 #if defined(CONFIG_USER_ONLY)
54 #define HELPER_LD(name, insn, type) \
55 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
56 int mem_idx, uintptr_t retaddr) \
57 { \
58 return (type) cpu_##insn##_data_ra(env, addr, retaddr); \
59 }
60 #else
61 #define HELPER_LD(name, insn, type) \
62 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
63 int mem_idx, uintptr_t retaddr) \
64 { \
65 switch (mem_idx) \
66 { \
67 case 0: return (type) cpu_##insn##_kernel_ra(env, addr, retaddr); \
68 case 1: return (type) cpu_##insn##_super_ra(env, addr, retaddr); \
69 default: \
70 case 2: return (type) cpu_##insn##_user_ra(env, addr, retaddr); \
71 case 3: return (type) cpu_##insn##_error_ra(env, addr, retaddr); \
72 } \
73 }
74 #endif
75 HELPER_LD(lw, ldl, int32_t)
76 #if defined(TARGET_MIPS64)
77 HELPER_LD(ld, ldq, int64_t)
78 #endif
79 #undef HELPER_LD
80
81 #if defined(CONFIG_USER_ONLY)
82 #define HELPER_ST(name, insn, type) \
83 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
84 type val, int mem_idx, uintptr_t retaddr) \
85 { \
86 cpu_##insn##_data_ra(env, addr, val, retaddr); \
87 }
88 #else
89 #define HELPER_ST(name, insn, type) \
90 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
91 type val, int mem_idx, uintptr_t retaddr) \
92 { \
93 switch (mem_idx) \
94 { \
95 case 0: cpu_##insn##_kernel_ra(env, addr, val, retaddr); break; \
96 case 1: cpu_##insn##_super_ra(env, addr, val, retaddr); break; \
97 default: \
98 case 2: cpu_##insn##_user_ra(env, addr, val, retaddr); break; \
99 case 3: \
100 cpu_##insn##_error_ra(env, addr, val, retaddr); \
101 break; \
102 } \
103 }
104 #endif
105 HELPER_ST(sb, stb, uint8_t)
106 HELPER_ST(sw, stl, uint32_t)
107 #if defined(TARGET_MIPS64)
108 HELPER_ST(sd, stq, uint64_t)
109 #endif
110 #undef HELPER_ST
111
112 /* 64 bits arithmetic for 32 bits hosts */
113 static inline uint64_t get_HILO(CPUMIPSState *env)
114 {
115 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
116 }
117
118 static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
119 {
120 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
121 return env->active_tc.HI[0] = (int32_t)(HILO >> 32);
122 }
123
124 static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
125 {
126 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
127 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
128 return tmp;
129 }
130
131 /* Multiplication variants of the vr54xx. */
132 target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
133 target_ulong arg2)
134 {
135 return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
136 (int64_t)(int32_t)arg2));
137 }
138
139 target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
140 target_ulong arg2)
141 {
142 return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
143 (uint64_t)(uint32_t)arg2);
144 }
145
146 target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
147 target_ulong arg2)
148 {
149 return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
150 (int64_t)(int32_t)arg2);
151 }
152
153 target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
154 target_ulong arg2)
155 {
156 return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
157 (int64_t)(int32_t)arg2);
158 }
159
160 target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
161 target_ulong arg2)
162 {
163 return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
164 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
165 }
166
167 target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
168 target_ulong arg2)
169 {
170 return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
171 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
172 }
173
174 target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
175 target_ulong arg2)
176 {
177 return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
178 (int64_t)(int32_t)arg2);
179 }
180
181 target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
182 target_ulong arg2)
183 {
184 return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
185 (int64_t)(int32_t)arg2);
186 }
187
188 target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
189 target_ulong arg2)
190 {
191 return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
192 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
193 }
194
195 target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
196 target_ulong arg2)
197 {
198 return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
199 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
200 }
201
202 target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
203 target_ulong arg2)
204 {
205 return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
206 }
207
208 target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
209 target_ulong arg2)
210 {
211 return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
212 (uint64_t)(uint32_t)arg2);
213 }
214
215 target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
216 target_ulong arg2)
217 {
218 return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
219 (int64_t)(int32_t)arg2);
220 }
221
222 target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
223 target_ulong arg2)
224 {
225 return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
226 (uint64_t)(uint32_t)arg2);
227 }
228
229 static inline target_ulong bitswap(target_ulong v)
230 {
231 v = ((v >> 1) & (target_ulong)0x5555555555555555ULL) |
232 ((v & (target_ulong)0x5555555555555555ULL) << 1);
233 v = ((v >> 2) & (target_ulong)0x3333333333333333ULL) |
234 ((v & (target_ulong)0x3333333333333333ULL) << 2);
235 v = ((v >> 4) & (target_ulong)0x0F0F0F0F0F0F0F0FULL) |
236 ((v & (target_ulong)0x0F0F0F0F0F0F0F0FULL) << 4);
237 return v;
238 }
239
240 #ifdef TARGET_MIPS64
241 target_ulong helper_dbitswap(target_ulong rt)
242 {
243 return bitswap(rt);
244 }
245 #endif
246
247 target_ulong helper_bitswap(target_ulong rt)
248 {
249 return (int32_t)bitswap(rt);
250 }
251
252 target_ulong helper_rotx(target_ulong rs, uint32_t shift, uint32_t shiftx,
253 uint32_t stripe)
254 {
255 int i;
256 uint64_t tmp0 = ((uint64_t)rs) << 32 | ((uint64_t)rs & 0xffffffff);
257 uint64_t tmp1 = tmp0;
258 for (i = 0; i <= 46; i++) {
259 int s;
260 if (i & 0x8) {
261 s = shift;
262 } else {
263 s = shiftx;
264 }
265
266 if (stripe != 0 && !(i & 0x4)) {
267 s = ~s;
268 }
269 if (s & 0x10) {
270 if (tmp0 & (1LL << (i + 16))) {
271 tmp1 |= 1LL << i;
272 } else {
273 tmp1 &= ~(1LL << i);
274 }
275 }
276 }
277
278 uint64_t tmp2 = tmp1;
279 for (i = 0; i <= 38; i++) {
280 int s;
281 if (i & 0x4) {
282 s = shift;
283 } else {
284 s = shiftx;
285 }
286
287 if (s & 0x8) {
288 if (tmp1 & (1LL << (i + 8))) {
289 tmp2 |= 1LL << i;
290 } else {
291 tmp2 &= ~(1LL << i);
292 }
293 }
294 }
295
296 uint64_t tmp3 = tmp2;
297 for (i = 0; i <= 34; i++) {
298 int s;
299 if (i & 0x2) {
300 s = shift;
301 } else {
302 s = shiftx;
303 }
304 if (s & 0x4) {
305 if (tmp2 & (1LL << (i + 4))) {
306 tmp3 |= 1LL << i;
307 } else {
308 tmp3 &= ~(1LL << i);
309 }
310 }
311 }
312
313 uint64_t tmp4 = tmp3;
314 for (i = 0; i <= 32; i++) {
315 int s;
316 if (i & 0x1) {
317 s = shift;
318 } else {
319 s = shiftx;
320 }
321 if (s & 0x2) {
322 if (tmp3 & (1LL << (i + 2))) {
323 tmp4 |= 1LL << i;
324 } else {
325 tmp4 &= ~(1LL << i);
326 }
327 }
328 }
329
330 uint64_t tmp5 = tmp4;
331 for (i = 0; i <= 31; i++) {
332 int s;
333 s = shift;
334 if (s & 0x1) {
335 if (tmp4 & (1LL << (i + 1))) {
336 tmp5 |= 1LL << i;
337 } else {
338 tmp5 &= ~(1LL << i);
339 }
340 }
341 }
342
343 return (int64_t)(int32_t)(uint32_t)tmp5;
344 }
345
346 #ifndef CONFIG_USER_ONLY
347
348 static inline hwaddr do_translate_address(CPUMIPSState *env,
349 target_ulong address,
350 int rw, uintptr_t retaddr)
351 {
352 hwaddr lladdr;
353 CPUState *cs = CPU(mips_env_get_cpu(env));
354
355 lladdr = cpu_mips_translate_address(env, address, rw);
356
357 if (lladdr == -1LL) {
358 cpu_loop_exit_restore(cs, retaddr);
359 } else {
360 return lladdr;
361 }
362 }
363
364 #define HELPER_LD_ATOMIC(name, insn, almask) \
365 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
366 { \
367 if (arg & almask) { \
368 if (!(env->hflags & MIPS_HFLAG_DM)) { \
369 env->CP0_BadVAddr = arg; \
370 } \
371 do_raise_exception(env, EXCP_AdEL, GETPC()); \
372 } \
373 env->lladdr = do_translate_address(env, arg, 0, GETPC()); \
374 env->llval = do_##insn(env, arg, mem_idx, GETPC()); \
375 return env->llval; \
376 }
377 HELPER_LD_ATOMIC(ll, lw, 0x3)
378 #ifdef TARGET_MIPS64
379 HELPER_LD_ATOMIC(lld, ld, 0x7)
380 #endif
381 #undef HELPER_LD_ATOMIC
382
383 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
384 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
385 target_ulong arg2, int mem_idx) \
386 { \
387 target_long tmp; \
388 \
389 if (arg2 & almask) { \
390 if (!(env->hflags & MIPS_HFLAG_DM)) { \
391 env->CP0_BadVAddr = arg2; \
392 } \
393 do_raise_exception(env, EXCP_AdES, GETPC()); \
394 } \
395 if (do_translate_address(env, arg2, 1, GETPC()) == env->lladdr) { \
396 tmp = do_##ld_insn(env, arg2, mem_idx, GETPC()); \
397 if (tmp == env->llval) { \
398 do_##st_insn(env, arg2, arg1, mem_idx, GETPC()); \
399 return 1; \
400 } \
401 } \
402 return 0; \
403 }
404 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
405 #ifdef TARGET_MIPS64
406 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
407 #endif
408 #undef HELPER_ST_ATOMIC
409 #endif
410
411 #ifdef TARGET_WORDS_BIGENDIAN
412 #define GET_LMASK(v) ((v) & 3)
413 #define GET_OFFSET(addr, offset) (addr + (offset))
414 #else
415 #define GET_LMASK(v) (((v) & 3) ^ 3)
416 #define GET_OFFSET(addr, offset) (addr - (offset))
417 #endif
418
419 void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
420 int mem_idx)
421 {
422 do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx, GETPC());
423
424 if (GET_LMASK(arg2) <= 2) {
425 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx,
426 GETPC());
427 }
428
429 if (GET_LMASK(arg2) <= 1) {
430 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx,
431 GETPC());
432 }
433
434 if (GET_LMASK(arg2) == 0) {
435 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx,
436 GETPC());
437 }
438 }
439
440 void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
441 int mem_idx)
442 {
443 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
444
445 if (GET_LMASK(arg2) >= 1) {
446 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
447 GETPC());
448 }
449
450 if (GET_LMASK(arg2) >= 2) {
451 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
452 GETPC());
453 }
454
455 if (GET_LMASK(arg2) == 3) {
456 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
457 GETPC());
458 }
459 }
460
461 #if defined(TARGET_MIPS64)
462 /* "half" load and stores. We must do the memory access inline,
463 or fault handling won't work. */
464
465 #ifdef TARGET_WORDS_BIGENDIAN
466 #define GET_LMASK64(v) ((v) & 7)
467 #else
468 #define GET_LMASK64(v) (((v) & 7) ^ 7)
469 #endif
470
471 void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
472 int mem_idx)
473 {
474 do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx, GETPC());
475
476 if (GET_LMASK64(arg2) <= 6) {
477 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx,
478 GETPC());
479 }
480
481 if (GET_LMASK64(arg2) <= 5) {
482 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx,
483 GETPC());
484 }
485
486 if (GET_LMASK64(arg2) <= 4) {
487 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx,
488 GETPC());
489 }
490
491 if (GET_LMASK64(arg2) <= 3) {
492 do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx,
493 GETPC());
494 }
495
496 if (GET_LMASK64(arg2) <= 2) {
497 do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx,
498 GETPC());
499 }
500
501 if (GET_LMASK64(arg2) <= 1) {
502 do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx,
503 GETPC());
504 }
505
506 if (GET_LMASK64(arg2) <= 0) {
507 do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx,
508 GETPC());
509 }
510 }
511
512 void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
513 int mem_idx)
514 {
515 do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
516
517 if (GET_LMASK64(arg2) >= 1) {
518 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
519 GETPC());
520 }
521
522 if (GET_LMASK64(arg2) >= 2) {
523 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
524 GETPC());
525 }
526
527 if (GET_LMASK64(arg2) >= 3) {
528 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
529 GETPC());
530 }
531
532 if (GET_LMASK64(arg2) >= 4) {
533 do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx,
534 GETPC());
535 }
536
537 if (GET_LMASK64(arg2) >= 5) {
538 do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx,
539 GETPC());
540 }
541
542 if (GET_LMASK64(arg2) >= 6) {
543 do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx,
544 GETPC());
545 }
546
547 if (GET_LMASK64(arg2) == 7) {
548 do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx,
549 GETPC());
550 }
551 }
552 #endif /* TARGET_MIPS64 */
553
554 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
555
556 void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
557 uint32_t mem_idx)
558 {
559 target_ulong base_reglist = reglist & 0xf;
560 target_ulong do_r31 = reglist & 0x10;
561
562 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
563 target_ulong i;
564
565 for (i = 0; i < base_reglist; i++) {
566 env->active_tc.gpr[multiple_regs[i]] =
567 (target_long)do_lw(env, addr, mem_idx, GETPC());
568 addr += 4;
569 }
570 }
571
572 if (do_r31) {
573 env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx,
574 GETPC());
575 }
576 }
577
578 void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
579 uint32_t mem_idx)
580 {
581 target_ulong base_reglist = reglist & 0xf;
582 target_ulong do_r31 = reglist & 0x10;
583
584 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
585 target_ulong i;
586
587 for (i = 0; i < base_reglist; i++) {
588 do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
589 GETPC());
590 addr += 4;
591 }
592 }
593
594 if (do_r31) {
595 do_sw(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
596 }
597 }
598
599 #if defined(TARGET_MIPS64)
600 void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
601 uint32_t mem_idx)
602 {
603 target_ulong base_reglist = reglist & 0xf;
604 target_ulong do_r31 = reglist & 0x10;
605
606 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
607 target_ulong i;
608
609 for (i = 0; i < base_reglist; i++) {
610 env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx,
611 GETPC());
612 addr += 8;
613 }
614 }
615
616 if (do_r31) {
617 env->active_tc.gpr[31] = do_ld(env, addr, mem_idx, GETPC());
618 }
619 }
620
621 void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
622 uint32_t mem_idx)
623 {
624 target_ulong base_reglist = reglist & 0xf;
625 target_ulong do_r31 = reglist & 0x10;
626
627 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
628 target_ulong i;
629
630 for (i = 0; i < base_reglist; i++) {
631 do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
632 GETPC());
633 addr += 8;
634 }
635 }
636
637 if (do_r31) {
638 do_sd(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
639 }
640 }
641 #endif
642
643 #ifndef CONFIG_USER_ONLY
644 /* SMP helpers. */
645 static bool mips_vpe_is_wfi(MIPSCPU *c)
646 {
647 CPUState *cpu = CPU(c);
648 CPUMIPSState *env = &c->env;
649
650 /* If the VPE is halted but otherwise active, it means it's waiting for
651 an interrupt. */
652 return cpu->halted && mips_vpe_active(env);
653 }
654
655 static bool mips_vp_is_wfi(MIPSCPU *c)
656 {
657 CPUState *cpu = CPU(c);
658 CPUMIPSState *env = &c->env;
659
660 return cpu->halted && mips_vp_active(env);
661 }
662
663 static inline void mips_vpe_wake(MIPSCPU *c)
664 {
665 /* Don't set ->halted = 0 directly, let it be done via cpu_has_work
666 because there might be other conditions that state that c should
667 be sleeping. */
668 cpu_interrupt(CPU(c), CPU_INTERRUPT_WAKE);
669 }
670
671 static inline void mips_vpe_sleep(MIPSCPU *cpu)
672 {
673 CPUState *cs = CPU(cpu);
674
675 /* The VPE was shut off, really go to bed.
676 Reset any old _WAKE requests. */
677 cs->halted = 1;
678 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
679 }
680
681 static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
682 {
683 CPUMIPSState *c = &cpu->env;
684
685 /* FIXME: TC reschedule. */
686 if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
687 mips_vpe_wake(cpu);
688 }
689 }
690
691 static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
692 {
693 CPUMIPSState *c = &cpu->env;
694
695 /* FIXME: TC reschedule. */
696 if (!mips_vpe_active(c)) {
697 mips_vpe_sleep(cpu);
698 }
699 }
700
701 /**
702 * mips_cpu_map_tc:
703 * @env: CPU from which mapping is performed.
704 * @tc: Should point to an int with the value of the global TC index.
705 *
706 * This function will transform @tc into a local index within the
707 * returned #CPUMIPSState.
708 */
709 /* FIXME: This code assumes that all VPEs have the same number of TCs,
710 which depends on runtime setup. Can probably be fixed by
711 walking the list of CPUMIPSStates. */
712 static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
713 {
714 MIPSCPU *cpu;
715 CPUState *cs;
716 CPUState *other_cs;
717 int vpe_idx;
718 int tc_idx = *tc;
719
720 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
721 /* Not allowed to address other CPUs. */
722 *tc = env->current_tc;
723 return env;
724 }
725
726 cs = CPU(mips_env_get_cpu(env));
727 vpe_idx = tc_idx / cs->nr_threads;
728 *tc = tc_idx % cs->nr_threads;
729 other_cs = qemu_get_cpu(vpe_idx);
730 if (other_cs == NULL) {
731 return env;
732 }
733 cpu = MIPS_CPU(other_cs);
734 return &cpu->env;
735 }
736
737 /* The per VPE CP0_Status register shares some fields with the per TC
738 CP0_TCStatus registers. These fields are wired to the same registers,
739 so changes to either of them should be reflected on both registers.
740
741 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
742
743 These helper call synchronizes the regs for a given cpu. */
744
745 /* Called for updates to CP0_Status. Defined in "cpu.h" for gdbstub.c. */
746 /* static inline void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu,
747 int tc); */
748
749 /* Called for updates to CP0_TCStatus. */
750 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
751 target_ulong v)
752 {
753 uint32_t status;
754 uint32_t tcu, tmx, tasid, tksu;
755 uint32_t mask = ((1U << CP0St_CU3)
756 | (1 << CP0St_CU2)
757 | (1 << CP0St_CU1)
758 | (1 << CP0St_CU0)
759 | (1 << CP0St_MX)
760 | (3 << CP0St_KSU));
761
762 tcu = (v >> CP0TCSt_TCU0) & 0xf;
763 tmx = (v >> CP0TCSt_TMX) & 0x1;
764 tasid = v & cpu->CP0_EntryHi_ASID_mask;
765 tksu = (v >> CP0TCSt_TKSU) & 0x3;
766
767 status = tcu << CP0St_CU0;
768 status |= tmx << CP0St_MX;
769 status |= tksu << CP0St_KSU;
770
771 cpu->CP0_Status &= ~mask;
772 cpu->CP0_Status |= status;
773
774 /* Sync the TASID with EntryHi. */
775 cpu->CP0_EntryHi &= ~cpu->CP0_EntryHi_ASID_mask;
776 cpu->CP0_EntryHi |= tasid;
777
778 compute_hflags(cpu);
779 }
780
781 /* Called for updates to CP0_EntryHi. */
782 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
783 {
784 int32_t *tcst;
785 uint32_t asid, v = cpu->CP0_EntryHi;
786
787 asid = v & cpu->CP0_EntryHi_ASID_mask;
788
789 if (tc == cpu->current_tc) {
790 tcst = &cpu->active_tc.CP0_TCStatus;
791 } else {
792 tcst = &cpu->tcs[tc].CP0_TCStatus;
793 }
794
795 *tcst &= ~cpu->CP0_EntryHi_ASID_mask;
796 *tcst |= asid;
797 }
798
799 /* CP0 helpers */
800 target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
801 {
802 return env->mvp->CP0_MVPControl;
803 }
804
805 target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
806 {
807 return env->mvp->CP0_MVPConf0;
808 }
809
810 target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
811 {
812 return env->mvp->CP0_MVPConf1;
813 }
814
815 target_ulong helper_mfc0_random(CPUMIPSState *env)
816 {
817 return (int32_t)cpu_mips_get_random(env);
818 }
819
820 target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
821 {
822 return env->active_tc.CP0_TCStatus;
823 }
824
825 target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
826 {
827 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
828 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
829
830 if (other_tc == other->current_tc)
831 return other->active_tc.CP0_TCStatus;
832 else
833 return other->tcs[other_tc].CP0_TCStatus;
834 }
835
836 target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
837 {
838 return env->active_tc.CP0_TCBind;
839 }
840
841 target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
842 {
843 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
844 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
845
846 if (other_tc == other->current_tc)
847 return other->active_tc.CP0_TCBind;
848 else
849 return other->tcs[other_tc].CP0_TCBind;
850 }
851
852 target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
853 {
854 return env->active_tc.PC;
855 }
856
857 target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
858 {
859 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
860 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
861
862 if (other_tc == other->current_tc)
863 return other->active_tc.PC;
864 else
865 return other->tcs[other_tc].PC;
866 }
867
868 target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
869 {
870 return env->active_tc.CP0_TCHalt;
871 }
872
873 target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
874 {
875 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
876 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
877
878 if (other_tc == other->current_tc)
879 return other->active_tc.CP0_TCHalt;
880 else
881 return other->tcs[other_tc].CP0_TCHalt;
882 }
883
884 target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
885 {
886 return env->active_tc.CP0_TCContext;
887 }
888
889 target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
890 {
891 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
892 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
893
894 if (other_tc == other->current_tc)
895 return other->active_tc.CP0_TCContext;
896 else
897 return other->tcs[other_tc].CP0_TCContext;
898 }
899
900 target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
901 {
902 return env->active_tc.CP0_TCSchedule;
903 }
904
905 target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
906 {
907 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
908 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
909
910 if (other_tc == other->current_tc)
911 return other->active_tc.CP0_TCSchedule;
912 else
913 return other->tcs[other_tc].CP0_TCSchedule;
914 }
915
916 target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
917 {
918 return env->active_tc.CP0_TCScheFBack;
919 }
920
921 target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
922 {
923 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
924 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
925
926 if (other_tc == other->current_tc)
927 return other->active_tc.CP0_TCScheFBack;
928 else
929 return other->tcs[other_tc].CP0_TCScheFBack;
930 }
931
932 target_ulong helper_mfc0_count(CPUMIPSState *env)
933 {
934 int32_t count;
935 qemu_mutex_lock_iothread();
936 count = (int32_t) cpu_mips_get_count(env);
937 qemu_mutex_unlock_iothread();
938 return count;
939 }
940
941 target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
942 {
943 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
944 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
945
946 return other->CP0_EntryHi;
947 }
948
949 target_ulong helper_mftc0_cause(CPUMIPSState *env)
950 {
951 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
952 int32_t tccause;
953 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
954
955 if (other_tc == other->current_tc) {
956 tccause = other->CP0_Cause;
957 } else {
958 tccause = other->CP0_Cause;
959 }
960
961 return tccause;
962 }
963
964 target_ulong helper_mftc0_status(CPUMIPSState *env)
965 {
966 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
967 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
968
969 return other->CP0_Status;
970 }
971
972 target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
973 {
974 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
975 }
976
977 target_ulong helper_mfc0_maar(CPUMIPSState *env)
978 {
979 return (int32_t) env->CP0_MAAR[env->CP0_MAARI];
980 }
981
982 target_ulong helper_mfhc0_maar(CPUMIPSState *env)
983 {
984 return env->CP0_MAAR[env->CP0_MAARI] >> 32;
985 }
986
987 target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
988 {
989 return (int32_t)env->CP0_WatchLo[sel];
990 }
991
992 target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
993 {
994 return env->CP0_WatchHi[sel];
995 }
996
997 target_ulong helper_mfc0_debug(CPUMIPSState *env)
998 {
999 target_ulong t0 = env->CP0_Debug;
1000 if (env->hflags & MIPS_HFLAG_DM)
1001 t0 |= 1 << CP0DB_DM;
1002
1003 return t0;
1004 }
1005
1006 target_ulong helper_mftc0_debug(CPUMIPSState *env)
1007 {
1008 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1009 int32_t tcstatus;
1010 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1011
1012 if (other_tc == other->current_tc)
1013 tcstatus = other->active_tc.CP0_Debug_tcstatus;
1014 else
1015 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
1016
1017 /* XXX: Might be wrong, check with EJTAG spec. */
1018 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1019 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1020 }
1021
1022 #if defined(TARGET_MIPS64)
1023 target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
1024 {
1025 return env->active_tc.PC;
1026 }
1027
1028 target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
1029 {
1030 return env->active_tc.CP0_TCHalt;
1031 }
1032
1033 target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
1034 {
1035 return env->active_tc.CP0_TCContext;
1036 }
1037
1038 target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
1039 {
1040 return env->active_tc.CP0_TCSchedule;
1041 }
1042
1043 target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
1044 {
1045 return env->active_tc.CP0_TCScheFBack;
1046 }
1047
1048 target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
1049 {
1050 return env->lladdr >> env->CP0_LLAddr_shift;
1051 }
1052
1053 target_ulong helper_dmfc0_maar(CPUMIPSState *env)
1054 {
1055 return env->CP0_MAAR[env->CP0_MAARI];
1056 }
1057
1058 target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
1059 {
1060 return env->CP0_WatchLo[sel];
1061 }
1062 #endif /* TARGET_MIPS64 */
1063
1064 void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
1065 {
1066 uint32_t index_p = env->CP0_Index & 0x80000000;
1067 uint32_t tlb_index = arg1 & 0x7fffffff;
1068 if (tlb_index < env->tlb->nb_tlb) {
1069 if (env->insn_flags & ISA_MIPS32R6) {
1070 index_p |= arg1 & 0x80000000;
1071 }
1072 env->CP0_Index = index_p | tlb_index;
1073 }
1074 }
1075
1076 void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
1077 {
1078 uint32_t mask = 0;
1079 uint32_t newval;
1080
1081 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
1082 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
1083 (1 << CP0MVPCo_EVP);
1084 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1085 mask |= (1 << CP0MVPCo_STLB);
1086 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
1087
1088 // TODO: Enable/disable shared TLB, enable/disable VPEs.
1089
1090 env->mvp->CP0_MVPControl = newval;
1091 }
1092
1093 void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
1094 {
1095 uint32_t mask;
1096 uint32_t newval;
1097
1098 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1099 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1100 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
1101
1102 /* Yield scheduler intercept not implemented. */
1103 /* Gating storage scheduler intercept not implemented. */
1104
1105 // TODO: Enable/disable TCs.
1106
1107 env->CP0_VPEControl = newval;
1108 }
1109
1110 void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
1111 {
1112 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1113 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1114 uint32_t mask;
1115 uint32_t newval;
1116
1117 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1118 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1119 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
1120
1121 /* TODO: Enable/disable TCs. */
1122
1123 other->CP0_VPEControl = newval;
1124 }
1125
1126 target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
1127 {
1128 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1129 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1130 /* FIXME: Mask away return zero on read bits. */
1131 return other->CP0_VPEControl;
1132 }
1133
1134 target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
1135 {
1136 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1137 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1138
1139 return other->CP0_VPEConf0;
1140 }
1141
1142 void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1143 {
1144 uint32_t mask = 0;
1145 uint32_t newval;
1146
1147 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1148 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1149 mask |= (0xff << CP0VPEC0_XTC);
1150 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1151 }
1152 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1153
1154 // TODO: TC exclusive handling due to ERL/EXL.
1155
1156 env->CP0_VPEConf0 = newval;
1157 }
1158
1159 void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1160 {
1161 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1162 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1163 uint32_t mask = 0;
1164 uint32_t newval;
1165
1166 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1167 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1168
1169 /* TODO: TC exclusive handling due to ERL/EXL. */
1170 other->CP0_VPEConf0 = newval;
1171 }
1172
1173 void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
1174 {
1175 uint32_t mask = 0;
1176 uint32_t newval;
1177
1178 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1179 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1180 (0xff << CP0VPEC1_NCP1);
1181 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1182
1183 /* UDI not implemented. */
1184 /* CP2 not implemented. */
1185
1186 // TODO: Handle FPU (CP1) binding.
1187
1188 env->CP0_VPEConf1 = newval;
1189 }
1190
1191 void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
1192 {
1193 /* Yield qualifier inputs not implemented. */
1194 env->CP0_YQMask = 0x00000000;
1195 }
1196
1197 void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
1198 {
1199 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1200 }
1201
1202 #define MTC0_ENTRYLO_MASK(env) ((env->PAMask >> 6) & 0x3FFFFFFF)
1203
1204 void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
1205 {
1206 /* 1k pages not implemented */
1207 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1208 env->CP0_EntryLo0 = (arg1 & MTC0_ENTRYLO_MASK(env))
1209 | (rxi << (CP0EnLo_XI - 30));
1210 }
1211
1212 #if defined(TARGET_MIPS64)
1213 #define DMTC0_ENTRYLO_MASK(env) (env->PAMask >> 6)
1214
1215 void helper_dmtc0_entrylo0(CPUMIPSState *env, uint64_t arg1)
1216 {
1217 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1218 env->CP0_EntryLo0 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1219 }
1220 #endif
1221
1222 void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1223 {
1224 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1225 uint32_t newval;
1226
1227 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1228
1229 env->active_tc.CP0_TCStatus = newval;
1230 sync_c0_tcstatus(env, env->current_tc, newval);
1231 }
1232
1233 void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1234 {
1235 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1236 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1237
1238 if (other_tc == other->current_tc)
1239 other->active_tc.CP0_TCStatus = arg1;
1240 else
1241 other->tcs[other_tc].CP0_TCStatus = arg1;
1242 sync_c0_tcstatus(other, other_tc, arg1);
1243 }
1244
1245 void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1246 {
1247 uint32_t mask = (1 << CP0TCBd_TBE);
1248 uint32_t newval;
1249
1250 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1251 mask |= (1 << CP0TCBd_CurVPE);
1252 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1253 env->active_tc.CP0_TCBind = newval;
1254 }
1255
1256 void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1257 {
1258 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1259 uint32_t mask = (1 << CP0TCBd_TBE);
1260 uint32_t newval;
1261 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1262
1263 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1264 mask |= (1 << CP0TCBd_CurVPE);
1265 if (other_tc == other->current_tc) {
1266 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1267 other->active_tc.CP0_TCBind = newval;
1268 } else {
1269 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1270 other->tcs[other_tc].CP0_TCBind = newval;
1271 }
1272 }
1273
1274 void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1275 {
1276 env->active_tc.PC = arg1;
1277 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1278 env->lladdr = 0ULL;
1279 /* MIPS16 not implemented. */
1280 }
1281
1282 void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1283 {
1284 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1285 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1286
1287 if (other_tc == other->current_tc) {
1288 other->active_tc.PC = arg1;
1289 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1290 other->lladdr = 0ULL;
1291 /* MIPS16 not implemented. */
1292 } else {
1293 other->tcs[other_tc].PC = arg1;
1294 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1295 other->lladdr = 0ULL;
1296 /* MIPS16 not implemented. */
1297 }
1298 }
1299
1300 void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1301 {
1302 MIPSCPU *cpu = mips_env_get_cpu(env);
1303
1304 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1305
1306 // TODO: Halt TC / Restart (if allocated+active) TC.
1307 if (env->active_tc.CP0_TCHalt & 1) {
1308 mips_tc_sleep(cpu, env->current_tc);
1309 } else {
1310 mips_tc_wake(cpu, env->current_tc);
1311 }
1312 }
1313
1314 void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1315 {
1316 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1317 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1318 MIPSCPU *other_cpu = mips_env_get_cpu(other);
1319
1320 // TODO: Halt TC / Restart (if allocated+active) TC.
1321
1322 if (other_tc == other->current_tc)
1323 other->active_tc.CP0_TCHalt = arg1;
1324 else
1325 other->tcs[other_tc].CP0_TCHalt = arg1;
1326
1327 if (arg1 & 1) {
1328 mips_tc_sleep(other_cpu, other_tc);
1329 } else {
1330 mips_tc_wake(other_cpu, other_tc);
1331 }
1332 }
1333
1334 void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1335 {
1336 env->active_tc.CP0_TCContext = arg1;
1337 }
1338
1339 void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1340 {
1341 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1342 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1343
1344 if (other_tc == other->current_tc)
1345 other->active_tc.CP0_TCContext = arg1;
1346 else
1347 other->tcs[other_tc].CP0_TCContext = arg1;
1348 }
1349
1350 void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1351 {
1352 env->active_tc.CP0_TCSchedule = arg1;
1353 }
1354
1355 void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1356 {
1357 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1358 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1359
1360 if (other_tc == other->current_tc)
1361 other->active_tc.CP0_TCSchedule = arg1;
1362 else
1363 other->tcs[other_tc].CP0_TCSchedule = arg1;
1364 }
1365
1366 void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1367 {
1368 env->active_tc.CP0_TCScheFBack = arg1;
1369 }
1370
1371 void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1372 {
1373 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1374 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1375
1376 if (other_tc == other->current_tc)
1377 other->active_tc.CP0_TCScheFBack = arg1;
1378 else
1379 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1380 }
1381
1382 void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
1383 {
1384 /* 1k pages not implemented */
1385 target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
1386 env->CP0_EntryLo1 = (arg1 & MTC0_ENTRYLO_MASK(env))
1387 | (rxi << (CP0EnLo_XI - 30));
1388 }
1389
1390 #if defined(TARGET_MIPS64)
1391 void helper_dmtc0_entrylo1(CPUMIPSState *env, uint64_t arg1)
1392 {
1393 uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
1394 env->CP0_EntryLo1 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
1395 }
1396 #endif
1397
1398 void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
1399 {
1400 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1401 }
1402
1403 void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
1404 {
1405 uint64_t mask = arg1 >> (TARGET_PAGE_BITS + 1);
1406 if (!(env->insn_flags & ISA_MIPS32R6) || (arg1 == ~0) ||
1407 (mask == 0x0000 || mask == 0x0003 || mask == 0x000F ||
1408 mask == 0x003F || mask == 0x00FF || mask == 0x03FF ||
1409 mask == 0x0FFF || mask == 0x3FFF || mask == 0xFFFF)) {
1410 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1411 }
1412 }
1413
1414 void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
1415 {
1416 /* SmartMIPS not implemented */
1417 /* 1k pages not implemented */
1418 env->CP0_PageGrain = (arg1 & env->CP0_PageGrain_rw_bitmask) |
1419 (env->CP0_PageGrain & ~env->CP0_PageGrain_rw_bitmask);
1420 compute_hflags(env);
1421 restore_pamask(env);
1422 }
1423
1424 void helper_mtc0_segctl0(CPUMIPSState *env, target_ulong arg1)
1425 {
1426 CPUState *cs = CPU(mips_env_get_cpu(env));
1427
1428 env->CP0_SegCtl0 = arg1 & CP0SC0_MASK;
1429 tlb_flush(cs);
1430 }
1431
1432 void helper_mtc0_segctl1(CPUMIPSState *env, target_ulong arg1)
1433 {
1434 CPUState *cs = CPU(mips_env_get_cpu(env));
1435
1436 env->CP0_SegCtl1 = arg1 & CP0SC1_MASK;
1437 tlb_flush(cs);
1438 }
1439
1440 void helper_mtc0_segctl2(CPUMIPSState *env, target_ulong arg1)
1441 {
1442 CPUState *cs = CPU(mips_env_get_cpu(env));
1443
1444 env->CP0_SegCtl2 = arg1 & CP0SC2_MASK;
1445 tlb_flush(cs);
1446 }
1447
1448 void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
1449 {
1450 if (env->insn_flags & ISA_MIPS32R6) {
1451 if (arg1 < env->tlb->nb_tlb) {
1452 env->CP0_Wired = arg1;
1453 }
1454 } else {
1455 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1456 }
1457 }
1458
1459 void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
1460 {
1461 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1462 }
1463
1464 void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
1465 {
1466 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1467 }
1468
1469 void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
1470 {
1471 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1472 }
1473
1474 void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
1475 {
1476 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1477 }
1478
1479 void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
1480 {
1481 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1482 }
1483
1484 void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
1485 {
1486 uint32_t mask = 0x0000000F;
1487
1488 if ((env->CP0_Config1 & (1 << CP0C1_PC)) &&
1489 (env->insn_flags & ISA_MIPS32R6)) {
1490 mask |= (1 << 4);
1491 }
1492 if (env->insn_flags & ISA_MIPS32R6) {
1493 mask |= (1 << 5);
1494 }
1495 if (env->CP0_Config3 & (1 << CP0C3_ULRI)) {
1496 mask |= (1 << 29);
1497
1498 if (arg1 & (1 << 29)) {
1499 env->hflags |= MIPS_HFLAG_HWRENA_ULR;
1500 } else {
1501 env->hflags &= ~MIPS_HFLAG_HWRENA_ULR;
1502 }
1503 }
1504
1505 env->CP0_HWREna = arg1 & mask;
1506 }
1507
1508 void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
1509 {
1510 qemu_mutex_lock_iothread();
1511 cpu_mips_store_count(env, arg1);
1512 qemu_mutex_unlock_iothread();
1513 }
1514
1515 void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1516 {
1517 target_ulong old, val, mask;
1518 mask = (TARGET_PAGE_MASK << 1) | env->CP0_EntryHi_ASID_mask;
1519 if (((env->CP0_Config4 >> CP0C4_IE) & 0x3) >= 2) {
1520 mask |= 1 << CP0EnHi_EHINV;
1521 }
1522
1523 /* 1k pages not implemented */
1524 #if defined(TARGET_MIPS64)
1525 if (env->insn_flags & ISA_MIPS32R6) {
1526 int entryhi_r = extract64(arg1, 62, 2);
1527 int config0_at = extract32(env->CP0_Config0, 13, 2);
1528 bool no_supervisor = (env->CP0_Status_rw_bitmask & 0x8) == 0;
1529 if ((entryhi_r == 2) ||
1530 (entryhi_r == 1 && (no_supervisor || config0_at == 1))) {
1531 /* skip EntryHi.R field if new value is reserved */
1532 mask &= ~(0x3ull << 62);
1533 }
1534 }
1535 mask &= env->SEGMask;
1536 #endif
1537 old = env->CP0_EntryHi;
1538 val = (arg1 & mask) | (old & ~mask);
1539 env->CP0_EntryHi = val;
1540 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1541 sync_c0_entryhi(env, env->current_tc);
1542 }
1543 /* If the ASID changes, flush qemu's TLB. */
1544 if ((old & env->CP0_EntryHi_ASID_mask) !=
1545 (val & env->CP0_EntryHi_ASID_mask)) {
1546 tlb_flush(CPU(mips_env_get_cpu(env)));
1547 }
1548 }
1549
1550 void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1551 {
1552 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1553 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1554
1555 other->CP0_EntryHi = arg1;
1556 sync_c0_entryhi(other, other_tc);
1557 }
1558
1559 void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
1560 {
1561 qemu_mutex_lock_iothread();
1562 cpu_mips_store_compare(env, arg1);
1563 qemu_mutex_unlock_iothread();
1564 }
1565
1566 void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
1567 {
1568 MIPSCPU *cpu = mips_env_get_cpu(env);
1569 uint32_t val, old;
1570
1571 old = env->CP0_Status;
1572 cpu_mips_store_status(env, arg1);
1573 val = env->CP0_Status;
1574
1575 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1576 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1577 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1578 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1579 env->CP0_Cause);
1580 switch (cpu_mmu_index(env, false)) {
1581 case 3:
1582 qemu_log(", ERL\n");
1583 break;
1584 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1585 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1586 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1587 default:
1588 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
1589 break;
1590 }
1591 }
1592 }
1593
1594 void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
1595 {
1596 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1597 uint32_t mask = env->CP0_Status_rw_bitmask & ~0xf1000018;
1598 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1599
1600 other->CP0_Status = (other->CP0_Status & ~mask) | (arg1 & mask);
1601 sync_c0_status(env, other, other_tc);
1602 }
1603
1604 void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
1605 {
1606 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1607 }
1608
1609 void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
1610 {
1611 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1612 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1613 }
1614
1615 void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
1616 {
1617 qemu_mutex_lock_iothread();
1618 cpu_mips_store_cause(env, arg1);
1619 qemu_mutex_unlock_iothread();
1620 }
1621
1622 void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
1623 {
1624 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1625 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1626
1627 cpu_mips_store_cause(other, arg1);
1628 }
1629
1630 target_ulong helper_mftc0_epc(CPUMIPSState *env)
1631 {
1632 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1633 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1634
1635 return other->CP0_EPC;
1636 }
1637
1638 target_ulong helper_mftc0_ebase(CPUMIPSState *env)
1639 {
1640 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1641 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1642
1643 return other->CP0_EBase;
1644 }
1645
1646 void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
1647 {
1648 target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask;
1649 if (arg1 & env->CP0_EBaseWG_rw_bitmask) {
1650 mask |= ~0x3FFFFFFF;
1651 }
1652 env->CP0_EBase = (env->CP0_EBase & ~mask) | (arg1 & mask);
1653 }
1654
1655 void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
1656 {
1657 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1658 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1659 target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask;
1660 if (arg1 & env->CP0_EBaseWG_rw_bitmask) {
1661 mask |= ~0x3FFFFFFF;
1662 }
1663 other->CP0_EBase = (other->CP0_EBase & ~mask) | (arg1 & mask);
1664 }
1665
1666 target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
1667 {
1668 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1669 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1670
1671 switch (idx) {
1672 case 0: return other->CP0_Config0;
1673 case 1: return other->CP0_Config1;
1674 case 2: return other->CP0_Config2;
1675 case 3: return other->CP0_Config3;
1676 /* 4 and 5 are reserved. */
1677 case 6: return other->CP0_Config6;
1678 case 7: return other->CP0_Config7;
1679 default:
1680 break;
1681 }
1682 return 0;
1683 }
1684
1685 void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
1686 {
1687 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1688 }
1689
1690 void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
1691 {
1692 /* tertiary/secondary caches not implemented */
1693 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1694 }
1695
1696 void helper_mtc0_config3(CPUMIPSState *env, target_ulong arg1)
1697 {
1698 if (env->insn_flags & ASE_MICROMIPS) {
1699 env->CP0_Config3 = (env->CP0_Config3 & ~(1 << CP0C3_ISA_ON_EXC)) |
1700 (arg1 & (1 << CP0C3_ISA_ON_EXC));
1701 }
1702 }
1703
1704 void helper_mtc0_config4(CPUMIPSState *env, target_ulong arg1)
1705 {
1706 env->CP0_Config4 = (env->CP0_Config4 & (~env->CP0_Config4_rw_bitmask)) |
1707 (arg1 & env->CP0_Config4_rw_bitmask);
1708 }
1709
1710 void helper_mtc0_config5(CPUMIPSState *env, target_ulong arg1)
1711 {
1712 env->CP0_Config5 = (env->CP0_Config5 & (~env->CP0_Config5_rw_bitmask)) |
1713 (arg1 & env->CP0_Config5_rw_bitmask);
1714 compute_hflags(env);
1715 }
1716
1717 void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
1718 {
1719 target_long mask = env->CP0_LLAddr_rw_bitmask;
1720 arg1 = arg1 << env->CP0_LLAddr_shift;
1721 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1722 }
1723
1724 #define MTC0_MAAR_MASK(env) \
1725 ((0x1ULL << 63) | ((env->PAMask >> 4) & ~0xFFFull) | 0x3)
1726
1727 void helper_mtc0_maar(CPUMIPSState *env, target_ulong arg1)
1728 {
1729 env->CP0_MAAR[env->CP0_MAARI] = arg1 & MTC0_MAAR_MASK(env);
1730 }
1731
1732 void helper_mthc0_maar(CPUMIPSState *env, target_ulong arg1)
1733 {
1734 env->CP0_MAAR[env->CP0_MAARI] =
1735 (((uint64_t) arg1 << 32) & MTC0_MAAR_MASK(env)) |
1736 (env->CP0_MAAR[env->CP0_MAARI] & 0x00000000ffffffffULL);
1737 }
1738
1739 void helper_mtc0_maari(CPUMIPSState *env, target_ulong arg1)
1740 {
1741 int index = arg1 & 0x3f;
1742 if (index == 0x3f) {
1743 /* Software may write all ones to INDEX to determine the
1744 maximum value supported. */
1745 env->CP0_MAARI = MIPS_MAAR_MAX - 1;
1746 } else if (index < MIPS_MAAR_MAX) {
1747 env->CP0_MAARI = index;
1748 }
1749 /* Other than the all ones, if the
1750 value written is not supported, then INDEX is unchanged
1751 from its previous value. */
1752 }
1753
1754 void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1755 {
1756 /* Watch exceptions for instructions, data loads, data stores
1757 not implemented. */
1758 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1759 }
1760
1761 void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1762 {
1763 int mask = 0x40000FF8 | (env->CP0_EntryHi_ASID_mask << CP0WH_ASID);
1764 env->CP0_WatchHi[sel] = arg1 & mask;
1765 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1766 }
1767
1768 void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
1769 {
1770 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1771 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1772 }
1773
1774 void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
1775 {
1776 env->CP0_Framemask = arg1; /* XXX */
1777 }
1778
1779 void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
1780 {
1781 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1782 if (arg1 & (1 << CP0DB_DM))
1783 env->hflags |= MIPS_HFLAG_DM;
1784 else
1785 env->hflags &= ~MIPS_HFLAG_DM;
1786 }
1787
1788 void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
1789 {
1790 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1791 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1792 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1793
1794 /* XXX: Might be wrong, check with EJTAG spec. */
1795 if (other_tc == other->current_tc)
1796 other->active_tc.CP0_Debug_tcstatus = val;
1797 else
1798 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1799 other->CP0_Debug = (other->CP0_Debug &
1800 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1801 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1802 }
1803
1804 void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
1805 {
1806 env->CP0_Performance0 = arg1 & 0x000007ff;
1807 }
1808
1809 void helper_mtc0_errctl(CPUMIPSState *env, target_ulong arg1)
1810 {
1811 int32_t wst = arg1 & (1 << CP0EC_WST);
1812 int32_t spr = arg1 & (1 << CP0EC_SPR);
1813 int32_t itc = env->itc_tag ? (arg1 & (1 << CP0EC_ITC)) : 0;
1814
1815 env->CP0_ErrCtl = wst | spr | itc;
1816
1817 if (itc && !wst && !spr) {
1818 env->hflags |= MIPS_HFLAG_ITC_CACHE;
1819 } else {
1820 env->hflags &= ~MIPS_HFLAG_ITC_CACHE;
1821 }
1822 }
1823
1824 void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
1825 {
1826 if (env->hflags & MIPS_HFLAG_ITC_CACHE) {
1827 /* If CACHE instruction is configured for ITC tags then make all
1828 CP0.TagLo bits writable. The actual write to ITC Configuration
1829 Tag will take care of the read-only bits. */
1830 env->CP0_TagLo = arg1;
1831 } else {
1832 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1833 }
1834 }
1835
1836 void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
1837 {
1838 env->CP0_DataLo = arg1; /* XXX */
1839 }
1840
1841 void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
1842 {
1843 env->CP0_TagHi = arg1; /* XXX */
1844 }
1845
1846 void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
1847 {
1848 env->CP0_DataHi = arg1; /* XXX */
1849 }
1850
1851 /* MIPS MT functions */
1852 target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
1853 {
1854 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1855 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1856
1857 if (other_tc == other->current_tc)
1858 return other->active_tc.gpr[sel];
1859 else
1860 return other->tcs[other_tc].gpr[sel];
1861 }
1862
1863 target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
1864 {
1865 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1866 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1867
1868 if (other_tc == other->current_tc)
1869 return other->active_tc.LO[sel];
1870 else
1871 return other->tcs[other_tc].LO[sel];
1872 }
1873
1874 target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
1875 {
1876 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1877 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1878
1879 if (other_tc == other->current_tc)
1880 return other->active_tc.HI[sel];
1881 else
1882 return other->tcs[other_tc].HI[sel];
1883 }
1884
1885 target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
1886 {
1887 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1888 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1889
1890 if (other_tc == other->current_tc)
1891 return other->active_tc.ACX[sel];
1892 else
1893 return other->tcs[other_tc].ACX[sel];
1894 }
1895
1896 target_ulong helper_mftdsp(CPUMIPSState *env)
1897 {
1898 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1899 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1900
1901 if (other_tc == other->current_tc)
1902 return other->active_tc.DSPControl;
1903 else
1904 return other->tcs[other_tc].DSPControl;
1905 }
1906
1907 void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1908 {
1909 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1910 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1911
1912 if (other_tc == other->current_tc)
1913 other->active_tc.gpr[sel] = arg1;
1914 else
1915 other->tcs[other_tc].gpr[sel] = arg1;
1916 }
1917
1918 void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1919 {
1920 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1921 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1922
1923 if (other_tc == other->current_tc)
1924 other->active_tc.LO[sel] = arg1;
1925 else
1926 other->tcs[other_tc].LO[sel] = arg1;
1927 }
1928
1929 void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1930 {
1931 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1932 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1933
1934 if (other_tc == other->current_tc)
1935 other->active_tc.HI[sel] = arg1;
1936 else
1937 other->tcs[other_tc].HI[sel] = arg1;
1938 }
1939
1940 void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1941 {
1942 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1943 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1944
1945 if (other_tc == other->current_tc)
1946 other->active_tc.ACX[sel] = arg1;
1947 else
1948 other->tcs[other_tc].ACX[sel] = arg1;
1949 }
1950
1951 void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
1952 {
1953 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1954 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1955
1956 if (other_tc == other->current_tc)
1957 other->active_tc.DSPControl = arg1;
1958 else
1959 other->tcs[other_tc].DSPControl = arg1;
1960 }
1961
1962 /* MIPS MT functions */
1963 target_ulong helper_dmt(void)
1964 {
1965 // TODO
1966 return 0;
1967 }
1968
1969 target_ulong helper_emt(void)
1970 {
1971 // TODO
1972 return 0;
1973 }
1974
1975 target_ulong helper_dvpe(CPUMIPSState *env)
1976 {
1977 CPUState *other_cs = first_cpu;
1978 target_ulong prev = env->mvp->CP0_MVPControl;
1979
1980 CPU_FOREACH(other_cs) {
1981 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1982 /* Turn off all VPEs except the one executing the dvpe. */
1983 if (&other_cpu->env != env) {
1984 other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
1985 mips_vpe_sleep(other_cpu);
1986 }
1987 }
1988 return prev;
1989 }
1990
1991 target_ulong helper_evpe(CPUMIPSState *env)
1992 {
1993 CPUState *other_cs = first_cpu;
1994 target_ulong prev = env->mvp->CP0_MVPControl;
1995
1996 CPU_FOREACH(other_cs) {
1997 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1998
1999 if (&other_cpu->env != env
2000 /* If the VPE is WFI, don't disturb its sleep. */
2001 && !mips_vpe_is_wfi(other_cpu)) {
2002 /* Enable the VPE. */
2003 other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
2004 mips_vpe_wake(other_cpu); /* And wake it up. */
2005 }
2006 }
2007 return prev;
2008 }
2009 #endif /* !CONFIG_USER_ONLY */
2010
2011 void helper_fork(target_ulong arg1, target_ulong arg2)
2012 {
2013 // arg1 = rt, arg2 = rs
2014 // TODO: store to TC register
2015 }
2016
2017 target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
2018 {
2019 target_long arg1 = arg;
2020
2021 if (arg1 < 0) {
2022 /* No scheduling policy implemented. */
2023 if (arg1 != -2) {
2024 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
2025 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
2026 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
2027 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
2028 do_raise_exception(env, EXCP_THREAD, GETPC());
2029 }
2030 }
2031 } else if (arg1 == 0) {
2032 if (0 /* TODO: TC underflow */) {
2033 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
2034 do_raise_exception(env, EXCP_THREAD, GETPC());
2035 } else {
2036 // TODO: Deallocate TC
2037 }
2038 } else if (arg1 > 0) {
2039 /* Yield qualifier inputs not implemented. */
2040 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
2041 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
2042 do_raise_exception(env, EXCP_THREAD, GETPC());
2043 }
2044 return env->CP0_YQMask;
2045 }
2046
2047 /* R6 Multi-threading */
2048 #ifndef CONFIG_USER_ONLY
2049 target_ulong helper_dvp(CPUMIPSState *env)
2050 {
2051 CPUState *other_cs = first_cpu;
2052 target_ulong prev = env->CP0_VPControl;
2053
2054 if (!((env->CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
2055 CPU_FOREACH(other_cs) {
2056 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
2057 /* Turn off all VPs except the one executing the dvp. */
2058 if (&other_cpu->env != env) {
2059 mips_vpe_sleep(other_cpu);
2060 }
2061 }
2062 env->CP0_VPControl |= (1 << CP0VPCtl_DIS);
2063 }
2064 return prev;
2065 }
2066
2067 target_ulong helper_evp(CPUMIPSState *env)
2068 {
2069 CPUState *other_cs = first_cpu;
2070 target_ulong prev = env->CP0_VPControl;
2071
2072 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
2073 CPU_FOREACH(other_cs) {
2074 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
2075 if ((&other_cpu->env != env) && !mips_vp_is_wfi(other_cpu)) {
2076 /* If the VP is WFI, don't disturb its sleep.
2077 * Otherwise, wake it up. */
2078 mips_vpe_wake(other_cpu);
2079 }
2080 }
2081 env->CP0_VPControl &= ~(1 << CP0VPCtl_DIS);
2082 }
2083 return prev;
2084 }
2085 #endif /* !CONFIG_USER_ONLY */
2086
2087 #ifndef CONFIG_USER_ONLY
2088 /* TLB management */
2089 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
2090 {
2091 /* Discard entries from env->tlb[first] onwards. */
2092 while (env->tlb->tlb_in_use > first) {
2093 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
2094 }
2095 }
2096
2097 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
2098 {
2099 #if defined(TARGET_MIPS64)
2100 return extract64(entrylo, 6, 54);
2101 #else
2102 return extract64(entrylo, 6, 24) | /* PFN */
2103 (extract64(entrylo, 32, 32) << 24); /* PFNX */
2104 #endif
2105 }
2106
2107 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
2108 {
2109 r4k_tlb_t *tlb;
2110 uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
2111
2112 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
2113 tlb = &env->tlb->mmu.r4k.tlb[idx];
2114 if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
2115 tlb->EHINV = 1;
2116 return;
2117 }
2118 tlb->EHINV = 0;
2119 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
2120 #if defined(TARGET_MIPS64)
2121 tlb->VPN &= env->SEGMask;
2122 #endif
2123 tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2124 tlb->PageMask = env->CP0_PageMask;
2125 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
2126 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
2127 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
2128 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
2129 tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
2130 tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
2131 tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
2132 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
2133 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
2134 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
2135 tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
2136 tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
2137 tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
2138 }
2139
2140 void r4k_helper_tlbinv(CPUMIPSState *env)
2141 {
2142 int idx;
2143 r4k_tlb_t *tlb;
2144 uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2145
2146 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2147 tlb = &env->tlb->mmu.r4k.tlb[idx];
2148 if (!tlb->G && tlb->ASID == ASID) {
2149 tlb->EHINV = 1;
2150 }
2151 }
2152 cpu_mips_tlb_flush(env);
2153 }
2154
2155 void r4k_helper_tlbinvf(CPUMIPSState *env)
2156 {
2157 int idx;
2158
2159 for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
2160 env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
2161 }
2162 cpu_mips_tlb_flush(env);
2163 }
2164
2165 void r4k_helper_tlbwi(CPUMIPSState *env)
2166 {
2167 r4k_tlb_t *tlb;
2168 int idx;
2169 target_ulong VPN;
2170 uint16_t ASID;
2171 bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
2172
2173 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2174 tlb = &env->tlb->mmu.r4k.tlb[idx];
2175 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
2176 #if defined(TARGET_MIPS64)
2177 VPN &= env->SEGMask;
2178 #endif
2179 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2180 EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
2181 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
2182 V0 = (env->CP0_EntryLo0 & 2) != 0;
2183 D0 = (env->CP0_EntryLo0 & 4) != 0;
2184 XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
2185 RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
2186 V1 = (env->CP0_EntryLo1 & 2) != 0;
2187 D1 = (env->CP0_EntryLo1 & 4) != 0;
2188 XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
2189 RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
2190
2191 /* Discard cached TLB entries, unless tlbwi is just upgrading access
2192 permissions on the current entry. */
2193 if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
2194 (!tlb->EHINV && EHINV) ||
2195 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
2196 (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
2197 (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
2198 (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
2199 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2200 }
2201
2202 r4k_invalidate_tlb(env, idx, 0);
2203 r4k_fill_tlb(env, idx);
2204 }
2205
2206 void r4k_helper_tlbwr(CPUMIPSState *env)
2207 {
2208 int r = cpu_mips_get_random(env);
2209
2210 r4k_invalidate_tlb(env, r, 1);
2211 r4k_fill_tlb(env, r);
2212 }
2213
2214 void r4k_helper_tlbp(CPUMIPSState *env)
2215 {
2216 r4k_tlb_t *tlb;
2217 target_ulong mask;
2218 target_ulong tag;
2219 target_ulong VPN;
2220 uint16_t ASID;
2221 int i;
2222
2223 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2224 for (i = 0; i < env->tlb->nb_tlb; i++) {
2225 tlb = &env->tlb->mmu.r4k.tlb[i];
2226 /* 1k pages are not supported. */
2227 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2228 tag = env->CP0_EntryHi & ~mask;
2229 VPN = tlb->VPN & ~mask;
2230 #if defined(TARGET_MIPS64)
2231 tag &= env->SEGMask;
2232 #endif
2233 /* Check ASID, virtual page number & size */
2234 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
2235 /* TLB match */
2236 env->CP0_Index = i;
2237 break;
2238 }
2239 }
2240 if (i == env->tlb->nb_tlb) {
2241 /* No match. Discard any shadow entries, if any of them match. */
2242 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
2243 tlb = &env->tlb->mmu.r4k.tlb[i];
2244 /* 1k pages are not supported. */
2245 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2246 tag = env->CP0_EntryHi & ~mask;
2247 VPN = tlb->VPN & ~mask;
2248 #if defined(TARGET_MIPS64)
2249 tag &= env->SEGMask;
2250 #endif
2251 /* Check ASID, virtual page number & size */
2252 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
2253 r4k_mips_tlb_flush_extra (env, i);
2254 break;
2255 }
2256 }
2257
2258 env->CP0_Index |= 0x80000000;
2259 }
2260 }
2261
2262 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
2263 {
2264 #if defined(TARGET_MIPS64)
2265 return tlb_pfn << 6;
2266 #else
2267 return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
2268 (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
2269 #endif
2270 }
2271
2272 void r4k_helper_tlbr(CPUMIPSState *env)
2273 {
2274 r4k_tlb_t *tlb;
2275 uint16_t ASID;
2276 int idx;
2277
2278 ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
2279 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2280 tlb = &env->tlb->mmu.r4k.tlb[idx];
2281
2282 /* If this will change the current ASID, flush qemu's TLB. */
2283 if (ASID != tlb->ASID)
2284 cpu_mips_tlb_flush(env);
2285
2286 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2287
2288 if (tlb->EHINV) {
2289 env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
2290 env->CP0_PageMask = 0;
2291 env->CP0_EntryLo0 = 0;
2292 env->CP0_EntryLo1 = 0;
2293 } else {
2294 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
2295 env->CP0_PageMask = tlb->PageMask;
2296 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
2297 ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
2298 ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
2299 get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
2300 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
2301 ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
2302 ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
2303 get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
2304 }
2305 }
2306
2307 void helper_tlbwi(CPUMIPSState *env)
2308 {
2309 env->tlb->helper_tlbwi(env);
2310 }
2311
2312 void helper_tlbwr(CPUMIPSState *env)
2313 {
2314 env->tlb->helper_tlbwr(env);
2315 }
2316
2317 void helper_tlbp(CPUMIPSState *env)
2318 {
2319 env->tlb->helper_tlbp(env);
2320 }
2321
2322 void helper_tlbr(CPUMIPSState *env)
2323 {
2324 env->tlb->helper_tlbr(env);
2325 }
2326
2327 void helper_tlbinv(CPUMIPSState *env)
2328 {
2329 env->tlb->helper_tlbinv(env);
2330 }
2331
2332 void helper_tlbinvf(CPUMIPSState *env)
2333 {
2334 env->tlb->helper_tlbinvf(env);
2335 }
2336
2337 /* Specials */
2338 target_ulong helper_di(CPUMIPSState *env)
2339 {
2340 target_ulong t0 = env->CP0_Status;
2341
2342 env->CP0_Status = t0 & ~(1 << CP0St_IE);
2343 return t0;
2344 }
2345
2346 target_ulong helper_ei(CPUMIPSState *env)
2347 {
2348 target_ulong t0 = env->CP0_Status;
2349
2350 env->CP0_Status = t0 | (1 << CP0St_IE);
2351 return t0;
2352 }
2353
2354 static void debug_pre_eret(CPUMIPSState *env)
2355 {
2356 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2357 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2358 env->active_tc.PC, env->CP0_EPC);
2359 if (env->CP0_Status & (1 << CP0St_ERL))
2360 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2361 if (env->hflags & MIPS_HFLAG_DM)
2362 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2363 qemu_log("\n");
2364 }
2365 }
2366
2367 static void debug_post_eret(CPUMIPSState *env)
2368 {
2369 MIPSCPU *cpu = mips_env_get_cpu(env);
2370
2371 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2372 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2373 env->active_tc.PC, env->CP0_EPC);
2374 if (env->CP0_Status & (1 << CP0St_ERL))
2375 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2376 if (env->hflags & MIPS_HFLAG_DM)
2377 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2378 switch (cpu_mmu_index(env, false)) {
2379 case 3:
2380 qemu_log(", ERL\n");
2381 break;
2382 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
2383 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
2384 case MIPS_HFLAG_KM: qemu_log("\n"); break;
2385 default:
2386 cpu_abort(CPU(cpu), "Invalid MMU mode!\n");
2387 break;
2388 }
2389 }
2390 }
2391
2392 static void set_pc(CPUMIPSState *env, target_ulong error_pc)
2393 {
2394 env->active_tc.PC = error_pc & ~(target_ulong)1;
2395 if (error_pc & 1) {
2396 env->hflags |= MIPS_HFLAG_M16;
2397 } else {
2398 env->hflags &= ~(MIPS_HFLAG_M16);
2399 }
2400 }
2401
2402 static inline void exception_return(CPUMIPSState *env)
2403 {
2404 debug_pre_eret(env);
2405 if (env->CP0_Status & (1 << CP0St_ERL)) {
2406 set_pc(env, env->CP0_ErrorEPC);
2407 env->CP0_Status &= ~(1 << CP0St_ERL);
2408 } else {
2409 set_pc(env, env->CP0_EPC);
2410 env->CP0_Status &= ~(1 << CP0St_EXL);
2411 }
2412 compute_hflags(env);
2413 debug_post_eret(env);
2414 }
2415
2416 void helper_eret(CPUMIPSState *env)
2417 {
2418 exception_return(env);
2419 env->lladdr = 1;
2420 }
2421
2422 void helper_eretnc(CPUMIPSState *env)
2423 {
2424 exception_return(env);
2425 }
2426
2427 void helper_deret(CPUMIPSState *env)
2428 {
2429 debug_pre_eret(env);
2430 set_pc(env, env->CP0_DEPC);
2431
2432 env->hflags &= ~MIPS_HFLAG_DM;
2433 compute_hflags(env);
2434 debug_post_eret(env);
2435 }
2436 #endif /* !CONFIG_USER_ONLY */
2437
2438 static inline void check_hwrena(CPUMIPSState *env, int reg, uintptr_t pc)
2439 {
2440 if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << reg))) {
2441 return;
2442 }
2443 do_raise_exception(env, EXCP_RI, pc);
2444 }
2445
2446 target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
2447 {
2448 check_hwrena(env, 0, GETPC());
2449 return env->CP0_EBase & 0x3ff;
2450 }
2451
2452 target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
2453 {
2454 check_hwrena(env, 1, GETPC());
2455 return env->SYNCI_Step;
2456 }
2457
2458 target_ulong helper_rdhwr_cc(CPUMIPSState *env)
2459 {
2460 int32_t count;
2461 check_hwrena(env, 2, GETPC());
2462 #ifdef CONFIG_USER_ONLY
2463 count = env->CP0_Count;
2464 #else
2465 qemu_mutex_lock_iothread();
2466 count = (int32_t)cpu_mips_get_count(env);
2467 qemu_mutex_unlock_iothread();
2468 #endif
2469 return count;
2470 }
2471
2472 target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
2473 {
2474 check_hwrena(env, 3, GETPC());
2475 return env->CCRes;
2476 }
2477
2478 target_ulong helper_rdhwr_performance(CPUMIPSState *env)
2479 {
2480 check_hwrena(env, 4, GETPC());
2481 return env->CP0_Performance0;
2482 }
2483
2484 target_ulong helper_rdhwr_xnp(CPUMIPSState *env)
2485 {
2486 check_hwrena(env, 5, GETPC());
2487 return (env->CP0_Config5 >> CP0C5_XNP) & 1;
2488 }
2489
2490 void helper_pmon(CPUMIPSState *env, int function)
2491 {
2492 function /= 2;
2493 switch (function) {
2494 case 2: /* TODO: char inbyte(int waitflag); */
2495 if (env->active_tc.gpr[4] == 0)
2496 env->active_tc.gpr[2] = -1;
2497 /* Fall through */
2498 case 11: /* TODO: char inbyte (void); */
2499 env->active_tc.gpr[2] = -1;
2500 break;
2501 case 3:
2502 case 12:
2503 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2504 break;
2505 case 17:
2506 break;
2507 case 158:
2508 {
2509 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2510 printf("%s", fmt);
2511 }
2512 break;
2513 }
2514 }
2515
2516 void helper_wait(CPUMIPSState *env)
2517 {
2518 CPUState *cs = CPU(mips_env_get_cpu(env));
2519
2520 cs->halted = 1;
2521 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
2522 /* Last instruction in the block, PC was updated before
2523 - no need to recover PC and icount */
2524 raise_exception(env, EXCP_HLT);
2525 }
2526
2527 #if !defined(CONFIG_USER_ONLY)
2528
2529 void mips_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
2530 MMUAccessType access_type,
2531 int mmu_idx, uintptr_t retaddr)
2532 {
2533 MIPSCPU *cpu = MIPS_CPU(cs);
2534 CPUMIPSState *env = &cpu->env;
2535 int error_code = 0;
2536 int excp;
2537
2538 if (!(env->hflags & MIPS_HFLAG_DM)) {
2539 env->CP0_BadVAddr = addr;
2540 }
2541
2542 if (access_type == MMU_DATA_STORE) {
2543 excp = EXCP_AdES;
2544 } else {
2545 excp = EXCP_AdEL;
2546 if (access_type == MMU_INST_FETCH) {
2547 error_code |= EXCP_INST_NOTAVAIL;
2548 }
2549 }
2550
2551 do_raise_exception_err(env, excp, error_code, retaddr);
2552 }
2553
2554 void tlb_fill(CPUState *cs, target_ulong addr, int size,
2555 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
2556 {
2557 int ret;
2558
2559 ret = mips_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
2560 if (ret) {
2561 MIPSCPU *cpu = MIPS_CPU(cs);
2562 CPUMIPSState *env = &cpu->env;
2563
2564 do_raise_exception_err(env, cs->exception_index,
2565 env->error_code, retaddr);
2566 }
2567 }
2568
2569 void mips_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2570 bool is_write, bool is_exec, int unused,
2571 unsigned size)
2572 {
2573 MIPSCPU *cpu = MIPS_CPU(cs);
2574 CPUMIPSState *env = &cpu->env;
2575
2576 /*
2577 * Raising an exception with KVM enabled will crash because it won't be from
2578 * the main execution loop so the longjmp won't have a matching setjmp.
2579 * Until we can trigger a bus error exception through KVM lets just ignore
2580 * the access.
2581 */
2582 if (kvm_enabled()) {
2583 return;
2584 }
2585
2586 if (is_exec) {
2587 raise_exception(env, EXCP_IBE);
2588 } else {
2589 raise_exception(env, EXCP_DBE);
2590 }
2591 }
2592 #endif /* !CONFIG_USER_ONLY */
2593
2594 /* Complex FPU operations which may need stack space. */
2595
2596 #define FLOAT_TWO32 make_float32(1 << 30)
2597 #define FLOAT_TWO64 make_float64(1ULL << 62)
2598
2599 #define FP_TO_INT32_OVERFLOW 0x7fffffff
2600 #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
2601
2602 /* convert MIPS rounding mode in FCR31 to IEEE library */
2603 unsigned int ieee_rm[] = {
2604 float_round_nearest_even,
2605 float_round_to_zero,
2606 float_round_up,
2607 float_round_down
2608 };
2609
2610 target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
2611 {
2612 target_ulong arg1 = 0;
2613
2614 switch (reg) {
2615 case 0:
2616 arg1 = (int32_t)env->active_fpu.fcr0;
2617 break;
2618 case 1:
2619 /* UFR Support - Read Status FR */
2620 if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) {
2621 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2622 arg1 = (int32_t)
2623 ((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR);
2624 } else {
2625 do_raise_exception(env, EXCP_RI, GETPC());
2626 }
2627 }
2628 break;
2629 case 5:
2630 /* FRE Support - read Config5.FRE bit */
2631 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
2632 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2633 arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1;
2634 } else {
2635 helper_raise_exception(env, EXCP_RI);
2636 }
2637 }
2638 break;
2639 case 25:
2640 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2641 break;
2642 case 26:
2643 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2644 break;
2645 case 28:
2646 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2647 break;
2648 default:
2649 arg1 = (int32_t)env->active_fpu.fcr31;
2650 break;
2651 }
2652
2653 return arg1;
2654 }
2655
2656 void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt)
2657 {
2658 switch (fs) {
2659 case 1:
2660 /* UFR Alias - Reset Status FR */
2661 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2662 return;
2663 }
2664 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2665 env->CP0_Status &= ~(1 << CP0St_FR);
2666 compute_hflags(env);
2667 } else {
2668 do_raise_exception(env, EXCP_RI, GETPC());
2669 }
2670 break;
2671 case 4:
2672 /* UNFR Alias - Set Status FR */
2673 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2674 return;
2675 }
2676 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2677 env->CP0_Status |= (1 << CP0St_FR);
2678 compute_hflags(env);
2679 } else {
2680 do_raise_exception(env, EXCP_RI, GETPC());
2681 }
2682 break;
2683 case 5:
2684 /* FRE Support - clear Config5.FRE bit */
2685 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2686 return;
2687 }
2688 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2689 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
2690 compute_hflags(env);
2691 } else {
2692 helper_raise_exception(env, EXCP_RI);
2693 }
2694 break;
2695 case 6:
2696 /* FRE Support - set Config5.FRE bit */
2697 if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
2698 return;
2699 }
2700 if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
2701 env->CP0_Config5 |= (1 << CP0C5_FRE);
2702 compute_hflags(env);
2703 } else {
2704 helper_raise_exception(env, EXCP_RI);
2705 }
2706 break;
2707 case 25:
2708 if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) {
2709 return;
2710 }
2711 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2712 ((arg1 & 0x1) << 23);
2713 break;
2714 case 26:
2715 if (arg1 & 0x007c0000)
2716 return;
2717 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2718 break;
2719 case 28:
2720 if (arg1 & 0x007c0000)
2721 return;
2722 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2723 ((arg1 & 0x4) << 22);
2724 break;
2725 case 31:
2726 env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) |
2727 (env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask));
2728 break;
2729 default:
2730 if (env->insn_flags & ISA_MIPS32R6) {
2731 do_raise_exception(env, EXCP_RI, GETPC());
2732 }
2733 return;
2734 }
2735 restore_fp_status(env);
2736 set_float_exception_flags(0, &env->active_fpu.fp_status);
2737 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2738 do_raise_exception(env, EXCP_FPE, GETPC());
2739 }
2740
2741 int ieee_ex_to_mips(int xcpt)
2742 {
2743 int ret = 0;
2744 if (xcpt) {
2745 if (xcpt & float_flag_invalid) {
2746 ret |= FP_INVALID;
2747 }
2748 if (xcpt & float_flag_overflow) {
2749 ret |= FP_OVERFLOW;
2750 }
2751 if (xcpt & float_flag_underflow) {
2752 ret |= FP_UNDERFLOW;
2753 }
2754 if (xcpt & float_flag_divbyzero) {
2755 ret |= FP_DIV0;
2756 }
2757 if (xcpt & float_flag_inexact) {
2758 ret |= FP_INEXACT;
2759 }
2760 }
2761 return ret;
2762 }
2763
2764 static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
2765 {
2766 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2767
2768 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2769
2770 if (tmp) {
2771 set_float_exception_flags(0, &env->active_fpu.fp_status);
2772
2773 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
2774 do_raise_exception(env, EXCP_FPE, pc);
2775 } else {
2776 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2777 }
2778 }
2779 }
2780
2781 /* Float support.
2782 Single precition routines have a "s" suffix, double precision a
2783 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2784 paired single lower "pl", paired single upper "pu". */
2785
2786 /* unary operations, modifying fp status */
2787 uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
2788 {
2789 fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2790 update_fcr31(env, GETPC());
2791 return fdt0;
2792 }
2793
2794 uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
2795 {
2796 fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2797 update_fcr31(env, GETPC());
2798 return fst0;
2799 }
2800
2801 uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
2802 {
2803 uint64_t fdt2;
2804
2805 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2806 update_fcr31(env, GETPC());
2807 return fdt2;
2808 }
2809
2810 uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
2811 {
2812 uint64_t fdt2;
2813
2814 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2815 update_fcr31(env, GETPC());
2816 return fdt2;
2817 }
2818
2819 uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
2820 {
2821 uint64_t fdt2;
2822
2823 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2824 update_fcr31(env, GETPC());
2825 return fdt2;
2826 }
2827
2828 uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0)
2829 {
2830 uint64_t dt2;
2831
2832 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2833 if (get_float_exception_flags(&env->active_fpu.fp_status)
2834 & (float_flag_invalid | float_flag_overflow)) {
2835 dt2 = FP_TO_INT64_OVERFLOW;
2836 }
2837 update_fcr31(env, GETPC());
2838 return dt2;
2839 }
2840
2841 uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0)
2842 {
2843 uint64_t dt2;
2844
2845 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2846 if (get_float_exception_flags(&env->active_fpu.fp_status)
2847 & (float_flag_invalid | float_flag_overflow)) {
2848 dt2 = FP_TO_INT64_OVERFLOW;
2849 }
2850 update_fcr31(env, GETPC());
2851 return dt2;
2852 }
2853
2854 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
2855 {
2856 uint32_t fst2;
2857 uint32_t fsth2;
2858
2859 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2860 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2861 update_fcr31(env, GETPC());
2862 return ((uint64_t)fsth2 << 32) | fst2;
2863 }
2864
2865 uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
2866 {
2867 uint32_t wt2;
2868 uint32_t wth2;
2869 int excp, excph;
2870
2871 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2872 excp = get_float_exception_flags(&env->active_fpu.fp_status);
2873 if (excp & (float_flag_overflow | float_flag_invalid)) {
2874 wt2 = FP_TO_INT32_OVERFLOW;
2875 }
2876
2877 set_float_exception_flags(0, &env->active_fpu.fp_status);
2878 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2879 excph = get_float_exception_flags(&env->active_fpu.fp_status);
2880 if (excph & (float_flag_overflow | float_flag_invalid)) {
2881 wth2 = FP_TO_INT32_OVERFLOW;
2882 }
2883
2884 set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
2885 update_fcr31(env, GETPC());
2886
2887 return ((uint64_t)wth2 << 32) | wt2;
2888 }
2889
2890 uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
2891 {
2892 uint32_t fst2;
2893
2894 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2895 update_fcr31(env, GETPC());
2896 return fst2;
2897 }
2898
2899 uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
2900 {
2901 uint32_t fst2;
2902
2903 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2904 update_fcr31(env, GETPC());
2905 return fst2;
2906 }
2907
2908 uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
2909 {
2910 uint32_t fst2;
2911
2912 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2913 update_fcr31(env, GETPC());
2914 return fst2;
2915 }
2916
2917 uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
2918 {
2919 uint32_t wt2;
2920
2921 wt2 = wt0;
2922 update_fcr31(env, GETPC());
2923 return wt2;
2924 }
2925
2926 uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
2927 {
2928 uint32_t wt2;
2929
2930 wt2 = wth0;
2931 update_fcr31(env, GETPC());
2932 return wt2;
2933 }
2934
2935 uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0)
2936 {
2937 uint32_t wt2;
2938
2939 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2940 if (get_float_exception_flags(&env->active_fpu.fp_status)
2941 & (float_flag_invalid | float_flag_overflow)) {
2942 wt2 = FP_TO_INT32_OVERFLOW;
2943 }
2944 update_fcr31(env, GETPC());
2945 return wt2;
2946 }
2947
2948 uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0)
2949 {
2950 uint32_t wt2;
2951
2952 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2953 if (get_float_exception_flags(&env->active_fpu.fp_status)
2954 & (float_flag_invalid | float_flag_overflow)) {
2955 wt2 = FP_TO_INT32_OVERFLOW;
2956 }
2957 update_fcr31(env, GETPC());
2958 return wt2;
2959 }
2960
2961 uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0)
2962 {
2963 uint64_t dt2;
2964
2965 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2966 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2967 restore_rounding_mode(env);
2968 if (get_float_exception_flags(&env->active_fpu.fp_status)
2969 & (float_flag_invalid | float_flag_overflow)) {
2970 dt2 = FP_TO_INT64_OVERFLOW;
2971 }
2972 update_fcr31(env, GETPC());
2973 return dt2;
2974 }
2975
2976 uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0)
2977 {
2978 uint64_t dt2;
2979
2980 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2981 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2982 restore_rounding_mode(env);
2983 if (get_float_exception_flags(&env->active_fpu.fp_status)
2984 & (float_flag_invalid | float_flag_overflow)) {
2985 dt2 = FP_TO_INT64_OVERFLOW;
2986 }
2987 update_fcr31(env, GETPC());
2988 return dt2;
2989 }
2990
2991 uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0)
2992 {
2993 uint32_t wt2;
2994
2995 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2996 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2997 restore_rounding_mode(env);
2998 if (get_float_exception_flags(&env->active_fpu.fp_status)
2999 & (float_flag_invalid | float_flag_overflow)) {
3000 wt2 = FP_TO_INT32_OVERFLOW;
3001 }
3002 update_fcr31(env, GETPC());
3003 return wt2;
3004 }
3005
3006 uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0)
3007 {
3008 uint32_t wt2;
3009
3010 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
3011 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3012 restore_rounding_mode(env);
3013 if (get_float_exception_flags(&env->active_fpu.fp_status)
3014 & (float_flag_invalid | float_flag_overflow)) {
3015 wt2 = FP_TO_INT32_OVERFLOW;
3016 }
3017 update_fcr31(env, GETPC());
3018 return wt2;
3019 }
3020
3021 uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0)
3022 {
3023 uint64_t dt2;
3024
3025 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
3026 if (get_float_exception_flags(&env->active_fpu.fp_status)
3027 & (float_flag_invalid | float_flag_overflow)) {
3028 dt2 = FP_TO_INT64_OVERFLOW;
3029 }
3030 update_fcr31(env, GETPC());
3031 return dt2;
3032 }
3033
3034 uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0)
3035 {
3036 uint64_t dt2;
3037
3038 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
3039 if (get_float_exception_flags(&env->active_fpu.fp_status)
3040 & (float_flag_invalid | float_flag_overflow)) {
3041 dt2 = FP_TO_INT64_OVERFLOW;
3042 }
3043 update_fcr31(env, GETPC());
3044 return dt2;
3045 }
3046
3047 uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0)
3048 {
3049 uint32_t wt2;
3050
3051 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
3052 if (get_float_exception_flags(&env->active_fpu.fp_status)
3053 & (float_flag_invalid | float_flag_overflow)) {
3054 wt2 = FP_TO_INT32_OVERFLOW;
3055 }
3056 update_fcr31(env, GETPC());
3057 return wt2;
3058 }
3059
3060 uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0)
3061 {
3062 uint32_t wt2;
3063
3064 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
3065 if (get_float_exception_flags(&env->active_fpu.fp_status)
3066 & (float_flag_invalid | float_flag_overflow)) {
3067 wt2 = FP_TO_INT32_OVERFLOW;
3068 }
3069 update_fcr31(env, GETPC());
3070 return wt2;
3071 }
3072
3073 uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0)
3074 {
3075 uint64_t dt2;
3076
3077 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3078 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3079 restore_rounding_mode(env);
3080 if (get_float_exception_flags(&env->active_fpu.fp_status)
3081 & (float_flag_invalid | float_flag_overflow)) {
3082 dt2 = FP_TO_INT64_OVERFLOW;
3083 }
3084 update_fcr31(env, GETPC());
3085 return dt2;
3086 }
3087
3088 uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0)
3089 {
3090 uint64_t dt2;
3091
3092 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3093 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3094 restore_rounding_mode(env);
3095 if (get_float_exception_flags(&env->active_fpu.fp_status)
3096 & (float_flag_invalid | float_flag_overflow)) {
3097 dt2 = FP_TO_INT64_OVERFLOW;
3098 }
3099 update_fcr31(env, GETPC());
3100 return dt2;
3101 }
3102
3103 uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0)
3104 {
3105 uint32_t wt2;
3106
3107 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3108 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3109 restore_rounding_mode(env);
3110 if (get_float_exception_flags(&env->active_fpu.fp_status)
3111 & (float_flag_invalid | float_flag_overflow)) {
3112 wt2 = FP_TO_INT32_OVERFLOW;
3113 }
3114 update_fcr31(env, GETPC());
3115 return wt2;
3116 }
3117
3118 uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0)
3119 {
3120 uint32_t wt2;
3121
3122 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3123 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3124 restore_rounding_mode(env);
3125 if (get_float_exception_flags(&env->active_fpu.fp_status)
3126 & (float_flag_invalid | float_flag_overflow)) {
3127 wt2 = FP_TO_INT32_OVERFLOW;
3128 }
3129 update_fcr31(env, GETPC());
3130 return wt2;
3131 }
3132
3133 uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0)
3134 {
3135 uint64_t dt2;
3136
3137 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3138 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3139 restore_rounding_mode(env);
3140 if (get_float_exception_flags(&env->active_fpu.fp_status)
3141 & (float_flag_invalid | float_flag_overflow)) {
3142 dt2 = FP_TO_INT64_OVERFLOW;
3143 }
3144 update_fcr31(env, GETPC());
3145 return dt2;
3146 }
3147
3148 uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0)
3149 {
3150 uint64_t dt2;
3151
3152 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3153 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3154 restore_rounding_mode(env);
3155 if (get_float_exception_flags(&env->active_fpu.fp_status)
3156 & (float_flag_invalid | float_flag_overflow)) {
3157 dt2 = FP_TO_INT64_OVERFLOW;
3158 }
3159 update_fcr31(env, GETPC());
3160 return dt2;
3161 }
3162
3163 uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0)
3164 {
3165 uint32_t wt2;
3166
3167 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3168 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3169 restore_rounding_mode(env);
3170 if (get_float_exception_flags(&env->active_fpu.fp_status)
3171 & (float_flag_invalid | float_flag_overflow)) {
3172 wt2 = FP_TO_INT32_OVERFLOW;
3173 }
3174 update_fcr31(env, GETPC());
3175 return wt2;
3176 }
3177
3178 uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0)
3179 {
3180 uint32_t wt2;
3181
3182 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3183 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3184 restore_rounding_mode(env);
3185 if (get_float_exception_flags(&env->active_fpu.fp_status)
3186 & (float_flag_invalid | float_flag_overflow)) {
3187 wt2 = FP_TO_INT32_OVERFLOW;
3188 }
3189 update_fcr31(env, GETPC());
3190 return wt2;
3191 }
3192
3193 uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3194 {
3195 uint64_t dt2;
3196
3197 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3198 if (get_float_exception_flags(&env->active_fpu.fp_status)
3199 & float_flag_invalid) {
3200 if (float64_is_any_nan(fdt0)) {
3201 dt2 = 0;
3202 }
3203 }
3204 update_fcr31(env, GETPC());
3205 return dt2;
3206 }
3207
3208 uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3209 {
3210 uint64_t dt2;
3211
3212 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3213 if (get_float_exception_flags(&env->active_fpu.fp_status)
3214 & float_flag_invalid) {
3215 if (float32_is_any_nan(fst0)) {
3216 dt2 = 0;
3217 }
3218 }
3219 update_fcr31(env, GETPC());
3220 return dt2;
3221 }
3222
3223 uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3224 {
3225 uint32_t wt2;
3226
3227 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3228 if (get_float_exception_flags(&env->active_fpu.fp_status)
3229 & float_flag_invalid) {
3230 if (float64_is_any_nan(fdt0)) {
3231 wt2 = 0;
3232 }
3233 }
3234 update_fcr31(env, GETPC());
3235 return wt2;
3236 }
3237
3238 uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3239 {
3240 uint32_t wt2;
3241
3242 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3243 if (get_float_exception_flags(&env->active_fpu.fp_status)
3244 & float_flag_invalid) {
3245 if (float32_is_any_nan(fst0)) {
3246 wt2 = 0;
3247 }
3248 }
3249 update_fcr31(env, GETPC());
3250 return wt2;
3251 }
3252
3253 uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3254 {
3255 uint64_t dt2;
3256
3257 set_float_rounding_mode(float_round_nearest_even,
3258 &env->active_fpu.fp_status);
3259 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3260 restore_rounding_mode(env);
3261 if (get_float_exception_flags(&env->active_fpu.fp_status)
3262 & float_flag_invalid) {
3263 if (float64_is_any_nan(fdt0)) {
3264 dt2 = 0;
3265 }
3266 }
3267 update_fcr31(env, GETPC());
3268 return dt2;
3269 }
3270
3271 uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3272 {
3273 uint64_t dt2;
3274
3275 set_float_rounding_mode(float_round_nearest_even,
3276 &env->active_fpu.fp_status);
3277 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3278 restore_rounding_mode(env);
3279 if (get_float_exception_flags(&env->active_fpu.fp_status)
3280 & float_flag_invalid) {
3281 if (float32_is_any_nan(fst0)) {
3282 dt2 = 0;
3283 }
3284 }
3285 update_fcr31(env, GETPC());
3286 return dt2;
3287 }
3288
3289 uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3290 {
3291 uint32_t wt2;
3292
3293 set_float_rounding_mode(float_round_nearest_even,
3294 &env->active_fpu.fp_status);
3295 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3296 restore_rounding_mode(env);
3297 if (get_float_exception_flags(&env->active_fpu.fp_status)
3298 & float_flag_invalid) {
3299 if (float64_is_any_nan(fdt0)) {
3300 wt2 = 0;
3301 }
3302 }
3303 update_fcr31(env, GETPC());
3304 return wt2;
3305 }
3306
3307 uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3308 {
3309 uint32_t wt2;
3310
3311 set_float_rounding_mode(float_round_nearest_even,
3312 &env->active_fpu.fp_status);
3313 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3314 restore_rounding_mode(env);
3315 if (get_float_exception_flags(&env->active_fpu.fp_status)
3316 & float_flag_invalid) {
3317 if (float32_is_any_nan(fst0)) {
3318 wt2 = 0;
3319 }
3320 }
3321 update_fcr31(env, GETPC());
3322 return wt2;
3323 }
3324
3325 uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3326 {
3327 uint64_t dt2;
3328
3329 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
3330 if (get_float_exception_flags(&env->active_fpu.fp_status)
3331 & float_flag_invalid) {
3332 if (float64_is_any_nan(fdt0)) {
3333 dt2 = 0;
3334 }
3335 }
3336 update_fcr31(env, GETPC());
3337 return dt2;
3338 }
3339
3340 uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3341 {
3342 uint64_t dt2;
3343
3344 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
3345 if (get_float_exception_flags(&env->active_fpu.fp_status)
3346 & float_flag_invalid) {
3347 if (float32_is_any_nan(fst0)) {
3348 dt2 = 0;
3349 }
3350 }
3351 update_fcr31(env, GETPC());
3352 return dt2;
3353 }
3354
3355 uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3356 {
3357 uint32_t wt2;
3358
3359 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
3360 if (get_float_exception_flags(&env->active_fpu.fp_status)
3361 & float_flag_invalid) {
3362 if (float64_is_any_nan(fdt0)) {
3363 wt2 = 0;
3364 }
3365 }
3366 update_fcr31(env, GETPC());
3367 return wt2;
3368 }
3369
3370 uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3371 {
3372 uint32_t wt2;
3373
3374 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
3375 if (get_float_exception_flags(&env->active_fpu.fp_status)
3376 & float_flag_invalid) {
3377 if (float32_is_any_nan(fst0)) {
3378 wt2 = 0;
3379 }
3380 }
3381 update_fcr31(env, GETPC());
3382 return wt2;
3383 }
3384
3385 uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3386 {
3387 uint64_t dt2;
3388
3389 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3390 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3391 restore_rounding_mode(env);
3392 if (get_float_exception_flags(&env->active_fpu.fp_status)
3393 & float_flag_invalid) {
3394 if (float64_is_any_nan(fdt0)) {
3395 dt2 = 0;
3396 }
3397 }
3398 update_fcr31(env, GETPC());
3399 return dt2;
3400 }
3401
3402 uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3403 {
3404 uint64_t dt2;
3405
3406 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3407 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3408 restore_rounding_mode(env);
3409 if (get_float_exception_flags(&env->active_fpu.fp_status)
3410 & float_flag_invalid) {
3411 if (float32_is_any_nan(fst0)) {
3412 dt2 = 0;
3413 }
3414 }
3415 update_fcr31(env, GETPC());
3416 return dt2;
3417 }
3418
3419 uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3420 {
3421 uint32_t wt2;
3422
3423 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3424 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3425 restore_rounding_mode(env);
3426 if (get_float_exception_flags(&env->active_fpu.fp_status)
3427 & float_flag_invalid) {
3428 if (float64_is_any_nan(fdt0)) {
3429 wt2 = 0;
3430 }
3431 }
3432 update_fcr31(env, GETPC());
3433 return wt2;
3434 }
3435
3436 uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3437 {
3438 uint32_t wt2;
3439
3440 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
3441 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3442 restore_rounding_mode(env);
3443 if (get_float_exception_flags(&env->active_fpu.fp_status)
3444 & float_flag_invalid) {
3445 if (float32_is_any_nan(fst0)) {
3446 wt2 = 0;
3447 }
3448 }
3449 update_fcr31(env, GETPC());
3450 return wt2;
3451 }
3452
3453 uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
3454 {
3455 uint64_t dt2;
3456
3457 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3458 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
3459 restore_rounding_mode(env);
3460 if (get_float_exception_flags(&env->active_fpu.fp_status)
3461 & float_flag_invalid) {
3462 if (float64_is_any_nan(fdt0)) {
3463 dt2 = 0;
3464 }
3465 }
3466 update_fcr31(env, GETPC());
3467 return dt2;
3468 }
3469
3470 uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0)
3471 {
3472 uint64_t dt2;
3473
3474 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3475 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
3476 restore_rounding_mode(env);
3477 if (get_float_exception_flags(&env->active_fpu.fp_status)
3478 & float_flag_invalid) {
3479 if (float32_is_any_nan(fst0)) {
3480 dt2 = 0;
3481 }
3482 }
3483 update_fcr31(env, GETPC());
3484 return dt2;
3485 }
3486
3487 uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
3488 {
3489 uint32_t wt2;
3490
3491 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3492 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
3493 restore_rounding_mode(env);
3494 if (get_float_exception_flags(&env->active_fpu.fp_status)
3495 & float_flag_invalid) {
3496 if (float64_is_any_nan(fdt0)) {
3497 wt2 = 0;
3498 }
3499 }
3500 update_fcr31(env, GETPC());
3501 return wt2;
3502 }
3503
3504 uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0)
3505 {
3506 uint32_t wt2;
3507
3508 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
3509 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
3510 restore_rounding_mode(env);
3511 if (get_float_exception_flags(&env->active_fpu.fp_status)
3512 & float_flag_invalid) {
3513 if (float32_is_any_nan(fst0)) {
3514 wt2 = 0;
3515 }
3516 }
3517 update_fcr31(env, GETPC());
3518 return wt2;
3519 }
3520
3521 /* unary operations, not modifying fp status */
3522 #define FLOAT_UNOP(name) \
3523 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
3524 { \
3525 return float64_ ## name(fdt0); \
3526 } \
3527 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
3528 { \
3529 return float32_ ## name(fst0); \
3530 } \
3531 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
3532 { \
3533 uint32_t wt0; \
3534 uint32_t wth0; \
3535 \
3536 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
3537 wth0 = float32_ ## name(fdt0 >> 32); \
3538 return ((uint64_t)wth0 << 32) | wt0; \
3539 }
3540 FLOAT_UNOP(abs)
3541 FLOAT_UNOP(chs)
3542 #undef FLOAT_UNOP
3543
3544 /* MIPS specific unary operations */
3545 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
3546 {
3547 uint64_t fdt2;
3548
3549 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3550 update_fcr31(env, GETPC());
3551 return fdt2;
3552 }
3553
3554 uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
3555 {
3556 uint32_t fst2;
3557
3558 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3559 update_fcr31(env, GETPC());
3560 return fst2;
3561 }
3562
3563 uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
3564 {
3565 uint64_t fdt2;
3566
3567 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3568 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3569 update_fcr31(env, GETPC());
3570 return fdt2;
3571 }
3572
3573 uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
3574 {
3575 uint32_t fst2;
3576
3577 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3578 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3579 update_fcr31(env, GETPC());
3580 return fst2;
3581 }
3582
3583 uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
3584 {
3585 uint64_t fdt2;
3586
3587 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
3588 update_fcr31(env, GETPC());
3589 return fdt2;
3590 }
3591
3592 uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
3593 {
3594 uint32_t fst2;
3595
3596 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
3597 update_fcr31(env, GETPC());
3598 return fst2;
3599 }
3600
3601 uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
3602 {
3603 uint32_t fst2;
3604 uint32_t fsth2;
3605
3606 fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3607 fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
3608 update_fcr31(env, GETPC());
3609 return ((uint64_t)fsth2 << 32) | fst2;
3610 }
3611
3612 uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
3613 {
3614 uint64_t fdt2;
3615
3616 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
3617 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
3618 update_fcr31(env, GETPC());
3619 return fdt2;
3620 }
3621
3622 uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
3623 {
3624 uint32_t fst2;
3625
3626 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
3627 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3628 update_fcr31(env, GETPC());
3629 return fst2;
3630 }
3631
3632 uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
3633 {
3634 uint32_t fst2;
3635 uint32_t fsth2;
3636
3637 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
3638 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
3639 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
3640 fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
3641 update_fcr31(env, GETPC());
3642 return ((uint64_t)fsth2 << 32) | fst2;
3643 }
3644
3645 #define FLOAT_RINT(name, bits) \
3646 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3647 uint ## bits ## _t fs) \
3648 { \
3649 uint ## bits ## _t fdret; \
3650 \
3651 fdret = float ## bits ## _round_to_int(fs, &env->active_fpu.fp_status); \
3652 update_fcr31(env, GETPC()); \
3653 return fdret; \
3654 }
3655
3656 FLOAT_RINT(rint_s, 32)
3657 FLOAT_RINT(rint_d, 64)
3658 #undef FLOAT_RINT
3659
3660 #define FLOAT_CLASS_SIGNALING_NAN 0x001
3661 #define FLOAT_CLASS_QUIET_NAN 0x002
3662 #define FLOAT_CLASS_NEGATIVE_INFINITY 0x004
3663 #define FLOAT_CLASS_NEGATIVE_NORMAL 0x008
3664 #define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010
3665 #define FLOAT_CLASS_NEGATIVE_ZERO 0x020
3666 #define FLOAT_CLASS_POSITIVE_INFINITY 0x040
3667 #define FLOAT_CLASS_POSITIVE_NORMAL 0x080
3668 #define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100
3669 #define FLOAT_CLASS_POSITIVE_ZERO 0x200
3670
3671 #define FLOAT_CLASS(name, bits) \
3672 uint ## bits ## _t float_ ## name (uint ## bits ## _t arg, \
3673 float_status *status) \
3674 { \
3675 if (float ## bits ## _is_signaling_nan(arg, status)) { \
3676 return FLOAT_CLASS_SIGNALING_NAN; \
3677 } else if (float ## bits ## _is_quiet_nan(arg, status)) { \
3678 return FLOAT_CLASS_QUIET_NAN; \
3679 } else if (float ## bits ## _is_neg(arg)) { \
3680 if (float ## bits ## _is_infinity(arg)) { \
3681 return FLOAT_CLASS_NEGATIVE_INFINITY; \
3682 } else if (float ## bits ## _is_zero(arg)) { \
3683 return FLOAT_CLASS_NEGATIVE_ZERO; \
3684 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3685 return FLOAT_CLASS_NEGATIVE_SUBNORMAL; \
3686 } else { \
3687 return FLOAT_CLASS_NEGATIVE_NORMAL; \
3688 } \
3689 } else { \
3690 if (float ## bits ## _is_infinity(arg)) { \
3691 return FLOAT_CLASS_POSITIVE_INFINITY; \
3692 } else if (float ## bits ## _is_zero(arg)) { \
3693 return FLOAT_CLASS_POSITIVE_ZERO; \
3694 } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
3695 return FLOAT_CLASS_POSITIVE_SUBNORMAL; \
3696 } else { \
3697 return FLOAT_CLASS_POSITIVE_NORMAL; \
3698 } \
3699 } \
3700 } \
3701 \
3702 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3703 uint ## bits ## _t arg) \
3704 { \
3705 return float_ ## name(arg, &env->active_fpu.fp_status); \
3706 }
3707
3708 FLOAT_CLASS(class_s, 32)
3709 FLOAT_CLASS(class_d, 64)
3710 #undef FLOAT_CLASS
3711
3712 /* binary operations */
3713 #define FLOAT_BINOP(name) \
3714 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3715 uint64_t fdt0, uint64_t fdt1) \
3716 { \
3717 uint64_t dt2; \
3718 \
3719 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
3720 update_fcr31(env, GETPC()); \
3721 return dt2; \
3722 } \
3723 \
3724 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3725 uint32_t fst0, uint32_t fst1) \
3726 { \
3727 uint32_t wt2; \
3728 \
3729 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3730 update_fcr31(env, GETPC()); \
3731 return wt2; \
3732 } \
3733 \
3734 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3735 uint64_t fdt0, \
3736 uint64_t fdt1) \
3737 { \
3738 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3739 uint32_t fsth0 = fdt0 >> 32; \
3740 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3741 uint32_t fsth1 = fdt1 >> 32; \
3742 uint32_t wt2; \
3743 uint32_t wth2; \
3744 \
3745 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
3746 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
3747 update_fcr31(env, GETPC()); \
3748 return ((uint64_t)wth2 << 32) | wt2; \
3749 }
3750
3751 FLOAT_BINOP(add)
3752 FLOAT_BINOP(sub)
3753 FLOAT_BINOP(mul)
3754 FLOAT_BINOP(div)
3755 #undef FLOAT_BINOP
3756
3757 /* MIPS specific binary operations */
3758 uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3759 {
3760 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3761 fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
3762 update_fcr31(env, GETPC());
3763 return fdt2;
3764 }
3765
3766 uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3767 {
3768 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3769 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3770 update_fcr31(env, GETPC());
3771 return fst2;
3772 }
3773
3774 uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3775 {
3776 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3777 uint32_t fsth0 = fdt0 >> 32;
3778 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3779 uint32_t fsth2 = fdt2 >> 32;
3780
3781 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3782 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3783 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3784 fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
3785 update_fcr31(env, GETPC());
3786 return ((uint64_t)fsth2 << 32) | fst2;
3787 }
3788
3789 uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3790 {
3791 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3792 fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
3793 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
3794 update_fcr31(env, GETPC());
3795 return fdt2;
3796 }
3797
3798 uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3799 {
3800 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3801 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3802 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3803 update_fcr31(env, GETPC());
3804 return fst2;
3805 }
3806
3807 uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3808 {
3809 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3810 uint32_t fsth0 = fdt0 >> 32;
3811 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3812 uint32_t fsth2 = fdt2 >> 32;
3813
3814 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3815 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3816 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3817 fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
3818 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3819 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
3820 update_fcr31(env, GETPC());
3821 return ((uint64_t)fsth2 << 32) | fst2;
3822 }
3823
3824 uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3825 {
3826 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3827 uint32_t fsth0 = fdt0 >> 32;
3828 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3829 uint32_t fsth1 = fdt1 >> 32;
3830 uint32_t fst2;
3831 uint32_t fsth2;
3832
3833 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
3834 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
3835 update_fcr31(env, GETPC());
3836 return ((uint64_t)fsth2 << 32) | fst2;
3837 }
3838
3839 uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3840 {
3841 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3842 uint32_t fsth0 = fdt0 >> 32;
3843 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3844 uint32_t fsth1 = fdt1 >> 32;
3845 uint32_t fst2;
3846 uint32_t fsth2;
3847
3848 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3849 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3850 update_fcr31(env, GETPC());
3851 return ((uint64_t)fsth2 << 32) | fst2;
3852 }
3853
3854 #define FLOAT_MINMAX(name, bits, minmaxfunc) \
3855 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3856 uint ## bits ## _t fs, \
3857 uint ## bits ## _t ft) \
3858 { \
3859 uint ## bits ## _t fdret; \
3860 \
3861 fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \
3862 &env->active_fpu.fp_status); \
3863 update_fcr31(env, GETPC()); \
3864 return fdret; \
3865 }
3866
3867 FLOAT_MINMAX(max_s, 32, maxnum)
3868 FLOAT_MINMAX(max_d, 64, maxnum)
3869 FLOAT_MINMAX(maxa_s, 32, maxnummag)
3870 FLOAT_MINMAX(maxa_d, 64, maxnummag)
3871
3872 FLOAT_MINMAX(min_s, 32, minnum)
3873 FLOAT_MINMAX(min_d, 64, minnum)
3874 FLOAT_MINMAX(mina_s, 32, minnummag)
3875 FLOAT_MINMAX(mina_d, 64, minnummag)
3876 #undef FLOAT_MINMAX
3877
3878 /* ternary operations */
3879 #define UNFUSED_FMA(prefix, a, b, c, flags) \
3880 { \
3881 a = prefix##_mul(a, b, &env->active_fpu.fp_status); \
3882 if ((flags) & float_muladd_negate_c) { \
3883 a = prefix##_sub(a, c, &env->active_fpu.fp_status); \
3884 } else { \
3885 a = prefix##_add(a, c, &env->active_fpu.fp_status); \
3886 } \
3887 if ((flags) & float_muladd_negate_result) { \
3888 a = prefix##_chs(a); \
3889 } \
3890 }
3891
3892 /* FMA based operations */
3893 #define FLOAT_FMA(name, type) \
3894 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
3895 uint64_t fdt0, uint64_t fdt1, \
3896 uint64_t fdt2) \
3897 { \
3898 UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \
3899 update_fcr31(env, GETPC()); \
3900 return fdt0; \
3901 } \
3902 \
3903 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
3904 uint32_t fst0, uint32_t fst1, \
3905 uint32_t fst2) \
3906 { \
3907 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3908 update_fcr31(env, GETPC()); \
3909 return fst0; \
3910 } \
3911 \
3912 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
3913 uint64_t fdt0, uint64_t fdt1, \
3914 uint64_t fdt2) \
3915 { \
3916 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3917 uint32_t fsth0 = fdt0 >> 32; \
3918 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3919 uint32_t fsth1 = fdt1 >> 32; \
3920 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
3921 uint32_t fsth2 = fdt2 >> 32; \
3922 \
3923 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
3924 UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \
3925 update_fcr31(env, GETPC()); \
3926 return ((uint64_t)fsth0 << 32) | fst0; \
3927 }
3928 FLOAT_FMA(madd, 0)
3929 FLOAT_FMA(msub, float_muladd_negate_c)
3930 FLOAT_FMA(nmadd, float_muladd_negate_result)
3931 FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
3932 #undef FLOAT_FMA
3933
3934 #define FLOAT_FMADDSUB(name, bits, muladd_arg) \
3935 uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env, \
3936 uint ## bits ## _t fs, \
3937 uint ## bits ## _t ft, \
3938 uint ## bits ## _t fd) \
3939 { \
3940 uint ## bits ## _t fdret; \
3941 \
3942 fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \
3943 &env->active_fpu.fp_status); \
3944 update_fcr31(env, GETPC()); \
3945 return fdret; \
3946 }
3947
3948 FLOAT_FMADDSUB(maddf_s, 32, 0)
3949 FLOAT_FMADDSUB(maddf_d, 64, 0)
3950 FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product)
3951 FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product)
3952 #undef FLOAT_FMADDSUB
3953
3954 /* compare operations */
3955 #define FOP_COND_D(op, cond) \
3956 void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3957 uint64_t fdt1, int cc) \
3958 { \
3959 int c; \
3960 c = cond; \
3961 update_fcr31(env, GETPC()); \
3962 if (c) \
3963 SET_FP_COND(cc, env->active_fpu); \
3964 else \
3965 CLEAR_FP_COND(cc, env->active_fpu); \
3966 } \
3967 void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3968 uint64_t fdt1, int cc) \
3969 { \
3970 int c; \
3971 fdt0 = float64_abs(fdt0); \
3972 fdt1 = float64_abs(fdt1); \
3973 c = cond; \
3974 update_fcr31(env, GETPC()); \
3975 if (c) \
3976 SET_FP_COND(cc, env->active_fpu); \
3977 else \
3978 CLEAR_FP_COND(cc, env->active_fpu); \
3979 }
3980
3981 /* NOTE: the comma operator will make "cond" to eval to false,
3982 * but float64_unordered_quiet() is still called. */
3983 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3984 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
3985 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3986 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3987 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3988 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3989 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3990 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3991 /* NOTE: the comma operator will make "cond" to eval to false,
3992 * but float64_unordered() is still called. */
3993 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3994 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
3995 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3996 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3997 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3998 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3999 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
4000 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
4001
4002 #define FOP_COND_S(op, cond) \
4003 void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
4004 uint32_t fst1, int cc) \
4005 { \
4006 int c; \
4007 c = cond; \
4008 update_fcr31(env, GETPC()); \
4009 if (c) \
4010 SET_FP_COND(cc, env->active_fpu); \
4011 else \
4012 CLEAR_FP_COND(cc, env->active_fpu); \
4013 } \
4014 void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
4015 uint32_t fst1, int cc) \
4016 { \
4017 int c; \
4018 fst0 = float32_abs(fst0); \
4019 fst1 = float32_abs(fst1); \
4020 c = cond; \
4021 update_fcr31(env, GETPC()); \
4022 if (c) \
4023 SET_FP_COND(cc, env->active_fpu); \
4024 else \
4025 CLEAR_FP_COND(cc, env->active_fpu); \
4026 }
4027
4028 /* NOTE: the comma operator will make "cond" to eval to false,
4029 * but float32_unordered_quiet() is still called. */
4030 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
4031 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
4032 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
4033 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
4034 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
4035 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
4036 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
4037 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
4038 /* NOTE: the comma operator will make "cond" to eval to false,
4039 * but float32_unordered() is still called. */
4040 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
4041 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
4042 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
4043 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
4044 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
4045 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
4046 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
4047 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
4048
4049 #define FOP_COND_PS(op, condl, condh) \
4050 void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
4051 uint64_t fdt1, int cc) \
4052 { \
4053 uint32_t fst0, fsth0, fst1, fsth1; \
4054 int ch, cl; \
4055 fst0 = fdt0 & 0XFFFFFFFF; \
4056 fsth0 = fdt0 >> 32; \
4057 fst1 = fdt1 & 0XFFFFFFFF; \
4058 fsth1 = fdt1 >> 32; \
4059 cl = condl; \
4060 ch = condh; \
4061 update_fcr31(env, GETPC()); \
4062 if (cl) \
4063 SET_FP_COND(cc, env->active_fpu); \
4064 else \
4065 CLEAR_FP_COND(cc, env->active_fpu); \
4066 if (ch) \
4067 SET_FP_COND(cc + 1, env->active_fpu); \
4068 else \
4069 CLEAR_FP_COND(cc + 1, env->active_fpu); \
4070 } \
4071 void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
4072 uint64_t fdt1, int cc) \
4073 { \
4074 uint32_t fst0, fsth0, fst1, fsth1; \
4075 int ch, cl; \
4076 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
4077 fsth0 = float32_abs(fdt0 >> 32); \
4078 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
4079 fsth1 = float32_abs(fdt1 >> 32); \
4080 cl = condl; \
4081 ch = condh; \
4082 update_fcr31(env, GETPC()); \
4083 if (cl) \
4084 SET_FP_COND(cc, env->active_fpu); \
4085 else \
4086 CLEAR_FP_COND(cc, env->active_fpu); \
4087 if (ch) \
4088 SET_FP_COND(cc + 1, env->active_fpu); \
4089 else \
4090 CLEAR_FP_COND(cc + 1, env->active_fpu); \
4091 }
4092
4093 /* NOTE: the comma operator will make "cond" to eval to false,
4094 * but float32_unordered_quiet() is still called. */
4095 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
4096 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
4097 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
4098 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
4099 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
4100 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4101 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
4102 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4103 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
4104 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4105 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
4106 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4107 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
4108 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4109 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
4110 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
4111 /* NOTE: the comma operator will make "cond" to eval to false,
4112 * but float32_unordered() is still called. */
4113 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
4114 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
4115 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
4116 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
4117 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
4118 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
4119 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
4120 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
4121 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
4122 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
4123 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
4124 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
4125 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
4126 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
4127 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
4128 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
4129
4130 /* R6 compare operations */
4131 #define FOP_CONDN_D(op, cond) \
4132 uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState * env, uint64_t fdt0, \
4133 uint64_t fdt1) \
4134 { \
4135 uint64_t c; \
4136 c = cond; \
4137 update_fcr31(env, GETPC()); \
4138 if (c) { \
4139 return -1; \
4140 } else { \
4141 return 0; \
4142 } \
4143 }
4144
4145 /* NOTE: the comma operator will make "cond" to eval to false,
4146 * but float64_unordered_quiet() is still called. */
4147 FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4148 FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)))
4149 FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4150 FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4151 || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4152 FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4153 FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4154 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4155 FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4156 FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4157 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4158 /* NOTE: the comma operator will make "cond" to eval to false,
4159 * but float64_unordered() is still called. */
4160 FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
4161 FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)))
4162 FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
4163 FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4164 || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)))
4165 FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4166 FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4167 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4168 FOP_CONDN_D(sle, (float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4169 FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4170 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4171 FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4172 || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4173 FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4174 || float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4175 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4176 FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0, &env->active_fpu.fp_status)
4177 || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status)))
4178 FOP_CONDN_D(sor, (float64_le(fdt1, fdt0, &env->active_fpu.fp_status)
4179 || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)))
4180 FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status)
4181 || float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4182 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4183 FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0, &env->active_fpu.fp_status)
4184 || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)))
4185
4186 #define FOP_CONDN_S(op, cond) \
4187 uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState * env, uint32_t fst0, \
4188 uint32_t fst1) \
4189 { \
4190 uint64_t c; \
4191 c = cond; \
4192 update_fcr31(env, GETPC()); \
4193 if (c) { \
4194 return -1; \
4195 } else { \
4196 return 0; \
4197 } \
4198 }
4199
4200 /* NOTE: the comma operator will make "cond" to eval to false,
4201 * but float32_unordered_quiet() is still called. */
4202 FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
4203 FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)))
4204 FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4205 FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4206 || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4207 FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4208 FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4209 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4210 FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4211 FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4212 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4213 /* NOTE: the comma operator will make "cond" to eval to false,
4214 * but float32_unordered() is still called. */
4215 FOP_CONDN_S(saf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
4216 FOP_CONDN_S(sun, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)))
4217 FOP_CONDN_S(seq, (float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4218 FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4219 || float32_eq(fst0, fst1, &env->active_fpu.fp_status)))
4220 FOP_CONDN_S(slt, (float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4221 FOP_CONDN_S(sult, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4222 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4223 FOP_CONDN_S(sle, (float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4224 FOP_CONDN_S(sule, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4225 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4226 FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0, &env->active_fpu.fp_status)
4227 || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4228 FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status)
4229 || float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4230 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4231 FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0, &env->active_fpu.fp_status)
4232 || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status)))
4233 FOP_CONDN_S(sor, (float32_le(fst1, fst0, &env->active_fpu.fp_status)
4234 || float32_le(fst0, fst1, &env->active_fpu.fp_status)))
4235 FOP_CONDN_S(sune, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status)
4236 || float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4237 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4238 FOP_CONDN_S(sne, (float32_lt(fst1, fst0, &env->active_fpu.fp_status)
4239 || float32_lt(fst0, fst1, &env->active_fpu.fp_status)))
4240
4241 /* MSA */
4242 /* Data format min and max values */
4243 #define DF_BITS(df) (1 << ((df) + 3))
4244
4245 /* Element-by-element access macros */
4246 #define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df))
4247
4248 #if !defined(CONFIG_USER_ONLY)
4249 #define MEMOP_IDX(DF) \
4250 TCGMemOpIdx oi = make_memop_idx(MO_TE | DF | MO_UNALN, \
4251 cpu_mmu_index(env, false));
4252 #else
4253 #define MEMOP_IDX(DF)
4254 #endif
4255
4256 #define MSA_LD_DF(DF, TYPE, LD_INSN, ...) \
4257 void helper_msa_ld_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4258 target_ulong addr) \
4259 { \
4260 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4261 wr_t wx; \
4262 int i; \
4263 MEMOP_IDX(DF) \
4264 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4265 wx.TYPE[i] = LD_INSN(env, addr + (i << DF), ##__VA_ARGS__); \
4266 } \
4267 memcpy(pwd, &wx, sizeof(wr_t)); \
4268 }
4269
4270 #if !defined(CONFIG_USER_ONLY)
4271 MSA_LD_DF(DF_BYTE, b, helper_ret_ldub_mmu, oi, GETPC())
4272 MSA_LD_DF(DF_HALF, h, helper_ret_lduw_mmu, oi, GETPC())
4273 MSA_LD_DF(DF_WORD, w, helper_ret_ldul_mmu, oi, GETPC())
4274 MSA_LD_DF(DF_DOUBLE, d, helper_ret_ldq_mmu, oi, GETPC())
4275 #else
4276 MSA_LD_DF(DF_BYTE, b, cpu_ldub_data)
4277 MSA_LD_DF(DF_HALF, h, cpu_lduw_data)
4278 MSA_LD_DF(DF_WORD, w, cpu_ldl_data)
4279 MSA_LD_DF(DF_DOUBLE, d, cpu_ldq_data)
4280 #endif
4281
4282 #define MSA_PAGESPAN(x) \
4283 ((((x) & ~TARGET_PAGE_MASK) + MSA_WRLEN/8 - 1) >= TARGET_PAGE_SIZE)
4284
4285 static inline void ensure_writable_pages(CPUMIPSState *env,
4286 target_ulong addr,
4287 int mmu_idx,
4288 uintptr_t retaddr)
4289 {
4290 #if !defined(CONFIG_USER_ONLY)
4291 target_ulong page_addr;
4292 if (unlikely(MSA_PAGESPAN(addr))) {
4293 /* first page */
4294 probe_write(env, addr, 0, mmu_idx, retaddr);
4295 /* second page */
4296 page_addr = (addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
4297 probe_write(env, page_addr, 0, mmu_idx, retaddr);
4298 }
4299 #endif
4300 }
4301
4302 #define MSA_ST_DF(DF, TYPE, ST_INSN, ...) \
4303 void helper_msa_st_ ## TYPE(CPUMIPSState *env, uint32_t wd, \
4304 target_ulong addr) \
4305 { \
4306 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
4307 int mmu_idx = cpu_mmu_index(env, false); \
4308 int i; \
4309 MEMOP_IDX(DF) \
4310 ensure_writable_pages(env, addr, mmu_idx, GETPC()); \
4311 for (i = 0; i < DF_ELEMENTS(DF); i++) { \
4312 ST_INSN(env, addr + (i << DF), pwd->TYPE[i], ##__VA_ARGS__); \
4313 } \
4314 }
4315
4316 #if !defined(CONFIG_USER_ONLY)
4317 MSA_ST_DF(DF_BYTE, b, helper_ret_stb_mmu, oi, GETPC())
4318 MSA_ST_DF(DF_HALF, h, helper_ret_stw_mmu, oi, GETPC())
4319 MSA_ST_DF(DF_WORD, w, helper_ret_stl_mmu, oi, GETPC())
4320 MSA_ST_DF(DF_DOUBLE, d, helper_ret_stq_mmu, oi, GETPC())
4321 #else
4322 MSA_ST_DF(DF_BYTE, b, cpu_stb_data)
4323 MSA_ST_DF(DF_HALF, h, cpu_stw_data)
4324 MSA_ST_DF(DF_WORD, w, cpu_stl_data)
4325 MSA_ST_DF(DF_DOUBLE, d, cpu_stq_data)
4326 #endif
4327
4328 void helper_cache(CPUMIPSState *env, target_ulong addr, uint32_t op)
4329 {
4330 #ifndef CONFIG_USER_ONLY
4331 target_ulong index = addr & 0x1fffffff;
4332 if (op == 9) {
4333 /* Index Store Tag */
4334 memory_region_dispatch_write(env->itc_tag, index, env->CP0_TagLo,
4335 8, MEMTXATTRS_UNSPECIFIED);
4336 } else if (op == 5) {
4337 /* Index Load Tag */
4338 memory_region_dispatch_read(env->itc_tag, index, &env->CP0_TagLo,
4339 8, MEMTXATTRS_UNSPECIFIED);
4340 }
4341 #endif
4342 }