]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/excp_helper.c
target/riscv: rvv-1.0: Add Zve64f support for vmulh variant insns
[mirror_qemu.git] / target / ppc / excp_helper.c
1 /*
2 * PowerPC exception emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu/main-loop.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "helper_regs.h"
25
26 #include "trace.h"
27
28 #ifdef CONFIG_TCG
29 #include "exec/helper-proto.h"
30 #include "exec/cpu_ldst.h"
31 #endif
32
33 /*****************************************************************************/
34 /* Exception processing */
35 #if !defined(CONFIG_USER_ONLY)
36
37 static const char *powerpc_excp_name(int excp)
38 {
39 switch (excp) {
40 case POWERPC_EXCP_CRITICAL: return "CRITICAL";
41 case POWERPC_EXCP_MCHECK: return "MCHECK";
42 case POWERPC_EXCP_DSI: return "DSI";
43 case POWERPC_EXCP_ISI: return "ISI";
44 case POWERPC_EXCP_EXTERNAL: return "EXTERNAL";
45 case POWERPC_EXCP_ALIGN: return "ALIGN";
46 case POWERPC_EXCP_PROGRAM: return "PROGRAM";
47 case POWERPC_EXCP_FPU: return "FPU";
48 case POWERPC_EXCP_SYSCALL: return "SYSCALL";
49 case POWERPC_EXCP_APU: return "APU";
50 case POWERPC_EXCP_DECR: return "DECR";
51 case POWERPC_EXCP_FIT: return "FIT";
52 case POWERPC_EXCP_WDT: return "WDT";
53 case POWERPC_EXCP_DTLB: return "DTLB";
54 case POWERPC_EXCP_ITLB: return "ITLB";
55 case POWERPC_EXCP_DEBUG: return "DEBUG";
56 case POWERPC_EXCP_SPEU: return "SPEU";
57 case POWERPC_EXCP_EFPDI: return "EFPDI";
58 case POWERPC_EXCP_EFPRI: return "EFPRI";
59 case POWERPC_EXCP_EPERFM: return "EPERFM";
60 case POWERPC_EXCP_DOORI: return "DOORI";
61 case POWERPC_EXCP_DOORCI: return "DOORCI";
62 case POWERPC_EXCP_GDOORI: return "GDOORI";
63 case POWERPC_EXCP_GDOORCI: return "GDOORCI";
64 case POWERPC_EXCP_HYPPRIV: return "HYPPRIV";
65 case POWERPC_EXCP_RESET: return "RESET";
66 case POWERPC_EXCP_DSEG: return "DSEG";
67 case POWERPC_EXCP_ISEG: return "ISEG";
68 case POWERPC_EXCP_HDECR: return "HDECR";
69 case POWERPC_EXCP_TRACE: return "TRACE";
70 case POWERPC_EXCP_HDSI: return "HDSI";
71 case POWERPC_EXCP_HISI: return "HISI";
72 case POWERPC_EXCP_HDSEG: return "HDSEG";
73 case POWERPC_EXCP_HISEG: return "HISEG";
74 case POWERPC_EXCP_VPU: return "VPU";
75 case POWERPC_EXCP_PIT: return "PIT";
76 case POWERPC_EXCP_IO: return "IO";
77 case POWERPC_EXCP_RUNM: return "RUNM";
78 case POWERPC_EXCP_EMUL: return "EMUL";
79 case POWERPC_EXCP_IFTLB: return "IFTLB";
80 case POWERPC_EXCP_DLTLB: return "DLTLB";
81 case POWERPC_EXCP_DSTLB: return "DSTLB";
82 case POWERPC_EXCP_FPA: return "FPA";
83 case POWERPC_EXCP_DABR: return "DABR";
84 case POWERPC_EXCP_IABR: return "IABR";
85 case POWERPC_EXCP_SMI: return "SMI";
86 case POWERPC_EXCP_PERFM: return "PERFM";
87 case POWERPC_EXCP_THERM: return "THERM";
88 case POWERPC_EXCP_VPUA: return "VPUA";
89 case POWERPC_EXCP_SOFTP: return "SOFTP";
90 case POWERPC_EXCP_MAINT: return "MAINT";
91 case POWERPC_EXCP_MEXTBR: return "MEXTBR";
92 case POWERPC_EXCP_NMEXTBR: return "NMEXTBR";
93 case POWERPC_EXCP_ITLBE: return "ITLBE";
94 case POWERPC_EXCP_DTLBE: return "DTLBE";
95 case POWERPC_EXCP_VSXU: return "VSXU";
96 case POWERPC_EXCP_FU: return "FU";
97 case POWERPC_EXCP_HV_EMU: return "HV_EMU";
98 case POWERPC_EXCP_HV_MAINT: return "HV_MAINT";
99 case POWERPC_EXCP_HV_FU: return "HV_FU";
100 case POWERPC_EXCP_SDOOR: return "SDOOR";
101 case POWERPC_EXCP_SDOOR_HV: return "SDOOR_HV";
102 case POWERPC_EXCP_HVIRT: return "HVIRT";
103 case POWERPC_EXCP_SYSCALL_VECTORED: return "SYSCALL_VECTORED";
104 default:
105 g_assert_not_reached();
106 }
107 }
108
109 static void dump_syscall(CPUPPCState *env)
110 {
111 qemu_log_mask(CPU_LOG_INT, "syscall r0=%016" PRIx64
112 " r3=%016" PRIx64 " r4=%016" PRIx64 " r5=%016" PRIx64
113 " r6=%016" PRIx64 " r7=%016" PRIx64 " r8=%016" PRIx64
114 " nip=" TARGET_FMT_lx "\n",
115 ppc_dump_gpr(env, 0), ppc_dump_gpr(env, 3),
116 ppc_dump_gpr(env, 4), ppc_dump_gpr(env, 5),
117 ppc_dump_gpr(env, 6), ppc_dump_gpr(env, 7),
118 ppc_dump_gpr(env, 8), env->nip);
119 }
120
121 static void dump_hcall(CPUPPCState *env)
122 {
123 qemu_log_mask(CPU_LOG_INT, "hypercall r3=%016" PRIx64
124 " r4=%016" PRIx64 " r5=%016" PRIx64 " r6=%016" PRIx64
125 " r7=%016" PRIx64 " r8=%016" PRIx64 " r9=%016" PRIx64
126 " r10=%016" PRIx64 " r11=%016" PRIx64 " r12=%016" PRIx64
127 " nip=" TARGET_FMT_lx "\n",
128 ppc_dump_gpr(env, 3), ppc_dump_gpr(env, 4),
129 ppc_dump_gpr(env, 5), ppc_dump_gpr(env, 6),
130 ppc_dump_gpr(env, 7), ppc_dump_gpr(env, 8),
131 ppc_dump_gpr(env, 9), ppc_dump_gpr(env, 10),
132 ppc_dump_gpr(env, 11), ppc_dump_gpr(env, 12),
133 env->nip);
134 }
135
136 static void ppc_excp_debug_sw_tlb(CPUPPCState *env, int excp)
137 {
138 const char *es;
139 target_ulong *miss, *cmp;
140 int en;
141
142 if (!qemu_loglevel_mask(CPU_LOG_MMU)) {
143 return;
144 }
145
146 if (excp == POWERPC_EXCP_IFTLB) {
147 es = "I";
148 en = 'I';
149 miss = &env->spr[SPR_IMISS];
150 cmp = &env->spr[SPR_ICMP];
151 } else {
152 if (excp == POWERPC_EXCP_DLTLB) {
153 es = "DL";
154 } else {
155 es = "DS";
156 }
157 en = 'D';
158 miss = &env->spr[SPR_DMISS];
159 cmp = &env->spr[SPR_DCMP];
160 }
161 qemu_log("6xx %sTLB miss: %cM " TARGET_FMT_lx " %cC "
162 TARGET_FMT_lx " H1 " TARGET_FMT_lx " H2 "
163 TARGET_FMT_lx " %08x\n", es, en, *miss, en, *cmp,
164 env->spr[SPR_HASH1], env->spr[SPR_HASH2],
165 env->error_code);
166 }
167
168
169 static int powerpc_reset_wakeup(CPUState *cs, CPUPPCState *env, int excp,
170 target_ulong *msr)
171 {
172 /* We no longer are in a PM state */
173 env->resume_as_sreset = false;
174
175 /* Pretend to be returning from doze always as we don't lose state */
176 *msr |= SRR1_WS_NOLOSS;
177
178 /* Machine checks are sent normally */
179 if (excp == POWERPC_EXCP_MCHECK) {
180 return excp;
181 }
182 switch (excp) {
183 case POWERPC_EXCP_RESET:
184 *msr |= SRR1_WAKERESET;
185 break;
186 case POWERPC_EXCP_EXTERNAL:
187 *msr |= SRR1_WAKEEE;
188 break;
189 case POWERPC_EXCP_DECR:
190 *msr |= SRR1_WAKEDEC;
191 break;
192 case POWERPC_EXCP_SDOOR:
193 *msr |= SRR1_WAKEDBELL;
194 break;
195 case POWERPC_EXCP_SDOOR_HV:
196 *msr |= SRR1_WAKEHDBELL;
197 break;
198 case POWERPC_EXCP_HV_MAINT:
199 *msr |= SRR1_WAKEHMI;
200 break;
201 case POWERPC_EXCP_HVIRT:
202 *msr |= SRR1_WAKEHVI;
203 break;
204 default:
205 cpu_abort(cs, "Unsupported exception %d in Power Save mode\n",
206 excp);
207 }
208 return POWERPC_EXCP_RESET;
209 }
210
211 /*
212 * AIL - Alternate Interrupt Location, a mode that allows interrupts to be
213 * taken with the MMU on, and which uses an alternate location (e.g., so the
214 * kernel/hv can map the vectors there with an effective address).
215 *
216 * An interrupt is considered to be taken "with AIL" or "AIL applies" if they
217 * are delivered in this way. AIL requires the LPCR to be set to enable this
218 * mode, and then a number of conditions have to be true for AIL to apply.
219 *
220 * First of all, SRESET, MCE, and HMI are always delivered without AIL, because
221 * they specifically want to be in real mode (e.g., the MCE might be signaling
222 * a SLB multi-hit which requires SLB flush before the MMU can be enabled).
223 *
224 * After that, behaviour depends on the current MSR[IR], MSR[DR], MSR[HV],
225 * whether or not the interrupt changes MSR[HV] from 0 to 1, and the current
226 * radix mode (LPCR[HR]).
227 *
228 * POWER8, POWER9 with LPCR[HR]=0
229 * | LPCR[AIL] | MSR[IR||DR] | MSR[HV] | new MSR[HV] | AIL |
230 * +-----------+-------------+---------+-------------+-----+
231 * | a | 00/01/10 | x | x | 0 |
232 * | a | 11 | 0 | 1 | 0 |
233 * | a | 11 | 1 | 1 | a |
234 * | a | 11 | 0 | 0 | a |
235 * +-------------------------------------------------------+
236 *
237 * POWER9 with LPCR[HR]=1
238 * | LPCR[AIL] | MSR[IR||DR] | MSR[HV] | new MSR[HV] | AIL |
239 * +-----------+-------------+---------+-------------+-----+
240 * | a | 00/01/10 | x | x | 0 |
241 * | a | 11 | x | x | a |
242 * +-------------------------------------------------------+
243 *
244 * The difference with POWER9 being that MSR[HV] 0->1 interrupts can be sent to
245 * the hypervisor in AIL mode if the guest is radix. This is good for
246 * performance but allows the guest to influence the AIL of hypervisor
247 * interrupts using its MSR, and also the hypervisor must disallow guest
248 * interrupts (MSR[HV] 0->0) from using AIL if the hypervisor does not want to
249 * use AIL for its MSR[HV] 0->1 interrupts.
250 *
251 * POWER10 addresses those issues with a new LPCR[HAIL] bit that is applied to
252 * interrupts that begin execution with MSR[HV]=1 (so both MSR[HV] 0->1 and
253 * MSR[HV] 1->1).
254 *
255 * HAIL=1 is equivalent to AIL=3, for interrupts delivered with MSR[HV]=1.
256 *
257 * POWER10 behaviour is
258 * | LPCR[AIL] | LPCR[HAIL] | MSR[IR||DR] | MSR[HV] | new MSR[HV] | AIL |
259 * +-----------+------------+-------------+---------+-------------+-----+
260 * | a | h | 00/01/10 | 0 | 0 | 0 |
261 * | a | h | 11 | 0 | 0 | a |
262 * | a | h | x | 0 | 1 | h |
263 * | a | h | 00/01/10 | 1 | 1 | 0 |
264 * | a | h | 11 | 1 | 1 | h |
265 * +--------------------------------------------------------------------+
266 */
267 static void ppc_excp_apply_ail(PowerPCCPU *cpu, int excp_model, int excp,
268 target_ulong msr,
269 target_ulong *new_msr,
270 target_ulong *vector)
271 {
272 #if defined(TARGET_PPC64)
273 CPUPPCState *env = &cpu->env;
274 bool mmu_all_on = ((msr >> MSR_IR) & 1) && ((msr >> MSR_DR) & 1);
275 bool hv_escalation = !(msr & MSR_HVB) && (*new_msr & MSR_HVB);
276 int ail = 0;
277
278 if (excp == POWERPC_EXCP_MCHECK ||
279 excp == POWERPC_EXCP_RESET ||
280 excp == POWERPC_EXCP_HV_MAINT) {
281 /* SRESET, MCE, HMI never apply AIL */
282 return;
283 }
284
285 if (excp_model == POWERPC_EXCP_POWER8 ||
286 excp_model == POWERPC_EXCP_POWER9) {
287 if (!mmu_all_on) {
288 /* AIL only works if MSR[IR] and MSR[DR] are both enabled. */
289 return;
290 }
291 if (hv_escalation && !(env->spr[SPR_LPCR] & LPCR_HR)) {
292 /*
293 * AIL does not work if there is a MSR[HV] 0->1 transition and the
294 * partition is in HPT mode. For radix guests, such interrupts are
295 * allowed to be delivered to the hypervisor in ail mode.
296 */
297 return;
298 }
299
300 ail = (env->spr[SPR_LPCR] & LPCR_AIL) >> LPCR_AIL_SHIFT;
301 if (ail == 0) {
302 return;
303 }
304 if (ail == 1) {
305 /* AIL=1 is reserved, treat it like AIL=0 */
306 return;
307 }
308
309 } else if (excp_model == POWERPC_EXCP_POWER10) {
310 if (!mmu_all_on && !hv_escalation) {
311 /*
312 * AIL works for HV interrupts even with guest MSR[IR/DR] disabled.
313 * Guest->guest and HV->HV interrupts do require MMU on.
314 */
315 return;
316 }
317
318 if (*new_msr & MSR_HVB) {
319 if (!(env->spr[SPR_LPCR] & LPCR_HAIL)) {
320 /* HV interrupts depend on LPCR[HAIL] */
321 return;
322 }
323 ail = 3; /* HAIL=1 gives AIL=3 behaviour for HV interrupts */
324 } else {
325 ail = (env->spr[SPR_LPCR] & LPCR_AIL) >> LPCR_AIL_SHIFT;
326 }
327 if (ail == 0) {
328 return;
329 }
330 if (ail == 1 || ail == 2) {
331 /* AIL=1 and AIL=2 are reserved, treat them like AIL=0 */
332 return;
333 }
334 } else {
335 /* Other processors do not support AIL */
336 return;
337 }
338
339 /*
340 * AIL applies, so the new MSR gets IR and DR set, and an offset applied
341 * to the new IP.
342 */
343 *new_msr |= (1 << MSR_IR) | (1 << MSR_DR);
344
345 if (excp != POWERPC_EXCP_SYSCALL_VECTORED) {
346 if (ail == 2) {
347 *vector |= 0x0000000000018000ull;
348 } else if (ail == 3) {
349 *vector |= 0xc000000000004000ull;
350 }
351 } else {
352 /*
353 * scv AIL is a little different. AIL=2 does not change the address,
354 * only the MSR. AIL=3 replaces the 0x17000 base with 0xc...3000.
355 */
356 if (ail == 3) {
357 *vector &= ~0x0000000000017000ull; /* Un-apply the base offset */
358 *vector |= 0xc000000000003000ull; /* Apply scv's AIL=3 offset */
359 }
360 }
361 #endif
362 }
363
364 static void powerpc_set_excp_state(PowerPCCPU *cpu,
365 target_ulong vector, target_ulong msr)
366 {
367 CPUState *cs = CPU(cpu);
368 CPUPPCState *env = &cpu->env;
369
370 /*
371 * We don't use hreg_store_msr here as already have treated any
372 * special case that could occur. Just store MSR and update hflags
373 *
374 * Note: We *MUST* not use hreg_store_msr() as-is anyway because it
375 * will prevent setting of the HV bit which some exceptions might need
376 * to do.
377 */
378 env->msr = msr & env->msr_mask;
379 hreg_compute_hflags(env);
380 env->nip = vector;
381 /* Reset exception state */
382 cs->exception_index = POWERPC_EXCP_NONE;
383 env->error_code = 0;
384
385 /* Reset the reservation */
386 env->reserve_addr = -1;
387
388 /*
389 * Any interrupt is context synchronizing, check if TCG TLB needs
390 * a delayed flush on ppc64
391 */
392 check_tlb_flush(env, false);
393 }
394
395 /*
396 * Note that this function should be greatly optimized when called
397 * with a constant excp, from ppc_hw_interrupt
398 */
399 static inline void powerpc_excp_legacy(PowerPCCPU *cpu, int excp)
400 {
401 CPUState *cs = CPU(cpu);
402 CPUPPCState *env = &cpu->env;
403 int excp_model = env->excp_model;
404 target_ulong msr, new_msr, vector;
405 int srr0, srr1, lev = -1;
406
407 if (excp <= POWERPC_EXCP_NONE || excp >= POWERPC_EXCP_NB) {
408 cpu_abort(cs, "Invalid PowerPC exception %d. Aborting\n", excp);
409 }
410
411 qemu_log_mask(CPU_LOG_INT, "Raise exception at " TARGET_FMT_lx
412 " => %s (%d) error=%02x\n", env->nip, powerpc_excp_name(excp),
413 excp, env->error_code);
414
415 /* new srr1 value excluding must-be-zero bits */
416 if (excp_model == POWERPC_EXCP_BOOKE) {
417 msr = env->msr;
418 } else {
419 msr = env->msr & ~0x783f0000ULL;
420 }
421
422 /*
423 * new interrupt handler msr preserves existing HV and ME unless
424 * explicitly overriden
425 */
426 new_msr = env->msr & (((target_ulong)1 << MSR_ME) | MSR_HVB);
427
428 /* target registers */
429 srr0 = SPR_SRR0;
430 srr1 = SPR_SRR1;
431
432 /*
433 * check for special resume at 0x100 from doze/nap/sleep/winkle on
434 * P7/P8/P9
435 */
436 if (env->resume_as_sreset) {
437 excp = powerpc_reset_wakeup(cs, env, excp, &msr);
438 }
439
440 /*
441 * Hypervisor emulation assistance interrupt only exists on server
442 * arch 2.05 server or later. We also don't want to generate it if
443 * we don't have HVB in msr_mask (PAPR mode).
444 */
445 if (excp == POWERPC_EXCP_HV_EMU
446 #if defined(TARGET_PPC64)
447 && !(mmu_is_64bit(env->mmu_model) && (env->msr_mask & MSR_HVB))
448 #endif /* defined(TARGET_PPC64) */
449
450 ) {
451 excp = POWERPC_EXCP_PROGRAM;
452 }
453
454 #ifdef TARGET_PPC64
455 /*
456 * SPEU and VPU share the same IVOR but they exist in different
457 * processors. SPEU is e500v1/2 only and VPU is e6500 only.
458 */
459 if (excp_model == POWERPC_EXCP_BOOKE && excp == POWERPC_EXCP_VPU) {
460 excp = POWERPC_EXCP_SPEU;
461 }
462 #endif
463
464 vector = env->excp_vectors[excp];
465 if (vector == (target_ulong)-1ULL) {
466 cpu_abort(cs, "Raised an exception without defined vector %d\n",
467 excp);
468 }
469
470 vector |= env->excp_prefix;
471
472 switch (excp) {
473 case POWERPC_EXCP_CRITICAL: /* Critical input */
474 switch (excp_model) {
475 case POWERPC_EXCP_40x:
476 srr0 = SPR_40x_SRR2;
477 srr1 = SPR_40x_SRR3;
478 break;
479 case POWERPC_EXCP_BOOKE:
480 srr0 = SPR_BOOKE_CSRR0;
481 srr1 = SPR_BOOKE_CSRR1;
482 break;
483 case POWERPC_EXCP_G2:
484 break;
485 default:
486 goto excp_invalid;
487 }
488 break;
489 case POWERPC_EXCP_MCHECK: /* Machine check exception */
490 if (msr_me == 0) {
491 /*
492 * Machine check exception is not enabled. Enter
493 * checkstop state.
494 */
495 fprintf(stderr, "Machine check while not allowed. "
496 "Entering checkstop state\n");
497 if (qemu_log_separate()) {
498 qemu_log("Machine check while not allowed. "
499 "Entering checkstop state\n");
500 }
501 cs->halted = 1;
502 cpu_interrupt_exittb(cs);
503 }
504 if (env->msr_mask & MSR_HVB) {
505 /*
506 * ISA specifies HV, but can be delivered to guest with HV
507 * clear (e.g., see FWNMI in PAPR).
508 */
509 new_msr |= (target_ulong)MSR_HVB;
510 }
511
512 /* machine check exceptions don't have ME set */
513 new_msr &= ~((target_ulong)1 << MSR_ME);
514
515 /* XXX: should also have something loaded in DAR / DSISR */
516 switch (excp_model) {
517 case POWERPC_EXCP_40x:
518 srr0 = SPR_40x_SRR2;
519 srr1 = SPR_40x_SRR3;
520 break;
521 case POWERPC_EXCP_BOOKE:
522 /* FIXME: choose one or the other based on CPU type */
523 srr0 = SPR_BOOKE_MCSRR0;
524 srr1 = SPR_BOOKE_MCSRR1;
525
526 env->spr[SPR_BOOKE_CSRR0] = env->nip;
527 env->spr[SPR_BOOKE_CSRR1] = msr;
528 break;
529 default:
530 break;
531 }
532 break;
533 case POWERPC_EXCP_DSI: /* Data storage exception */
534 trace_ppc_excp_dsi(env->spr[SPR_DSISR], env->spr[SPR_DAR]);
535 break;
536 case POWERPC_EXCP_ISI: /* Instruction storage exception */
537 trace_ppc_excp_isi(msr, env->nip);
538 msr |= env->error_code;
539 break;
540 case POWERPC_EXCP_EXTERNAL: /* External input */
541 {
542 bool lpes0;
543
544 cs = CPU(cpu);
545
546 /*
547 * Exception targeting modifiers
548 *
549 * LPES0 is supported on POWER7/8/9
550 * LPES1 is not supported (old iSeries mode)
551 *
552 * On anything else, we behave as if LPES0 is 1
553 * (externals don't alter MSR:HV)
554 */
555 #if defined(TARGET_PPC64)
556 if (excp_model == POWERPC_EXCP_POWER7 ||
557 excp_model == POWERPC_EXCP_POWER8 ||
558 excp_model == POWERPC_EXCP_POWER9 ||
559 excp_model == POWERPC_EXCP_POWER10) {
560 lpes0 = !!(env->spr[SPR_LPCR] & LPCR_LPES0);
561 } else
562 #endif /* defined(TARGET_PPC64) */
563 {
564 lpes0 = true;
565 }
566
567 if (!lpes0) {
568 new_msr |= (target_ulong)MSR_HVB;
569 new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
570 srr0 = SPR_HSRR0;
571 srr1 = SPR_HSRR1;
572 }
573 if (env->mpic_proxy) {
574 /* IACK the IRQ on delivery */
575 env->spr[SPR_BOOKE_EPR] = ldl_phys(cs->as, env->mpic_iack);
576 }
577 break;
578 }
579 case POWERPC_EXCP_ALIGN: /* Alignment exception */
580 /* Get rS/rD and rA from faulting opcode */
581 /*
582 * Note: the opcode fields will not be set properly for a
583 * direct store load/store, but nobody cares as nobody
584 * actually uses direct store segments.
585 */
586 env->spr[SPR_DSISR] |= (env->error_code & 0x03FF0000) >> 16;
587 break;
588 case POWERPC_EXCP_PROGRAM: /* Program exception */
589 switch (env->error_code & ~0xF) {
590 case POWERPC_EXCP_FP:
591 if ((msr_fe0 == 0 && msr_fe1 == 0) || msr_fp == 0) {
592 trace_ppc_excp_fp_ignore();
593 cs->exception_index = POWERPC_EXCP_NONE;
594 env->error_code = 0;
595 return;
596 }
597
598 /*
599 * FP exceptions always have NIP pointing to the faulting
600 * instruction, so always use store_next and claim we are
601 * precise in the MSR.
602 */
603 msr |= 0x00100000;
604 env->spr[SPR_BOOKE_ESR] = ESR_FP;
605 break;
606 case POWERPC_EXCP_INVAL:
607 trace_ppc_excp_inval(env->nip);
608 msr |= 0x00080000;
609 env->spr[SPR_BOOKE_ESR] = ESR_PIL;
610 break;
611 case POWERPC_EXCP_PRIV:
612 msr |= 0x00040000;
613 env->spr[SPR_BOOKE_ESR] = ESR_PPR;
614 break;
615 case POWERPC_EXCP_TRAP:
616 msr |= 0x00020000;
617 env->spr[SPR_BOOKE_ESR] = ESR_PTR;
618 break;
619 default:
620 /* Should never occur */
621 cpu_abort(cs, "Invalid program exception %d. Aborting\n",
622 env->error_code);
623 break;
624 }
625 break;
626 case POWERPC_EXCP_SYSCALL: /* System call exception */
627 lev = env->error_code;
628
629 if ((lev == 1) && cpu->vhyp) {
630 dump_hcall(env);
631 } else {
632 dump_syscall(env);
633 }
634
635 /*
636 * We need to correct the NIP which in this case is supposed
637 * to point to the next instruction
638 */
639 env->nip += 4;
640
641 /* "PAPR mode" built-in hypercall emulation */
642 if ((lev == 1) && cpu->vhyp) {
643 PPCVirtualHypervisorClass *vhc =
644 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
645 vhc->hypercall(cpu->vhyp, cpu);
646 return;
647 }
648 if (lev == 1) {
649 new_msr |= (target_ulong)MSR_HVB;
650 }
651 break;
652 case POWERPC_EXCP_SYSCALL_VECTORED: /* scv exception */
653 lev = env->error_code;
654 dump_syscall(env);
655 env->nip += 4;
656 new_msr |= env->msr & ((target_ulong)1 << MSR_EE);
657 new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
658
659 vector += lev * 0x20;
660
661 env->lr = env->nip;
662 env->ctr = msr;
663 break;
664 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
665 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */
666 case POWERPC_EXCP_DECR: /* Decrementer exception */
667 break;
668 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
669 /* FIT on 4xx */
670 trace_ppc_excp_print("FIT");
671 break;
672 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
673 trace_ppc_excp_print("WDT");
674 switch (excp_model) {
675 case POWERPC_EXCP_BOOKE:
676 srr0 = SPR_BOOKE_CSRR0;
677 srr1 = SPR_BOOKE_CSRR1;
678 break;
679 default:
680 break;
681 }
682 break;
683 case POWERPC_EXCP_DTLB: /* Data TLB error */
684 case POWERPC_EXCP_ITLB: /* Instruction TLB error */
685 break;
686 case POWERPC_EXCP_DEBUG: /* Debug interrupt */
687 if (env->flags & POWERPC_FLAG_DE) {
688 /* FIXME: choose one or the other based on CPU type */
689 srr0 = SPR_BOOKE_DSRR0;
690 srr1 = SPR_BOOKE_DSRR1;
691
692 env->spr[SPR_BOOKE_CSRR0] = env->nip;
693 env->spr[SPR_BOOKE_CSRR1] = msr;
694
695 /* DBSR already modified by caller */
696 } else {
697 cpu_abort(cs, "Debug exception triggered on unsupported model\n");
698 }
699 break;
700 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavailable/VPU */
701 env->spr[SPR_BOOKE_ESR] = ESR_SPV;
702 break;
703 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */
704 break;
705 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */
706 srr0 = SPR_BOOKE_CSRR0;
707 srr1 = SPR_BOOKE_CSRR1;
708 break;
709 case POWERPC_EXCP_RESET: /* System reset exception */
710 /* A power-saving exception sets ME, otherwise it is unchanged */
711 if (msr_pow) {
712 /* indicate that we resumed from power save mode */
713 msr |= 0x10000;
714 new_msr |= ((target_ulong)1 << MSR_ME);
715 }
716 if (env->msr_mask & MSR_HVB) {
717 /*
718 * ISA specifies HV, but can be delivered to guest with HV
719 * clear (e.g., see FWNMI in PAPR, NMI injection in QEMU).
720 */
721 new_msr |= (target_ulong)MSR_HVB;
722 } else {
723 if (msr_pow) {
724 cpu_abort(cs, "Trying to deliver power-saving system reset "
725 "exception %d with no HV support\n", excp);
726 }
727 }
728 break;
729 case POWERPC_EXCP_DSEG: /* Data segment exception */
730 case POWERPC_EXCP_ISEG: /* Instruction segment exception */
731 case POWERPC_EXCP_TRACE: /* Trace exception */
732 break;
733 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage exception */
734 msr |= env->error_code;
735 /* fall through */
736 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */
737 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */
738 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */
739 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment exception */
740 case POWERPC_EXCP_SDOOR_HV: /* Hypervisor Doorbell interrupt */
741 case POWERPC_EXCP_HV_EMU:
742 case POWERPC_EXCP_HVIRT: /* Hypervisor virtualization */
743 srr0 = SPR_HSRR0;
744 srr1 = SPR_HSRR1;
745 new_msr |= (target_ulong)MSR_HVB;
746 new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
747 break;
748 case POWERPC_EXCP_VPU: /* Vector unavailable exception */
749 case POWERPC_EXCP_VSXU: /* VSX unavailable exception */
750 case POWERPC_EXCP_FU: /* Facility unavailable exception */
751 #ifdef TARGET_PPC64
752 env->spr[SPR_FSCR] |= ((target_ulong)env->error_code << 56);
753 #endif
754 break;
755 case POWERPC_EXCP_HV_FU: /* Hypervisor Facility Unavailable Exception */
756 #ifdef TARGET_PPC64
757 env->spr[SPR_HFSCR] |= ((target_ulong)env->error_code << FSCR_IC_POS);
758 srr0 = SPR_HSRR0;
759 srr1 = SPR_HSRR1;
760 new_msr |= (target_ulong)MSR_HVB;
761 new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
762 #endif
763 break;
764 case POWERPC_EXCP_PIT: /* Programmable interval timer interrupt */
765 trace_ppc_excp_print("PIT");
766 break;
767 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
768 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
769 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
770 switch (excp_model) {
771 case POWERPC_EXCP_602:
772 case POWERPC_EXCP_603:
773 case POWERPC_EXCP_G2:
774 /* Swap temporary saved registers with GPRs */
775 if (!(new_msr & ((target_ulong)1 << MSR_TGPR))) {
776 new_msr |= (target_ulong)1 << MSR_TGPR;
777 hreg_swap_gpr_tgpr(env);
778 }
779 /* fall through */
780 case POWERPC_EXCP_7x5:
781 ppc_excp_debug_sw_tlb(env, excp);
782
783 msr |= env->crf[0] << 28;
784 msr |= env->error_code; /* key, D/I, S/L bits */
785 /* Set way using a LRU mechanism */
786 msr |= ((env->last_way + 1) & (env->nb_ways - 1)) << 17;
787 break;
788 default:
789 cpu_abort(cs, "Invalid TLB miss exception\n");
790 break;
791 }
792 break;
793 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data interrupt */
794 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round interrupt */
795 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor interrupt */
796 case POWERPC_EXCP_IO: /* IO error exception */
797 case POWERPC_EXCP_RUNM: /* Run mode exception */
798 case POWERPC_EXCP_EMUL: /* Emulation trap exception */
799 case POWERPC_EXCP_FPA: /* Floating-point assist exception */
800 case POWERPC_EXCP_DABR: /* Data address breakpoint */
801 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
802 case POWERPC_EXCP_SMI: /* System management interrupt */
803 case POWERPC_EXCP_THERM: /* Thermal interrupt */
804 case POWERPC_EXCP_PERFM: /* Embedded performance monitor interrupt */
805 case POWERPC_EXCP_VPUA: /* Vector assist exception */
806 case POWERPC_EXCP_SOFTP: /* Soft patch exception */
807 case POWERPC_EXCP_MAINT: /* Maintenance exception */
808 case POWERPC_EXCP_MEXTBR: /* Maskable external breakpoint */
809 case POWERPC_EXCP_NMEXTBR: /* Non maskable external breakpoint */
810 cpu_abort(cs, "%s exception not implemented\n",
811 powerpc_excp_name(excp));
812 break;
813 default:
814 excp_invalid:
815 cpu_abort(cs, "Invalid PowerPC exception %d. Aborting\n", excp);
816 break;
817 }
818
819 /* Sanity check */
820 if (!(env->msr_mask & MSR_HVB)) {
821 if (new_msr & MSR_HVB) {
822 cpu_abort(cs, "Trying to deliver HV exception (MSR) %d with "
823 "no HV support\n", excp);
824 }
825 if (srr0 == SPR_HSRR0) {
826 cpu_abort(cs, "Trying to deliver HV exception (HSRR) %d with "
827 "no HV support\n", excp);
828 }
829 }
830
831 /*
832 * Sort out endianness of interrupt, this differs depending on the
833 * CPU, the HV mode, etc...
834 */
835 if (ppc_interrupts_little_endian(cpu, !!(new_msr & MSR_HVB))) {
836 new_msr |= (target_ulong)1 << MSR_LE;
837 }
838
839 #if defined(TARGET_PPC64)
840 if (excp_model == POWERPC_EXCP_BOOKE) {
841 if (env->spr[SPR_BOOKE_EPCR] & EPCR_ICM) {
842 /* Cat.64-bit: EPCR.ICM is copied to MSR.CM */
843 new_msr |= (target_ulong)1 << MSR_CM;
844 } else {
845 vector = (uint32_t)vector;
846 }
847 } else {
848 if (!msr_isf && !mmu_is_64bit(env->mmu_model)) {
849 vector = (uint32_t)vector;
850 } else {
851 new_msr |= (target_ulong)1 << MSR_SF;
852 }
853 }
854 #endif
855
856 if (excp != POWERPC_EXCP_SYSCALL_VECTORED) {
857 /* Save PC */
858 env->spr[srr0] = env->nip;
859
860 /* Save MSR */
861 env->spr[srr1] = msr;
862 }
863
864 /* This can update new_msr and vector if AIL applies */
865 ppc_excp_apply_ail(cpu, excp_model, excp, msr, &new_msr, &vector);
866
867 powerpc_set_excp_state(cpu, vector, new_msr);
868 }
869
870 static void powerpc_excp(PowerPCCPU *cpu, int excp)
871 {
872 CPUPPCState *env = &cpu->env;
873
874 switch (env->excp_model) {
875 default:
876 powerpc_excp_legacy(cpu, excp);
877 }
878 }
879
880 void ppc_cpu_do_interrupt(CPUState *cs)
881 {
882 PowerPCCPU *cpu = POWERPC_CPU(cs);
883
884 powerpc_excp(cpu, cs->exception_index);
885 }
886
887 static void ppc_hw_interrupt(CPUPPCState *env)
888 {
889 PowerPCCPU *cpu = env_archcpu(env);
890 bool async_deliver;
891
892 /* External reset */
893 if (env->pending_interrupts & (1 << PPC_INTERRUPT_RESET)) {
894 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_RESET);
895 powerpc_excp(cpu, POWERPC_EXCP_RESET);
896 return;
897 }
898 /* Machine check exception */
899 if (env->pending_interrupts & (1 << PPC_INTERRUPT_MCK)) {
900 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_MCK);
901 powerpc_excp(cpu, POWERPC_EXCP_MCHECK);
902 return;
903 }
904 #if 0 /* TODO */
905 /* External debug exception */
906 if (env->pending_interrupts & (1 << PPC_INTERRUPT_DEBUG)) {
907 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_DEBUG);
908 powerpc_excp(cpu, POWERPC_EXCP_DEBUG);
909 return;
910 }
911 #endif
912
913 /*
914 * For interrupts that gate on MSR:EE, we need to do something a
915 * bit more subtle, as we need to let them through even when EE is
916 * clear when coming out of some power management states (in order
917 * for them to become a 0x100).
918 */
919 async_deliver = (msr_ee != 0) || env->resume_as_sreset;
920
921 /* Hypervisor decrementer exception */
922 if (env->pending_interrupts & (1 << PPC_INTERRUPT_HDECR)) {
923 /* LPCR will be clear when not supported so this will work */
924 bool hdice = !!(env->spr[SPR_LPCR] & LPCR_HDICE);
925 if ((async_deliver || msr_hv == 0) && hdice) {
926 /* HDEC clears on delivery */
927 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_HDECR);
928 powerpc_excp(cpu, POWERPC_EXCP_HDECR);
929 return;
930 }
931 }
932
933 /* Hypervisor virtualization interrupt */
934 if (env->pending_interrupts & (1 << PPC_INTERRUPT_HVIRT)) {
935 /* LPCR will be clear when not supported so this will work */
936 bool hvice = !!(env->spr[SPR_LPCR] & LPCR_HVICE);
937 if ((async_deliver || msr_hv == 0) && hvice) {
938 powerpc_excp(cpu, POWERPC_EXCP_HVIRT);
939 return;
940 }
941 }
942
943 /* External interrupt can ignore MSR:EE under some circumstances */
944 if (env->pending_interrupts & (1 << PPC_INTERRUPT_EXT)) {
945 bool lpes0 = !!(env->spr[SPR_LPCR] & LPCR_LPES0);
946 bool heic = !!(env->spr[SPR_LPCR] & LPCR_HEIC);
947 /* HEIC blocks delivery to the hypervisor */
948 if ((async_deliver && !(heic && msr_hv && !msr_pr)) ||
949 (env->has_hv_mode && msr_hv == 0 && !lpes0)) {
950 powerpc_excp(cpu, POWERPC_EXCP_EXTERNAL);
951 return;
952 }
953 }
954 if (msr_ce != 0) {
955 /* External critical interrupt */
956 if (env->pending_interrupts & (1 << PPC_INTERRUPT_CEXT)) {
957 powerpc_excp(cpu, POWERPC_EXCP_CRITICAL);
958 return;
959 }
960 }
961 if (async_deliver != 0) {
962 /* Watchdog timer on embedded PowerPC */
963 if (env->pending_interrupts & (1 << PPC_INTERRUPT_WDT)) {
964 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_WDT);
965 powerpc_excp(cpu, POWERPC_EXCP_WDT);
966 return;
967 }
968 if (env->pending_interrupts & (1 << PPC_INTERRUPT_CDOORBELL)) {
969 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_CDOORBELL);
970 powerpc_excp(cpu, POWERPC_EXCP_DOORCI);
971 return;
972 }
973 /* Fixed interval timer on embedded PowerPC */
974 if (env->pending_interrupts & (1 << PPC_INTERRUPT_FIT)) {
975 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_FIT);
976 powerpc_excp(cpu, POWERPC_EXCP_FIT);
977 return;
978 }
979 /* Programmable interval timer on embedded PowerPC */
980 if (env->pending_interrupts & (1 << PPC_INTERRUPT_PIT)) {
981 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_PIT);
982 powerpc_excp(cpu, POWERPC_EXCP_PIT);
983 return;
984 }
985 /* Decrementer exception */
986 if (env->pending_interrupts & (1 << PPC_INTERRUPT_DECR)) {
987 if (ppc_decr_clear_on_delivery(env)) {
988 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_DECR);
989 }
990 powerpc_excp(cpu, POWERPC_EXCP_DECR);
991 return;
992 }
993 if (env->pending_interrupts & (1 << PPC_INTERRUPT_DOORBELL)) {
994 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_DOORBELL);
995 if (is_book3s_arch2x(env)) {
996 powerpc_excp(cpu, POWERPC_EXCP_SDOOR);
997 } else {
998 powerpc_excp(cpu, POWERPC_EXCP_DOORI);
999 }
1000 return;
1001 }
1002 if (env->pending_interrupts & (1 << PPC_INTERRUPT_HDOORBELL)) {
1003 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_HDOORBELL);
1004 powerpc_excp(cpu, POWERPC_EXCP_SDOOR_HV);
1005 return;
1006 }
1007 if (env->pending_interrupts & (1 << PPC_INTERRUPT_PERFM)) {
1008 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_PERFM);
1009 powerpc_excp(cpu, POWERPC_EXCP_PERFM);
1010 return;
1011 }
1012 /* Thermal interrupt */
1013 if (env->pending_interrupts & (1 << PPC_INTERRUPT_THERM)) {
1014 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_THERM);
1015 powerpc_excp(cpu, POWERPC_EXCP_THERM);
1016 return;
1017 }
1018 }
1019
1020 if (env->resume_as_sreset) {
1021 /*
1022 * This is a bug ! It means that has_work took us out of halt without
1023 * anything to deliver while in a PM state that requires getting
1024 * out via a 0x100
1025 *
1026 * This means we will incorrectly execute past the power management
1027 * instruction instead of triggering a reset.
1028 *
1029 * It generally means a discrepancy between the wakeup conditions in the
1030 * processor has_work implementation and the logic in this function.
1031 */
1032 cpu_abort(env_cpu(env),
1033 "Wakeup from PM state but interrupt Undelivered");
1034 }
1035 }
1036
1037 void ppc_cpu_do_system_reset(CPUState *cs)
1038 {
1039 PowerPCCPU *cpu = POWERPC_CPU(cs);
1040
1041 powerpc_excp(cpu, POWERPC_EXCP_RESET);
1042 }
1043
1044 void ppc_cpu_do_fwnmi_machine_check(CPUState *cs, target_ulong vector)
1045 {
1046 PowerPCCPU *cpu = POWERPC_CPU(cs);
1047 CPUPPCState *env = &cpu->env;
1048 target_ulong msr = 0;
1049
1050 /*
1051 * Set MSR and NIP for the handler, SRR0/1, DAR and DSISR have already
1052 * been set by KVM.
1053 */
1054 msr = (1ULL << MSR_ME);
1055 msr |= env->msr & (1ULL << MSR_SF);
1056 if (ppc_interrupts_little_endian(cpu, false)) {
1057 msr |= (1ULL << MSR_LE);
1058 }
1059
1060 powerpc_set_excp_state(cpu, vector, msr);
1061 }
1062
1063 bool ppc_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
1064 {
1065 PowerPCCPU *cpu = POWERPC_CPU(cs);
1066 CPUPPCState *env = &cpu->env;
1067
1068 if (interrupt_request & CPU_INTERRUPT_HARD) {
1069 ppc_hw_interrupt(env);
1070 if (env->pending_interrupts == 0) {
1071 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
1072 }
1073 return true;
1074 }
1075 return false;
1076 }
1077
1078 #endif /* !CONFIG_USER_ONLY */
1079
1080 /*****************************************************************************/
1081 /* Exceptions processing helpers */
1082
1083 void raise_exception_err_ra(CPUPPCState *env, uint32_t exception,
1084 uint32_t error_code, uintptr_t raddr)
1085 {
1086 CPUState *cs = env_cpu(env);
1087
1088 cs->exception_index = exception;
1089 env->error_code = error_code;
1090 cpu_loop_exit_restore(cs, raddr);
1091 }
1092
1093 void raise_exception_err(CPUPPCState *env, uint32_t exception,
1094 uint32_t error_code)
1095 {
1096 raise_exception_err_ra(env, exception, error_code, 0);
1097 }
1098
1099 void raise_exception(CPUPPCState *env, uint32_t exception)
1100 {
1101 raise_exception_err_ra(env, exception, 0, 0);
1102 }
1103
1104 void raise_exception_ra(CPUPPCState *env, uint32_t exception,
1105 uintptr_t raddr)
1106 {
1107 raise_exception_err_ra(env, exception, 0, raddr);
1108 }
1109
1110 #ifdef CONFIG_TCG
1111 void helper_raise_exception_err(CPUPPCState *env, uint32_t exception,
1112 uint32_t error_code)
1113 {
1114 raise_exception_err_ra(env, exception, error_code, 0);
1115 }
1116
1117 void helper_raise_exception(CPUPPCState *env, uint32_t exception)
1118 {
1119 raise_exception_err_ra(env, exception, 0, 0);
1120 }
1121 #endif
1122
1123 #if !defined(CONFIG_USER_ONLY)
1124 #ifdef CONFIG_TCG
1125 void helper_store_msr(CPUPPCState *env, target_ulong val)
1126 {
1127 uint32_t excp = hreg_store_msr(env, val, 0);
1128
1129 if (excp != 0) {
1130 CPUState *cs = env_cpu(env);
1131 cpu_interrupt_exittb(cs);
1132 raise_exception(env, excp);
1133 }
1134 }
1135
1136 #if defined(TARGET_PPC64)
1137 void helper_scv(CPUPPCState *env, uint32_t lev)
1138 {
1139 if (env->spr[SPR_FSCR] & (1ull << FSCR_SCV)) {
1140 raise_exception_err(env, POWERPC_EXCP_SYSCALL_VECTORED, lev);
1141 } else {
1142 raise_exception_err(env, POWERPC_EXCP_FU, FSCR_IC_SCV);
1143 }
1144 }
1145
1146 void helper_pminsn(CPUPPCState *env, powerpc_pm_insn_t insn)
1147 {
1148 CPUState *cs;
1149
1150 cs = env_cpu(env);
1151 cs->halted = 1;
1152
1153 /* Condition for waking up at 0x100 */
1154 env->resume_as_sreset = (insn != PPC_PM_STOP) ||
1155 (env->spr[SPR_PSSCR] & PSSCR_EC);
1156 }
1157 #endif /* defined(TARGET_PPC64) */
1158 #endif /* CONFIG_TCG */
1159
1160 static void do_rfi(CPUPPCState *env, target_ulong nip, target_ulong msr)
1161 {
1162 CPUState *cs = env_cpu(env);
1163
1164 /* MSR:POW cannot be set by any form of rfi */
1165 msr &= ~(1ULL << MSR_POW);
1166
1167 #if defined(TARGET_PPC64)
1168 /* Switching to 32-bit ? Crop the nip */
1169 if (!msr_is_64bit(env, msr)) {
1170 nip = (uint32_t)nip;
1171 }
1172 #else
1173 nip = (uint32_t)nip;
1174 #endif
1175 /* XXX: beware: this is false if VLE is supported */
1176 env->nip = nip & ~((target_ulong)0x00000003);
1177 hreg_store_msr(env, msr, 1);
1178 trace_ppc_excp_rfi(env->nip, env->msr);
1179 /*
1180 * No need to raise an exception here, as rfi is always the last
1181 * insn of a TB
1182 */
1183 cpu_interrupt_exittb(cs);
1184 /* Reset the reservation */
1185 env->reserve_addr = -1;
1186
1187 /* Context synchronizing: check if TCG TLB needs flush */
1188 check_tlb_flush(env, false);
1189 }
1190
1191 #ifdef CONFIG_TCG
1192 void helper_rfi(CPUPPCState *env)
1193 {
1194 do_rfi(env, env->spr[SPR_SRR0], env->spr[SPR_SRR1] & 0xfffffffful);
1195 }
1196
1197 #define MSR_BOOK3S_MASK
1198 #if defined(TARGET_PPC64)
1199 void helper_rfid(CPUPPCState *env)
1200 {
1201 /*
1202 * The architecture defines a number of rules for which bits can
1203 * change but in practice, we handle this in hreg_store_msr()
1204 * which will be called by do_rfi(), so there is no need to filter
1205 * here
1206 */
1207 do_rfi(env, env->spr[SPR_SRR0], env->spr[SPR_SRR1]);
1208 }
1209
1210 void helper_rfscv(CPUPPCState *env)
1211 {
1212 do_rfi(env, env->lr, env->ctr);
1213 }
1214
1215 void helper_hrfid(CPUPPCState *env)
1216 {
1217 do_rfi(env, env->spr[SPR_HSRR0], env->spr[SPR_HSRR1]);
1218 }
1219 #endif
1220
1221 #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
1222 void helper_rfebb(CPUPPCState *env, target_ulong s)
1223 {
1224 target_ulong msr = env->msr;
1225
1226 /*
1227 * Handling of BESCR bits 32:33 according to PowerISA v3.1:
1228 *
1229 * "If BESCR 32:33 != 0b00 the instruction is treated as if
1230 * the instruction form were invalid."
1231 */
1232 if (env->spr[SPR_BESCR] & BESCR_INVALID) {
1233 raise_exception_err(env, POWERPC_EXCP_PROGRAM,
1234 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1235 }
1236
1237 env->nip = env->spr[SPR_EBBRR];
1238
1239 /* Switching to 32-bit ? Crop the nip */
1240 if (!msr_is_64bit(env, msr)) {
1241 env->nip = (uint32_t)env->spr[SPR_EBBRR];
1242 }
1243
1244 if (s) {
1245 env->spr[SPR_BESCR] |= BESCR_GE;
1246 } else {
1247 env->spr[SPR_BESCR] &= ~BESCR_GE;
1248 }
1249 }
1250 #endif
1251
1252 /*****************************************************************************/
1253 /* Embedded PowerPC specific helpers */
1254 void helper_40x_rfci(CPUPPCState *env)
1255 {
1256 do_rfi(env, env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3]);
1257 }
1258
1259 void helper_rfci(CPUPPCState *env)
1260 {
1261 do_rfi(env, env->spr[SPR_BOOKE_CSRR0], env->spr[SPR_BOOKE_CSRR1]);
1262 }
1263
1264 void helper_rfdi(CPUPPCState *env)
1265 {
1266 /* FIXME: choose CSRR1 or DSRR1 based on cpu type */
1267 do_rfi(env, env->spr[SPR_BOOKE_DSRR0], env->spr[SPR_BOOKE_DSRR1]);
1268 }
1269
1270 void helper_rfmci(CPUPPCState *env)
1271 {
1272 /* FIXME: choose CSRR1 or MCSRR1 based on cpu type */
1273 do_rfi(env, env->spr[SPR_BOOKE_MCSRR0], env->spr[SPR_BOOKE_MCSRR1]);
1274 }
1275 #endif /* CONFIG_TCG */
1276 #endif /* !defined(CONFIG_USER_ONLY) */
1277
1278 #ifdef CONFIG_TCG
1279 void helper_tw(CPUPPCState *env, target_ulong arg1, target_ulong arg2,
1280 uint32_t flags)
1281 {
1282 if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
1283 ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
1284 ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
1285 ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
1286 ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
1287 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
1288 POWERPC_EXCP_TRAP, GETPC());
1289 }
1290 }
1291
1292 #if defined(TARGET_PPC64)
1293 void helper_td(CPUPPCState *env, target_ulong arg1, target_ulong arg2,
1294 uint32_t flags)
1295 {
1296 if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
1297 ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
1298 ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
1299 ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
1300 ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01))))) {
1301 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
1302 POWERPC_EXCP_TRAP, GETPC());
1303 }
1304 }
1305 #endif
1306 #endif
1307
1308 #if !defined(CONFIG_USER_ONLY)
1309 /*****************************************************************************/
1310 /* PowerPC 601 specific instructions (POWER bridge) */
1311
1312 #ifdef CONFIG_TCG
1313 void helper_rfsvc(CPUPPCState *env)
1314 {
1315 do_rfi(env, env->lr, env->ctr & 0x0000FFFF);
1316 }
1317
1318 /* Embedded.Processor Control */
1319 static int dbell2irq(target_ulong rb)
1320 {
1321 int msg = rb & DBELL_TYPE_MASK;
1322 int irq = -1;
1323
1324 switch (msg) {
1325 case DBELL_TYPE_DBELL:
1326 irq = PPC_INTERRUPT_DOORBELL;
1327 break;
1328 case DBELL_TYPE_DBELL_CRIT:
1329 irq = PPC_INTERRUPT_CDOORBELL;
1330 break;
1331 case DBELL_TYPE_G_DBELL:
1332 case DBELL_TYPE_G_DBELL_CRIT:
1333 case DBELL_TYPE_G_DBELL_MC:
1334 /* XXX implement */
1335 default:
1336 break;
1337 }
1338
1339 return irq;
1340 }
1341
1342 void helper_msgclr(CPUPPCState *env, target_ulong rb)
1343 {
1344 int irq = dbell2irq(rb);
1345
1346 if (irq < 0) {
1347 return;
1348 }
1349
1350 env->pending_interrupts &= ~(1 << irq);
1351 }
1352
1353 void helper_msgsnd(target_ulong rb)
1354 {
1355 int irq = dbell2irq(rb);
1356 int pir = rb & DBELL_PIRTAG_MASK;
1357 CPUState *cs;
1358
1359 if (irq < 0) {
1360 return;
1361 }
1362
1363 qemu_mutex_lock_iothread();
1364 CPU_FOREACH(cs) {
1365 PowerPCCPU *cpu = POWERPC_CPU(cs);
1366 CPUPPCState *cenv = &cpu->env;
1367
1368 if ((rb & DBELL_BRDCAST) || (cenv->spr[SPR_BOOKE_PIR] == pir)) {
1369 cenv->pending_interrupts |= 1 << irq;
1370 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
1371 }
1372 }
1373 qemu_mutex_unlock_iothread();
1374 }
1375
1376 /* Server Processor Control */
1377
1378 static bool dbell_type_server(target_ulong rb)
1379 {
1380 /*
1381 * A Directed Hypervisor Doorbell message is sent only if the
1382 * message type is 5. All other types are reserved and the
1383 * instruction is a no-op
1384 */
1385 return (rb & DBELL_TYPE_MASK) == DBELL_TYPE_DBELL_SERVER;
1386 }
1387
1388 void helper_book3s_msgclr(CPUPPCState *env, target_ulong rb)
1389 {
1390 if (!dbell_type_server(rb)) {
1391 return;
1392 }
1393
1394 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_HDOORBELL);
1395 }
1396
1397 static void book3s_msgsnd_common(int pir, int irq)
1398 {
1399 CPUState *cs;
1400
1401 qemu_mutex_lock_iothread();
1402 CPU_FOREACH(cs) {
1403 PowerPCCPU *cpu = POWERPC_CPU(cs);
1404 CPUPPCState *cenv = &cpu->env;
1405
1406 /* TODO: broadcast message to all threads of the same processor */
1407 if (cenv->spr_cb[SPR_PIR].default_value == pir) {
1408 cenv->pending_interrupts |= 1 << irq;
1409 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
1410 }
1411 }
1412 qemu_mutex_unlock_iothread();
1413 }
1414
1415 void helper_book3s_msgsnd(target_ulong rb)
1416 {
1417 int pir = rb & DBELL_PROCIDTAG_MASK;
1418
1419 if (!dbell_type_server(rb)) {
1420 return;
1421 }
1422
1423 book3s_msgsnd_common(pir, PPC_INTERRUPT_HDOORBELL);
1424 }
1425
1426 #if defined(TARGET_PPC64)
1427 void helper_book3s_msgclrp(CPUPPCState *env, target_ulong rb)
1428 {
1429 helper_hfscr_facility_check(env, HFSCR_MSGP, "msgclrp", HFSCR_IC_MSGP);
1430
1431 if (!dbell_type_server(rb)) {
1432 return;
1433 }
1434
1435 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_DOORBELL);
1436 }
1437
1438 /*
1439 * sends a message to other threads that are on the same
1440 * multi-threaded processor
1441 */
1442 void helper_book3s_msgsndp(CPUPPCState *env, target_ulong rb)
1443 {
1444 int pir = env->spr_cb[SPR_PIR].default_value;
1445
1446 helper_hfscr_facility_check(env, HFSCR_MSGP, "msgsndp", HFSCR_IC_MSGP);
1447
1448 if (!dbell_type_server(rb)) {
1449 return;
1450 }
1451
1452 /* TODO: TCG supports only one thread */
1453
1454 book3s_msgsnd_common(pir, PPC_INTERRUPT_DOORBELL);
1455 }
1456 #endif /* TARGET_PPC64 */
1457
1458 void ppc_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
1459 MMUAccessType access_type,
1460 int mmu_idx, uintptr_t retaddr)
1461 {
1462 CPUPPCState *env = cs->env_ptr;
1463 uint32_t insn;
1464
1465 /* Restore state and reload the insn we executed, for filling in DSISR. */
1466 cpu_restore_state(cs, retaddr, true);
1467 insn = cpu_ldl_code(env, env->nip);
1468
1469 switch (env->mmu_model) {
1470 case POWERPC_MMU_SOFT_4xx:
1471 env->spr[SPR_40x_DEAR] = vaddr;
1472 break;
1473 case POWERPC_MMU_BOOKE:
1474 case POWERPC_MMU_BOOKE206:
1475 env->spr[SPR_BOOKE_DEAR] = vaddr;
1476 break;
1477 default:
1478 env->spr[SPR_DAR] = vaddr;
1479 break;
1480 }
1481
1482 cs->exception_index = POWERPC_EXCP_ALIGN;
1483 env->error_code = insn & 0x03FF0000;
1484 cpu_loop_exit(cs);
1485 }
1486 #endif /* CONFIG_TCG */
1487 #endif /* !CONFIG_USER_ONLY */