]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/fpu_helper.c
tcg: Factor out probe_write() logic into probe_access()
[mirror_qemu.git] / target / ppc / fpu_helper.c
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
25
26 static inline float128 float128_snan_to_qnan(float128 x)
27 {
28 float128 r;
29
30 r.high = x.high | 0x0000800000000000;
31 r.low = x.low;
32 return r;
33 }
34
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
38
39 static inline bool fp_exceptions_enabled(CPUPPCState *env)
40 {
41 #ifdef CONFIG_USER_ONLY
42 return true;
43 #else
44 return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
45 #endif
46 }
47
48 /*****************************************************************************/
49 /* Floating point operations helpers */
50
51 /*
52 * This is the non-arithmatic conversion that happens e.g. on loads.
53 * In the Power ISA pseudocode, this is called DOUBLE.
54 */
55 uint64_t helper_todouble(uint32_t arg)
56 {
57 uint32_t abs_arg = arg & 0x7fffffff;
58 uint64_t ret;
59
60 if (likely(abs_arg >= 0x00800000)) {
61 if (unlikely(extract32(arg, 23, 8) == 0xff)) {
62 /* Inf or NAN. */
63 ret = (uint64_t)extract32(arg, 31, 1) << 63;
64 ret |= (uint64_t)0x7ff << 52;
65 ret |= (uint64_t)extract32(arg, 0, 23) << 29;
66 } else {
67 /* Normalized operand. */
68 ret = (uint64_t)extract32(arg, 30, 2) << 62;
69 ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
70 ret |= (uint64_t)extract32(arg, 0, 30) << 29;
71 }
72 } else {
73 /* Zero or Denormalized operand. */
74 ret = (uint64_t)extract32(arg, 31, 1) << 63;
75 if (unlikely(abs_arg != 0)) {
76 /*
77 * Denormalized operand.
78 * Shift fraction so that the msb is in the implicit bit position.
79 * Thus, shift is in the range [1:23].
80 */
81 int shift = clz32(abs_arg) - 8;
82 /*
83 * The first 3 terms compute the float64 exponent. We then bias
84 * this result by -1 so that we can swallow the implicit bit below.
85 */
86 int exp = -126 - shift + 1023 - 1;
87
88 ret |= (uint64_t)exp << 52;
89 ret += (uint64_t)abs_arg << (52 - 23 + shift);
90 }
91 }
92 return ret;
93 }
94
95 /*
96 * This is the non-arithmatic conversion that happens e.g. on stores.
97 * In the Power ISA pseudocode, this is called SINGLE.
98 */
99 uint32_t helper_tosingle(uint64_t arg)
100 {
101 int exp = extract64(arg, 52, 11);
102 uint32_t ret;
103
104 if (likely(exp > 896)) {
105 /* No denormalization required (includes Inf, NaN). */
106 ret = extract64(arg, 62, 2) << 30;
107 ret |= extract64(arg, 29, 30);
108 } else {
109 /*
110 * Zero or Denormal result. If the exponent is in bounds for
111 * a single-precision denormal result, extract the proper
112 * bits. If the input is not zero, and the exponent is out of
113 * bounds, then the result is undefined; this underflows to
114 * zero.
115 */
116 ret = extract64(arg, 63, 1) << 31;
117 if (unlikely(exp >= 874)) {
118 /* Denormal result. */
119 ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
120 }
121 }
122 return ret;
123 }
124
125 static inline int ppc_float32_get_unbiased_exp(float32 f)
126 {
127 return ((f >> 23) & 0xFF) - 127;
128 }
129
130 static inline int ppc_float64_get_unbiased_exp(float64 f)
131 {
132 return ((f >> 52) & 0x7FF) - 1023;
133 }
134
135 /* Classify a floating-point number. */
136 enum {
137 is_normal = 1,
138 is_zero = 2,
139 is_denormal = 4,
140 is_inf = 8,
141 is_qnan = 16,
142 is_snan = 32,
143 is_neg = 64,
144 };
145
146 #define COMPUTE_CLASS(tp) \
147 static int tp##_classify(tp arg) \
148 { \
149 int ret = tp##_is_neg(arg) * is_neg; \
150 if (unlikely(tp##_is_any_nan(arg))) { \
151 float_status dummy = { }; /* snan_bit_is_one = 0 */ \
152 ret |= (tp##_is_signaling_nan(arg, &dummy) \
153 ? is_snan : is_qnan); \
154 } else if (unlikely(tp##_is_infinity(arg))) { \
155 ret |= is_inf; \
156 } else if (tp##_is_zero(arg)) { \
157 ret |= is_zero; \
158 } else if (tp##_is_zero_or_denormal(arg)) { \
159 ret |= is_denormal; \
160 } else { \
161 ret |= is_normal; \
162 } \
163 return ret; \
164 }
165
166 COMPUTE_CLASS(float16)
167 COMPUTE_CLASS(float32)
168 COMPUTE_CLASS(float64)
169 COMPUTE_CLASS(float128)
170
171 static void set_fprf_from_class(CPUPPCState *env, int class)
172 {
173 static const uint8_t fprf[6][2] = {
174 { 0x04, 0x08 }, /* normalized */
175 { 0x02, 0x12 }, /* zero */
176 { 0x14, 0x18 }, /* denormalized */
177 { 0x05, 0x09 }, /* infinity */
178 { 0x11, 0x11 }, /* qnan */
179 { 0x00, 0x00 }, /* snan -- flags are undefined */
180 };
181 bool isneg = class & is_neg;
182
183 env->fpscr &= ~(0x1F << FPSCR_FPRF);
184 env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
185 }
186
187 #define COMPUTE_FPRF(tp) \
188 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
189 { \
190 set_fprf_from_class(env, tp##_classify(arg)); \
191 }
192
193 COMPUTE_FPRF(float16)
194 COMPUTE_FPRF(float32)
195 COMPUTE_FPRF(float64)
196 COMPUTE_FPRF(float128)
197
198 /* Floating-point invalid operations exception */
199 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
200 {
201 /* Update the floating-point invalid operation summary */
202 env->fpscr |= 1 << FPSCR_VX;
203 /* Update the floating-point exception summary */
204 env->fpscr |= FP_FX;
205 if (fpscr_ve != 0) {
206 /* Update the floating-point enabled exception summary */
207 env->fpscr |= 1 << FPSCR_FEX;
208 if (fp_exceptions_enabled(env)) {
209 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
210 POWERPC_EXCP_FP | op, retaddr);
211 }
212 }
213 }
214
215 static void finish_invalid_op_arith(CPUPPCState *env, int op,
216 bool set_fpcc, uintptr_t retaddr)
217 {
218 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
219 if (fpscr_ve == 0) {
220 if (set_fpcc) {
221 env->fpscr &= ~(0xF << FPSCR_FPCC);
222 env->fpscr |= 0x11 << FPSCR_FPCC;
223 }
224 }
225 finish_invalid_op_excp(env, op, retaddr);
226 }
227
228 /* Signalling NaN */
229 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
230 {
231 env->fpscr |= 1 << FPSCR_VXSNAN;
232 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
233 }
234
235 /* Magnitude subtraction of infinities */
236 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
237 uintptr_t retaddr)
238 {
239 env->fpscr |= 1 << FPSCR_VXISI;
240 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
241 }
242
243 /* Division of infinity by infinity */
244 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
245 uintptr_t retaddr)
246 {
247 env->fpscr |= 1 << FPSCR_VXIDI;
248 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
249 }
250
251 /* Division of zero by zero */
252 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
253 uintptr_t retaddr)
254 {
255 env->fpscr |= 1 << FPSCR_VXZDZ;
256 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
257 }
258
259 /* Multiplication of zero by infinity */
260 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
261 uintptr_t retaddr)
262 {
263 env->fpscr |= 1 << FPSCR_VXIMZ;
264 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
265 }
266
267 /* Square root of a negative number */
268 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
269 uintptr_t retaddr)
270 {
271 env->fpscr |= 1 << FPSCR_VXSQRT;
272 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
273 }
274
275 /* Ordered comparison of NaN */
276 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
277 uintptr_t retaddr)
278 {
279 env->fpscr |= 1 << FPSCR_VXVC;
280 if (set_fpcc) {
281 env->fpscr &= ~(0xF << FPSCR_FPCC);
282 env->fpscr |= 0x11 << FPSCR_FPCC;
283 }
284 /* Update the floating-point invalid operation summary */
285 env->fpscr |= 1 << FPSCR_VX;
286 /* Update the floating-point exception summary */
287 env->fpscr |= FP_FX;
288 /* We must update the target FPR before raising the exception */
289 if (fpscr_ve != 0) {
290 CPUState *cs = env_cpu(env);
291
292 cs->exception_index = POWERPC_EXCP_PROGRAM;
293 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
294 /* Update the floating-point enabled exception summary */
295 env->fpscr |= 1 << FPSCR_FEX;
296 /* Exception is differed */
297 }
298 }
299
300 /* Invalid conversion */
301 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
302 uintptr_t retaddr)
303 {
304 env->fpscr |= 1 << FPSCR_VXCVI;
305 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
306 if (fpscr_ve == 0) {
307 if (set_fpcc) {
308 env->fpscr &= ~(0xF << FPSCR_FPCC);
309 env->fpscr |= 0x11 << FPSCR_FPCC;
310 }
311 }
312 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
313 }
314
315 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
316 {
317 env->fpscr |= 1 << FPSCR_ZX;
318 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
319 /* Update the floating-point exception summary */
320 env->fpscr |= FP_FX;
321 if (fpscr_ze != 0) {
322 /* Update the floating-point enabled exception summary */
323 env->fpscr |= 1 << FPSCR_FEX;
324 if (fp_exceptions_enabled(env)) {
325 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
326 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
327 raddr);
328 }
329 }
330 }
331
332 static inline void float_overflow_excp(CPUPPCState *env)
333 {
334 CPUState *cs = env_cpu(env);
335
336 env->fpscr |= 1 << FPSCR_OX;
337 /* Update the floating-point exception summary */
338 env->fpscr |= FP_FX;
339 if (fpscr_oe != 0) {
340 /* XXX: should adjust the result */
341 /* Update the floating-point enabled exception summary */
342 env->fpscr |= 1 << FPSCR_FEX;
343 /* We must update the target FPR before raising the exception */
344 cs->exception_index = POWERPC_EXCP_PROGRAM;
345 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
346 } else {
347 env->fpscr |= 1 << FPSCR_XX;
348 env->fpscr |= 1 << FPSCR_FI;
349 }
350 }
351
352 static inline void float_underflow_excp(CPUPPCState *env)
353 {
354 CPUState *cs = env_cpu(env);
355
356 env->fpscr |= 1 << FPSCR_UX;
357 /* Update the floating-point exception summary */
358 env->fpscr |= FP_FX;
359 if (fpscr_ue != 0) {
360 /* XXX: should adjust the result */
361 /* Update the floating-point enabled exception summary */
362 env->fpscr |= 1 << FPSCR_FEX;
363 /* We must update the target FPR before raising the exception */
364 cs->exception_index = POWERPC_EXCP_PROGRAM;
365 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
366 }
367 }
368
369 static inline void float_inexact_excp(CPUPPCState *env)
370 {
371 CPUState *cs = env_cpu(env);
372
373 env->fpscr |= 1 << FPSCR_FI;
374 env->fpscr |= 1 << FPSCR_XX;
375 /* Update the floating-point exception summary */
376 env->fpscr |= FP_FX;
377 if (fpscr_xe != 0) {
378 /* Update the floating-point enabled exception summary */
379 env->fpscr |= 1 << FPSCR_FEX;
380 /* We must update the target FPR before raising the exception */
381 cs->exception_index = POWERPC_EXCP_PROGRAM;
382 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
383 }
384 }
385
386 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
387 {
388 int rnd_type;
389
390 /* Set rounding mode */
391 switch (fpscr_rn) {
392 case 0:
393 /* Best approximation (round to nearest) */
394 rnd_type = float_round_nearest_even;
395 break;
396 case 1:
397 /* Smaller magnitude (round toward zero) */
398 rnd_type = float_round_to_zero;
399 break;
400 case 2:
401 /* Round toward +infinite */
402 rnd_type = float_round_up;
403 break;
404 default:
405 case 3:
406 /* Round toward -infinite */
407 rnd_type = float_round_down;
408 break;
409 }
410 set_float_rounding_mode(rnd_type, &env->fp_status);
411 }
412
413 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
414 {
415 int prev;
416
417 prev = (env->fpscr >> bit) & 1;
418 env->fpscr &= ~(1 << bit);
419 if (prev == 1) {
420 switch (bit) {
421 case FPSCR_RN1:
422 case FPSCR_RN0:
423 fpscr_set_rounding_mode(env);
424 break;
425 case FPSCR_VXSNAN:
426 case FPSCR_VXISI:
427 case FPSCR_VXIDI:
428 case FPSCR_VXZDZ:
429 case FPSCR_VXIMZ:
430 case FPSCR_VXVC:
431 case FPSCR_VXSOFT:
432 case FPSCR_VXSQRT:
433 case FPSCR_VXCVI:
434 if (!fpscr_ix) {
435 /* Set VX bit to zero */
436 env->fpscr &= ~(1 << FPSCR_VX);
437 }
438 break;
439 case FPSCR_OX:
440 case FPSCR_UX:
441 case FPSCR_ZX:
442 case FPSCR_XX:
443 case FPSCR_VE:
444 case FPSCR_OE:
445 case FPSCR_UE:
446 case FPSCR_ZE:
447 case FPSCR_XE:
448 if (!fpscr_eex) {
449 /* Set the FEX bit */
450 env->fpscr &= ~(1 << FPSCR_FEX);
451 }
452 break;
453 default:
454 break;
455 }
456 }
457 }
458
459 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
460 {
461 CPUState *cs = env_cpu(env);
462 int prev;
463
464 prev = (env->fpscr >> bit) & 1;
465 env->fpscr |= 1 << bit;
466 if (prev == 0) {
467 switch (bit) {
468 case FPSCR_VX:
469 env->fpscr |= FP_FX;
470 if (fpscr_ve) {
471 goto raise_ve;
472 }
473 break;
474 case FPSCR_OX:
475 env->fpscr |= FP_FX;
476 if (fpscr_oe) {
477 goto raise_oe;
478 }
479 break;
480 case FPSCR_UX:
481 env->fpscr |= FP_FX;
482 if (fpscr_ue) {
483 goto raise_ue;
484 }
485 break;
486 case FPSCR_ZX:
487 env->fpscr |= FP_FX;
488 if (fpscr_ze) {
489 goto raise_ze;
490 }
491 break;
492 case FPSCR_XX:
493 env->fpscr |= FP_FX;
494 if (fpscr_xe) {
495 goto raise_xe;
496 }
497 break;
498 case FPSCR_VXSNAN:
499 case FPSCR_VXISI:
500 case FPSCR_VXIDI:
501 case FPSCR_VXZDZ:
502 case FPSCR_VXIMZ:
503 case FPSCR_VXVC:
504 case FPSCR_VXSOFT:
505 case FPSCR_VXSQRT:
506 case FPSCR_VXCVI:
507 env->fpscr |= 1 << FPSCR_VX;
508 env->fpscr |= FP_FX;
509 if (fpscr_ve != 0) {
510 goto raise_ve;
511 }
512 break;
513 case FPSCR_VE:
514 if (fpscr_vx != 0) {
515 raise_ve:
516 env->error_code = POWERPC_EXCP_FP;
517 if (fpscr_vxsnan) {
518 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
519 }
520 if (fpscr_vxisi) {
521 env->error_code |= POWERPC_EXCP_FP_VXISI;
522 }
523 if (fpscr_vxidi) {
524 env->error_code |= POWERPC_EXCP_FP_VXIDI;
525 }
526 if (fpscr_vxzdz) {
527 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
528 }
529 if (fpscr_vximz) {
530 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
531 }
532 if (fpscr_vxvc) {
533 env->error_code |= POWERPC_EXCP_FP_VXVC;
534 }
535 if (fpscr_vxsoft) {
536 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
537 }
538 if (fpscr_vxsqrt) {
539 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
540 }
541 if (fpscr_vxcvi) {
542 env->error_code |= POWERPC_EXCP_FP_VXCVI;
543 }
544 goto raise_excp;
545 }
546 break;
547 case FPSCR_OE:
548 if (fpscr_ox != 0) {
549 raise_oe:
550 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
551 goto raise_excp;
552 }
553 break;
554 case FPSCR_UE:
555 if (fpscr_ux != 0) {
556 raise_ue:
557 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
558 goto raise_excp;
559 }
560 break;
561 case FPSCR_ZE:
562 if (fpscr_zx != 0) {
563 raise_ze:
564 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
565 goto raise_excp;
566 }
567 break;
568 case FPSCR_XE:
569 if (fpscr_xx != 0) {
570 raise_xe:
571 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
572 goto raise_excp;
573 }
574 break;
575 case FPSCR_RN1:
576 case FPSCR_RN0:
577 fpscr_set_rounding_mode(env);
578 break;
579 default:
580 break;
581 raise_excp:
582 /* Update the floating-point enabled exception summary */
583 env->fpscr |= 1 << FPSCR_FEX;
584 /* We have to update Rc1 before raising the exception */
585 cs->exception_index = POWERPC_EXCP_PROGRAM;
586 break;
587 }
588 }
589 }
590
591 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
592 {
593 CPUState *cs = env_cpu(env);
594 target_ulong prev, new;
595 int i;
596
597 prev = env->fpscr;
598 new = (target_ulong)arg;
599 new &= ~0x60000000LL;
600 new |= prev & 0x60000000LL;
601 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
602 if (mask & (1 << i)) {
603 env->fpscr &= ~(0xFLL << (4 * i));
604 env->fpscr |= new & (0xFLL << (4 * i));
605 }
606 }
607 /* Update VX and FEX */
608 if (fpscr_ix != 0) {
609 env->fpscr |= 1 << FPSCR_VX;
610 } else {
611 env->fpscr &= ~(1 << FPSCR_VX);
612 }
613 if ((fpscr_ex & fpscr_eex) != 0) {
614 env->fpscr |= 1 << FPSCR_FEX;
615 cs->exception_index = POWERPC_EXCP_PROGRAM;
616 /* XXX: we should compute it properly */
617 env->error_code = POWERPC_EXCP_FP;
618 } else {
619 env->fpscr &= ~(1 << FPSCR_FEX);
620 }
621 fpscr_set_rounding_mode(env);
622 }
623
624 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
625 {
626 helper_store_fpscr(env, arg, mask);
627 }
628
629 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
630 {
631 CPUState *cs = env_cpu(env);
632 int status = get_float_exception_flags(&env->fp_status);
633 bool inexact_happened = false;
634
635 if (status & float_flag_overflow) {
636 float_overflow_excp(env);
637 } else if (status & float_flag_underflow) {
638 float_underflow_excp(env);
639 } else if (status & float_flag_inexact) {
640 float_inexact_excp(env);
641 inexact_happened = true;
642 }
643
644 /* if the inexact flag was not set */
645 if (inexact_happened == false) {
646 env->fpscr &= ~(1 << FPSCR_FI); /* clear the FPSCR[FI] bit */
647 }
648
649 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
650 (env->error_code & POWERPC_EXCP_FP)) {
651 /* Differred floating-point exception after target FPR update */
652 if (fp_exceptions_enabled(env)) {
653 raise_exception_err_ra(env, cs->exception_index,
654 env->error_code, raddr);
655 }
656 }
657 }
658
659 void helper_float_check_status(CPUPPCState *env)
660 {
661 do_float_check_status(env, GETPC());
662 }
663
664 void helper_reset_fpstatus(CPUPPCState *env)
665 {
666 set_float_exception_flags(0, &env->fp_status);
667 }
668
669 static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc,
670 uintptr_t retaddr, int classes)
671 {
672 if ((classes & ~is_neg) == is_inf) {
673 /* Magnitude subtraction of infinities */
674 float_invalid_op_vxisi(env, set_fpcc, retaddr);
675 } else if (classes & is_snan) {
676 float_invalid_op_vxsnan(env, retaddr);
677 }
678 }
679
680 /* fadd - fadd. */
681 float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
682 {
683 float64 ret = float64_add(arg1, arg2, &env->fp_status);
684 int status = get_float_exception_flags(&env->fp_status);
685
686 if (unlikely(status & float_flag_invalid)) {
687 float_invalid_op_addsub(env, 1, GETPC(),
688 float64_classify(arg1) |
689 float64_classify(arg2));
690 }
691
692 return ret;
693 }
694
695 /* fsub - fsub. */
696 float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
697 {
698 float64 ret = float64_sub(arg1, arg2, &env->fp_status);
699 int status = get_float_exception_flags(&env->fp_status);
700
701 if (unlikely(status & float_flag_invalid)) {
702 float_invalid_op_addsub(env, 1, GETPC(),
703 float64_classify(arg1) |
704 float64_classify(arg2));
705 }
706
707 return ret;
708 }
709
710 static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc,
711 uintptr_t retaddr, int classes)
712 {
713 if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) {
714 /* Multiplication of zero by infinity */
715 float_invalid_op_vximz(env, set_fprc, retaddr);
716 } else if (classes & is_snan) {
717 float_invalid_op_vxsnan(env, retaddr);
718 }
719 }
720
721 /* fmul - fmul. */
722 float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
723 {
724 float64 ret = float64_mul(arg1, arg2, &env->fp_status);
725 int status = get_float_exception_flags(&env->fp_status);
726
727 if (unlikely(status & float_flag_invalid)) {
728 float_invalid_op_mul(env, 1, GETPC(),
729 float64_classify(arg1) |
730 float64_classify(arg2));
731 }
732
733 return ret;
734 }
735
736 static void float_invalid_op_div(CPUPPCState *env, bool set_fprc,
737 uintptr_t retaddr, int classes)
738 {
739 classes &= ~is_neg;
740 if (classes == is_inf) {
741 /* Division of infinity by infinity */
742 float_invalid_op_vxidi(env, set_fprc, retaddr);
743 } else if (classes == is_zero) {
744 /* Division of zero by zero */
745 float_invalid_op_vxzdz(env, set_fprc, retaddr);
746 } else if (classes & is_snan) {
747 float_invalid_op_vxsnan(env, retaddr);
748 }
749 }
750
751 /* fdiv - fdiv. */
752 float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
753 {
754 float64 ret = float64_div(arg1, arg2, &env->fp_status);
755 int status = get_float_exception_flags(&env->fp_status);
756
757 if (unlikely(status)) {
758 if (status & float_flag_invalid) {
759 float_invalid_op_div(env, 1, GETPC(),
760 float64_classify(arg1) |
761 float64_classify(arg2));
762 }
763 if (status & float_flag_divbyzero) {
764 float_zero_divide_excp(env, GETPC());
765 }
766 }
767
768 return ret;
769 }
770
771 static void float_invalid_cvt(CPUPPCState *env, bool set_fprc,
772 uintptr_t retaddr, int class1)
773 {
774 float_invalid_op_vxcvi(env, set_fprc, retaddr);
775 if (class1 & is_snan) {
776 float_invalid_op_vxsnan(env, retaddr);
777 }
778 }
779
780 #define FPU_FCTI(op, cvt, nanval) \
781 uint64_t helper_##op(CPUPPCState *env, float64 arg) \
782 { \
783 uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
784 int status = get_float_exception_flags(&env->fp_status); \
785 \
786 if (unlikely(status)) { \
787 if (status & float_flag_invalid) { \
788 float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \
789 ret = nanval; \
790 } \
791 do_float_check_status(env, GETPC()); \
792 } \
793 return ret; \
794 }
795
796 FPU_FCTI(fctiw, int32, 0x80000000U)
797 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
798 FPU_FCTI(fctiwu, uint32, 0x00000000U)
799 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
800 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
801 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
802 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
803 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
804
805 #define FPU_FCFI(op, cvtr, is_single) \
806 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
807 { \
808 CPU_DoubleU farg; \
809 \
810 if (is_single) { \
811 float32 tmp = cvtr(arg, &env->fp_status); \
812 farg.d = float32_to_float64(tmp, &env->fp_status); \
813 } else { \
814 farg.d = cvtr(arg, &env->fp_status); \
815 } \
816 do_float_check_status(env, GETPC()); \
817 return farg.ll; \
818 }
819
820 FPU_FCFI(fcfid, int64_to_float64, 0)
821 FPU_FCFI(fcfids, int64_to_float32, 1)
822 FPU_FCFI(fcfidu, uint64_to_float64, 0)
823 FPU_FCFI(fcfidus, uint64_to_float32, 1)
824
825 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
826 int rounding_mode)
827 {
828 CPU_DoubleU farg;
829
830 farg.ll = arg;
831
832 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
833 /* sNaN round */
834 float_invalid_op_vxsnan(env, GETPC());
835 farg.ll = arg | 0x0008000000000000ULL;
836 } else {
837 int inexact = get_float_exception_flags(&env->fp_status) &
838 float_flag_inexact;
839 set_float_rounding_mode(rounding_mode, &env->fp_status);
840 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
841 /* Restore rounding mode from FPSCR */
842 fpscr_set_rounding_mode(env);
843
844 /* fri* does not set FPSCR[XX] */
845 if (!inexact) {
846 env->fp_status.float_exception_flags &= ~float_flag_inexact;
847 }
848 }
849 do_float_check_status(env, GETPC());
850 return farg.ll;
851 }
852
853 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
854 {
855 return do_fri(env, arg, float_round_ties_away);
856 }
857
858 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
859 {
860 return do_fri(env, arg, float_round_to_zero);
861 }
862
863 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
864 {
865 return do_fri(env, arg, float_round_up);
866 }
867
868 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
869 {
870 return do_fri(env, arg, float_round_down);
871 }
872
873 #define FPU_MADDSUB_UPDATE(NAME, TP) \
874 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3, \
875 unsigned int madd_flags, uintptr_t retaddr) \
876 { \
877 if (TP##_is_signaling_nan(arg1, &env->fp_status) || \
878 TP##_is_signaling_nan(arg2, &env->fp_status) || \
879 TP##_is_signaling_nan(arg3, &env->fp_status)) { \
880 /* sNaN operation */ \
881 float_invalid_op_vxsnan(env, retaddr); \
882 } \
883 if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) || \
884 (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) { \
885 /* Multiplication of zero by infinity */ \
886 float_invalid_op_vximz(env, 1, retaddr); \
887 } \
888 if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) && \
889 TP##_is_infinity(arg3)) { \
890 uint8_t aSign, bSign, cSign; \
891 \
892 aSign = TP##_is_neg(arg1); \
893 bSign = TP##_is_neg(arg2); \
894 cSign = TP##_is_neg(arg3); \
895 if (madd_flags & float_muladd_negate_c) { \
896 cSign ^= 1; \
897 } \
898 if (aSign ^ bSign ^ cSign) { \
899 float_invalid_op_vxisi(env, 1, retaddr); \
900 } \
901 } \
902 }
903 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
904 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
905
906 #define FPU_FMADD(op, madd_flags) \
907 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
908 uint64_t arg2, uint64_t arg3) \
909 { \
910 uint32_t flags; \
911 float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags, \
912 &env->fp_status); \
913 flags = get_float_exception_flags(&env->fp_status); \
914 if (flags) { \
915 if (flags & float_flag_invalid) { \
916 float64_maddsub_update_excp(env, arg1, arg2, arg3, \
917 madd_flags, GETPC()); \
918 } \
919 do_float_check_status(env, GETPC()); \
920 } \
921 return ret; \
922 }
923
924 #define MADD_FLGS 0
925 #define MSUB_FLGS float_muladd_negate_c
926 #define NMADD_FLGS float_muladd_negate_result
927 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
928
929 FPU_FMADD(fmadd, MADD_FLGS)
930 FPU_FMADD(fnmadd, NMADD_FLGS)
931 FPU_FMADD(fmsub, MSUB_FLGS)
932 FPU_FMADD(fnmsub, NMSUB_FLGS)
933
934 /* frsp - frsp. */
935 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
936 {
937 CPU_DoubleU farg;
938 float32 f32;
939
940 farg.ll = arg;
941
942 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
943 float_invalid_op_vxsnan(env, GETPC());
944 }
945 f32 = float64_to_float32(farg.d, &env->fp_status);
946 farg.d = float32_to_float64(f32, &env->fp_status);
947
948 return farg.ll;
949 }
950
951 /* fsqrt - fsqrt. */
952 float64 helper_fsqrt(CPUPPCState *env, float64 arg)
953 {
954 float64 ret = float64_sqrt(arg, &env->fp_status);
955 int status = get_float_exception_flags(&env->fp_status);
956
957 if (unlikely(status & float_flag_invalid)) {
958 if (unlikely(float64_is_any_nan(arg))) {
959 if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) {
960 /* sNaN square root */
961 float_invalid_op_vxsnan(env, GETPC());
962 }
963 } else {
964 /* Square root of a negative nonzero number */
965 float_invalid_op_vxsqrt(env, 1, GETPC());
966 }
967 }
968
969 return ret;
970 }
971
972 /* fre - fre. */
973 float64 helper_fre(CPUPPCState *env, float64 arg)
974 {
975 /* "Estimate" the reciprocal with actual division. */
976 float64 ret = float64_div(float64_one, arg, &env->fp_status);
977 int status = get_float_exception_flags(&env->fp_status);
978
979 if (unlikely(status)) {
980 if (status & float_flag_invalid) {
981 if (float64_is_signaling_nan(arg, &env->fp_status)) {
982 /* sNaN reciprocal */
983 float_invalid_op_vxsnan(env, GETPC());
984 }
985 }
986 if (status & float_flag_divbyzero) {
987 float_zero_divide_excp(env, GETPC());
988 /* For FPSCR.ZE == 0, the result is 1/2. */
989 ret = float64_set_sign(float64_half, float64_is_neg(arg));
990 }
991 }
992
993 return ret;
994 }
995
996 /* fres - fres. */
997 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
998 {
999 CPU_DoubleU farg;
1000 float32 f32;
1001
1002 farg.ll = arg;
1003
1004 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
1005 /* sNaN reciprocal */
1006 float_invalid_op_vxsnan(env, GETPC());
1007 }
1008 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1009 f32 = float64_to_float32(farg.d, &env->fp_status);
1010 farg.d = float32_to_float64(f32, &env->fp_status);
1011
1012 return farg.ll;
1013 }
1014
1015 /* frsqrte - frsqrte. */
1016 float64 helper_frsqrte(CPUPPCState *env, float64 arg)
1017 {
1018 /* "Estimate" the reciprocal with actual division. */
1019 float64 rets = float64_sqrt(arg, &env->fp_status);
1020 float64 retd = float64_div(float64_one, rets, &env->fp_status);
1021 int status = get_float_exception_flags(&env->fp_status);
1022
1023 if (unlikely(status)) {
1024 if (status & float_flag_invalid) {
1025 if (float64_is_signaling_nan(arg, &env->fp_status)) {
1026 /* sNaN reciprocal */
1027 float_invalid_op_vxsnan(env, GETPC());
1028 } else {
1029 /* Square root of a negative nonzero number */
1030 float_invalid_op_vxsqrt(env, 1, GETPC());
1031 }
1032 }
1033 if (status & float_flag_divbyzero) {
1034 /* Reciprocal of (square root of) zero. */
1035 float_zero_divide_excp(env, GETPC());
1036 }
1037 }
1038
1039 return retd;
1040 }
1041
1042 /* fsel - fsel. */
1043 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1044 uint64_t arg3)
1045 {
1046 CPU_DoubleU farg1;
1047
1048 farg1.ll = arg1;
1049
1050 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1051 !float64_is_any_nan(farg1.d)) {
1052 return arg2;
1053 } else {
1054 return arg3;
1055 }
1056 }
1057
1058 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1059 {
1060 int fe_flag = 0;
1061 int fg_flag = 0;
1062
1063 if (unlikely(float64_is_infinity(fra) ||
1064 float64_is_infinity(frb) ||
1065 float64_is_zero(frb))) {
1066 fe_flag = 1;
1067 fg_flag = 1;
1068 } else {
1069 int e_a = ppc_float64_get_unbiased_exp(fra);
1070 int e_b = ppc_float64_get_unbiased_exp(frb);
1071
1072 if (unlikely(float64_is_any_nan(fra) ||
1073 float64_is_any_nan(frb))) {
1074 fe_flag = 1;
1075 } else if ((e_b <= -1022) || (e_b >= 1021)) {
1076 fe_flag = 1;
1077 } else if (!float64_is_zero(fra) &&
1078 (((e_a - e_b) >= 1023) ||
1079 ((e_a - e_b) <= -1021) ||
1080 (e_a <= -970))) {
1081 fe_flag = 1;
1082 }
1083
1084 if (unlikely(float64_is_zero_or_denormal(frb))) {
1085 /* XB is not zero because of the above check and */
1086 /* so must be denormalized. */
1087 fg_flag = 1;
1088 }
1089 }
1090
1091 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1092 }
1093
1094 uint32_t helper_ftsqrt(uint64_t frb)
1095 {
1096 int fe_flag = 0;
1097 int fg_flag = 0;
1098
1099 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1100 fe_flag = 1;
1101 fg_flag = 1;
1102 } else {
1103 int e_b = ppc_float64_get_unbiased_exp(frb);
1104
1105 if (unlikely(float64_is_any_nan(frb))) {
1106 fe_flag = 1;
1107 } else if (unlikely(float64_is_zero(frb))) {
1108 fe_flag = 1;
1109 } else if (unlikely(float64_is_neg(frb))) {
1110 fe_flag = 1;
1111 } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
1112 fe_flag = 1;
1113 }
1114
1115 if (unlikely(float64_is_zero_or_denormal(frb))) {
1116 /* XB is not zero because of the above check and */
1117 /* therefore must be denormalized. */
1118 fg_flag = 1;
1119 }
1120 }
1121
1122 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1123 }
1124
1125 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1126 uint32_t crfD)
1127 {
1128 CPU_DoubleU farg1, farg2;
1129 uint32_t ret = 0;
1130
1131 farg1.ll = arg1;
1132 farg2.ll = arg2;
1133
1134 if (unlikely(float64_is_any_nan(farg1.d) ||
1135 float64_is_any_nan(farg2.d))) {
1136 ret = 0x01UL;
1137 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1138 ret = 0x08UL;
1139 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1140 ret = 0x04UL;
1141 } else {
1142 ret = 0x02UL;
1143 }
1144
1145 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1146 env->fpscr |= ret << FPSCR_FPRF;
1147 env->crf[crfD] = ret;
1148 if (unlikely(ret == 0x01UL
1149 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1150 float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1151 /* sNaN comparison */
1152 float_invalid_op_vxsnan(env, GETPC());
1153 }
1154 }
1155
1156 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1157 uint32_t crfD)
1158 {
1159 CPU_DoubleU farg1, farg2;
1160 uint32_t ret = 0;
1161
1162 farg1.ll = arg1;
1163 farg2.ll = arg2;
1164
1165 if (unlikely(float64_is_any_nan(farg1.d) ||
1166 float64_is_any_nan(farg2.d))) {
1167 ret = 0x01UL;
1168 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1169 ret = 0x08UL;
1170 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1171 ret = 0x04UL;
1172 } else {
1173 ret = 0x02UL;
1174 }
1175
1176 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1177 env->fpscr |= ret << FPSCR_FPRF;
1178 env->crf[crfD] = ret;
1179 if (unlikely(ret == 0x01UL)) {
1180 float_invalid_op_vxvc(env, 1, GETPC());
1181 if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1182 float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1183 /* sNaN comparison */
1184 float_invalid_op_vxsnan(env, GETPC());
1185 }
1186 }
1187 }
1188
1189 /* Single-precision floating-point conversions */
1190 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1191 {
1192 CPU_FloatU u;
1193
1194 u.f = int32_to_float32(val, &env->vec_status);
1195
1196 return u.l;
1197 }
1198
1199 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1200 {
1201 CPU_FloatU u;
1202
1203 u.f = uint32_to_float32(val, &env->vec_status);
1204
1205 return u.l;
1206 }
1207
1208 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1209 {
1210 CPU_FloatU u;
1211
1212 u.l = val;
1213 /* NaN are not treated the same way IEEE 754 does */
1214 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1215 return 0;
1216 }
1217
1218 return float32_to_int32(u.f, &env->vec_status);
1219 }
1220
1221 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1222 {
1223 CPU_FloatU u;
1224
1225 u.l = val;
1226 /* NaN are not treated the same way IEEE 754 does */
1227 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1228 return 0;
1229 }
1230
1231 return float32_to_uint32(u.f, &env->vec_status);
1232 }
1233
1234 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1235 {
1236 CPU_FloatU u;
1237
1238 u.l = val;
1239 /* NaN are not treated the same way IEEE 754 does */
1240 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1241 return 0;
1242 }
1243
1244 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1245 }
1246
1247 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1248 {
1249 CPU_FloatU u;
1250
1251 u.l = val;
1252 /* NaN are not treated the same way IEEE 754 does */
1253 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1254 return 0;
1255 }
1256
1257 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1258 }
1259
1260 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1261 {
1262 CPU_FloatU u;
1263 float32 tmp;
1264
1265 u.f = int32_to_float32(val, &env->vec_status);
1266 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1267 u.f = float32_div(u.f, tmp, &env->vec_status);
1268
1269 return u.l;
1270 }
1271
1272 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1273 {
1274 CPU_FloatU u;
1275 float32 tmp;
1276
1277 u.f = uint32_to_float32(val, &env->vec_status);
1278 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1279 u.f = float32_div(u.f, tmp, &env->vec_status);
1280
1281 return u.l;
1282 }
1283
1284 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1285 {
1286 CPU_FloatU u;
1287 float32 tmp;
1288
1289 u.l = val;
1290 /* NaN are not treated the same way IEEE 754 does */
1291 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1292 return 0;
1293 }
1294 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1295 u.f = float32_mul(u.f, tmp, &env->vec_status);
1296
1297 return float32_to_int32(u.f, &env->vec_status);
1298 }
1299
1300 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1301 {
1302 CPU_FloatU u;
1303 float32 tmp;
1304
1305 u.l = val;
1306 /* NaN are not treated the same way IEEE 754 does */
1307 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1308 return 0;
1309 }
1310 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1311 u.f = float32_mul(u.f, tmp, &env->vec_status);
1312
1313 return float32_to_uint32(u.f, &env->vec_status);
1314 }
1315
1316 #define HELPER_SPE_SINGLE_CONV(name) \
1317 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1318 { \
1319 return e##name(env, val); \
1320 }
1321 /* efscfsi */
1322 HELPER_SPE_SINGLE_CONV(fscfsi);
1323 /* efscfui */
1324 HELPER_SPE_SINGLE_CONV(fscfui);
1325 /* efscfuf */
1326 HELPER_SPE_SINGLE_CONV(fscfuf);
1327 /* efscfsf */
1328 HELPER_SPE_SINGLE_CONV(fscfsf);
1329 /* efsctsi */
1330 HELPER_SPE_SINGLE_CONV(fsctsi);
1331 /* efsctui */
1332 HELPER_SPE_SINGLE_CONV(fsctui);
1333 /* efsctsiz */
1334 HELPER_SPE_SINGLE_CONV(fsctsiz);
1335 /* efsctuiz */
1336 HELPER_SPE_SINGLE_CONV(fsctuiz);
1337 /* efsctsf */
1338 HELPER_SPE_SINGLE_CONV(fsctsf);
1339 /* efsctuf */
1340 HELPER_SPE_SINGLE_CONV(fsctuf);
1341
1342 #define HELPER_SPE_VECTOR_CONV(name) \
1343 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1344 { \
1345 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1346 (uint64_t)e##name(env, val); \
1347 }
1348 /* evfscfsi */
1349 HELPER_SPE_VECTOR_CONV(fscfsi);
1350 /* evfscfui */
1351 HELPER_SPE_VECTOR_CONV(fscfui);
1352 /* evfscfuf */
1353 HELPER_SPE_VECTOR_CONV(fscfuf);
1354 /* evfscfsf */
1355 HELPER_SPE_VECTOR_CONV(fscfsf);
1356 /* evfsctsi */
1357 HELPER_SPE_VECTOR_CONV(fsctsi);
1358 /* evfsctui */
1359 HELPER_SPE_VECTOR_CONV(fsctui);
1360 /* evfsctsiz */
1361 HELPER_SPE_VECTOR_CONV(fsctsiz);
1362 /* evfsctuiz */
1363 HELPER_SPE_VECTOR_CONV(fsctuiz);
1364 /* evfsctsf */
1365 HELPER_SPE_VECTOR_CONV(fsctsf);
1366 /* evfsctuf */
1367 HELPER_SPE_VECTOR_CONV(fsctuf);
1368
1369 /* Single-precision floating-point arithmetic */
1370 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1371 {
1372 CPU_FloatU u1, u2;
1373
1374 u1.l = op1;
1375 u2.l = op2;
1376 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1377 return u1.l;
1378 }
1379
1380 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1381 {
1382 CPU_FloatU u1, u2;
1383
1384 u1.l = op1;
1385 u2.l = op2;
1386 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1387 return u1.l;
1388 }
1389
1390 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1391 {
1392 CPU_FloatU u1, u2;
1393
1394 u1.l = op1;
1395 u2.l = op2;
1396 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1397 return u1.l;
1398 }
1399
1400 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1401 {
1402 CPU_FloatU u1, u2;
1403
1404 u1.l = op1;
1405 u2.l = op2;
1406 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1407 return u1.l;
1408 }
1409
1410 #define HELPER_SPE_SINGLE_ARITH(name) \
1411 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1412 { \
1413 return e##name(env, op1, op2); \
1414 }
1415 /* efsadd */
1416 HELPER_SPE_SINGLE_ARITH(fsadd);
1417 /* efssub */
1418 HELPER_SPE_SINGLE_ARITH(fssub);
1419 /* efsmul */
1420 HELPER_SPE_SINGLE_ARITH(fsmul);
1421 /* efsdiv */
1422 HELPER_SPE_SINGLE_ARITH(fsdiv);
1423
1424 #define HELPER_SPE_VECTOR_ARITH(name) \
1425 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1426 { \
1427 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1428 (uint64_t)e##name(env, op1, op2); \
1429 }
1430 /* evfsadd */
1431 HELPER_SPE_VECTOR_ARITH(fsadd);
1432 /* evfssub */
1433 HELPER_SPE_VECTOR_ARITH(fssub);
1434 /* evfsmul */
1435 HELPER_SPE_VECTOR_ARITH(fsmul);
1436 /* evfsdiv */
1437 HELPER_SPE_VECTOR_ARITH(fsdiv);
1438
1439 /* Single-precision floating-point comparisons */
1440 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1441 {
1442 CPU_FloatU u1, u2;
1443
1444 u1.l = op1;
1445 u2.l = op2;
1446 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1447 }
1448
1449 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1450 {
1451 CPU_FloatU u1, u2;
1452
1453 u1.l = op1;
1454 u2.l = op2;
1455 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1456 }
1457
1458 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1459 {
1460 CPU_FloatU u1, u2;
1461
1462 u1.l = op1;
1463 u2.l = op2;
1464 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1465 }
1466
1467 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1468 {
1469 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1470 return efscmplt(env, op1, op2);
1471 }
1472
1473 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1474 {
1475 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1476 return efscmpgt(env, op1, op2);
1477 }
1478
1479 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1480 {
1481 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1482 return efscmpeq(env, op1, op2);
1483 }
1484
1485 #define HELPER_SINGLE_SPE_CMP(name) \
1486 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1487 { \
1488 return e##name(env, op1, op2); \
1489 }
1490 /* efststlt */
1491 HELPER_SINGLE_SPE_CMP(fststlt);
1492 /* efststgt */
1493 HELPER_SINGLE_SPE_CMP(fststgt);
1494 /* efststeq */
1495 HELPER_SINGLE_SPE_CMP(fststeq);
1496 /* efscmplt */
1497 HELPER_SINGLE_SPE_CMP(fscmplt);
1498 /* efscmpgt */
1499 HELPER_SINGLE_SPE_CMP(fscmpgt);
1500 /* efscmpeq */
1501 HELPER_SINGLE_SPE_CMP(fscmpeq);
1502
1503 static inline uint32_t evcmp_merge(int t0, int t1)
1504 {
1505 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1506 }
1507
1508 #define HELPER_VECTOR_SPE_CMP(name) \
1509 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1510 { \
1511 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1512 e##name(env, op1, op2)); \
1513 }
1514 /* evfststlt */
1515 HELPER_VECTOR_SPE_CMP(fststlt);
1516 /* evfststgt */
1517 HELPER_VECTOR_SPE_CMP(fststgt);
1518 /* evfststeq */
1519 HELPER_VECTOR_SPE_CMP(fststeq);
1520 /* evfscmplt */
1521 HELPER_VECTOR_SPE_CMP(fscmplt);
1522 /* evfscmpgt */
1523 HELPER_VECTOR_SPE_CMP(fscmpgt);
1524 /* evfscmpeq */
1525 HELPER_VECTOR_SPE_CMP(fscmpeq);
1526
1527 /* Double-precision floating-point conversion */
1528 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1529 {
1530 CPU_DoubleU u;
1531
1532 u.d = int32_to_float64(val, &env->vec_status);
1533
1534 return u.ll;
1535 }
1536
1537 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1538 {
1539 CPU_DoubleU u;
1540
1541 u.d = int64_to_float64(val, &env->vec_status);
1542
1543 return u.ll;
1544 }
1545
1546 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1547 {
1548 CPU_DoubleU u;
1549
1550 u.d = uint32_to_float64(val, &env->vec_status);
1551
1552 return u.ll;
1553 }
1554
1555 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1556 {
1557 CPU_DoubleU u;
1558
1559 u.d = uint64_to_float64(val, &env->vec_status);
1560
1561 return u.ll;
1562 }
1563
1564 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1565 {
1566 CPU_DoubleU u;
1567
1568 u.ll = val;
1569 /* NaN are not treated the same way IEEE 754 does */
1570 if (unlikely(float64_is_any_nan(u.d))) {
1571 return 0;
1572 }
1573
1574 return float64_to_int32(u.d, &env->vec_status);
1575 }
1576
1577 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1578 {
1579 CPU_DoubleU u;
1580
1581 u.ll = val;
1582 /* NaN are not treated the same way IEEE 754 does */
1583 if (unlikely(float64_is_any_nan(u.d))) {
1584 return 0;
1585 }
1586
1587 return float64_to_uint32(u.d, &env->vec_status);
1588 }
1589
1590 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1591 {
1592 CPU_DoubleU u;
1593
1594 u.ll = val;
1595 /* NaN are not treated the same way IEEE 754 does */
1596 if (unlikely(float64_is_any_nan(u.d))) {
1597 return 0;
1598 }
1599
1600 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1601 }
1602
1603 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1604 {
1605 CPU_DoubleU u;
1606
1607 u.ll = val;
1608 /* NaN are not treated the same way IEEE 754 does */
1609 if (unlikely(float64_is_any_nan(u.d))) {
1610 return 0;
1611 }
1612
1613 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1614 }
1615
1616 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1617 {
1618 CPU_DoubleU u;
1619
1620 u.ll = val;
1621 /* NaN are not treated the same way IEEE 754 does */
1622 if (unlikely(float64_is_any_nan(u.d))) {
1623 return 0;
1624 }
1625
1626 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1627 }
1628
1629 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1630 {
1631 CPU_DoubleU u;
1632
1633 u.ll = val;
1634 /* NaN are not treated the same way IEEE 754 does */
1635 if (unlikely(float64_is_any_nan(u.d))) {
1636 return 0;
1637 }
1638
1639 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1640 }
1641
1642 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1643 {
1644 CPU_DoubleU u;
1645 float64 tmp;
1646
1647 u.d = int32_to_float64(val, &env->vec_status);
1648 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1649 u.d = float64_div(u.d, tmp, &env->vec_status);
1650
1651 return u.ll;
1652 }
1653
1654 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1655 {
1656 CPU_DoubleU u;
1657 float64 tmp;
1658
1659 u.d = uint32_to_float64(val, &env->vec_status);
1660 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1661 u.d = float64_div(u.d, tmp, &env->vec_status);
1662
1663 return u.ll;
1664 }
1665
1666 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1667 {
1668 CPU_DoubleU u;
1669 float64 tmp;
1670
1671 u.ll = val;
1672 /* NaN are not treated the same way IEEE 754 does */
1673 if (unlikely(float64_is_any_nan(u.d))) {
1674 return 0;
1675 }
1676 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1677 u.d = float64_mul(u.d, tmp, &env->vec_status);
1678
1679 return float64_to_int32(u.d, &env->vec_status);
1680 }
1681
1682 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1683 {
1684 CPU_DoubleU u;
1685 float64 tmp;
1686
1687 u.ll = val;
1688 /* NaN are not treated the same way IEEE 754 does */
1689 if (unlikely(float64_is_any_nan(u.d))) {
1690 return 0;
1691 }
1692 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1693 u.d = float64_mul(u.d, tmp, &env->vec_status);
1694
1695 return float64_to_uint32(u.d, &env->vec_status);
1696 }
1697
1698 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1699 {
1700 CPU_DoubleU u1;
1701 CPU_FloatU u2;
1702
1703 u1.ll = val;
1704 u2.f = float64_to_float32(u1.d, &env->vec_status);
1705
1706 return u2.l;
1707 }
1708
1709 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1710 {
1711 CPU_DoubleU u2;
1712 CPU_FloatU u1;
1713
1714 u1.l = val;
1715 u2.d = float32_to_float64(u1.f, &env->vec_status);
1716
1717 return u2.ll;
1718 }
1719
1720 /* Double precision fixed-point arithmetic */
1721 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1722 {
1723 CPU_DoubleU u1, u2;
1724
1725 u1.ll = op1;
1726 u2.ll = op2;
1727 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1728 return u1.ll;
1729 }
1730
1731 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1732 {
1733 CPU_DoubleU u1, u2;
1734
1735 u1.ll = op1;
1736 u2.ll = op2;
1737 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1738 return u1.ll;
1739 }
1740
1741 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1742 {
1743 CPU_DoubleU u1, u2;
1744
1745 u1.ll = op1;
1746 u2.ll = op2;
1747 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1748 return u1.ll;
1749 }
1750
1751 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1752 {
1753 CPU_DoubleU u1, u2;
1754
1755 u1.ll = op1;
1756 u2.ll = op2;
1757 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1758 return u1.ll;
1759 }
1760
1761 /* Double precision floating point helpers */
1762 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1763 {
1764 CPU_DoubleU u1, u2;
1765
1766 u1.ll = op1;
1767 u2.ll = op2;
1768 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1769 }
1770
1771 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1772 {
1773 CPU_DoubleU u1, u2;
1774
1775 u1.ll = op1;
1776 u2.ll = op2;
1777 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1778 }
1779
1780 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1781 {
1782 CPU_DoubleU u1, u2;
1783
1784 u1.ll = op1;
1785 u2.ll = op2;
1786 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1787 }
1788
1789 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1790 {
1791 /* XXX: TODO: test special values (NaN, infinites, ...) */
1792 return helper_efdtstlt(env, op1, op2);
1793 }
1794
1795 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1796 {
1797 /* XXX: TODO: test special values (NaN, infinites, ...) */
1798 return helper_efdtstgt(env, op1, op2);
1799 }
1800
1801 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1802 {
1803 /* XXX: TODO: test special values (NaN, infinites, ...) */
1804 return helper_efdtsteq(env, op1, op2);
1805 }
1806
1807 #define float64_to_float64(x, env) x
1808
1809
1810 /*
1811 * VSX_ADD_SUB - VSX floating point add/subract
1812 * name - instruction mnemonic
1813 * op - operation (add or sub)
1814 * nels - number of elements (1, 2 or 4)
1815 * tp - type (float32 or float64)
1816 * fld - vsr_t field (VsrD(*) or VsrW(*))
1817 * sfprf - set FPRF
1818 */
1819 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1820 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
1821 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1822 { \
1823 ppc_vsr_t t = *xt; \
1824 int i; \
1825 \
1826 helper_reset_fpstatus(env); \
1827 \
1828 for (i = 0; i < nels; i++) { \
1829 float_status tstat = env->fp_status; \
1830 set_float_exception_flags(0, &tstat); \
1831 t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \
1832 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1833 \
1834 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1835 float_invalid_op_addsub(env, sfprf, GETPC(), \
1836 tp##_classify(xa->fld) | \
1837 tp##_classify(xb->fld)); \
1838 } \
1839 \
1840 if (r2sp) { \
1841 t.fld = helper_frsp(env, t.fld); \
1842 } \
1843 \
1844 if (sfprf) { \
1845 helper_compute_fprf_float64(env, t.fld); \
1846 } \
1847 } \
1848 *xt = t; \
1849 do_float_check_status(env, GETPC()); \
1850 }
1851
1852 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1853 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1854 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1855 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1856 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1857 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1858 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1859 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1860
1861 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
1862 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1863 {
1864 ppc_vsr_t t = *xt;
1865 float_status tstat;
1866
1867 helper_reset_fpstatus(env);
1868
1869 tstat = env->fp_status;
1870 if (unlikely(Rc(opcode) != 0)) {
1871 tstat.float_rounding_mode = float_round_to_odd;
1872 }
1873
1874 set_float_exception_flags(0, &tstat);
1875 t.f128 = float128_add(xa->f128, xb->f128, &tstat);
1876 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1877
1878 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1879 float_invalid_op_addsub(env, 1, GETPC(),
1880 float128_classify(xa->f128) |
1881 float128_classify(xb->f128));
1882 }
1883
1884 helper_compute_fprf_float128(env, t.f128);
1885
1886 *xt = t;
1887 do_float_check_status(env, GETPC());
1888 }
1889
1890 /*
1891 * VSX_MUL - VSX floating point multiply
1892 * op - instruction mnemonic
1893 * nels - number of elements (1, 2 or 4)
1894 * tp - type (float32 or float64)
1895 * fld - vsr_t field (VsrD(*) or VsrW(*))
1896 * sfprf - set FPRF
1897 */
1898 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1899 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1900 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1901 { \
1902 ppc_vsr_t t = *xt; \
1903 int i; \
1904 \
1905 helper_reset_fpstatus(env); \
1906 \
1907 for (i = 0; i < nels; i++) { \
1908 float_status tstat = env->fp_status; \
1909 set_float_exception_flags(0, &tstat); \
1910 t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \
1911 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1912 \
1913 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1914 float_invalid_op_mul(env, sfprf, GETPC(), \
1915 tp##_classify(xa->fld) | \
1916 tp##_classify(xb->fld)); \
1917 } \
1918 \
1919 if (r2sp) { \
1920 t.fld = helper_frsp(env, t.fld); \
1921 } \
1922 \
1923 if (sfprf) { \
1924 helper_compute_fprf_float64(env, t.fld); \
1925 } \
1926 } \
1927 \
1928 *xt = t; \
1929 do_float_check_status(env, GETPC()); \
1930 }
1931
1932 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1933 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1934 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1935 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1936
1937 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
1938 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1939 {
1940 ppc_vsr_t t = *xt;
1941 float_status tstat;
1942
1943 helper_reset_fpstatus(env);
1944 tstat = env->fp_status;
1945 if (unlikely(Rc(opcode) != 0)) {
1946 tstat.float_rounding_mode = float_round_to_odd;
1947 }
1948
1949 set_float_exception_flags(0, &tstat);
1950 t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
1951 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1952
1953 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1954 float_invalid_op_mul(env, 1, GETPC(),
1955 float128_classify(xa->f128) |
1956 float128_classify(xb->f128));
1957 }
1958 helper_compute_fprf_float128(env, t.f128);
1959
1960 *xt = t;
1961 do_float_check_status(env, GETPC());
1962 }
1963
1964 /*
1965 * VSX_DIV - VSX floating point divide
1966 * op - instruction mnemonic
1967 * nels - number of elements (1, 2 or 4)
1968 * tp - type (float32 or float64)
1969 * fld - vsr_t field (VsrD(*) or VsrW(*))
1970 * sfprf - set FPRF
1971 */
1972 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1973 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1974 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1975 { \
1976 ppc_vsr_t t = *xt; \
1977 int i; \
1978 \
1979 helper_reset_fpstatus(env); \
1980 \
1981 for (i = 0; i < nels; i++) { \
1982 float_status tstat = env->fp_status; \
1983 set_float_exception_flags(0, &tstat); \
1984 t.fld = tp##_div(xa->fld, xb->fld, &tstat); \
1985 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1986 \
1987 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1988 float_invalid_op_div(env, sfprf, GETPC(), \
1989 tp##_classify(xa->fld) | \
1990 tp##_classify(xb->fld)); \
1991 } \
1992 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
1993 float_zero_divide_excp(env, GETPC()); \
1994 } \
1995 \
1996 if (r2sp) { \
1997 t.fld = helper_frsp(env, t.fld); \
1998 } \
1999 \
2000 if (sfprf) { \
2001 helper_compute_fprf_float64(env, t.fld); \
2002 } \
2003 } \
2004 \
2005 *xt = t; \
2006 do_float_check_status(env, GETPC()); \
2007 }
2008
2009 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
2010 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
2011 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
2012 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
2013
2014 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
2015 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
2016 {
2017 ppc_vsr_t t = *xt;
2018 float_status tstat;
2019
2020 helper_reset_fpstatus(env);
2021 tstat = env->fp_status;
2022 if (unlikely(Rc(opcode) != 0)) {
2023 tstat.float_rounding_mode = float_round_to_odd;
2024 }
2025
2026 set_float_exception_flags(0, &tstat);
2027 t.f128 = float128_div(xa->f128, xb->f128, &tstat);
2028 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2029
2030 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
2031 float_invalid_op_div(env, 1, GETPC(),
2032 float128_classify(xa->f128) |
2033 float128_classify(xb->f128));
2034 }
2035 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
2036 float_zero_divide_excp(env, GETPC());
2037 }
2038
2039 helper_compute_fprf_float128(env, t.f128);
2040 *xt = t;
2041 do_float_check_status(env, GETPC());
2042 }
2043
2044 /*
2045 * VSX_RE - VSX floating point reciprocal estimate
2046 * op - instruction mnemonic
2047 * nels - number of elements (1, 2 or 4)
2048 * tp - type (float32 or float64)
2049 * fld - vsr_t field (VsrD(*) or VsrW(*))
2050 * sfprf - set FPRF
2051 */
2052 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
2053 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2054 { \
2055 ppc_vsr_t t = *xt; \
2056 int i; \
2057 \
2058 helper_reset_fpstatus(env); \
2059 \
2060 for (i = 0; i < nels; i++) { \
2061 if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2062 float_invalid_op_vxsnan(env, GETPC()); \
2063 } \
2064 t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \
2065 \
2066 if (r2sp) { \
2067 t.fld = helper_frsp(env, t.fld); \
2068 } \
2069 \
2070 if (sfprf) { \
2071 helper_compute_fprf_float64(env, t.fld); \
2072 } \
2073 } \
2074 \
2075 *xt = t; \
2076 do_float_check_status(env, GETPC()); \
2077 }
2078
2079 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2080 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2081 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2082 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2083
2084 /*
2085 * VSX_SQRT - VSX floating point square root
2086 * op - instruction mnemonic
2087 * nels - number of elements (1, 2 or 4)
2088 * tp - type (float32 or float64)
2089 * fld - vsr_t field (VsrD(*) or VsrW(*))
2090 * sfprf - set FPRF
2091 */
2092 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2093 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2094 { \
2095 ppc_vsr_t t = *xt; \
2096 int i; \
2097 \
2098 helper_reset_fpstatus(env); \
2099 \
2100 for (i = 0; i < nels; i++) { \
2101 float_status tstat = env->fp_status; \
2102 set_float_exception_flags(0, &tstat); \
2103 t.fld = tp##_sqrt(xb->fld, &tstat); \
2104 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2105 \
2106 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2107 if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
2108 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
2109 } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
2110 float_invalid_op_vxsnan(env, GETPC()); \
2111 } \
2112 } \
2113 \
2114 if (r2sp) { \
2115 t.fld = helper_frsp(env, t.fld); \
2116 } \
2117 \
2118 if (sfprf) { \
2119 helper_compute_fprf_float64(env, t.fld); \
2120 } \
2121 } \
2122 \
2123 *xt = t; \
2124 do_float_check_status(env, GETPC()); \
2125 }
2126
2127 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2128 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2129 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2130 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2131
2132 /*
2133 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
2134 * op - instruction mnemonic
2135 * nels - number of elements (1, 2 or 4)
2136 * tp - type (float32 or float64)
2137 * fld - vsr_t field (VsrD(*) or VsrW(*))
2138 * sfprf - set FPRF
2139 */
2140 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2141 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2142 { \
2143 ppc_vsr_t t = *xt; \
2144 int i; \
2145 \
2146 helper_reset_fpstatus(env); \
2147 \
2148 for (i = 0; i < nels; i++) { \
2149 float_status tstat = env->fp_status; \
2150 set_float_exception_flags(0, &tstat); \
2151 t.fld = tp##_sqrt(xb->fld, &tstat); \
2152 t.fld = tp##_div(tp##_one, t.fld, &tstat); \
2153 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2154 \
2155 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2156 if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
2157 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
2158 } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
2159 float_invalid_op_vxsnan(env, GETPC()); \
2160 } \
2161 } \
2162 \
2163 if (r2sp) { \
2164 t.fld = helper_frsp(env, t.fld); \
2165 } \
2166 \
2167 if (sfprf) { \
2168 helper_compute_fprf_float64(env, t.fld); \
2169 } \
2170 } \
2171 \
2172 *xt = t; \
2173 do_float_check_status(env, GETPC()); \
2174 }
2175
2176 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2177 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2178 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2179 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2180
2181 /*
2182 * VSX_TDIV - VSX floating point test for divide
2183 * op - instruction mnemonic
2184 * nels - number of elements (1, 2 or 4)
2185 * tp - type (float32 or float64)
2186 * fld - vsr_t field (VsrD(*) or VsrW(*))
2187 * emin - minimum unbiased exponent
2188 * emax - maximum unbiased exponent
2189 * nbits - number of fraction bits
2190 */
2191 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2192 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2193 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2194 { \
2195 int i; \
2196 int fe_flag = 0; \
2197 int fg_flag = 0; \
2198 \
2199 for (i = 0; i < nels; i++) { \
2200 if (unlikely(tp##_is_infinity(xa->fld) || \
2201 tp##_is_infinity(xb->fld) || \
2202 tp##_is_zero(xb->fld))) { \
2203 fe_flag = 1; \
2204 fg_flag = 1; \
2205 } else { \
2206 int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \
2207 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2208 \
2209 if (unlikely(tp##_is_any_nan(xa->fld) || \
2210 tp##_is_any_nan(xb->fld))) { \
2211 fe_flag = 1; \
2212 } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
2213 fe_flag = 1; \
2214 } else if (!tp##_is_zero(xa->fld) && \
2215 (((e_a - e_b) >= emax) || \
2216 ((e_a - e_b) <= (emin + 1)) || \
2217 (e_a <= (emin + nbits)))) { \
2218 fe_flag = 1; \
2219 } \
2220 \
2221 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2222 /* \
2223 * XB is not zero because of the above check and so \
2224 * must be denormalized. \
2225 */ \
2226 fg_flag = 1; \
2227 } \
2228 } \
2229 } \
2230 \
2231 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2232 }
2233
2234 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2235 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2236 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2237
2238 /*
2239 * VSX_TSQRT - VSX floating point test for square root
2240 * op - instruction mnemonic
2241 * nels - number of elements (1, 2 or 4)
2242 * tp - type (float32 or float64)
2243 * fld - vsr_t field (VsrD(*) or VsrW(*))
2244 * emin - minimum unbiased exponent
2245 * emax - maximum unbiased exponent
2246 * nbits - number of fraction bits
2247 */
2248 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2249 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \
2250 { \
2251 int i; \
2252 int fe_flag = 0; \
2253 int fg_flag = 0; \
2254 \
2255 for (i = 0; i < nels; i++) { \
2256 if (unlikely(tp##_is_infinity(xb->fld) || \
2257 tp##_is_zero(xb->fld))) { \
2258 fe_flag = 1; \
2259 fg_flag = 1; \
2260 } else { \
2261 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2262 \
2263 if (unlikely(tp##_is_any_nan(xb->fld))) { \
2264 fe_flag = 1; \
2265 } else if (unlikely(tp##_is_zero(xb->fld))) { \
2266 fe_flag = 1; \
2267 } else if (unlikely(tp##_is_neg(xb->fld))) { \
2268 fe_flag = 1; \
2269 } else if (!tp##_is_zero(xb->fld) && \
2270 (e_b <= (emin + nbits))) { \
2271 fe_flag = 1; \
2272 } \
2273 \
2274 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2275 /* \
2276 * XB is not zero because of the above check and \
2277 * therefore must be denormalized. \
2278 */ \
2279 fg_flag = 1; \
2280 } \
2281 } \
2282 } \
2283 \
2284 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2285 }
2286
2287 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2288 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2289 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2290
2291 /*
2292 * VSX_MADD - VSX floating point muliply/add variations
2293 * op - instruction mnemonic
2294 * nels - number of elements (1, 2 or 4)
2295 * tp - type (float32 or float64)
2296 * fld - vsr_t field (VsrD(*) or VsrW(*))
2297 * maddflgs - flags for the float*muladd routine that control the
2298 * various forms (madd, msub, nmadd, nmsub)
2299 * sfprf - set FPRF
2300 */
2301 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp) \
2302 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2303 ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c) \
2304 { \
2305 ppc_vsr_t t = *xt; \
2306 int i; \
2307 \
2308 helper_reset_fpstatus(env); \
2309 \
2310 for (i = 0; i < nels; i++) { \
2311 float_status tstat = env->fp_status; \
2312 set_float_exception_flags(0, &tstat); \
2313 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2314 /* \
2315 * Avoid double rounding errors by rounding the intermediate \
2316 * result to odd. \
2317 */ \
2318 set_float_rounding_mode(float_round_to_zero, &tstat); \
2319 t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
2320 maddflgs, &tstat); \
2321 t.fld |= (get_float_exception_flags(&tstat) & \
2322 float_flag_inexact) != 0; \
2323 } else { \
2324 t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
2325 maddflgs, &tstat); \
2326 } \
2327 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2328 \
2329 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2330 tp##_maddsub_update_excp(env, xa->fld, b->fld, \
2331 c->fld, maddflgs, GETPC()); \
2332 } \
2333 \
2334 if (r2sp) { \
2335 t.fld = helper_frsp(env, t.fld); \
2336 } \
2337 \
2338 if (sfprf) { \
2339 helper_compute_fprf_float64(env, t.fld); \
2340 } \
2341 } \
2342 *xt = t; \
2343 do_float_check_status(env, GETPC()); \
2344 }
2345
2346 VSX_MADD(xsmadddp, 1, float64, VsrD(0), MADD_FLGS, 1, 0)
2347 VSX_MADD(xsmsubdp, 1, float64, VsrD(0), MSUB_FLGS, 1, 0)
2348 VSX_MADD(xsnmadddp, 1, float64, VsrD(0), NMADD_FLGS, 1, 0)
2349 VSX_MADD(xsnmsubdp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 0)
2350 VSX_MADD(xsmaddsp, 1, float64, VsrD(0), MADD_FLGS, 1, 1)
2351 VSX_MADD(xsmsubsp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1)
2352 VSX_MADD(xsnmaddsp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1)
2353 VSX_MADD(xsnmsubsp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1)
2354
2355 VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0, 0)
2356 VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0)
2357 VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0)
2358 VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0)
2359
2360 VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0)
2361 VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0)
2362 VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0)
2363 VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0)
2364
2365 /*
2366 * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2367 * op - instruction mnemonic
2368 * cmp - comparison operation
2369 * exp - expected result of comparison
2370 * svxvc - set VXVC bit
2371 */
2372 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
2373 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2374 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2375 { \
2376 ppc_vsr_t t = *xt; \
2377 bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
2378 \
2379 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2380 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2381 vxsnan_flag = true; \
2382 if (fpscr_ve == 0 && svxvc) { \
2383 vxvc_flag = true; \
2384 } \
2385 } else if (svxvc) { \
2386 vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
2387 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status); \
2388 } \
2389 if (vxsnan_flag) { \
2390 float_invalid_op_vxsnan(env, GETPC()); \
2391 } \
2392 if (vxvc_flag) { \
2393 float_invalid_op_vxvc(env, 0, GETPC()); \
2394 } \
2395 vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
2396 \
2397 if (!vex_flag) { \
2398 if (float64_##cmp(xb->VsrD(0), xa->VsrD(0), \
2399 &env->fp_status) == exp) { \
2400 t.VsrD(0) = -1; \
2401 t.VsrD(1) = 0; \
2402 } else { \
2403 t.VsrD(0) = 0; \
2404 t.VsrD(1) = 0; \
2405 } \
2406 } \
2407 *xt = t; \
2408 do_float_check_status(env, GETPC()); \
2409 }
2410
2411 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2412 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2413 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2414 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2415
2416 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
2417 ppc_vsr_t *xa, ppc_vsr_t *xb)
2418 {
2419 int64_t exp_a, exp_b;
2420 uint32_t cc;
2421
2422 exp_a = extract64(xa->VsrD(0), 52, 11);
2423 exp_b = extract64(xb->VsrD(0), 52, 11);
2424
2425 if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
2426 float64_is_any_nan(xb->VsrD(0)))) {
2427 cc = CRF_SO;
2428 } else {
2429 if (exp_a < exp_b) {
2430 cc = CRF_LT;
2431 } else if (exp_a > exp_b) {
2432 cc = CRF_GT;
2433 } else {
2434 cc = CRF_EQ;
2435 }
2436 }
2437
2438 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2439 env->fpscr |= cc << FPSCR_FPRF;
2440 env->crf[BF(opcode)] = cc;
2441
2442 do_float_check_status(env, GETPC());
2443 }
2444
2445 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
2446 ppc_vsr_t *xa, ppc_vsr_t *xb)
2447 {
2448 int64_t exp_a, exp_b;
2449 uint32_t cc;
2450
2451 exp_a = extract64(xa->VsrD(0), 48, 15);
2452 exp_b = extract64(xb->VsrD(0), 48, 15);
2453
2454 if (unlikely(float128_is_any_nan(xa->f128) ||
2455 float128_is_any_nan(xb->f128))) {
2456 cc = CRF_SO;
2457 } else {
2458 if (exp_a < exp_b) {
2459 cc = CRF_LT;
2460 } else if (exp_a > exp_b) {
2461 cc = CRF_GT;
2462 } else {
2463 cc = CRF_EQ;
2464 }
2465 }
2466
2467 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2468 env->fpscr |= cc << FPSCR_FPRF;
2469 env->crf[BF(opcode)] = cc;
2470
2471 do_float_check_status(env, GETPC());
2472 }
2473
2474 #define VSX_SCALAR_CMP(op, ordered) \
2475 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2476 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2477 { \
2478 uint32_t cc = 0; \
2479 bool vxsnan_flag = false, vxvc_flag = false; \
2480 \
2481 helper_reset_fpstatus(env); \
2482 \
2483 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2484 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2485 vxsnan_flag = true; \
2486 cc = CRF_SO; \
2487 if (fpscr_ve == 0 && ordered) { \
2488 vxvc_flag = true; \
2489 } \
2490 } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
2491 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) { \
2492 cc = CRF_SO; \
2493 if (ordered) { \
2494 vxvc_flag = true; \
2495 } \
2496 } \
2497 if (vxsnan_flag) { \
2498 float_invalid_op_vxsnan(env, GETPC()); \
2499 } \
2500 if (vxvc_flag) { \
2501 float_invalid_op_vxvc(env, 0, GETPC()); \
2502 } \
2503 \
2504 if (float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \
2505 cc |= CRF_LT; \
2506 } else if (!float64_le(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \
2507 cc |= CRF_GT; \
2508 } else { \
2509 cc |= CRF_EQ; \
2510 } \
2511 \
2512 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2513 env->fpscr |= cc << FPSCR_FPRF; \
2514 env->crf[BF(opcode)] = cc; \
2515 \
2516 do_float_check_status(env, GETPC()); \
2517 }
2518
2519 VSX_SCALAR_CMP(xscmpodp, 1)
2520 VSX_SCALAR_CMP(xscmpudp, 0)
2521
2522 #define VSX_SCALAR_CMPQ(op, ordered) \
2523 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2524 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2525 { \
2526 uint32_t cc = 0; \
2527 bool vxsnan_flag = false, vxvc_flag = false; \
2528 \
2529 helper_reset_fpstatus(env); \
2530 \
2531 if (float128_is_signaling_nan(xa->f128, &env->fp_status) || \
2532 float128_is_signaling_nan(xb->f128, &env->fp_status)) { \
2533 vxsnan_flag = true; \
2534 cc = CRF_SO; \
2535 if (fpscr_ve == 0 && ordered) { \
2536 vxvc_flag = true; \
2537 } \
2538 } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) || \
2539 float128_is_quiet_nan(xb->f128, &env->fp_status)) { \
2540 cc = CRF_SO; \
2541 if (ordered) { \
2542 vxvc_flag = true; \
2543 } \
2544 } \
2545 if (vxsnan_flag) { \
2546 float_invalid_op_vxsnan(env, GETPC()); \
2547 } \
2548 if (vxvc_flag) { \
2549 float_invalid_op_vxvc(env, 0, GETPC()); \
2550 } \
2551 \
2552 if (float128_lt(xa->f128, xb->f128, &env->fp_status)) { \
2553 cc |= CRF_LT; \
2554 } else if (!float128_le(xa->f128, xb->f128, &env->fp_status)) { \
2555 cc |= CRF_GT; \
2556 } else { \
2557 cc |= CRF_EQ; \
2558 } \
2559 \
2560 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2561 env->fpscr |= cc << FPSCR_FPRF; \
2562 env->crf[BF(opcode)] = cc; \
2563 \
2564 do_float_check_status(env, GETPC()); \
2565 }
2566
2567 VSX_SCALAR_CMPQ(xscmpoqp, 1)
2568 VSX_SCALAR_CMPQ(xscmpuqp, 0)
2569
2570 /*
2571 * VSX_MAX_MIN - VSX floating point maximum/minimum
2572 * name - instruction mnemonic
2573 * op - operation (max or min)
2574 * nels - number of elements (1, 2 or 4)
2575 * tp - type (float32 or float64)
2576 * fld - vsr_t field (VsrD(*) or VsrW(*))
2577 */
2578 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2579 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
2580 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2581 { \
2582 ppc_vsr_t t = *xt; \
2583 int i; \
2584 \
2585 for (i = 0; i < nels; i++) { \
2586 t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \
2587 if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2588 tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2589 float_invalid_op_vxsnan(env, GETPC()); \
2590 } \
2591 } \
2592 \
2593 *xt = t; \
2594 do_float_check_status(env, GETPC()); \
2595 }
2596
2597 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2598 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2599 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2600 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2601 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2602 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2603
2604 #define VSX_MAX_MINC(name, max) \
2605 void helper_##name(CPUPPCState *env, uint32_t opcode, \
2606 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2607 { \
2608 ppc_vsr_t t = *xt; \
2609 bool vxsnan_flag = false, vex_flag = false; \
2610 \
2611 if (unlikely(float64_is_any_nan(xa->VsrD(0)) || \
2612 float64_is_any_nan(xb->VsrD(0)))) { \
2613 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2614 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2615 vxsnan_flag = true; \
2616 } \
2617 t.VsrD(0) = xb->VsrD(0); \
2618 } else if ((max && \
2619 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2620 (!max && \
2621 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2622 t.VsrD(0) = xa->VsrD(0); \
2623 } else { \
2624 t.VsrD(0) = xb->VsrD(0); \
2625 } \
2626 \
2627 vex_flag = fpscr_ve & vxsnan_flag; \
2628 if (vxsnan_flag) { \
2629 float_invalid_op_vxsnan(env, GETPC()); \
2630 } \
2631 if (!vex_flag) { \
2632 *xt = t; \
2633 } \
2634 } \
2635
2636 VSX_MAX_MINC(xsmaxcdp, 1);
2637 VSX_MAX_MINC(xsmincdp, 0);
2638
2639 #define VSX_MAX_MINJ(name, max) \
2640 void helper_##name(CPUPPCState *env, uint32_t opcode, \
2641 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2642 { \
2643 ppc_vsr_t t = *xt; \
2644 bool vxsnan_flag = false, vex_flag = false; \
2645 \
2646 if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \
2647 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \
2648 vxsnan_flag = true; \
2649 } \
2650 t.VsrD(0) = xa->VsrD(0); \
2651 } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \
2652 if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2653 vxsnan_flag = true; \
2654 } \
2655 t.VsrD(0) = xb->VsrD(0); \
2656 } else if (float64_is_zero(xa->VsrD(0)) && \
2657 float64_is_zero(xb->VsrD(0))) { \
2658 if (max) { \
2659 if (!float64_is_neg(xa->VsrD(0)) || \
2660 !float64_is_neg(xb->VsrD(0))) { \
2661 t.VsrD(0) = 0ULL; \
2662 } else { \
2663 t.VsrD(0) = 0x8000000000000000ULL; \
2664 } \
2665 } else { \
2666 if (float64_is_neg(xa->VsrD(0)) || \
2667 float64_is_neg(xb->VsrD(0))) { \
2668 t.VsrD(0) = 0x8000000000000000ULL; \
2669 } else { \
2670 t.VsrD(0) = 0ULL; \
2671 } \
2672 } \
2673 } else if ((max && \
2674 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2675 (!max && \
2676 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2677 t.VsrD(0) = xa->VsrD(0); \
2678 } else { \
2679 t.VsrD(0) = xb->VsrD(0); \
2680 } \
2681 \
2682 vex_flag = fpscr_ve & vxsnan_flag; \
2683 if (vxsnan_flag) { \
2684 float_invalid_op_vxsnan(env, GETPC()); \
2685 } \
2686 if (!vex_flag) { \
2687 *xt = t; \
2688 } \
2689 } \
2690
2691 VSX_MAX_MINJ(xsmaxjdp, 1);
2692 VSX_MAX_MINJ(xsminjdp, 0);
2693
2694 /*
2695 * VSX_CMP - VSX floating point compare
2696 * op - instruction mnemonic
2697 * nels - number of elements (1, 2 or 4)
2698 * tp - type (float32 or float64)
2699 * fld - vsr_t field (VsrD(*) or VsrW(*))
2700 * cmp - comparison operation
2701 * svxvc - set VXVC bit
2702 * exp - expected result of comparison
2703 */
2704 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2705 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2706 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2707 { \
2708 ppc_vsr_t t = *xt; \
2709 uint32_t crf6 = 0; \
2710 int i; \
2711 int all_true = 1; \
2712 int all_false = 1; \
2713 \
2714 for (i = 0; i < nels; i++) { \
2715 if (unlikely(tp##_is_any_nan(xa->fld) || \
2716 tp##_is_any_nan(xb->fld))) { \
2717 if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2718 tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \
2719 float_invalid_op_vxsnan(env, GETPC()); \
2720 } \
2721 if (svxvc) { \
2722 float_invalid_op_vxvc(env, 0, GETPC()); \
2723 } \
2724 t.fld = 0; \
2725 all_true = 0; \
2726 } else { \
2727 if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \
2728 t.fld = -1; \
2729 all_false = 0; \
2730 } else { \
2731 t.fld = 0; \
2732 all_true = 0; \
2733 } \
2734 } \
2735 } \
2736 \
2737 *xt = t; \
2738 crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2739 return crf6; \
2740 }
2741
2742 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2743 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2744 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2745 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2746 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2747 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2748 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2749 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2750
2751 /*
2752 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2753 * op - instruction mnemonic
2754 * nels - number of elements (1, 2 or 4)
2755 * stp - source type (float32 or float64)
2756 * ttp - target type (float32 or float64)
2757 * sfld - source vsr_t field
2758 * tfld - target vsr_t field (f32 or f64)
2759 * sfprf - set FPRF
2760 */
2761 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2762 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2763 { \
2764 ppc_vsr_t t = *xt; \
2765 int i; \
2766 \
2767 for (i = 0; i < nels; i++) { \
2768 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2769 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2770 &env->fp_status))) { \
2771 float_invalid_op_vxsnan(env, GETPC()); \
2772 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2773 } \
2774 if (sfprf) { \
2775 helper_compute_fprf_##ttp(env, t.tfld); \
2776 } \
2777 } \
2778 \
2779 *xt = t; \
2780 do_float_check_status(env, GETPC()); \
2781 }
2782
2783 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2784 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2785 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0)
2786 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2787
2788 /*
2789 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2790 * op - instruction mnemonic
2791 * nels - number of elements (1, 2 or 4)
2792 * stp - source type (float32 or float64)
2793 * ttp - target type (float32 or float64)
2794 * sfld - source vsr_t field
2795 * tfld - target vsr_t field (f32 or f64)
2796 * sfprf - set FPRF
2797 */
2798 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2799 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2800 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2801 { \
2802 ppc_vsr_t t = *xt; \
2803 int i; \
2804 \
2805 for (i = 0; i < nels; i++) { \
2806 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2807 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2808 &env->fp_status))) { \
2809 float_invalid_op_vxsnan(env, GETPC()); \
2810 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2811 } \
2812 if (sfprf) { \
2813 helper_compute_fprf_##ttp(env, t.tfld); \
2814 } \
2815 } \
2816 \
2817 *xt = t; \
2818 do_float_check_status(env, GETPC()); \
2819 }
2820
2821 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2822
2823 /*
2824 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2825 * involving one half precision value
2826 * op - instruction mnemonic
2827 * nels - number of elements (1, 2 or 4)
2828 * stp - source type
2829 * ttp - target type
2830 * sfld - source vsr_t field
2831 * tfld - target vsr_t field
2832 * sfprf - set FPRF
2833 */
2834 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2835 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2836 { \
2837 ppc_vsr_t t = { }; \
2838 int i; \
2839 \
2840 for (i = 0; i < nels; i++) { \
2841 t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \
2842 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2843 &env->fp_status))) { \
2844 float_invalid_op_vxsnan(env, GETPC()); \
2845 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2846 } \
2847 if (sfprf) { \
2848 helper_compute_fprf_##ttp(env, t.tfld); \
2849 } \
2850 } \
2851 \
2852 *xt = t; \
2853 do_float_check_status(env, GETPC()); \
2854 }
2855
2856 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2857 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2858 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0)
2859 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2860
2861 /*
2862 * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2863 * added to this later.
2864 */
2865 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode,
2866 ppc_vsr_t *xt, ppc_vsr_t *xb)
2867 {
2868 ppc_vsr_t t = { };
2869 float_status tstat;
2870
2871 tstat = env->fp_status;
2872 if (unlikely(Rc(opcode) != 0)) {
2873 tstat.float_rounding_mode = float_round_to_odd;
2874 }
2875
2876 t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
2877 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2878 if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
2879 float_invalid_op_vxsnan(env, GETPC());
2880 t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
2881 }
2882 helper_compute_fprf_float64(env, t.VsrD(0));
2883
2884 *xt = t;
2885 do_float_check_status(env, GETPC());
2886 }
2887
2888 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2889 {
2890 uint64_t result;
2891
2892 float_status tstat = env->fp_status;
2893 set_float_exception_flags(0, &tstat);
2894
2895 result = (uint64_t)float64_to_float32(xb, &tstat);
2896 /* hardware replicates result to both words of the doubleword result. */
2897 return (result << 32) | result;
2898 }
2899
2900 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2901 {
2902 float_status tstat = env->fp_status;
2903 set_float_exception_flags(0, &tstat);
2904
2905 return float32_to_float64(xb >> 32, &tstat);
2906 }
2907
2908 /*
2909 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2910 * op - instruction mnemonic
2911 * nels - number of elements (1, 2 or 4)
2912 * stp - source type (float32 or float64)
2913 * ttp - target type (int32, uint32, int64 or uint64)
2914 * sfld - source vsr_t field
2915 * tfld - target vsr_t field
2916 * rnan - resulting NaN
2917 */
2918 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2919 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2920 { \
2921 int all_flags = env->fp_status.float_exception_flags, flags; \
2922 ppc_vsr_t t = *xt; \
2923 int i; \
2924 \
2925 for (i = 0; i < nels; i++) { \
2926 env->fp_status.float_exception_flags = 0; \
2927 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2928 flags = env->fp_status.float_exception_flags; \
2929 if (unlikely(flags & float_flag_invalid)) { \
2930 float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
2931 t.tfld = rnan; \
2932 } \
2933 all_flags |= flags; \
2934 } \
2935 \
2936 *xt = t; \
2937 env->fp_status.float_exception_flags = all_flags; \
2938 do_float_check_status(env, GETPC()); \
2939 }
2940
2941 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2942 0x8000000000000000ULL)
2943 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2944 0x80000000U)
2945 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2946 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2947 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2948 0x8000000000000000ULL)
2949 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \
2950 0x80000000U)
2951 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2952 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U)
2953 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \
2954 0x8000000000000000ULL)
2955 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2956 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL)
2957 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2958
2959 /*
2960 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2961 * op - instruction mnemonic
2962 * stp - source type (float32 or float64)
2963 * ttp - target type (int32, uint32, int64 or uint64)
2964 * sfld - source vsr_t field
2965 * tfld - target vsr_t field
2966 * rnan - resulting NaN
2967 */
2968 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
2969 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2970 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2971 { \
2972 ppc_vsr_t t = { }; \
2973 \
2974 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2975 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2976 float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
2977 t.tfld = rnan; \
2978 } \
2979 \
2980 *xt = t; \
2981 do_float_check_status(env, GETPC()); \
2982 }
2983
2984 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \
2985 0x8000000000000000ULL)
2986
2987 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \
2988 0xffffffff80000000ULL)
2989 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
2990 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
2991
2992 /*
2993 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2994 * op - instruction mnemonic
2995 * nels - number of elements (1, 2 or 4)
2996 * stp - source type (int32, uint32, int64 or uint64)
2997 * ttp - target type (float32 or float64)
2998 * sfld - source vsr_t field
2999 * tfld - target vsr_t field
3000 * jdef - definition of the j index (i or 2*i)
3001 * sfprf - set FPRF
3002 */
3003 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
3004 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3005 { \
3006 ppc_vsr_t t = *xt; \
3007 int i; \
3008 \
3009 for (i = 0; i < nels; i++) { \
3010 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3011 if (r2sp) { \
3012 t.tfld = helper_frsp(env, t.tfld); \
3013 } \
3014 if (sfprf) { \
3015 helper_compute_fprf_float64(env, t.tfld); \
3016 } \
3017 } \
3018 \
3019 *xt = t; \
3020 do_float_check_status(env, GETPC()); \
3021 }
3022
3023 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3024 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3025 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3026 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3027 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3028 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3029 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
3030 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
3031 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3032 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3033 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3034 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3035
3036 /*
3037 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3038 * op - instruction mnemonic
3039 * stp - source type (int32, uint32, int64 or uint64)
3040 * ttp - target type (float32 or float64)
3041 * sfld - source vsr_t field
3042 * tfld - target vsr_t field
3043 */
3044 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
3045 void helper_##op(CPUPPCState *env, uint32_t opcode, \
3046 ppc_vsr_t *xt, ppc_vsr_t *xb) \
3047 { \
3048 ppc_vsr_t t = *xt; \
3049 \
3050 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3051 helper_compute_fprf_##ttp(env, t.tfld); \
3052 \
3053 *xt = t; \
3054 do_float_check_status(env, GETPC()); \
3055 }
3056
3057 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3058 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3059
3060 /*
3061 * For "use current rounding mode", define a value that will not be
3062 * one of the existing rounding model enums.
3063 */
3064 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3065 float_round_up + float_round_to_zero)
3066
3067 /*
3068 * VSX_ROUND - VSX floating point round
3069 * op - instruction mnemonic
3070 * nels - number of elements (1, 2 or 4)
3071 * tp - type (float32 or float64)
3072 * fld - vsr_t field (VsrD(*) or VsrW(*))
3073 * rmode - rounding mode
3074 * sfprf - set FPRF
3075 */
3076 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
3077 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3078 { \
3079 ppc_vsr_t t = *xt; \
3080 int i; \
3081 \
3082 if (rmode != FLOAT_ROUND_CURRENT) { \
3083 set_float_rounding_mode(rmode, &env->fp_status); \
3084 } \
3085 \
3086 for (i = 0; i < nels; i++) { \
3087 if (unlikely(tp##_is_signaling_nan(xb->fld, \
3088 &env->fp_status))) { \
3089 float_invalid_op_vxsnan(env, GETPC()); \
3090 t.fld = tp##_snan_to_qnan(xb->fld); \
3091 } else { \
3092 t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \
3093 } \
3094 if (sfprf) { \
3095 helper_compute_fprf_float64(env, t.fld); \
3096 } \
3097 } \
3098 \
3099 /* \
3100 * If this is not a "use current rounding mode" instruction, \
3101 * then inhibit setting of the XX bit and restore rounding \
3102 * mode from FPSCR \
3103 */ \
3104 if (rmode != FLOAT_ROUND_CURRENT) { \
3105 fpscr_set_rounding_mode(env); \
3106 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3107 } \
3108 \
3109 *xt = t; \
3110 do_float_check_status(env, GETPC()); \
3111 }
3112
3113 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3114 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3115 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3116 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3117 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3118
3119 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3120 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3121 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3122 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3123 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3124
3125 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3126 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3127 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3128 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3129 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3130
3131 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3132 {
3133 helper_reset_fpstatus(env);
3134
3135 uint64_t xt = helper_frsp(env, xb);
3136
3137 helper_compute_fprf_float64(env, xt);
3138 do_float_check_status(env, GETPC());
3139 return xt;
3140 }
3141
3142 #define VSX_XXPERM(op, indexed) \
3143 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
3144 ppc_vsr_t *xa, ppc_vsr_t *pcv) \
3145 { \
3146 ppc_vsr_t t = *xt; \
3147 int i, idx; \
3148 \
3149 for (i = 0; i < 16; i++) { \
3150 idx = pcv->VsrB(i) & 0x1F; \
3151 if (indexed) { \
3152 idx = 31 - idx; \
3153 } \
3154 t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx) \
3155 : xt->VsrB(idx - 16); \
3156 } \
3157 *xt = t; \
3158 }
3159
3160 VSX_XXPERM(xxperm, 0)
3161 VSX_XXPERM(xxpermr, 1)
3162
3163 void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
3164 {
3165 ppc_vsr_t t = { };
3166 uint32_t exp, i, fraction;
3167
3168 for (i = 0; i < 4; i++) {
3169 exp = (xb->VsrW(i) >> 23) & 0xFF;
3170 fraction = xb->VsrW(i) & 0x7FFFFF;
3171 if (exp != 0 && exp != 255) {
3172 t.VsrW(i) = fraction | 0x00800000;
3173 } else {
3174 t.VsrW(i) = fraction;
3175 }
3176 }
3177 *xt = t;
3178 }
3179
3180 /*
3181 * VSX_TEST_DC - VSX floating point test data class
3182 * op - instruction mnemonic
3183 * nels - number of elements (1, 2 or 4)
3184 * xbn - VSR register number
3185 * tp - type (float32 or float64)
3186 * fld - vsr_t field (VsrD(*) or VsrW(*))
3187 * tfld - target vsr_t field (VsrD(*) or VsrW(*))
3188 * fld_max - target field max
3189 * scrf - set result in CR and FPCC
3190 */
3191 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \
3192 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3193 { \
3194 ppc_vsr_t *xt = &env->vsr[xT(opcode)]; \
3195 ppc_vsr_t *xb = &env->vsr[xbn]; \
3196 ppc_vsr_t t = { }; \
3197 uint32_t i, sign, dcmx; \
3198 uint32_t cc, match = 0; \
3199 \
3200 if (!scrf) { \
3201 dcmx = DCMX_XV(opcode); \
3202 } else { \
3203 t = *xt; \
3204 dcmx = DCMX(opcode); \
3205 } \
3206 \
3207 for (i = 0; i < nels; i++) { \
3208 sign = tp##_is_neg(xb->fld); \
3209 if (tp##_is_any_nan(xb->fld)) { \
3210 match = extract32(dcmx, 6, 1); \
3211 } else if (tp##_is_infinity(xb->fld)) { \
3212 match = extract32(dcmx, 4 + !sign, 1); \
3213 } else if (tp##_is_zero(xb->fld)) { \
3214 match = extract32(dcmx, 2 + !sign, 1); \
3215 } else if (tp##_is_zero_or_denormal(xb->fld)) { \
3216 match = extract32(dcmx, 0 + !sign, 1); \
3217 } \
3218 \
3219 if (scrf) { \
3220 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3221 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
3222 env->fpscr |= cc << FPSCR_FPRF; \
3223 env->crf[BF(opcode)] = cc; \
3224 } else { \
3225 t.tfld = match ? fld_max : 0; \
3226 } \
3227 match = 0; \
3228 } \
3229 if (!scrf) { \
3230 *xt = t; \
3231 } \
3232 }
3233
3234 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3235 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3236 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3237 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3238
3239 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)
3240 {
3241 uint32_t dcmx, sign, exp;
3242 uint32_t cc, match = 0, not_sp = 0;
3243
3244 dcmx = DCMX(opcode);
3245 exp = (xb->VsrD(0) >> 52) & 0x7FF;
3246
3247 sign = float64_is_neg(xb->VsrD(0));
3248 if (float64_is_any_nan(xb->VsrD(0))) {
3249 match = extract32(dcmx, 6, 1);
3250 } else if (float64_is_infinity(xb->VsrD(0))) {
3251 match = extract32(dcmx, 4 + !sign, 1);
3252 } else if (float64_is_zero(xb->VsrD(0))) {
3253 match = extract32(dcmx, 2 + !sign, 1);
3254 } else if (float64_is_zero_or_denormal(xb->VsrD(0)) ||
3255 (exp > 0 && exp < 0x381)) {
3256 match = extract32(dcmx, 0 + !sign, 1);
3257 }
3258
3259 not_sp = !float64_eq(xb->VsrD(0),
3260 float32_to_float64(
3261 float64_to_float32(xb->VsrD(0), &env->fp_status),
3262 &env->fp_status), &env->fp_status);
3263
3264 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3265 env->fpscr &= ~(0x0F << FPSCR_FPRF);
3266 env->fpscr |= cc << FPSCR_FPRF;
3267 env->crf[BF(opcode)] = cc;
3268 }
3269
3270 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
3271 ppc_vsr_t *xt, ppc_vsr_t *xb)
3272 {
3273 ppc_vsr_t t = { };
3274 uint8_t r = Rrm(opcode);
3275 uint8_t ex = Rc(opcode);
3276 uint8_t rmc = RMC(opcode);
3277 uint8_t rmode = 0;
3278 float_status tstat;
3279
3280 helper_reset_fpstatus(env);
3281
3282 if (r == 0 && rmc == 0) {
3283 rmode = float_round_ties_away;
3284 } else if (r == 0 && rmc == 0x3) {
3285 rmode = fpscr_rn;
3286 } else if (r == 1) {
3287 switch (rmc) {
3288 case 0:
3289 rmode = float_round_nearest_even;
3290 break;
3291 case 1:
3292 rmode = float_round_to_zero;
3293 break;
3294 case 2:
3295 rmode = float_round_up;
3296 break;
3297 case 3:
3298 rmode = float_round_down;
3299 break;
3300 default:
3301 abort();
3302 }
3303 }
3304
3305 tstat = env->fp_status;
3306 set_float_exception_flags(0, &tstat);
3307 set_float_rounding_mode(rmode, &tstat);
3308 t.f128 = float128_round_to_int(xb->f128, &tstat);
3309 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3310
3311 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3312 if (float128_is_signaling_nan(xb->f128, &tstat)) {
3313 float_invalid_op_vxsnan(env, GETPC());
3314 t.f128 = float128_snan_to_qnan(t.f128);
3315 }
3316 }
3317
3318 if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3319 env->fp_status.float_exception_flags &= ~float_flag_inexact;
3320 }
3321
3322 helper_compute_fprf_float128(env, t.f128);
3323 do_float_check_status(env, GETPC());
3324 *xt = t;
3325 }
3326
3327 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
3328 ppc_vsr_t *xt, ppc_vsr_t *xb)
3329 {
3330 ppc_vsr_t t = { };
3331 uint8_t r = Rrm(opcode);
3332 uint8_t rmc = RMC(opcode);
3333 uint8_t rmode = 0;
3334 floatx80 round_res;
3335 float_status tstat;
3336
3337 helper_reset_fpstatus(env);
3338
3339 if (r == 0 && rmc == 0) {
3340 rmode = float_round_ties_away;
3341 } else if (r == 0 && rmc == 0x3) {
3342 rmode = fpscr_rn;
3343 } else if (r == 1) {
3344 switch (rmc) {
3345 case 0:
3346 rmode = float_round_nearest_even;
3347 break;
3348 case 1:
3349 rmode = float_round_to_zero;
3350 break;
3351 case 2:
3352 rmode = float_round_up;
3353 break;
3354 case 3:
3355 rmode = float_round_down;
3356 break;
3357 default:
3358 abort();
3359 }
3360 }
3361
3362 tstat = env->fp_status;
3363 set_float_exception_flags(0, &tstat);
3364 set_float_rounding_mode(rmode, &tstat);
3365 round_res = float128_to_floatx80(xb->f128, &tstat);
3366 t.f128 = floatx80_to_float128(round_res, &tstat);
3367 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3368
3369 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3370 if (float128_is_signaling_nan(xb->f128, &tstat)) {
3371 float_invalid_op_vxsnan(env, GETPC());
3372 t.f128 = float128_snan_to_qnan(t.f128);
3373 }
3374 }
3375
3376 helper_compute_fprf_float128(env, t.f128);
3377 *xt = t;
3378 do_float_check_status(env, GETPC());
3379 }
3380
3381 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
3382 ppc_vsr_t *xt, ppc_vsr_t *xb)
3383 {
3384 ppc_vsr_t t = { };
3385 float_status tstat;
3386
3387 helper_reset_fpstatus(env);
3388
3389 tstat = env->fp_status;
3390 if (unlikely(Rc(opcode) != 0)) {
3391 tstat.float_rounding_mode = float_round_to_odd;
3392 }
3393
3394 set_float_exception_flags(0, &tstat);
3395 t.f128 = float128_sqrt(xb->f128, &tstat);
3396 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3397
3398 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3399 if (float128_is_signaling_nan(xb->f128, &tstat)) {
3400 float_invalid_op_vxsnan(env, GETPC());
3401 t.f128 = float128_snan_to_qnan(xb->f128);
3402 } else if (float128_is_quiet_nan(xb->f128, &tstat)) {
3403 t.f128 = xb->f128;
3404 } else if (float128_is_neg(xb->f128) && !float128_is_zero(xb->f128)) {
3405 float_invalid_op_vxsqrt(env, 1, GETPC());
3406 t.f128 = float128_default_nan(&env->fp_status);
3407 }
3408 }
3409
3410 helper_compute_fprf_float128(env, t.f128);
3411 *xt = t;
3412 do_float_check_status(env, GETPC());
3413 }
3414
3415 void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
3416 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
3417 {
3418 ppc_vsr_t t = *xt;
3419 float_status tstat;
3420
3421 helper_reset_fpstatus(env);
3422
3423 tstat = env->fp_status;
3424 if (unlikely(Rc(opcode) != 0)) {
3425 tstat.float_rounding_mode = float_round_to_odd;
3426 }
3427
3428 set_float_exception_flags(0, &tstat);
3429 t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
3430 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3431
3432 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3433 float_invalid_op_addsub(env, 1, GETPC(),
3434 float128_classify(xa->f128) |
3435 float128_classify(xb->f128));
3436 }
3437
3438 helper_compute_fprf_float128(env, t.f128);
3439 *xt = t;
3440 do_float_check_status(env, GETPC());
3441 }