]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/fpu_helper.c
Merge remote-tracking branch 'remotes/rth/tags/pull-tcg-20190903' into staging
[mirror_qemu.git] / target / ppc / fpu_helper.c
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
25
26 static inline float128 float128_snan_to_qnan(float128 x)
27 {
28 float128 r;
29
30 r.high = x.high | 0x0000800000000000;
31 r.low = x.low;
32 return r;
33 }
34
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
38
39 static inline bool fp_exceptions_enabled(CPUPPCState *env)
40 {
41 #ifdef CONFIG_USER_ONLY
42 return true;
43 #else
44 return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
45 #endif
46 }
47
48 /*****************************************************************************/
49 /* Floating point operations helpers */
50
51 /*
52 * This is the non-arithmatic conversion that happens e.g. on loads.
53 * In the Power ISA pseudocode, this is called DOUBLE.
54 */
55 uint64_t helper_todouble(uint32_t arg)
56 {
57 uint32_t abs_arg = arg & 0x7fffffff;
58 uint64_t ret;
59
60 if (likely(abs_arg >= 0x00800000)) {
61 if (unlikely(extract32(arg, 23, 8) == 0xff)) {
62 /* Inf or NAN. */
63 ret = (uint64_t)extract32(arg, 31, 1) << 63;
64 ret |= (uint64_t)0x7ff << 52;
65 ret |= (uint64_t)extract32(arg, 0, 23) << 29;
66 } else {
67 /* Normalized operand. */
68 ret = (uint64_t)extract32(arg, 30, 2) << 62;
69 ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
70 ret |= (uint64_t)extract32(arg, 0, 30) << 29;
71 }
72 } else {
73 /* Zero or Denormalized operand. */
74 ret = (uint64_t)extract32(arg, 31, 1) << 63;
75 if (unlikely(abs_arg != 0)) {
76 /*
77 * Denormalized operand.
78 * Shift fraction so that the msb is in the implicit bit position.
79 * Thus, shift is in the range [1:23].
80 */
81 int shift = clz32(abs_arg) - 8;
82 /*
83 * The first 3 terms compute the float64 exponent. We then bias
84 * this result by -1 so that we can swallow the implicit bit below.
85 */
86 int exp = -126 - shift + 1023 - 1;
87
88 ret |= (uint64_t)exp << 52;
89 ret += (uint64_t)abs_arg << (52 - 23 + shift);
90 }
91 }
92 return ret;
93 }
94
95 /*
96 * This is the non-arithmatic conversion that happens e.g. on stores.
97 * In the Power ISA pseudocode, this is called SINGLE.
98 */
99 uint32_t helper_tosingle(uint64_t arg)
100 {
101 int exp = extract64(arg, 52, 11);
102 uint32_t ret;
103
104 if (likely(exp > 896)) {
105 /* No denormalization required (includes Inf, NaN). */
106 ret = extract64(arg, 62, 2) << 30;
107 ret |= extract64(arg, 29, 30);
108 } else {
109 /*
110 * Zero or Denormal result. If the exponent is in bounds for
111 * a single-precision denormal result, extract the proper
112 * bits. If the input is not zero, and the exponent is out of
113 * bounds, then the result is undefined; this underflows to
114 * zero.
115 */
116 ret = extract64(arg, 63, 1) << 31;
117 if (unlikely(exp >= 874)) {
118 /* Denormal result. */
119 ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
120 }
121 }
122 return ret;
123 }
124
125 static inline int ppc_float32_get_unbiased_exp(float32 f)
126 {
127 return ((f >> 23) & 0xFF) - 127;
128 }
129
130 static inline int ppc_float64_get_unbiased_exp(float64 f)
131 {
132 return ((f >> 52) & 0x7FF) - 1023;
133 }
134
135 /* Classify a floating-point number. */
136 enum {
137 is_normal = 1,
138 is_zero = 2,
139 is_denormal = 4,
140 is_inf = 8,
141 is_qnan = 16,
142 is_snan = 32,
143 is_neg = 64,
144 };
145
146 #define COMPUTE_CLASS(tp) \
147 static int tp##_classify(tp arg) \
148 { \
149 int ret = tp##_is_neg(arg) * is_neg; \
150 if (unlikely(tp##_is_any_nan(arg))) { \
151 float_status dummy = { }; /* snan_bit_is_one = 0 */ \
152 ret |= (tp##_is_signaling_nan(arg, &dummy) \
153 ? is_snan : is_qnan); \
154 } else if (unlikely(tp##_is_infinity(arg))) { \
155 ret |= is_inf; \
156 } else if (tp##_is_zero(arg)) { \
157 ret |= is_zero; \
158 } else if (tp##_is_zero_or_denormal(arg)) { \
159 ret |= is_denormal; \
160 } else { \
161 ret |= is_normal; \
162 } \
163 return ret; \
164 }
165
166 COMPUTE_CLASS(float16)
167 COMPUTE_CLASS(float32)
168 COMPUTE_CLASS(float64)
169 COMPUTE_CLASS(float128)
170
171 static void set_fprf_from_class(CPUPPCState *env, int class)
172 {
173 static const uint8_t fprf[6][2] = {
174 { 0x04, 0x08 }, /* normalized */
175 { 0x02, 0x12 }, /* zero */
176 { 0x14, 0x18 }, /* denormalized */
177 { 0x05, 0x09 }, /* infinity */
178 { 0x11, 0x11 }, /* qnan */
179 { 0x00, 0x00 }, /* snan -- flags are undefined */
180 };
181 bool isneg = class & is_neg;
182
183 env->fpscr &= ~(0x1F << FPSCR_FPRF);
184 env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
185 }
186
187 #define COMPUTE_FPRF(tp) \
188 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
189 { \
190 set_fprf_from_class(env, tp##_classify(arg)); \
191 }
192
193 COMPUTE_FPRF(float16)
194 COMPUTE_FPRF(float32)
195 COMPUTE_FPRF(float64)
196 COMPUTE_FPRF(float128)
197
198 /* Floating-point invalid operations exception */
199 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
200 {
201 /* Update the floating-point invalid operation summary */
202 env->fpscr |= 1 << FPSCR_VX;
203 /* Update the floating-point exception summary */
204 env->fpscr |= FP_FX;
205 if (fpscr_ve != 0) {
206 /* Update the floating-point enabled exception summary */
207 env->fpscr |= 1 << FPSCR_FEX;
208 if (fp_exceptions_enabled(env)) {
209 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
210 POWERPC_EXCP_FP | op, retaddr);
211 }
212 }
213 }
214
215 static void finish_invalid_op_arith(CPUPPCState *env, int op,
216 bool set_fpcc, uintptr_t retaddr)
217 {
218 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
219 if (fpscr_ve == 0) {
220 if (set_fpcc) {
221 env->fpscr &= ~(0xF << FPSCR_FPCC);
222 env->fpscr |= 0x11 << FPSCR_FPCC;
223 }
224 }
225 finish_invalid_op_excp(env, op, retaddr);
226 }
227
228 /* Signalling NaN */
229 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
230 {
231 env->fpscr |= 1 << FPSCR_VXSNAN;
232 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
233 }
234
235 /* Magnitude subtraction of infinities */
236 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
237 uintptr_t retaddr)
238 {
239 env->fpscr |= 1 << FPSCR_VXISI;
240 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
241 }
242
243 /* Division of infinity by infinity */
244 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
245 uintptr_t retaddr)
246 {
247 env->fpscr |= 1 << FPSCR_VXIDI;
248 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
249 }
250
251 /* Division of zero by zero */
252 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
253 uintptr_t retaddr)
254 {
255 env->fpscr |= 1 << FPSCR_VXZDZ;
256 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
257 }
258
259 /* Multiplication of zero by infinity */
260 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
261 uintptr_t retaddr)
262 {
263 env->fpscr |= 1 << FPSCR_VXIMZ;
264 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
265 }
266
267 /* Square root of a negative number */
268 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
269 uintptr_t retaddr)
270 {
271 env->fpscr |= 1 << FPSCR_VXSQRT;
272 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
273 }
274
275 /* Ordered comparison of NaN */
276 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
277 uintptr_t retaddr)
278 {
279 env->fpscr |= 1 << FPSCR_VXVC;
280 if (set_fpcc) {
281 env->fpscr &= ~(0xF << FPSCR_FPCC);
282 env->fpscr |= 0x11 << FPSCR_FPCC;
283 }
284 /* Update the floating-point invalid operation summary */
285 env->fpscr |= 1 << FPSCR_VX;
286 /* Update the floating-point exception summary */
287 env->fpscr |= FP_FX;
288 /* We must update the target FPR before raising the exception */
289 if (fpscr_ve != 0) {
290 CPUState *cs = env_cpu(env);
291
292 cs->exception_index = POWERPC_EXCP_PROGRAM;
293 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
294 /* Update the floating-point enabled exception summary */
295 env->fpscr |= 1 << FPSCR_FEX;
296 /* Exception is differed */
297 }
298 }
299
300 /* Invalid conversion */
301 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
302 uintptr_t retaddr)
303 {
304 env->fpscr |= 1 << FPSCR_VXCVI;
305 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
306 if (fpscr_ve == 0) {
307 if (set_fpcc) {
308 env->fpscr &= ~(0xF << FPSCR_FPCC);
309 env->fpscr |= 0x11 << FPSCR_FPCC;
310 }
311 }
312 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
313 }
314
315 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
316 {
317 env->fpscr |= 1 << FPSCR_ZX;
318 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
319 /* Update the floating-point exception summary */
320 env->fpscr |= FP_FX;
321 if (fpscr_ze != 0) {
322 /* Update the floating-point enabled exception summary */
323 env->fpscr |= 1 << FPSCR_FEX;
324 if (fp_exceptions_enabled(env)) {
325 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
326 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
327 raddr);
328 }
329 }
330 }
331
332 static inline void float_overflow_excp(CPUPPCState *env)
333 {
334 CPUState *cs = env_cpu(env);
335
336 env->fpscr |= 1 << FPSCR_OX;
337 /* Update the floating-point exception summary */
338 env->fpscr |= FP_FX;
339 if (fpscr_oe != 0) {
340 /* XXX: should adjust the result */
341 /* Update the floating-point enabled exception summary */
342 env->fpscr |= 1 << FPSCR_FEX;
343 /* We must update the target FPR before raising the exception */
344 cs->exception_index = POWERPC_EXCP_PROGRAM;
345 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
346 } else {
347 env->fpscr |= 1 << FPSCR_XX;
348 env->fpscr |= 1 << FPSCR_FI;
349 }
350 }
351
352 static inline void float_underflow_excp(CPUPPCState *env)
353 {
354 CPUState *cs = env_cpu(env);
355
356 env->fpscr |= 1 << FPSCR_UX;
357 /* Update the floating-point exception summary */
358 env->fpscr |= FP_FX;
359 if (fpscr_ue != 0) {
360 /* XXX: should adjust the result */
361 /* Update the floating-point enabled exception summary */
362 env->fpscr |= 1 << FPSCR_FEX;
363 /* We must update the target FPR before raising the exception */
364 cs->exception_index = POWERPC_EXCP_PROGRAM;
365 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
366 }
367 }
368
369 static inline void float_inexact_excp(CPUPPCState *env)
370 {
371 CPUState *cs = env_cpu(env);
372
373 env->fpscr |= 1 << FPSCR_FI;
374 env->fpscr |= 1 << FPSCR_XX;
375 /* Update the floating-point exception summary */
376 env->fpscr |= FP_FX;
377 if (fpscr_xe != 0) {
378 /* Update the floating-point enabled exception summary */
379 env->fpscr |= 1 << FPSCR_FEX;
380 /* We must update the target FPR before raising the exception */
381 cs->exception_index = POWERPC_EXCP_PROGRAM;
382 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
383 }
384 }
385
386 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
387 {
388 int rnd_type;
389
390 /* Set rounding mode */
391 switch (fpscr_rn) {
392 case 0:
393 /* Best approximation (round to nearest) */
394 rnd_type = float_round_nearest_even;
395 break;
396 case 1:
397 /* Smaller magnitude (round toward zero) */
398 rnd_type = float_round_to_zero;
399 break;
400 case 2:
401 /* Round toward +infinite */
402 rnd_type = float_round_up;
403 break;
404 default:
405 case 3:
406 /* Round toward -infinite */
407 rnd_type = float_round_down;
408 break;
409 }
410 set_float_rounding_mode(rnd_type, &env->fp_status);
411 }
412
413 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
414 {
415 int prev;
416
417 prev = (env->fpscr >> bit) & 1;
418 env->fpscr &= ~(1 << bit);
419 if (prev == 1) {
420 switch (bit) {
421 case FPSCR_RN1:
422 case FPSCR_RN0:
423 fpscr_set_rounding_mode(env);
424 break;
425 case FPSCR_VXSNAN:
426 case FPSCR_VXISI:
427 case FPSCR_VXIDI:
428 case FPSCR_VXZDZ:
429 case FPSCR_VXIMZ:
430 case FPSCR_VXVC:
431 case FPSCR_VXSOFT:
432 case FPSCR_VXSQRT:
433 case FPSCR_VXCVI:
434 if (!fpscr_ix) {
435 /* Set VX bit to zero */
436 env->fpscr &= ~(1 << FPSCR_VX);
437 }
438 break;
439 case FPSCR_OX:
440 case FPSCR_UX:
441 case FPSCR_ZX:
442 case FPSCR_XX:
443 case FPSCR_VE:
444 case FPSCR_OE:
445 case FPSCR_UE:
446 case FPSCR_ZE:
447 case FPSCR_XE:
448 if (!fpscr_eex) {
449 /* Set the FEX bit */
450 env->fpscr &= ~(1 << FPSCR_FEX);
451 }
452 break;
453 default:
454 break;
455 }
456 }
457 }
458
459 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
460 {
461 CPUState *cs = env_cpu(env);
462 int prev;
463
464 prev = (env->fpscr >> bit) & 1;
465 env->fpscr |= 1 << bit;
466 if (prev == 0) {
467 switch (bit) {
468 case FPSCR_VX:
469 env->fpscr |= FP_FX;
470 if (fpscr_ve) {
471 goto raise_ve;
472 }
473 break;
474 case FPSCR_OX:
475 env->fpscr |= FP_FX;
476 if (fpscr_oe) {
477 goto raise_oe;
478 }
479 break;
480 case FPSCR_UX:
481 env->fpscr |= FP_FX;
482 if (fpscr_ue) {
483 goto raise_ue;
484 }
485 break;
486 case FPSCR_ZX:
487 env->fpscr |= FP_FX;
488 if (fpscr_ze) {
489 goto raise_ze;
490 }
491 break;
492 case FPSCR_XX:
493 env->fpscr |= FP_FX;
494 if (fpscr_xe) {
495 goto raise_xe;
496 }
497 break;
498 case FPSCR_VXSNAN:
499 case FPSCR_VXISI:
500 case FPSCR_VXIDI:
501 case FPSCR_VXZDZ:
502 case FPSCR_VXIMZ:
503 case FPSCR_VXVC:
504 case FPSCR_VXSOFT:
505 case FPSCR_VXSQRT:
506 case FPSCR_VXCVI:
507 env->fpscr |= 1 << FPSCR_VX;
508 env->fpscr |= FP_FX;
509 if (fpscr_ve != 0) {
510 goto raise_ve;
511 }
512 break;
513 case FPSCR_VE:
514 if (fpscr_vx != 0) {
515 raise_ve:
516 env->error_code = POWERPC_EXCP_FP;
517 if (fpscr_vxsnan) {
518 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
519 }
520 if (fpscr_vxisi) {
521 env->error_code |= POWERPC_EXCP_FP_VXISI;
522 }
523 if (fpscr_vxidi) {
524 env->error_code |= POWERPC_EXCP_FP_VXIDI;
525 }
526 if (fpscr_vxzdz) {
527 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
528 }
529 if (fpscr_vximz) {
530 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
531 }
532 if (fpscr_vxvc) {
533 env->error_code |= POWERPC_EXCP_FP_VXVC;
534 }
535 if (fpscr_vxsoft) {
536 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
537 }
538 if (fpscr_vxsqrt) {
539 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
540 }
541 if (fpscr_vxcvi) {
542 env->error_code |= POWERPC_EXCP_FP_VXCVI;
543 }
544 goto raise_excp;
545 }
546 break;
547 case FPSCR_OE:
548 if (fpscr_ox != 0) {
549 raise_oe:
550 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
551 goto raise_excp;
552 }
553 break;
554 case FPSCR_UE:
555 if (fpscr_ux != 0) {
556 raise_ue:
557 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
558 goto raise_excp;
559 }
560 break;
561 case FPSCR_ZE:
562 if (fpscr_zx != 0) {
563 raise_ze:
564 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
565 goto raise_excp;
566 }
567 break;
568 case FPSCR_XE:
569 if (fpscr_xx != 0) {
570 raise_xe:
571 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
572 goto raise_excp;
573 }
574 break;
575 case FPSCR_RN1:
576 case FPSCR_RN0:
577 fpscr_set_rounding_mode(env);
578 break;
579 default:
580 break;
581 raise_excp:
582 /* Update the floating-point enabled exception summary */
583 env->fpscr |= 1 << FPSCR_FEX;
584 /* We have to update Rc1 before raising the exception */
585 cs->exception_index = POWERPC_EXCP_PROGRAM;
586 break;
587 }
588 }
589 }
590
591 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
592 {
593 CPUState *cs = env_cpu(env);
594 target_ulong prev, new;
595 int i;
596
597 prev = env->fpscr;
598 new = (target_ulong)arg;
599 new &= ~0x60000000LL;
600 new |= prev & 0x60000000LL;
601 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
602 if (mask & (1 << i)) {
603 env->fpscr &= ~(0xFLL << (4 * i));
604 env->fpscr |= new & (0xFLL << (4 * i));
605 }
606 }
607 /* Update VX and FEX */
608 if (fpscr_ix != 0) {
609 env->fpscr |= 1 << FPSCR_VX;
610 } else {
611 env->fpscr &= ~(1 << FPSCR_VX);
612 }
613 if ((fpscr_ex & fpscr_eex) != 0) {
614 env->fpscr |= 1 << FPSCR_FEX;
615 cs->exception_index = POWERPC_EXCP_PROGRAM;
616 /* XXX: we should compute it properly */
617 env->error_code = POWERPC_EXCP_FP;
618 } else {
619 env->fpscr &= ~(1 << FPSCR_FEX);
620 }
621 fpscr_set_rounding_mode(env);
622 }
623
624 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
625 {
626 helper_store_fpscr(env, arg, mask);
627 }
628
629 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
630 {
631 CPUState *cs = env_cpu(env);
632 int status = get_float_exception_flags(&env->fp_status);
633
634 if (status & float_flag_overflow) {
635 float_overflow_excp(env);
636 } else if (status & float_flag_underflow) {
637 float_underflow_excp(env);
638 }
639 if (status & float_flag_inexact) {
640 float_inexact_excp(env);
641 } else {
642 env->fpscr &= ~(1 << FPSCR_FI); /* clear the FPSCR[FI] bit */
643 }
644
645 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
646 (env->error_code & POWERPC_EXCP_FP)) {
647 /* Differred floating-point exception after target FPR update */
648 if (fp_exceptions_enabled(env)) {
649 raise_exception_err_ra(env, cs->exception_index,
650 env->error_code, raddr);
651 }
652 }
653 }
654
655 void helper_float_check_status(CPUPPCState *env)
656 {
657 do_float_check_status(env, GETPC());
658 }
659
660 void helper_reset_fpstatus(CPUPPCState *env)
661 {
662 set_float_exception_flags(0, &env->fp_status);
663 }
664
665 static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc,
666 uintptr_t retaddr, int classes)
667 {
668 if ((classes & ~is_neg) == is_inf) {
669 /* Magnitude subtraction of infinities */
670 float_invalid_op_vxisi(env, set_fpcc, retaddr);
671 } else if (classes & is_snan) {
672 float_invalid_op_vxsnan(env, retaddr);
673 }
674 }
675
676 /* fadd - fadd. */
677 float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
678 {
679 float64 ret = float64_add(arg1, arg2, &env->fp_status);
680 int status = get_float_exception_flags(&env->fp_status);
681
682 if (unlikely(status & float_flag_invalid)) {
683 float_invalid_op_addsub(env, 1, GETPC(),
684 float64_classify(arg1) |
685 float64_classify(arg2));
686 }
687
688 return ret;
689 }
690
691 /* fsub - fsub. */
692 float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
693 {
694 float64 ret = float64_sub(arg1, arg2, &env->fp_status);
695 int status = get_float_exception_flags(&env->fp_status);
696
697 if (unlikely(status & float_flag_invalid)) {
698 float_invalid_op_addsub(env, 1, GETPC(),
699 float64_classify(arg1) |
700 float64_classify(arg2));
701 }
702
703 return ret;
704 }
705
706 static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc,
707 uintptr_t retaddr, int classes)
708 {
709 if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) {
710 /* Multiplication of zero by infinity */
711 float_invalid_op_vximz(env, set_fprc, retaddr);
712 } else if (classes & is_snan) {
713 float_invalid_op_vxsnan(env, retaddr);
714 }
715 }
716
717 /* fmul - fmul. */
718 float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
719 {
720 float64 ret = float64_mul(arg1, arg2, &env->fp_status);
721 int status = get_float_exception_flags(&env->fp_status);
722
723 if (unlikely(status & float_flag_invalid)) {
724 float_invalid_op_mul(env, 1, GETPC(),
725 float64_classify(arg1) |
726 float64_classify(arg2));
727 }
728
729 return ret;
730 }
731
732 static void float_invalid_op_div(CPUPPCState *env, bool set_fprc,
733 uintptr_t retaddr, int classes)
734 {
735 classes &= ~is_neg;
736 if (classes == is_inf) {
737 /* Division of infinity by infinity */
738 float_invalid_op_vxidi(env, set_fprc, retaddr);
739 } else if (classes == is_zero) {
740 /* Division of zero by zero */
741 float_invalid_op_vxzdz(env, set_fprc, retaddr);
742 } else if (classes & is_snan) {
743 float_invalid_op_vxsnan(env, retaddr);
744 }
745 }
746
747 /* fdiv - fdiv. */
748 float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
749 {
750 float64 ret = float64_div(arg1, arg2, &env->fp_status);
751 int status = get_float_exception_flags(&env->fp_status);
752
753 if (unlikely(status)) {
754 if (status & float_flag_invalid) {
755 float_invalid_op_div(env, 1, GETPC(),
756 float64_classify(arg1) |
757 float64_classify(arg2));
758 }
759 if (status & float_flag_divbyzero) {
760 float_zero_divide_excp(env, GETPC());
761 }
762 }
763
764 return ret;
765 }
766
767 static void float_invalid_cvt(CPUPPCState *env, bool set_fprc,
768 uintptr_t retaddr, int class1)
769 {
770 float_invalid_op_vxcvi(env, set_fprc, retaddr);
771 if (class1 & is_snan) {
772 float_invalid_op_vxsnan(env, retaddr);
773 }
774 }
775
776 #define FPU_FCTI(op, cvt, nanval) \
777 uint64_t helper_##op(CPUPPCState *env, float64 arg) \
778 { \
779 uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
780 int status = get_float_exception_flags(&env->fp_status); \
781 \
782 if (unlikely(status)) { \
783 if (status & float_flag_invalid) { \
784 float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \
785 ret = nanval; \
786 } \
787 do_float_check_status(env, GETPC()); \
788 } \
789 return ret; \
790 }
791
792 FPU_FCTI(fctiw, int32, 0x80000000U)
793 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
794 FPU_FCTI(fctiwu, uint32, 0x00000000U)
795 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
796 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
797 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
798 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
799 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
800
801 #define FPU_FCFI(op, cvtr, is_single) \
802 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
803 { \
804 CPU_DoubleU farg; \
805 \
806 if (is_single) { \
807 float32 tmp = cvtr(arg, &env->fp_status); \
808 farg.d = float32_to_float64(tmp, &env->fp_status); \
809 } else { \
810 farg.d = cvtr(arg, &env->fp_status); \
811 } \
812 do_float_check_status(env, GETPC()); \
813 return farg.ll; \
814 }
815
816 FPU_FCFI(fcfid, int64_to_float64, 0)
817 FPU_FCFI(fcfids, int64_to_float32, 1)
818 FPU_FCFI(fcfidu, uint64_to_float64, 0)
819 FPU_FCFI(fcfidus, uint64_to_float32, 1)
820
821 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
822 int rounding_mode)
823 {
824 CPU_DoubleU farg;
825
826 farg.ll = arg;
827
828 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
829 /* sNaN round */
830 float_invalid_op_vxsnan(env, GETPC());
831 farg.ll = arg | 0x0008000000000000ULL;
832 } else {
833 int inexact = get_float_exception_flags(&env->fp_status) &
834 float_flag_inexact;
835 set_float_rounding_mode(rounding_mode, &env->fp_status);
836 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
837 /* Restore rounding mode from FPSCR */
838 fpscr_set_rounding_mode(env);
839
840 /* fri* does not set FPSCR[XX] */
841 if (!inexact) {
842 env->fp_status.float_exception_flags &= ~float_flag_inexact;
843 }
844 }
845 do_float_check_status(env, GETPC());
846 return farg.ll;
847 }
848
849 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
850 {
851 return do_fri(env, arg, float_round_ties_away);
852 }
853
854 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
855 {
856 return do_fri(env, arg, float_round_to_zero);
857 }
858
859 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
860 {
861 return do_fri(env, arg, float_round_up);
862 }
863
864 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
865 {
866 return do_fri(env, arg, float_round_down);
867 }
868
869 #define FPU_MADDSUB_UPDATE(NAME, TP) \
870 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3, \
871 unsigned int madd_flags, uintptr_t retaddr) \
872 { \
873 if (TP##_is_signaling_nan(arg1, &env->fp_status) || \
874 TP##_is_signaling_nan(arg2, &env->fp_status) || \
875 TP##_is_signaling_nan(arg3, &env->fp_status)) { \
876 /* sNaN operation */ \
877 float_invalid_op_vxsnan(env, retaddr); \
878 } \
879 if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) || \
880 (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) { \
881 /* Multiplication of zero by infinity */ \
882 float_invalid_op_vximz(env, 1, retaddr); \
883 } \
884 if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) && \
885 TP##_is_infinity(arg3)) { \
886 uint8_t aSign, bSign, cSign; \
887 \
888 aSign = TP##_is_neg(arg1); \
889 bSign = TP##_is_neg(arg2); \
890 cSign = TP##_is_neg(arg3); \
891 if (madd_flags & float_muladd_negate_c) { \
892 cSign ^= 1; \
893 } \
894 if (aSign ^ bSign ^ cSign) { \
895 float_invalid_op_vxisi(env, 1, retaddr); \
896 } \
897 } \
898 }
899 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
900 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
901
902 #define FPU_FMADD(op, madd_flags) \
903 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
904 uint64_t arg2, uint64_t arg3) \
905 { \
906 uint32_t flags; \
907 float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags, \
908 &env->fp_status); \
909 flags = get_float_exception_flags(&env->fp_status); \
910 if (flags) { \
911 if (flags & float_flag_invalid) { \
912 float64_maddsub_update_excp(env, arg1, arg2, arg3, \
913 madd_flags, GETPC()); \
914 } \
915 do_float_check_status(env, GETPC()); \
916 } \
917 return ret; \
918 }
919
920 #define MADD_FLGS 0
921 #define MSUB_FLGS float_muladd_negate_c
922 #define NMADD_FLGS float_muladd_negate_result
923 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
924
925 FPU_FMADD(fmadd, MADD_FLGS)
926 FPU_FMADD(fnmadd, NMADD_FLGS)
927 FPU_FMADD(fmsub, MSUB_FLGS)
928 FPU_FMADD(fnmsub, NMSUB_FLGS)
929
930 /* frsp - frsp. */
931 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
932 {
933 CPU_DoubleU farg;
934 float32 f32;
935
936 farg.ll = arg;
937
938 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
939 float_invalid_op_vxsnan(env, GETPC());
940 }
941 f32 = float64_to_float32(farg.d, &env->fp_status);
942 farg.d = float32_to_float64(f32, &env->fp_status);
943
944 return farg.ll;
945 }
946
947 /* fsqrt - fsqrt. */
948 float64 helper_fsqrt(CPUPPCState *env, float64 arg)
949 {
950 float64 ret = float64_sqrt(arg, &env->fp_status);
951 int status = get_float_exception_flags(&env->fp_status);
952
953 if (unlikely(status & float_flag_invalid)) {
954 if (unlikely(float64_is_any_nan(arg))) {
955 if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) {
956 /* sNaN square root */
957 float_invalid_op_vxsnan(env, GETPC());
958 }
959 } else {
960 /* Square root of a negative nonzero number */
961 float_invalid_op_vxsqrt(env, 1, GETPC());
962 }
963 }
964
965 return ret;
966 }
967
968 /* fre - fre. */
969 float64 helper_fre(CPUPPCState *env, float64 arg)
970 {
971 /* "Estimate" the reciprocal with actual division. */
972 float64 ret = float64_div(float64_one, arg, &env->fp_status);
973 int status = get_float_exception_flags(&env->fp_status);
974
975 if (unlikely(status)) {
976 if (status & float_flag_invalid) {
977 if (float64_is_signaling_nan(arg, &env->fp_status)) {
978 /* sNaN reciprocal */
979 float_invalid_op_vxsnan(env, GETPC());
980 }
981 }
982 if (status & float_flag_divbyzero) {
983 float_zero_divide_excp(env, GETPC());
984 /* For FPSCR.ZE == 0, the result is 1/2. */
985 ret = float64_set_sign(float64_half, float64_is_neg(arg));
986 }
987 }
988
989 return ret;
990 }
991
992 /* fres - fres. */
993 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
994 {
995 CPU_DoubleU farg;
996 float32 f32;
997
998 farg.ll = arg;
999
1000 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
1001 /* sNaN reciprocal */
1002 float_invalid_op_vxsnan(env, GETPC());
1003 }
1004 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1005 f32 = float64_to_float32(farg.d, &env->fp_status);
1006 farg.d = float32_to_float64(f32, &env->fp_status);
1007
1008 return farg.ll;
1009 }
1010
1011 /* frsqrte - frsqrte. */
1012 float64 helper_frsqrte(CPUPPCState *env, float64 arg)
1013 {
1014 /* "Estimate" the reciprocal with actual division. */
1015 float64 rets = float64_sqrt(arg, &env->fp_status);
1016 float64 retd = float64_div(float64_one, rets, &env->fp_status);
1017 int status = get_float_exception_flags(&env->fp_status);
1018
1019 if (unlikely(status)) {
1020 if (status & float_flag_invalid) {
1021 if (float64_is_signaling_nan(arg, &env->fp_status)) {
1022 /* sNaN reciprocal */
1023 float_invalid_op_vxsnan(env, GETPC());
1024 } else {
1025 /* Square root of a negative nonzero number */
1026 float_invalid_op_vxsqrt(env, 1, GETPC());
1027 }
1028 }
1029 if (status & float_flag_divbyzero) {
1030 /* Reciprocal of (square root of) zero. */
1031 float_zero_divide_excp(env, GETPC());
1032 }
1033 }
1034
1035 return retd;
1036 }
1037
1038 /* fsel - fsel. */
1039 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1040 uint64_t arg3)
1041 {
1042 CPU_DoubleU farg1;
1043
1044 farg1.ll = arg1;
1045
1046 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1047 !float64_is_any_nan(farg1.d)) {
1048 return arg2;
1049 } else {
1050 return arg3;
1051 }
1052 }
1053
1054 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1055 {
1056 int fe_flag = 0;
1057 int fg_flag = 0;
1058
1059 if (unlikely(float64_is_infinity(fra) ||
1060 float64_is_infinity(frb) ||
1061 float64_is_zero(frb))) {
1062 fe_flag = 1;
1063 fg_flag = 1;
1064 } else {
1065 int e_a = ppc_float64_get_unbiased_exp(fra);
1066 int e_b = ppc_float64_get_unbiased_exp(frb);
1067
1068 if (unlikely(float64_is_any_nan(fra) ||
1069 float64_is_any_nan(frb))) {
1070 fe_flag = 1;
1071 } else if ((e_b <= -1022) || (e_b >= 1021)) {
1072 fe_flag = 1;
1073 } else if (!float64_is_zero(fra) &&
1074 (((e_a - e_b) >= 1023) ||
1075 ((e_a - e_b) <= -1021) ||
1076 (e_a <= -970))) {
1077 fe_flag = 1;
1078 }
1079
1080 if (unlikely(float64_is_zero_or_denormal(frb))) {
1081 /* XB is not zero because of the above check and */
1082 /* so must be denormalized. */
1083 fg_flag = 1;
1084 }
1085 }
1086
1087 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1088 }
1089
1090 uint32_t helper_ftsqrt(uint64_t frb)
1091 {
1092 int fe_flag = 0;
1093 int fg_flag = 0;
1094
1095 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1096 fe_flag = 1;
1097 fg_flag = 1;
1098 } else {
1099 int e_b = ppc_float64_get_unbiased_exp(frb);
1100
1101 if (unlikely(float64_is_any_nan(frb))) {
1102 fe_flag = 1;
1103 } else if (unlikely(float64_is_zero(frb))) {
1104 fe_flag = 1;
1105 } else if (unlikely(float64_is_neg(frb))) {
1106 fe_flag = 1;
1107 } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
1108 fe_flag = 1;
1109 }
1110
1111 if (unlikely(float64_is_zero_or_denormal(frb))) {
1112 /* XB is not zero because of the above check and */
1113 /* therefore must be denormalized. */
1114 fg_flag = 1;
1115 }
1116 }
1117
1118 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1119 }
1120
1121 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1122 uint32_t crfD)
1123 {
1124 CPU_DoubleU farg1, farg2;
1125 uint32_t ret = 0;
1126
1127 farg1.ll = arg1;
1128 farg2.ll = arg2;
1129
1130 if (unlikely(float64_is_any_nan(farg1.d) ||
1131 float64_is_any_nan(farg2.d))) {
1132 ret = 0x01UL;
1133 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1134 ret = 0x08UL;
1135 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1136 ret = 0x04UL;
1137 } else {
1138 ret = 0x02UL;
1139 }
1140
1141 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1142 env->fpscr |= ret << FPSCR_FPRF;
1143 env->crf[crfD] = ret;
1144 if (unlikely(ret == 0x01UL
1145 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1146 float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1147 /* sNaN comparison */
1148 float_invalid_op_vxsnan(env, GETPC());
1149 }
1150 }
1151
1152 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1153 uint32_t crfD)
1154 {
1155 CPU_DoubleU farg1, farg2;
1156 uint32_t ret = 0;
1157
1158 farg1.ll = arg1;
1159 farg2.ll = arg2;
1160
1161 if (unlikely(float64_is_any_nan(farg1.d) ||
1162 float64_is_any_nan(farg2.d))) {
1163 ret = 0x01UL;
1164 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1165 ret = 0x08UL;
1166 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1167 ret = 0x04UL;
1168 } else {
1169 ret = 0x02UL;
1170 }
1171
1172 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1173 env->fpscr |= ret << FPSCR_FPRF;
1174 env->crf[crfD] = ret;
1175 if (unlikely(ret == 0x01UL)) {
1176 float_invalid_op_vxvc(env, 1, GETPC());
1177 if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1178 float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1179 /* sNaN comparison */
1180 float_invalid_op_vxsnan(env, GETPC());
1181 }
1182 }
1183 }
1184
1185 /* Single-precision floating-point conversions */
1186 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1187 {
1188 CPU_FloatU u;
1189
1190 u.f = int32_to_float32(val, &env->vec_status);
1191
1192 return u.l;
1193 }
1194
1195 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1196 {
1197 CPU_FloatU u;
1198
1199 u.f = uint32_to_float32(val, &env->vec_status);
1200
1201 return u.l;
1202 }
1203
1204 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1205 {
1206 CPU_FloatU u;
1207
1208 u.l = val;
1209 /* NaN are not treated the same way IEEE 754 does */
1210 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1211 return 0;
1212 }
1213
1214 return float32_to_int32(u.f, &env->vec_status);
1215 }
1216
1217 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1218 {
1219 CPU_FloatU u;
1220
1221 u.l = val;
1222 /* NaN are not treated the same way IEEE 754 does */
1223 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1224 return 0;
1225 }
1226
1227 return float32_to_uint32(u.f, &env->vec_status);
1228 }
1229
1230 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1231 {
1232 CPU_FloatU u;
1233
1234 u.l = val;
1235 /* NaN are not treated the same way IEEE 754 does */
1236 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1237 return 0;
1238 }
1239
1240 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1241 }
1242
1243 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1244 {
1245 CPU_FloatU u;
1246
1247 u.l = val;
1248 /* NaN are not treated the same way IEEE 754 does */
1249 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1250 return 0;
1251 }
1252
1253 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1254 }
1255
1256 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1257 {
1258 CPU_FloatU u;
1259 float32 tmp;
1260
1261 u.f = int32_to_float32(val, &env->vec_status);
1262 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1263 u.f = float32_div(u.f, tmp, &env->vec_status);
1264
1265 return u.l;
1266 }
1267
1268 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1269 {
1270 CPU_FloatU u;
1271 float32 tmp;
1272
1273 u.f = uint32_to_float32(val, &env->vec_status);
1274 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1275 u.f = float32_div(u.f, tmp, &env->vec_status);
1276
1277 return u.l;
1278 }
1279
1280 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1281 {
1282 CPU_FloatU u;
1283 float32 tmp;
1284
1285 u.l = val;
1286 /* NaN are not treated the same way IEEE 754 does */
1287 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1288 return 0;
1289 }
1290 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1291 u.f = float32_mul(u.f, tmp, &env->vec_status);
1292
1293 return float32_to_int32(u.f, &env->vec_status);
1294 }
1295
1296 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1297 {
1298 CPU_FloatU u;
1299 float32 tmp;
1300
1301 u.l = val;
1302 /* NaN are not treated the same way IEEE 754 does */
1303 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1304 return 0;
1305 }
1306 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1307 u.f = float32_mul(u.f, tmp, &env->vec_status);
1308
1309 return float32_to_uint32(u.f, &env->vec_status);
1310 }
1311
1312 #define HELPER_SPE_SINGLE_CONV(name) \
1313 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1314 { \
1315 return e##name(env, val); \
1316 }
1317 /* efscfsi */
1318 HELPER_SPE_SINGLE_CONV(fscfsi);
1319 /* efscfui */
1320 HELPER_SPE_SINGLE_CONV(fscfui);
1321 /* efscfuf */
1322 HELPER_SPE_SINGLE_CONV(fscfuf);
1323 /* efscfsf */
1324 HELPER_SPE_SINGLE_CONV(fscfsf);
1325 /* efsctsi */
1326 HELPER_SPE_SINGLE_CONV(fsctsi);
1327 /* efsctui */
1328 HELPER_SPE_SINGLE_CONV(fsctui);
1329 /* efsctsiz */
1330 HELPER_SPE_SINGLE_CONV(fsctsiz);
1331 /* efsctuiz */
1332 HELPER_SPE_SINGLE_CONV(fsctuiz);
1333 /* efsctsf */
1334 HELPER_SPE_SINGLE_CONV(fsctsf);
1335 /* efsctuf */
1336 HELPER_SPE_SINGLE_CONV(fsctuf);
1337
1338 #define HELPER_SPE_VECTOR_CONV(name) \
1339 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1340 { \
1341 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1342 (uint64_t)e##name(env, val); \
1343 }
1344 /* evfscfsi */
1345 HELPER_SPE_VECTOR_CONV(fscfsi);
1346 /* evfscfui */
1347 HELPER_SPE_VECTOR_CONV(fscfui);
1348 /* evfscfuf */
1349 HELPER_SPE_VECTOR_CONV(fscfuf);
1350 /* evfscfsf */
1351 HELPER_SPE_VECTOR_CONV(fscfsf);
1352 /* evfsctsi */
1353 HELPER_SPE_VECTOR_CONV(fsctsi);
1354 /* evfsctui */
1355 HELPER_SPE_VECTOR_CONV(fsctui);
1356 /* evfsctsiz */
1357 HELPER_SPE_VECTOR_CONV(fsctsiz);
1358 /* evfsctuiz */
1359 HELPER_SPE_VECTOR_CONV(fsctuiz);
1360 /* evfsctsf */
1361 HELPER_SPE_VECTOR_CONV(fsctsf);
1362 /* evfsctuf */
1363 HELPER_SPE_VECTOR_CONV(fsctuf);
1364
1365 /* Single-precision floating-point arithmetic */
1366 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1367 {
1368 CPU_FloatU u1, u2;
1369
1370 u1.l = op1;
1371 u2.l = op2;
1372 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1373 return u1.l;
1374 }
1375
1376 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1377 {
1378 CPU_FloatU u1, u2;
1379
1380 u1.l = op1;
1381 u2.l = op2;
1382 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1383 return u1.l;
1384 }
1385
1386 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1387 {
1388 CPU_FloatU u1, u2;
1389
1390 u1.l = op1;
1391 u2.l = op2;
1392 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1393 return u1.l;
1394 }
1395
1396 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1397 {
1398 CPU_FloatU u1, u2;
1399
1400 u1.l = op1;
1401 u2.l = op2;
1402 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1403 return u1.l;
1404 }
1405
1406 #define HELPER_SPE_SINGLE_ARITH(name) \
1407 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1408 { \
1409 return e##name(env, op1, op2); \
1410 }
1411 /* efsadd */
1412 HELPER_SPE_SINGLE_ARITH(fsadd);
1413 /* efssub */
1414 HELPER_SPE_SINGLE_ARITH(fssub);
1415 /* efsmul */
1416 HELPER_SPE_SINGLE_ARITH(fsmul);
1417 /* efsdiv */
1418 HELPER_SPE_SINGLE_ARITH(fsdiv);
1419
1420 #define HELPER_SPE_VECTOR_ARITH(name) \
1421 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1422 { \
1423 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1424 (uint64_t)e##name(env, op1, op2); \
1425 }
1426 /* evfsadd */
1427 HELPER_SPE_VECTOR_ARITH(fsadd);
1428 /* evfssub */
1429 HELPER_SPE_VECTOR_ARITH(fssub);
1430 /* evfsmul */
1431 HELPER_SPE_VECTOR_ARITH(fsmul);
1432 /* evfsdiv */
1433 HELPER_SPE_VECTOR_ARITH(fsdiv);
1434
1435 /* Single-precision floating-point comparisons */
1436 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1437 {
1438 CPU_FloatU u1, u2;
1439
1440 u1.l = op1;
1441 u2.l = op2;
1442 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1443 }
1444
1445 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1446 {
1447 CPU_FloatU u1, u2;
1448
1449 u1.l = op1;
1450 u2.l = op2;
1451 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1452 }
1453
1454 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1455 {
1456 CPU_FloatU u1, u2;
1457
1458 u1.l = op1;
1459 u2.l = op2;
1460 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1461 }
1462
1463 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1464 {
1465 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1466 return efscmplt(env, op1, op2);
1467 }
1468
1469 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1470 {
1471 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1472 return efscmpgt(env, op1, op2);
1473 }
1474
1475 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1476 {
1477 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1478 return efscmpeq(env, op1, op2);
1479 }
1480
1481 #define HELPER_SINGLE_SPE_CMP(name) \
1482 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1483 { \
1484 return e##name(env, op1, op2); \
1485 }
1486 /* efststlt */
1487 HELPER_SINGLE_SPE_CMP(fststlt);
1488 /* efststgt */
1489 HELPER_SINGLE_SPE_CMP(fststgt);
1490 /* efststeq */
1491 HELPER_SINGLE_SPE_CMP(fststeq);
1492 /* efscmplt */
1493 HELPER_SINGLE_SPE_CMP(fscmplt);
1494 /* efscmpgt */
1495 HELPER_SINGLE_SPE_CMP(fscmpgt);
1496 /* efscmpeq */
1497 HELPER_SINGLE_SPE_CMP(fscmpeq);
1498
1499 static inline uint32_t evcmp_merge(int t0, int t1)
1500 {
1501 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1502 }
1503
1504 #define HELPER_VECTOR_SPE_CMP(name) \
1505 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1506 { \
1507 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1508 e##name(env, op1, op2)); \
1509 }
1510 /* evfststlt */
1511 HELPER_VECTOR_SPE_CMP(fststlt);
1512 /* evfststgt */
1513 HELPER_VECTOR_SPE_CMP(fststgt);
1514 /* evfststeq */
1515 HELPER_VECTOR_SPE_CMP(fststeq);
1516 /* evfscmplt */
1517 HELPER_VECTOR_SPE_CMP(fscmplt);
1518 /* evfscmpgt */
1519 HELPER_VECTOR_SPE_CMP(fscmpgt);
1520 /* evfscmpeq */
1521 HELPER_VECTOR_SPE_CMP(fscmpeq);
1522
1523 /* Double-precision floating-point conversion */
1524 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1525 {
1526 CPU_DoubleU u;
1527
1528 u.d = int32_to_float64(val, &env->vec_status);
1529
1530 return u.ll;
1531 }
1532
1533 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1534 {
1535 CPU_DoubleU u;
1536
1537 u.d = int64_to_float64(val, &env->vec_status);
1538
1539 return u.ll;
1540 }
1541
1542 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1543 {
1544 CPU_DoubleU u;
1545
1546 u.d = uint32_to_float64(val, &env->vec_status);
1547
1548 return u.ll;
1549 }
1550
1551 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1552 {
1553 CPU_DoubleU u;
1554
1555 u.d = uint64_to_float64(val, &env->vec_status);
1556
1557 return u.ll;
1558 }
1559
1560 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1561 {
1562 CPU_DoubleU u;
1563
1564 u.ll = val;
1565 /* NaN are not treated the same way IEEE 754 does */
1566 if (unlikely(float64_is_any_nan(u.d))) {
1567 return 0;
1568 }
1569
1570 return float64_to_int32(u.d, &env->vec_status);
1571 }
1572
1573 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1574 {
1575 CPU_DoubleU u;
1576
1577 u.ll = val;
1578 /* NaN are not treated the same way IEEE 754 does */
1579 if (unlikely(float64_is_any_nan(u.d))) {
1580 return 0;
1581 }
1582
1583 return float64_to_uint32(u.d, &env->vec_status);
1584 }
1585
1586 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1587 {
1588 CPU_DoubleU u;
1589
1590 u.ll = val;
1591 /* NaN are not treated the same way IEEE 754 does */
1592 if (unlikely(float64_is_any_nan(u.d))) {
1593 return 0;
1594 }
1595
1596 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1597 }
1598
1599 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1600 {
1601 CPU_DoubleU u;
1602
1603 u.ll = val;
1604 /* NaN are not treated the same way IEEE 754 does */
1605 if (unlikely(float64_is_any_nan(u.d))) {
1606 return 0;
1607 }
1608
1609 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1610 }
1611
1612 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1613 {
1614 CPU_DoubleU u;
1615
1616 u.ll = val;
1617 /* NaN are not treated the same way IEEE 754 does */
1618 if (unlikely(float64_is_any_nan(u.d))) {
1619 return 0;
1620 }
1621
1622 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1623 }
1624
1625 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1626 {
1627 CPU_DoubleU u;
1628
1629 u.ll = val;
1630 /* NaN are not treated the same way IEEE 754 does */
1631 if (unlikely(float64_is_any_nan(u.d))) {
1632 return 0;
1633 }
1634
1635 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1636 }
1637
1638 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1639 {
1640 CPU_DoubleU u;
1641 float64 tmp;
1642
1643 u.d = int32_to_float64(val, &env->vec_status);
1644 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1645 u.d = float64_div(u.d, tmp, &env->vec_status);
1646
1647 return u.ll;
1648 }
1649
1650 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1651 {
1652 CPU_DoubleU u;
1653 float64 tmp;
1654
1655 u.d = uint32_to_float64(val, &env->vec_status);
1656 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1657 u.d = float64_div(u.d, tmp, &env->vec_status);
1658
1659 return u.ll;
1660 }
1661
1662 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1663 {
1664 CPU_DoubleU u;
1665 float64 tmp;
1666
1667 u.ll = val;
1668 /* NaN are not treated the same way IEEE 754 does */
1669 if (unlikely(float64_is_any_nan(u.d))) {
1670 return 0;
1671 }
1672 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1673 u.d = float64_mul(u.d, tmp, &env->vec_status);
1674
1675 return float64_to_int32(u.d, &env->vec_status);
1676 }
1677
1678 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1679 {
1680 CPU_DoubleU u;
1681 float64 tmp;
1682
1683 u.ll = val;
1684 /* NaN are not treated the same way IEEE 754 does */
1685 if (unlikely(float64_is_any_nan(u.d))) {
1686 return 0;
1687 }
1688 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1689 u.d = float64_mul(u.d, tmp, &env->vec_status);
1690
1691 return float64_to_uint32(u.d, &env->vec_status);
1692 }
1693
1694 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1695 {
1696 CPU_DoubleU u1;
1697 CPU_FloatU u2;
1698
1699 u1.ll = val;
1700 u2.f = float64_to_float32(u1.d, &env->vec_status);
1701
1702 return u2.l;
1703 }
1704
1705 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1706 {
1707 CPU_DoubleU u2;
1708 CPU_FloatU u1;
1709
1710 u1.l = val;
1711 u2.d = float32_to_float64(u1.f, &env->vec_status);
1712
1713 return u2.ll;
1714 }
1715
1716 /* Double precision fixed-point arithmetic */
1717 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1718 {
1719 CPU_DoubleU u1, u2;
1720
1721 u1.ll = op1;
1722 u2.ll = op2;
1723 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1724 return u1.ll;
1725 }
1726
1727 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1728 {
1729 CPU_DoubleU u1, u2;
1730
1731 u1.ll = op1;
1732 u2.ll = op2;
1733 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1734 return u1.ll;
1735 }
1736
1737 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1738 {
1739 CPU_DoubleU u1, u2;
1740
1741 u1.ll = op1;
1742 u2.ll = op2;
1743 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1744 return u1.ll;
1745 }
1746
1747 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1748 {
1749 CPU_DoubleU u1, u2;
1750
1751 u1.ll = op1;
1752 u2.ll = op2;
1753 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1754 return u1.ll;
1755 }
1756
1757 /* Double precision floating point helpers */
1758 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1759 {
1760 CPU_DoubleU u1, u2;
1761
1762 u1.ll = op1;
1763 u2.ll = op2;
1764 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1765 }
1766
1767 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1768 {
1769 CPU_DoubleU u1, u2;
1770
1771 u1.ll = op1;
1772 u2.ll = op2;
1773 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1774 }
1775
1776 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1777 {
1778 CPU_DoubleU u1, u2;
1779
1780 u1.ll = op1;
1781 u2.ll = op2;
1782 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1783 }
1784
1785 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1786 {
1787 /* XXX: TODO: test special values (NaN, infinites, ...) */
1788 return helper_efdtstlt(env, op1, op2);
1789 }
1790
1791 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1792 {
1793 /* XXX: TODO: test special values (NaN, infinites, ...) */
1794 return helper_efdtstgt(env, op1, op2);
1795 }
1796
1797 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1798 {
1799 /* XXX: TODO: test special values (NaN, infinites, ...) */
1800 return helper_efdtsteq(env, op1, op2);
1801 }
1802
1803 #define float64_to_float64(x, env) x
1804
1805
1806 /*
1807 * VSX_ADD_SUB - VSX floating point add/subract
1808 * name - instruction mnemonic
1809 * op - operation (add or sub)
1810 * nels - number of elements (1, 2 or 4)
1811 * tp - type (float32 or float64)
1812 * fld - vsr_t field (VsrD(*) or VsrW(*))
1813 * sfprf - set FPRF
1814 */
1815 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1816 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
1817 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1818 { \
1819 ppc_vsr_t t = *xt; \
1820 int i; \
1821 \
1822 helper_reset_fpstatus(env); \
1823 \
1824 for (i = 0; i < nels; i++) { \
1825 float_status tstat = env->fp_status; \
1826 set_float_exception_flags(0, &tstat); \
1827 t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \
1828 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1829 \
1830 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1831 float_invalid_op_addsub(env, sfprf, GETPC(), \
1832 tp##_classify(xa->fld) | \
1833 tp##_classify(xb->fld)); \
1834 } \
1835 \
1836 if (r2sp) { \
1837 t.fld = helper_frsp(env, t.fld); \
1838 } \
1839 \
1840 if (sfprf) { \
1841 helper_compute_fprf_float64(env, t.fld); \
1842 } \
1843 } \
1844 *xt = t; \
1845 do_float_check_status(env, GETPC()); \
1846 }
1847
1848 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1849 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1850 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1851 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1852 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1853 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1854 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1855 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1856
1857 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
1858 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1859 {
1860 ppc_vsr_t t = *xt;
1861 float_status tstat;
1862
1863 helper_reset_fpstatus(env);
1864
1865 tstat = env->fp_status;
1866 if (unlikely(Rc(opcode) != 0)) {
1867 tstat.float_rounding_mode = float_round_to_odd;
1868 }
1869
1870 set_float_exception_flags(0, &tstat);
1871 t.f128 = float128_add(xa->f128, xb->f128, &tstat);
1872 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1873
1874 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1875 float_invalid_op_addsub(env, 1, GETPC(),
1876 float128_classify(xa->f128) |
1877 float128_classify(xb->f128));
1878 }
1879
1880 helper_compute_fprf_float128(env, t.f128);
1881
1882 *xt = t;
1883 do_float_check_status(env, GETPC());
1884 }
1885
1886 /*
1887 * VSX_MUL - VSX floating point multiply
1888 * op - instruction mnemonic
1889 * nels - number of elements (1, 2 or 4)
1890 * tp - type (float32 or float64)
1891 * fld - vsr_t field (VsrD(*) or VsrW(*))
1892 * sfprf - set FPRF
1893 */
1894 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1895 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1896 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1897 { \
1898 ppc_vsr_t t = *xt; \
1899 int i; \
1900 \
1901 helper_reset_fpstatus(env); \
1902 \
1903 for (i = 0; i < nels; i++) { \
1904 float_status tstat = env->fp_status; \
1905 set_float_exception_flags(0, &tstat); \
1906 t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \
1907 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1908 \
1909 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1910 float_invalid_op_mul(env, sfprf, GETPC(), \
1911 tp##_classify(xa->fld) | \
1912 tp##_classify(xb->fld)); \
1913 } \
1914 \
1915 if (r2sp) { \
1916 t.fld = helper_frsp(env, t.fld); \
1917 } \
1918 \
1919 if (sfprf) { \
1920 helper_compute_fprf_float64(env, t.fld); \
1921 } \
1922 } \
1923 \
1924 *xt = t; \
1925 do_float_check_status(env, GETPC()); \
1926 }
1927
1928 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1929 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1930 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1931 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1932
1933 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
1934 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1935 {
1936 ppc_vsr_t t = *xt;
1937 float_status tstat;
1938
1939 helper_reset_fpstatus(env);
1940 tstat = env->fp_status;
1941 if (unlikely(Rc(opcode) != 0)) {
1942 tstat.float_rounding_mode = float_round_to_odd;
1943 }
1944
1945 set_float_exception_flags(0, &tstat);
1946 t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
1947 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1948
1949 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1950 float_invalid_op_mul(env, 1, GETPC(),
1951 float128_classify(xa->f128) |
1952 float128_classify(xb->f128));
1953 }
1954 helper_compute_fprf_float128(env, t.f128);
1955
1956 *xt = t;
1957 do_float_check_status(env, GETPC());
1958 }
1959
1960 /*
1961 * VSX_DIV - VSX floating point divide
1962 * op - instruction mnemonic
1963 * nels - number of elements (1, 2 or 4)
1964 * tp - type (float32 or float64)
1965 * fld - vsr_t field (VsrD(*) or VsrW(*))
1966 * sfprf - set FPRF
1967 */
1968 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1969 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1970 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1971 { \
1972 ppc_vsr_t t = *xt; \
1973 int i; \
1974 \
1975 helper_reset_fpstatus(env); \
1976 \
1977 for (i = 0; i < nels; i++) { \
1978 float_status tstat = env->fp_status; \
1979 set_float_exception_flags(0, &tstat); \
1980 t.fld = tp##_div(xa->fld, xb->fld, &tstat); \
1981 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1982 \
1983 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1984 float_invalid_op_div(env, sfprf, GETPC(), \
1985 tp##_classify(xa->fld) | \
1986 tp##_classify(xb->fld)); \
1987 } \
1988 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
1989 float_zero_divide_excp(env, GETPC()); \
1990 } \
1991 \
1992 if (r2sp) { \
1993 t.fld = helper_frsp(env, t.fld); \
1994 } \
1995 \
1996 if (sfprf) { \
1997 helper_compute_fprf_float64(env, t.fld); \
1998 } \
1999 } \
2000 \
2001 *xt = t; \
2002 do_float_check_status(env, GETPC()); \
2003 }
2004
2005 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
2006 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
2007 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
2008 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
2009
2010 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
2011 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
2012 {
2013 ppc_vsr_t t = *xt;
2014 float_status tstat;
2015
2016 helper_reset_fpstatus(env);
2017 tstat = env->fp_status;
2018 if (unlikely(Rc(opcode) != 0)) {
2019 tstat.float_rounding_mode = float_round_to_odd;
2020 }
2021
2022 set_float_exception_flags(0, &tstat);
2023 t.f128 = float128_div(xa->f128, xb->f128, &tstat);
2024 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2025
2026 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
2027 float_invalid_op_div(env, 1, GETPC(),
2028 float128_classify(xa->f128) |
2029 float128_classify(xb->f128));
2030 }
2031 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
2032 float_zero_divide_excp(env, GETPC());
2033 }
2034
2035 helper_compute_fprf_float128(env, t.f128);
2036 *xt = t;
2037 do_float_check_status(env, GETPC());
2038 }
2039
2040 /*
2041 * VSX_RE - VSX floating point reciprocal estimate
2042 * op - instruction mnemonic
2043 * nels - number of elements (1, 2 or 4)
2044 * tp - type (float32 or float64)
2045 * fld - vsr_t field (VsrD(*) or VsrW(*))
2046 * sfprf - set FPRF
2047 */
2048 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
2049 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2050 { \
2051 ppc_vsr_t t = *xt; \
2052 int i; \
2053 \
2054 helper_reset_fpstatus(env); \
2055 \
2056 for (i = 0; i < nels; i++) { \
2057 if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2058 float_invalid_op_vxsnan(env, GETPC()); \
2059 } \
2060 t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \
2061 \
2062 if (r2sp) { \
2063 t.fld = helper_frsp(env, t.fld); \
2064 } \
2065 \
2066 if (sfprf) { \
2067 helper_compute_fprf_float64(env, t.fld); \
2068 } \
2069 } \
2070 \
2071 *xt = t; \
2072 do_float_check_status(env, GETPC()); \
2073 }
2074
2075 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2076 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2077 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2078 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2079
2080 /*
2081 * VSX_SQRT - VSX floating point square root
2082 * op - instruction mnemonic
2083 * nels - number of elements (1, 2 or 4)
2084 * tp - type (float32 or float64)
2085 * fld - vsr_t field (VsrD(*) or VsrW(*))
2086 * sfprf - set FPRF
2087 */
2088 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2089 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2090 { \
2091 ppc_vsr_t t = *xt; \
2092 int i; \
2093 \
2094 helper_reset_fpstatus(env); \
2095 \
2096 for (i = 0; i < nels; i++) { \
2097 float_status tstat = env->fp_status; \
2098 set_float_exception_flags(0, &tstat); \
2099 t.fld = tp##_sqrt(xb->fld, &tstat); \
2100 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2101 \
2102 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2103 if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
2104 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
2105 } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
2106 float_invalid_op_vxsnan(env, GETPC()); \
2107 } \
2108 } \
2109 \
2110 if (r2sp) { \
2111 t.fld = helper_frsp(env, t.fld); \
2112 } \
2113 \
2114 if (sfprf) { \
2115 helper_compute_fprf_float64(env, t.fld); \
2116 } \
2117 } \
2118 \
2119 *xt = t; \
2120 do_float_check_status(env, GETPC()); \
2121 }
2122
2123 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2124 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2125 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2126 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2127
2128 /*
2129 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
2130 * op - instruction mnemonic
2131 * nels - number of elements (1, 2 or 4)
2132 * tp - type (float32 or float64)
2133 * fld - vsr_t field (VsrD(*) or VsrW(*))
2134 * sfprf - set FPRF
2135 */
2136 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2137 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2138 { \
2139 ppc_vsr_t t = *xt; \
2140 int i; \
2141 \
2142 helper_reset_fpstatus(env); \
2143 \
2144 for (i = 0; i < nels; i++) { \
2145 float_status tstat = env->fp_status; \
2146 set_float_exception_flags(0, &tstat); \
2147 t.fld = tp##_sqrt(xb->fld, &tstat); \
2148 t.fld = tp##_div(tp##_one, t.fld, &tstat); \
2149 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2150 \
2151 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2152 if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
2153 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
2154 } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
2155 float_invalid_op_vxsnan(env, GETPC()); \
2156 } \
2157 } \
2158 \
2159 if (r2sp) { \
2160 t.fld = helper_frsp(env, t.fld); \
2161 } \
2162 \
2163 if (sfprf) { \
2164 helper_compute_fprf_float64(env, t.fld); \
2165 } \
2166 } \
2167 \
2168 *xt = t; \
2169 do_float_check_status(env, GETPC()); \
2170 }
2171
2172 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2173 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2174 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2175 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2176
2177 /*
2178 * VSX_TDIV - VSX floating point test for divide
2179 * op - instruction mnemonic
2180 * nels - number of elements (1, 2 or 4)
2181 * tp - type (float32 or float64)
2182 * fld - vsr_t field (VsrD(*) or VsrW(*))
2183 * emin - minimum unbiased exponent
2184 * emax - maximum unbiased exponent
2185 * nbits - number of fraction bits
2186 */
2187 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2188 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2189 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2190 { \
2191 int i; \
2192 int fe_flag = 0; \
2193 int fg_flag = 0; \
2194 \
2195 for (i = 0; i < nels; i++) { \
2196 if (unlikely(tp##_is_infinity(xa->fld) || \
2197 tp##_is_infinity(xb->fld) || \
2198 tp##_is_zero(xb->fld))) { \
2199 fe_flag = 1; \
2200 fg_flag = 1; \
2201 } else { \
2202 int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \
2203 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2204 \
2205 if (unlikely(tp##_is_any_nan(xa->fld) || \
2206 tp##_is_any_nan(xb->fld))) { \
2207 fe_flag = 1; \
2208 } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
2209 fe_flag = 1; \
2210 } else if (!tp##_is_zero(xa->fld) && \
2211 (((e_a - e_b) >= emax) || \
2212 ((e_a - e_b) <= (emin + 1)) || \
2213 (e_a <= (emin + nbits)))) { \
2214 fe_flag = 1; \
2215 } \
2216 \
2217 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2218 /* \
2219 * XB is not zero because of the above check and so \
2220 * must be denormalized. \
2221 */ \
2222 fg_flag = 1; \
2223 } \
2224 } \
2225 } \
2226 \
2227 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2228 }
2229
2230 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2231 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2232 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2233
2234 /*
2235 * VSX_TSQRT - VSX floating point test for square root
2236 * op - instruction mnemonic
2237 * nels - number of elements (1, 2 or 4)
2238 * tp - type (float32 or float64)
2239 * fld - vsr_t field (VsrD(*) or VsrW(*))
2240 * emin - minimum unbiased exponent
2241 * emax - maximum unbiased exponent
2242 * nbits - number of fraction bits
2243 */
2244 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2245 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \
2246 { \
2247 int i; \
2248 int fe_flag = 0; \
2249 int fg_flag = 0; \
2250 \
2251 for (i = 0; i < nels; i++) { \
2252 if (unlikely(tp##_is_infinity(xb->fld) || \
2253 tp##_is_zero(xb->fld))) { \
2254 fe_flag = 1; \
2255 fg_flag = 1; \
2256 } else { \
2257 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2258 \
2259 if (unlikely(tp##_is_any_nan(xb->fld))) { \
2260 fe_flag = 1; \
2261 } else if (unlikely(tp##_is_zero(xb->fld))) { \
2262 fe_flag = 1; \
2263 } else if (unlikely(tp##_is_neg(xb->fld))) { \
2264 fe_flag = 1; \
2265 } else if (!tp##_is_zero(xb->fld) && \
2266 (e_b <= (emin + nbits))) { \
2267 fe_flag = 1; \
2268 } \
2269 \
2270 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2271 /* \
2272 * XB is not zero because of the above check and \
2273 * therefore must be denormalized. \
2274 */ \
2275 fg_flag = 1; \
2276 } \
2277 } \
2278 } \
2279 \
2280 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2281 }
2282
2283 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2284 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2285 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2286
2287 /*
2288 * VSX_MADD - VSX floating point muliply/add variations
2289 * op - instruction mnemonic
2290 * nels - number of elements (1, 2 or 4)
2291 * tp - type (float32 or float64)
2292 * fld - vsr_t field (VsrD(*) or VsrW(*))
2293 * maddflgs - flags for the float*muladd routine that control the
2294 * various forms (madd, msub, nmadd, nmsub)
2295 * sfprf - set FPRF
2296 */
2297 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp) \
2298 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2299 ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c) \
2300 { \
2301 ppc_vsr_t t = *xt; \
2302 int i; \
2303 \
2304 helper_reset_fpstatus(env); \
2305 \
2306 for (i = 0; i < nels; i++) { \
2307 float_status tstat = env->fp_status; \
2308 set_float_exception_flags(0, &tstat); \
2309 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2310 /* \
2311 * Avoid double rounding errors by rounding the intermediate \
2312 * result to odd. \
2313 */ \
2314 set_float_rounding_mode(float_round_to_zero, &tstat); \
2315 t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
2316 maddflgs, &tstat); \
2317 t.fld |= (get_float_exception_flags(&tstat) & \
2318 float_flag_inexact) != 0; \
2319 } else { \
2320 t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
2321 maddflgs, &tstat); \
2322 } \
2323 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2324 \
2325 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2326 tp##_maddsub_update_excp(env, xa->fld, b->fld, \
2327 c->fld, maddflgs, GETPC()); \
2328 } \
2329 \
2330 if (r2sp) { \
2331 t.fld = helper_frsp(env, t.fld); \
2332 } \
2333 \
2334 if (sfprf) { \
2335 helper_compute_fprf_float64(env, t.fld); \
2336 } \
2337 } \
2338 *xt = t; \
2339 do_float_check_status(env, GETPC()); \
2340 }
2341
2342 VSX_MADD(xsmadddp, 1, float64, VsrD(0), MADD_FLGS, 1, 0)
2343 VSX_MADD(xsmsubdp, 1, float64, VsrD(0), MSUB_FLGS, 1, 0)
2344 VSX_MADD(xsnmadddp, 1, float64, VsrD(0), NMADD_FLGS, 1, 0)
2345 VSX_MADD(xsnmsubdp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 0)
2346 VSX_MADD(xsmaddsp, 1, float64, VsrD(0), MADD_FLGS, 1, 1)
2347 VSX_MADD(xsmsubsp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1)
2348 VSX_MADD(xsnmaddsp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1)
2349 VSX_MADD(xsnmsubsp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1)
2350
2351 VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0, 0)
2352 VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0)
2353 VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0)
2354 VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0)
2355
2356 VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0)
2357 VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0)
2358 VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0)
2359 VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0)
2360
2361 /*
2362 * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2363 * op - instruction mnemonic
2364 * cmp - comparison operation
2365 * exp - expected result of comparison
2366 * svxvc - set VXVC bit
2367 */
2368 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
2369 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2370 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2371 { \
2372 ppc_vsr_t t = *xt; \
2373 bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
2374 \
2375 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2376 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2377 vxsnan_flag = true; \
2378 if (fpscr_ve == 0 && svxvc) { \
2379 vxvc_flag = true; \
2380 } \
2381 } else if (svxvc) { \
2382 vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
2383 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status); \
2384 } \
2385 if (vxsnan_flag) { \
2386 float_invalid_op_vxsnan(env, GETPC()); \
2387 } \
2388 if (vxvc_flag) { \
2389 float_invalid_op_vxvc(env, 0, GETPC()); \
2390 } \
2391 vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
2392 \
2393 if (!vex_flag) { \
2394 if (float64_##cmp(xb->VsrD(0), xa->VsrD(0), \
2395 &env->fp_status) == exp) { \
2396 t.VsrD(0) = -1; \
2397 t.VsrD(1) = 0; \
2398 } else { \
2399 t.VsrD(0) = 0; \
2400 t.VsrD(1) = 0; \
2401 } \
2402 } \
2403 *xt = t; \
2404 do_float_check_status(env, GETPC()); \
2405 }
2406
2407 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2408 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2409 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2410 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2411
2412 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
2413 ppc_vsr_t *xa, ppc_vsr_t *xb)
2414 {
2415 int64_t exp_a, exp_b;
2416 uint32_t cc;
2417
2418 exp_a = extract64(xa->VsrD(0), 52, 11);
2419 exp_b = extract64(xb->VsrD(0), 52, 11);
2420
2421 if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
2422 float64_is_any_nan(xb->VsrD(0)))) {
2423 cc = CRF_SO;
2424 } else {
2425 if (exp_a < exp_b) {
2426 cc = CRF_LT;
2427 } else if (exp_a > exp_b) {
2428 cc = CRF_GT;
2429 } else {
2430 cc = CRF_EQ;
2431 }
2432 }
2433
2434 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2435 env->fpscr |= cc << FPSCR_FPRF;
2436 env->crf[BF(opcode)] = cc;
2437
2438 do_float_check_status(env, GETPC());
2439 }
2440
2441 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
2442 ppc_vsr_t *xa, ppc_vsr_t *xb)
2443 {
2444 int64_t exp_a, exp_b;
2445 uint32_t cc;
2446
2447 exp_a = extract64(xa->VsrD(0), 48, 15);
2448 exp_b = extract64(xb->VsrD(0), 48, 15);
2449
2450 if (unlikely(float128_is_any_nan(xa->f128) ||
2451 float128_is_any_nan(xb->f128))) {
2452 cc = CRF_SO;
2453 } else {
2454 if (exp_a < exp_b) {
2455 cc = CRF_LT;
2456 } else if (exp_a > exp_b) {
2457 cc = CRF_GT;
2458 } else {
2459 cc = CRF_EQ;
2460 }
2461 }
2462
2463 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2464 env->fpscr |= cc << FPSCR_FPRF;
2465 env->crf[BF(opcode)] = cc;
2466
2467 do_float_check_status(env, GETPC());
2468 }
2469
2470 #define VSX_SCALAR_CMP(op, ordered) \
2471 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2472 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2473 { \
2474 uint32_t cc = 0; \
2475 bool vxsnan_flag = false, vxvc_flag = false; \
2476 \
2477 helper_reset_fpstatus(env); \
2478 \
2479 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2480 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2481 vxsnan_flag = true; \
2482 cc = CRF_SO; \
2483 if (fpscr_ve == 0 && ordered) { \
2484 vxvc_flag = true; \
2485 } \
2486 } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
2487 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) { \
2488 cc = CRF_SO; \
2489 if (ordered) { \
2490 vxvc_flag = true; \
2491 } \
2492 } \
2493 if (vxsnan_flag) { \
2494 float_invalid_op_vxsnan(env, GETPC()); \
2495 } \
2496 if (vxvc_flag) { \
2497 float_invalid_op_vxvc(env, 0, GETPC()); \
2498 } \
2499 \
2500 if (float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \
2501 cc |= CRF_LT; \
2502 } else if (!float64_le(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \
2503 cc |= CRF_GT; \
2504 } else { \
2505 cc |= CRF_EQ; \
2506 } \
2507 \
2508 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2509 env->fpscr |= cc << FPSCR_FPRF; \
2510 env->crf[BF(opcode)] = cc; \
2511 \
2512 do_float_check_status(env, GETPC()); \
2513 }
2514
2515 VSX_SCALAR_CMP(xscmpodp, 1)
2516 VSX_SCALAR_CMP(xscmpudp, 0)
2517
2518 #define VSX_SCALAR_CMPQ(op, ordered) \
2519 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2520 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2521 { \
2522 uint32_t cc = 0; \
2523 bool vxsnan_flag = false, vxvc_flag = false; \
2524 \
2525 helper_reset_fpstatus(env); \
2526 \
2527 if (float128_is_signaling_nan(xa->f128, &env->fp_status) || \
2528 float128_is_signaling_nan(xb->f128, &env->fp_status)) { \
2529 vxsnan_flag = true; \
2530 cc = CRF_SO; \
2531 if (fpscr_ve == 0 && ordered) { \
2532 vxvc_flag = true; \
2533 } \
2534 } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) || \
2535 float128_is_quiet_nan(xb->f128, &env->fp_status)) { \
2536 cc = CRF_SO; \
2537 if (ordered) { \
2538 vxvc_flag = true; \
2539 } \
2540 } \
2541 if (vxsnan_flag) { \
2542 float_invalid_op_vxsnan(env, GETPC()); \
2543 } \
2544 if (vxvc_flag) { \
2545 float_invalid_op_vxvc(env, 0, GETPC()); \
2546 } \
2547 \
2548 if (float128_lt(xa->f128, xb->f128, &env->fp_status)) { \
2549 cc |= CRF_LT; \
2550 } else if (!float128_le(xa->f128, xb->f128, &env->fp_status)) { \
2551 cc |= CRF_GT; \
2552 } else { \
2553 cc |= CRF_EQ; \
2554 } \
2555 \
2556 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2557 env->fpscr |= cc << FPSCR_FPRF; \
2558 env->crf[BF(opcode)] = cc; \
2559 \
2560 do_float_check_status(env, GETPC()); \
2561 }
2562
2563 VSX_SCALAR_CMPQ(xscmpoqp, 1)
2564 VSX_SCALAR_CMPQ(xscmpuqp, 0)
2565
2566 /*
2567 * VSX_MAX_MIN - VSX floating point maximum/minimum
2568 * name - instruction mnemonic
2569 * op - operation (max or min)
2570 * nels - number of elements (1, 2 or 4)
2571 * tp - type (float32 or float64)
2572 * fld - vsr_t field (VsrD(*) or VsrW(*))
2573 */
2574 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2575 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
2576 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2577 { \
2578 ppc_vsr_t t = *xt; \
2579 int i; \
2580 \
2581 for (i = 0; i < nels; i++) { \
2582 t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \
2583 if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2584 tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2585 float_invalid_op_vxsnan(env, GETPC()); \
2586 } \
2587 } \
2588 \
2589 *xt = t; \
2590 do_float_check_status(env, GETPC()); \
2591 }
2592
2593 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2594 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2595 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2596 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2597 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2598 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2599
2600 #define VSX_MAX_MINC(name, max) \
2601 void helper_##name(CPUPPCState *env, uint32_t opcode, \
2602 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2603 { \
2604 ppc_vsr_t t = *xt; \
2605 bool vxsnan_flag = false, vex_flag = false; \
2606 \
2607 if (unlikely(float64_is_any_nan(xa->VsrD(0)) || \
2608 float64_is_any_nan(xb->VsrD(0)))) { \
2609 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2610 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2611 vxsnan_flag = true; \
2612 } \
2613 t.VsrD(0) = xb->VsrD(0); \
2614 } else if ((max && \
2615 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2616 (!max && \
2617 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2618 t.VsrD(0) = xa->VsrD(0); \
2619 } else { \
2620 t.VsrD(0) = xb->VsrD(0); \
2621 } \
2622 \
2623 vex_flag = fpscr_ve & vxsnan_flag; \
2624 if (vxsnan_flag) { \
2625 float_invalid_op_vxsnan(env, GETPC()); \
2626 } \
2627 if (!vex_flag) { \
2628 *xt = t; \
2629 } \
2630 } \
2631
2632 VSX_MAX_MINC(xsmaxcdp, 1);
2633 VSX_MAX_MINC(xsmincdp, 0);
2634
2635 #define VSX_MAX_MINJ(name, max) \
2636 void helper_##name(CPUPPCState *env, uint32_t opcode, \
2637 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2638 { \
2639 ppc_vsr_t t = *xt; \
2640 bool vxsnan_flag = false, vex_flag = false; \
2641 \
2642 if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \
2643 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \
2644 vxsnan_flag = true; \
2645 } \
2646 t.VsrD(0) = xa->VsrD(0); \
2647 } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \
2648 if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2649 vxsnan_flag = true; \
2650 } \
2651 t.VsrD(0) = xb->VsrD(0); \
2652 } else if (float64_is_zero(xa->VsrD(0)) && \
2653 float64_is_zero(xb->VsrD(0))) { \
2654 if (max) { \
2655 if (!float64_is_neg(xa->VsrD(0)) || \
2656 !float64_is_neg(xb->VsrD(0))) { \
2657 t.VsrD(0) = 0ULL; \
2658 } else { \
2659 t.VsrD(0) = 0x8000000000000000ULL; \
2660 } \
2661 } else { \
2662 if (float64_is_neg(xa->VsrD(0)) || \
2663 float64_is_neg(xb->VsrD(0))) { \
2664 t.VsrD(0) = 0x8000000000000000ULL; \
2665 } else { \
2666 t.VsrD(0) = 0ULL; \
2667 } \
2668 } \
2669 } else if ((max && \
2670 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2671 (!max && \
2672 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2673 t.VsrD(0) = xa->VsrD(0); \
2674 } else { \
2675 t.VsrD(0) = xb->VsrD(0); \
2676 } \
2677 \
2678 vex_flag = fpscr_ve & vxsnan_flag; \
2679 if (vxsnan_flag) { \
2680 float_invalid_op_vxsnan(env, GETPC()); \
2681 } \
2682 if (!vex_flag) { \
2683 *xt = t; \
2684 } \
2685 } \
2686
2687 VSX_MAX_MINJ(xsmaxjdp, 1);
2688 VSX_MAX_MINJ(xsminjdp, 0);
2689
2690 /*
2691 * VSX_CMP - VSX floating point compare
2692 * op - instruction mnemonic
2693 * nels - number of elements (1, 2 or 4)
2694 * tp - type (float32 or float64)
2695 * fld - vsr_t field (VsrD(*) or VsrW(*))
2696 * cmp - comparison operation
2697 * svxvc - set VXVC bit
2698 * exp - expected result of comparison
2699 */
2700 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2701 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2702 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2703 { \
2704 ppc_vsr_t t = *xt; \
2705 uint32_t crf6 = 0; \
2706 int i; \
2707 int all_true = 1; \
2708 int all_false = 1; \
2709 \
2710 for (i = 0; i < nels; i++) { \
2711 if (unlikely(tp##_is_any_nan(xa->fld) || \
2712 tp##_is_any_nan(xb->fld))) { \
2713 if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2714 tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \
2715 float_invalid_op_vxsnan(env, GETPC()); \
2716 } \
2717 if (svxvc) { \
2718 float_invalid_op_vxvc(env, 0, GETPC()); \
2719 } \
2720 t.fld = 0; \
2721 all_true = 0; \
2722 } else { \
2723 if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \
2724 t.fld = -1; \
2725 all_false = 0; \
2726 } else { \
2727 t.fld = 0; \
2728 all_true = 0; \
2729 } \
2730 } \
2731 } \
2732 \
2733 *xt = t; \
2734 crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2735 return crf6; \
2736 }
2737
2738 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2739 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2740 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2741 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2742 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2743 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2744 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2745 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2746
2747 /*
2748 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2749 * op - instruction mnemonic
2750 * nels - number of elements (1, 2 or 4)
2751 * stp - source type (float32 or float64)
2752 * ttp - target type (float32 or float64)
2753 * sfld - source vsr_t field
2754 * tfld - target vsr_t field (f32 or f64)
2755 * sfprf - set FPRF
2756 */
2757 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2758 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2759 { \
2760 ppc_vsr_t t = *xt; \
2761 int i; \
2762 \
2763 for (i = 0; i < nels; i++) { \
2764 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2765 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2766 &env->fp_status))) { \
2767 float_invalid_op_vxsnan(env, GETPC()); \
2768 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2769 } \
2770 if (sfprf) { \
2771 helper_compute_fprf_##ttp(env, t.tfld); \
2772 } \
2773 } \
2774 \
2775 *xt = t; \
2776 do_float_check_status(env, GETPC()); \
2777 }
2778
2779 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2780 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2781 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0)
2782 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2783
2784 /*
2785 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2786 * op - instruction mnemonic
2787 * nels - number of elements (1, 2 or 4)
2788 * stp - source type (float32 or float64)
2789 * ttp - target type (float32 or float64)
2790 * sfld - source vsr_t field
2791 * tfld - target vsr_t field (f32 or f64)
2792 * sfprf - set FPRF
2793 */
2794 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2795 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2796 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2797 { \
2798 ppc_vsr_t t = *xt; \
2799 int i; \
2800 \
2801 for (i = 0; i < nels; i++) { \
2802 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2803 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2804 &env->fp_status))) { \
2805 float_invalid_op_vxsnan(env, GETPC()); \
2806 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2807 } \
2808 if (sfprf) { \
2809 helper_compute_fprf_##ttp(env, t.tfld); \
2810 } \
2811 } \
2812 \
2813 *xt = t; \
2814 do_float_check_status(env, GETPC()); \
2815 }
2816
2817 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2818
2819 /*
2820 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2821 * involving one half precision value
2822 * op - instruction mnemonic
2823 * nels - number of elements (1, 2 or 4)
2824 * stp - source type
2825 * ttp - target type
2826 * sfld - source vsr_t field
2827 * tfld - target vsr_t field
2828 * sfprf - set FPRF
2829 */
2830 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2831 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2832 { \
2833 ppc_vsr_t t = { }; \
2834 int i; \
2835 \
2836 for (i = 0; i < nels; i++) { \
2837 t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \
2838 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2839 &env->fp_status))) { \
2840 float_invalid_op_vxsnan(env, GETPC()); \
2841 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2842 } \
2843 if (sfprf) { \
2844 helper_compute_fprf_##ttp(env, t.tfld); \
2845 } \
2846 } \
2847 \
2848 *xt = t; \
2849 do_float_check_status(env, GETPC()); \
2850 }
2851
2852 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2853 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2854 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0)
2855 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2856
2857 /*
2858 * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2859 * added to this later.
2860 */
2861 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode,
2862 ppc_vsr_t *xt, ppc_vsr_t *xb)
2863 {
2864 ppc_vsr_t t = { };
2865 float_status tstat;
2866
2867 tstat = env->fp_status;
2868 if (unlikely(Rc(opcode) != 0)) {
2869 tstat.float_rounding_mode = float_round_to_odd;
2870 }
2871
2872 t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
2873 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2874 if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
2875 float_invalid_op_vxsnan(env, GETPC());
2876 t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
2877 }
2878 helper_compute_fprf_float64(env, t.VsrD(0));
2879
2880 *xt = t;
2881 do_float_check_status(env, GETPC());
2882 }
2883
2884 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2885 {
2886 uint64_t result, sign, exp, frac;
2887
2888 float_status tstat = env->fp_status;
2889 set_float_exception_flags(0, &tstat);
2890
2891 sign = extract64(xb, 63, 1);
2892 exp = extract64(xb, 52, 11);
2893 frac = extract64(xb, 0, 52) | 0x10000000000000ULL;
2894
2895 if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) {
2896 /* DP denormal operand. */
2897 /* Exponent override to DP min exp. */
2898 exp = 1;
2899 /* Implicit bit override to 0. */
2900 frac = deposit64(frac, 53, 1, 0);
2901 }
2902
2903 if (unlikely(exp < 897 && frac != 0)) {
2904 /* SP tiny operand. */
2905 if (897 - exp > 63) {
2906 frac = 0;
2907 } else {
2908 /* Denormalize until exp = SP min exp. */
2909 frac >>= (897 - exp);
2910 }
2911 /* Exponent override to SP min exp - 1. */
2912 exp = 896;
2913 }
2914
2915 result = sign << 31;
2916 result |= extract64(exp, 10, 1) << 30;
2917 result |= extract64(exp, 0, 7) << 23;
2918 result |= extract64(frac, 29, 23);
2919
2920 /* hardware replicates result to both words of the doubleword result. */
2921 return (result << 32) | result;
2922 }
2923
2924 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2925 {
2926 float_status tstat = env->fp_status;
2927 set_float_exception_flags(0, &tstat);
2928
2929 return float32_to_float64(xb >> 32, &tstat);
2930 }
2931
2932 /*
2933 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2934 * op - instruction mnemonic
2935 * nels - number of elements (1, 2 or 4)
2936 * stp - source type (float32 or float64)
2937 * ttp - target type (int32, uint32, int64 or uint64)
2938 * sfld - source vsr_t field
2939 * tfld - target vsr_t field
2940 * rnan - resulting NaN
2941 */
2942 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2943 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2944 { \
2945 int all_flags = env->fp_status.float_exception_flags, flags; \
2946 ppc_vsr_t t = *xt; \
2947 int i; \
2948 \
2949 for (i = 0; i < nels; i++) { \
2950 env->fp_status.float_exception_flags = 0; \
2951 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2952 flags = env->fp_status.float_exception_flags; \
2953 if (unlikely(flags & float_flag_invalid)) { \
2954 float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
2955 t.tfld = rnan; \
2956 } \
2957 all_flags |= flags; \
2958 } \
2959 \
2960 *xt = t; \
2961 env->fp_status.float_exception_flags = all_flags; \
2962 do_float_check_status(env, GETPC()); \
2963 }
2964
2965 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2966 0x8000000000000000ULL)
2967 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2968 0x80000000U)
2969 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2970 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2971 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2972 0x8000000000000000ULL)
2973 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \
2974 0x80000000U)
2975 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2976 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U)
2977 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \
2978 0x8000000000000000ULL)
2979 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2980 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL)
2981 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2982
2983 /*
2984 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2985 * op - instruction mnemonic
2986 * stp - source type (float32 or float64)
2987 * ttp - target type (int32, uint32, int64 or uint64)
2988 * sfld - source vsr_t field
2989 * tfld - target vsr_t field
2990 * rnan - resulting NaN
2991 */
2992 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
2993 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2994 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2995 { \
2996 ppc_vsr_t t = { }; \
2997 \
2998 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2999 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
3000 float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
3001 t.tfld = rnan; \
3002 } \
3003 \
3004 *xt = t; \
3005 do_float_check_status(env, GETPC()); \
3006 }
3007
3008 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \
3009 0x8000000000000000ULL)
3010
3011 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \
3012 0xffffffff80000000ULL)
3013 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
3014 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
3015
3016 /*
3017 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
3018 * op - instruction mnemonic
3019 * nels - number of elements (1, 2 or 4)
3020 * stp - source type (int32, uint32, int64 or uint64)
3021 * ttp - target type (float32 or float64)
3022 * sfld - source vsr_t field
3023 * tfld - target vsr_t field
3024 * jdef - definition of the j index (i or 2*i)
3025 * sfprf - set FPRF
3026 */
3027 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
3028 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3029 { \
3030 ppc_vsr_t t = *xt; \
3031 int i; \
3032 \
3033 for (i = 0; i < nels; i++) { \
3034 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3035 if (r2sp) { \
3036 t.tfld = helper_frsp(env, t.tfld); \
3037 } \
3038 if (sfprf) { \
3039 helper_compute_fprf_float64(env, t.tfld); \
3040 } \
3041 } \
3042 \
3043 *xt = t; \
3044 do_float_check_status(env, GETPC()); \
3045 }
3046
3047 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3048 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3049 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3050 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3051 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3052 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3053 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
3054 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
3055 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3056 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3057 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3058 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3059
3060 /*
3061 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3062 * op - instruction mnemonic
3063 * stp - source type (int32, uint32, int64 or uint64)
3064 * ttp - target type (float32 or float64)
3065 * sfld - source vsr_t field
3066 * tfld - target vsr_t field
3067 */
3068 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
3069 void helper_##op(CPUPPCState *env, uint32_t opcode, \
3070 ppc_vsr_t *xt, ppc_vsr_t *xb) \
3071 { \
3072 ppc_vsr_t t = *xt; \
3073 \
3074 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3075 helper_compute_fprf_##ttp(env, t.tfld); \
3076 \
3077 *xt = t; \
3078 do_float_check_status(env, GETPC()); \
3079 }
3080
3081 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3082 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3083
3084 /*
3085 * For "use current rounding mode", define a value that will not be
3086 * one of the existing rounding model enums.
3087 */
3088 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3089 float_round_up + float_round_to_zero)
3090
3091 /*
3092 * VSX_ROUND - VSX floating point round
3093 * op - instruction mnemonic
3094 * nels - number of elements (1, 2 or 4)
3095 * tp - type (float32 or float64)
3096 * fld - vsr_t field (VsrD(*) or VsrW(*))
3097 * rmode - rounding mode
3098 * sfprf - set FPRF
3099 */
3100 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
3101 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3102 { \
3103 ppc_vsr_t t = *xt; \
3104 int i; \
3105 \
3106 if (rmode != FLOAT_ROUND_CURRENT) { \
3107 set_float_rounding_mode(rmode, &env->fp_status); \
3108 } \
3109 \
3110 for (i = 0; i < nels; i++) { \
3111 if (unlikely(tp##_is_signaling_nan(xb->fld, \
3112 &env->fp_status))) { \
3113 float_invalid_op_vxsnan(env, GETPC()); \
3114 t.fld = tp##_snan_to_qnan(xb->fld); \
3115 } else { \
3116 t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \
3117 } \
3118 if (sfprf) { \
3119 helper_compute_fprf_float64(env, t.fld); \
3120 } \
3121 } \
3122 \
3123 /* \
3124 * If this is not a "use current rounding mode" instruction, \
3125 * then inhibit setting of the XX bit and restore rounding \
3126 * mode from FPSCR \
3127 */ \
3128 if (rmode != FLOAT_ROUND_CURRENT) { \
3129 fpscr_set_rounding_mode(env); \
3130 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3131 } \
3132 \
3133 *xt = t; \
3134 do_float_check_status(env, GETPC()); \
3135 }
3136
3137 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3138 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3139 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3140 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3141 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3142
3143 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3144 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3145 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3146 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3147 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3148
3149 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3150 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3151 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3152 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3153 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3154
3155 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3156 {
3157 helper_reset_fpstatus(env);
3158
3159 uint64_t xt = helper_frsp(env, xb);
3160
3161 helper_compute_fprf_float64(env, xt);
3162 do_float_check_status(env, GETPC());
3163 return xt;
3164 }
3165
3166 #define VSX_XXPERM(op, indexed) \
3167 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
3168 ppc_vsr_t *xa, ppc_vsr_t *pcv) \
3169 { \
3170 ppc_vsr_t t = *xt; \
3171 int i, idx; \
3172 \
3173 for (i = 0; i < 16; i++) { \
3174 idx = pcv->VsrB(i) & 0x1F; \
3175 if (indexed) { \
3176 idx = 31 - idx; \
3177 } \
3178 t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx) \
3179 : xt->VsrB(idx - 16); \
3180 } \
3181 *xt = t; \
3182 }
3183
3184 VSX_XXPERM(xxperm, 0)
3185 VSX_XXPERM(xxpermr, 1)
3186
3187 void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
3188 {
3189 ppc_vsr_t t = { };
3190 uint32_t exp, i, fraction;
3191
3192 for (i = 0; i < 4; i++) {
3193 exp = (xb->VsrW(i) >> 23) & 0xFF;
3194 fraction = xb->VsrW(i) & 0x7FFFFF;
3195 if (exp != 0 && exp != 255) {
3196 t.VsrW(i) = fraction | 0x00800000;
3197 } else {
3198 t.VsrW(i) = fraction;
3199 }
3200 }
3201 *xt = t;
3202 }
3203
3204 /*
3205 * VSX_TEST_DC - VSX floating point test data class
3206 * op - instruction mnemonic
3207 * nels - number of elements (1, 2 or 4)
3208 * xbn - VSR register number
3209 * tp - type (float32 or float64)
3210 * fld - vsr_t field (VsrD(*) or VsrW(*))
3211 * tfld - target vsr_t field (VsrD(*) or VsrW(*))
3212 * fld_max - target field max
3213 * scrf - set result in CR and FPCC
3214 */
3215 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \
3216 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3217 { \
3218 ppc_vsr_t *xt = &env->vsr[xT(opcode)]; \
3219 ppc_vsr_t *xb = &env->vsr[xbn]; \
3220 ppc_vsr_t t = { }; \
3221 uint32_t i, sign, dcmx; \
3222 uint32_t cc, match = 0; \
3223 \
3224 if (!scrf) { \
3225 dcmx = DCMX_XV(opcode); \
3226 } else { \
3227 t = *xt; \
3228 dcmx = DCMX(opcode); \
3229 } \
3230 \
3231 for (i = 0; i < nels; i++) { \
3232 sign = tp##_is_neg(xb->fld); \
3233 if (tp##_is_any_nan(xb->fld)) { \
3234 match = extract32(dcmx, 6, 1); \
3235 } else if (tp##_is_infinity(xb->fld)) { \
3236 match = extract32(dcmx, 4 + !sign, 1); \
3237 } else if (tp##_is_zero(xb->fld)) { \
3238 match = extract32(dcmx, 2 + !sign, 1); \
3239 } else if (tp##_is_zero_or_denormal(xb->fld)) { \
3240 match = extract32(dcmx, 0 + !sign, 1); \
3241 } \
3242 \
3243 if (scrf) { \
3244 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3245 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
3246 env->fpscr |= cc << FPSCR_FPRF; \
3247 env->crf[BF(opcode)] = cc; \
3248 } else { \
3249 t.tfld = match ? fld_max : 0; \
3250 } \
3251 match = 0; \
3252 } \
3253 if (!scrf) { \
3254 *xt = t; \
3255 } \
3256 }
3257
3258 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3259 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3260 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3261 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3262
3263 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)
3264 {
3265 uint32_t dcmx, sign, exp;
3266 uint32_t cc, match = 0, not_sp = 0;
3267
3268 dcmx = DCMX(opcode);
3269 exp = (xb->VsrD(0) >> 52) & 0x7FF;
3270
3271 sign = float64_is_neg(xb->VsrD(0));
3272 if (float64_is_any_nan(xb->VsrD(0))) {
3273 match = extract32(dcmx, 6, 1);
3274 } else if (float64_is_infinity(xb->VsrD(0))) {
3275 match = extract32(dcmx, 4 + !sign, 1);
3276 } else if (float64_is_zero(xb->VsrD(0))) {
3277 match = extract32(dcmx, 2 + !sign, 1);
3278 } else if (float64_is_zero_or_denormal(xb->VsrD(0)) ||
3279 (exp > 0 && exp < 0x381)) {
3280 match = extract32(dcmx, 0 + !sign, 1);
3281 }
3282
3283 not_sp = !float64_eq(xb->VsrD(0),
3284 float32_to_float64(
3285 float64_to_float32(xb->VsrD(0), &env->fp_status),
3286 &env->fp_status), &env->fp_status);
3287
3288 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3289 env->fpscr &= ~(0x0F << FPSCR_FPRF);
3290 env->fpscr |= cc << FPSCR_FPRF;
3291 env->crf[BF(opcode)] = cc;
3292 }
3293
3294 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
3295 ppc_vsr_t *xt, ppc_vsr_t *xb)
3296 {
3297 ppc_vsr_t t = { };
3298 uint8_t r = Rrm(opcode);
3299 uint8_t ex = Rc(opcode);
3300 uint8_t rmc = RMC(opcode);
3301 uint8_t rmode = 0;
3302 float_status tstat;
3303
3304 helper_reset_fpstatus(env);
3305
3306 if (r == 0 && rmc == 0) {
3307 rmode = float_round_ties_away;
3308 } else if (r == 0 && rmc == 0x3) {
3309 rmode = fpscr_rn;
3310 } else if (r == 1) {
3311 switch (rmc) {
3312 case 0:
3313 rmode = float_round_nearest_even;
3314 break;
3315 case 1:
3316 rmode = float_round_to_zero;
3317 break;
3318 case 2:
3319 rmode = float_round_up;
3320 break;
3321 case 3:
3322 rmode = float_round_down;
3323 break;
3324 default:
3325 abort();
3326 }
3327 }
3328
3329 tstat = env->fp_status;
3330 set_float_exception_flags(0, &tstat);
3331 set_float_rounding_mode(rmode, &tstat);
3332 t.f128 = float128_round_to_int(xb->f128, &tstat);
3333 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3334
3335 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3336 if (float128_is_signaling_nan(xb->f128, &tstat)) {
3337 float_invalid_op_vxsnan(env, GETPC());
3338 t.f128 = float128_snan_to_qnan(t.f128);
3339 }
3340 }
3341
3342 if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3343 env->fp_status.float_exception_flags &= ~float_flag_inexact;
3344 }
3345
3346 helper_compute_fprf_float128(env, t.f128);
3347 do_float_check_status(env, GETPC());
3348 *xt = t;
3349 }
3350
3351 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
3352 ppc_vsr_t *xt, ppc_vsr_t *xb)
3353 {
3354 ppc_vsr_t t = { };
3355 uint8_t r = Rrm(opcode);
3356 uint8_t rmc = RMC(opcode);
3357 uint8_t rmode = 0;
3358 floatx80 round_res;
3359 float_status tstat;
3360
3361 helper_reset_fpstatus(env);
3362
3363 if (r == 0 && rmc == 0) {
3364 rmode = float_round_ties_away;
3365 } else if (r == 0 && rmc == 0x3) {
3366 rmode = fpscr_rn;
3367 } else if (r == 1) {
3368 switch (rmc) {
3369 case 0:
3370 rmode = float_round_nearest_even;
3371 break;
3372 case 1:
3373 rmode = float_round_to_zero;
3374 break;
3375 case 2:
3376 rmode = float_round_up;
3377 break;
3378 case 3:
3379 rmode = float_round_down;
3380 break;
3381 default:
3382 abort();
3383 }
3384 }
3385
3386 tstat = env->fp_status;
3387 set_float_exception_flags(0, &tstat);
3388 set_float_rounding_mode(rmode, &tstat);
3389 round_res = float128_to_floatx80(xb->f128, &tstat);
3390 t.f128 = floatx80_to_float128(round_res, &tstat);
3391 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3392
3393 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3394 if (float128_is_signaling_nan(xb->f128, &tstat)) {
3395 float_invalid_op_vxsnan(env, GETPC());
3396 t.f128 = float128_snan_to_qnan(t.f128);
3397 }
3398 }
3399
3400 helper_compute_fprf_float128(env, t.f128);
3401 *xt = t;
3402 do_float_check_status(env, GETPC());
3403 }
3404
3405 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
3406 ppc_vsr_t *xt, ppc_vsr_t *xb)
3407 {
3408 ppc_vsr_t t = { };
3409 float_status tstat;
3410
3411 helper_reset_fpstatus(env);
3412
3413 tstat = env->fp_status;
3414 if (unlikely(Rc(opcode) != 0)) {
3415 tstat.float_rounding_mode = float_round_to_odd;
3416 }
3417
3418 set_float_exception_flags(0, &tstat);
3419 t.f128 = float128_sqrt(xb->f128, &tstat);
3420 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3421
3422 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3423 if (float128_is_signaling_nan(xb->f128, &tstat)) {
3424 float_invalid_op_vxsnan(env, GETPC());
3425 t.f128 = float128_snan_to_qnan(xb->f128);
3426 } else if (float128_is_quiet_nan(xb->f128, &tstat)) {
3427 t.f128 = xb->f128;
3428 } else if (float128_is_neg(xb->f128) && !float128_is_zero(xb->f128)) {
3429 float_invalid_op_vxsqrt(env, 1, GETPC());
3430 t.f128 = float128_default_nan(&env->fp_status);
3431 }
3432 }
3433
3434 helper_compute_fprf_float128(env, t.f128);
3435 *xt = t;
3436 do_float_check_status(env, GETPC());
3437 }
3438
3439 void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
3440 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
3441 {
3442 ppc_vsr_t t = *xt;
3443 float_status tstat;
3444
3445 helper_reset_fpstatus(env);
3446
3447 tstat = env->fp_status;
3448 if (unlikely(Rc(opcode) != 0)) {
3449 tstat.float_rounding_mode = float_round_to_odd;
3450 }
3451
3452 set_float_exception_flags(0, &tstat);
3453 t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
3454 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3455
3456 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3457 float_invalid_op_addsub(env, 1, GETPC(),
3458 float128_classify(xa->f128) |
3459 float128_classify(xb->f128));
3460 }
3461
3462 helper_compute_fprf_float128(env, t.f128);
3463 *xt = t;
3464 do_float_check_status(env, GETPC());
3465 }