]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/fpu_helper.c
target/ppc: introduce GEN_VSX_HELPER_X2_AB macro to fpu_helper.c
[mirror_qemu.git] / target / ppc / fpu_helper.c
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
25
26 static inline float128 float128_snan_to_qnan(float128 x)
27 {
28 float128 r;
29
30 r.high = x.high | 0x0000800000000000;
31 r.low = x.low;
32 return r;
33 }
34
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
38
39 static inline bool fp_exceptions_enabled(CPUPPCState *env)
40 {
41 #ifdef CONFIG_USER_ONLY
42 return true;
43 #else
44 return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
45 #endif
46 }
47
48 /*****************************************************************************/
49 /* Floating point operations helpers */
50
51 /*
52 * This is the non-arithmatic conversion that happens e.g. on loads.
53 * In the Power ISA pseudocode, this is called DOUBLE.
54 */
55 uint64_t helper_todouble(uint32_t arg)
56 {
57 uint32_t abs_arg = arg & 0x7fffffff;
58 uint64_t ret;
59
60 if (likely(abs_arg >= 0x00800000)) {
61 /* Normalized operand, or Inf, or NaN. */
62 ret = (uint64_t)extract32(arg, 30, 2) << 62;
63 ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
64 ret |= (uint64_t)extract32(arg, 0, 30) << 29;
65 } else {
66 /* Zero or Denormalized operand. */
67 ret = (uint64_t)extract32(arg, 31, 1) << 63;
68 if (unlikely(abs_arg != 0)) {
69 /* Denormalized operand. */
70 int shift = clz32(abs_arg) - 9;
71 int exp = -126 - shift + 1023;
72 ret |= (uint64_t)exp << 52;
73 ret |= abs_arg << (shift + 29);
74 }
75 }
76 return ret;
77 }
78
79 /*
80 * This is the non-arithmatic conversion that happens e.g. on stores.
81 * In the Power ISA pseudocode, this is called SINGLE.
82 */
83 uint32_t helper_tosingle(uint64_t arg)
84 {
85 int exp = extract64(arg, 52, 11);
86 uint32_t ret;
87
88 if (likely(exp > 896)) {
89 /* No denormalization required (includes Inf, NaN). */
90 ret = extract64(arg, 62, 2) << 30;
91 ret |= extract64(arg, 29, 30);
92 } else {
93 /*
94 * Zero or Denormal result. If the exponent is in bounds for
95 * a single-precision denormal result, extract the proper
96 * bits. If the input is not zero, and the exponent is out of
97 * bounds, then the result is undefined; this underflows to
98 * zero.
99 */
100 ret = extract64(arg, 63, 1) << 31;
101 if (unlikely(exp >= 874)) {
102 /* Denormal result. */
103 ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
104 }
105 }
106 return ret;
107 }
108
109 static inline int ppc_float32_get_unbiased_exp(float32 f)
110 {
111 return ((f >> 23) & 0xFF) - 127;
112 }
113
114 static inline int ppc_float64_get_unbiased_exp(float64 f)
115 {
116 return ((f >> 52) & 0x7FF) - 1023;
117 }
118
119 /* Classify a floating-point number. */
120 enum {
121 is_normal = 1,
122 is_zero = 2,
123 is_denormal = 4,
124 is_inf = 8,
125 is_qnan = 16,
126 is_snan = 32,
127 is_neg = 64,
128 };
129
130 #define COMPUTE_CLASS(tp) \
131 static int tp##_classify(tp arg) \
132 { \
133 int ret = tp##_is_neg(arg) * is_neg; \
134 if (unlikely(tp##_is_any_nan(arg))) { \
135 float_status dummy = { }; /* snan_bit_is_one = 0 */ \
136 ret |= (tp##_is_signaling_nan(arg, &dummy) \
137 ? is_snan : is_qnan); \
138 } else if (unlikely(tp##_is_infinity(arg))) { \
139 ret |= is_inf; \
140 } else if (tp##_is_zero(arg)) { \
141 ret |= is_zero; \
142 } else if (tp##_is_zero_or_denormal(arg)) { \
143 ret |= is_denormal; \
144 } else { \
145 ret |= is_normal; \
146 } \
147 return ret; \
148 }
149
150 COMPUTE_CLASS(float16)
151 COMPUTE_CLASS(float32)
152 COMPUTE_CLASS(float64)
153 COMPUTE_CLASS(float128)
154
155 static void set_fprf_from_class(CPUPPCState *env, int class)
156 {
157 static const uint8_t fprf[6][2] = {
158 { 0x04, 0x08 }, /* normalized */
159 { 0x02, 0x12 }, /* zero */
160 { 0x14, 0x18 }, /* denormalized */
161 { 0x05, 0x09 }, /* infinity */
162 { 0x11, 0x11 }, /* qnan */
163 { 0x00, 0x00 }, /* snan -- flags are undefined */
164 };
165 bool isneg = class & is_neg;
166
167 env->fpscr &= ~(0x1F << FPSCR_FPRF);
168 env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
169 }
170
171 #define COMPUTE_FPRF(tp) \
172 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
173 { \
174 set_fprf_from_class(env, tp##_classify(arg)); \
175 }
176
177 COMPUTE_FPRF(float16)
178 COMPUTE_FPRF(float32)
179 COMPUTE_FPRF(float64)
180 COMPUTE_FPRF(float128)
181
182 /* Floating-point invalid operations exception */
183 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
184 {
185 /* Update the floating-point invalid operation summary */
186 env->fpscr |= 1 << FPSCR_VX;
187 /* Update the floating-point exception summary */
188 env->fpscr |= FP_FX;
189 if (fpscr_ve != 0) {
190 /* Update the floating-point enabled exception summary */
191 env->fpscr |= 1 << FPSCR_FEX;
192 if (fp_exceptions_enabled(env)) {
193 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
194 POWERPC_EXCP_FP | op, retaddr);
195 }
196 }
197 }
198
199 static void finish_invalid_op_arith(CPUPPCState *env, int op,
200 bool set_fpcc, uintptr_t retaddr)
201 {
202 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
203 if (fpscr_ve == 0) {
204 if (set_fpcc) {
205 env->fpscr &= ~(0xF << FPSCR_FPCC);
206 env->fpscr |= 0x11 << FPSCR_FPCC;
207 }
208 }
209 finish_invalid_op_excp(env, op, retaddr);
210 }
211
212 /* Signalling NaN */
213 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
214 {
215 env->fpscr |= 1 << FPSCR_VXSNAN;
216 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
217 }
218
219 /* Magnitude subtraction of infinities */
220 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
221 uintptr_t retaddr)
222 {
223 env->fpscr |= 1 << FPSCR_VXISI;
224 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
225 }
226
227 /* Division of infinity by infinity */
228 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
229 uintptr_t retaddr)
230 {
231 env->fpscr |= 1 << FPSCR_VXIDI;
232 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
233 }
234
235 /* Division of zero by zero */
236 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
237 uintptr_t retaddr)
238 {
239 env->fpscr |= 1 << FPSCR_VXZDZ;
240 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
241 }
242
243 /* Multiplication of zero by infinity */
244 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
245 uintptr_t retaddr)
246 {
247 env->fpscr |= 1 << FPSCR_VXIMZ;
248 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
249 }
250
251 /* Square root of a negative number */
252 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
253 uintptr_t retaddr)
254 {
255 env->fpscr |= 1 << FPSCR_VXSQRT;
256 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
257 }
258
259 /* Ordered comparison of NaN */
260 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
261 uintptr_t retaddr)
262 {
263 env->fpscr |= 1 << FPSCR_VXVC;
264 if (set_fpcc) {
265 env->fpscr &= ~(0xF << FPSCR_FPCC);
266 env->fpscr |= 0x11 << FPSCR_FPCC;
267 }
268 /* Update the floating-point invalid operation summary */
269 env->fpscr |= 1 << FPSCR_VX;
270 /* Update the floating-point exception summary */
271 env->fpscr |= FP_FX;
272 /* We must update the target FPR before raising the exception */
273 if (fpscr_ve != 0) {
274 CPUState *cs = env_cpu(env);
275
276 cs->exception_index = POWERPC_EXCP_PROGRAM;
277 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
278 /* Update the floating-point enabled exception summary */
279 env->fpscr |= 1 << FPSCR_FEX;
280 /* Exception is differed */
281 }
282 }
283
284 /* Invalid conversion */
285 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
286 uintptr_t retaddr)
287 {
288 env->fpscr |= 1 << FPSCR_VXCVI;
289 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
290 if (fpscr_ve == 0) {
291 if (set_fpcc) {
292 env->fpscr &= ~(0xF << FPSCR_FPCC);
293 env->fpscr |= 0x11 << FPSCR_FPCC;
294 }
295 }
296 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
297 }
298
299 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
300 {
301 env->fpscr |= 1 << FPSCR_ZX;
302 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
303 /* Update the floating-point exception summary */
304 env->fpscr |= FP_FX;
305 if (fpscr_ze != 0) {
306 /* Update the floating-point enabled exception summary */
307 env->fpscr |= 1 << FPSCR_FEX;
308 if (fp_exceptions_enabled(env)) {
309 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
310 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
311 raddr);
312 }
313 }
314 }
315
316 static inline void float_overflow_excp(CPUPPCState *env)
317 {
318 CPUState *cs = env_cpu(env);
319
320 env->fpscr |= 1 << FPSCR_OX;
321 /* Update the floating-point exception summary */
322 env->fpscr |= FP_FX;
323 if (fpscr_oe != 0) {
324 /* XXX: should adjust the result */
325 /* Update the floating-point enabled exception summary */
326 env->fpscr |= 1 << FPSCR_FEX;
327 /* We must update the target FPR before raising the exception */
328 cs->exception_index = POWERPC_EXCP_PROGRAM;
329 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
330 } else {
331 env->fpscr |= 1 << FPSCR_XX;
332 env->fpscr |= 1 << FPSCR_FI;
333 }
334 }
335
336 static inline void float_underflow_excp(CPUPPCState *env)
337 {
338 CPUState *cs = env_cpu(env);
339
340 env->fpscr |= 1 << FPSCR_UX;
341 /* Update the floating-point exception summary */
342 env->fpscr |= FP_FX;
343 if (fpscr_ue != 0) {
344 /* XXX: should adjust the result */
345 /* Update the floating-point enabled exception summary */
346 env->fpscr |= 1 << FPSCR_FEX;
347 /* We must update the target FPR before raising the exception */
348 cs->exception_index = POWERPC_EXCP_PROGRAM;
349 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
350 }
351 }
352
353 static inline void float_inexact_excp(CPUPPCState *env)
354 {
355 CPUState *cs = env_cpu(env);
356
357 env->fpscr |= 1 << FPSCR_FI;
358 env->fpscr |= 1 << FPSCR_XX;
359 /* Update the floating-point exception summary */
360 env->fpscr |= FP_FX;
361 if (fpscr_xe != 0) {
362 /* Update the floating-point enabled exception summary */
363 env->fpscr |= 1 << FPSCR_FEX;
364 /* We must update the target FPR before raising the exception */
365 cs->exception_index = POWERPC_EXCP_PROGRAM;
366 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
367 }
368 }
369
370 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
371 {
372 int rnd_type;
373
374 /* Set rounding mode */
375 switch (fpscr_rn) {
376 case 0:
377 /* Best approximation (round to nearest) */
378 rnd_type = float_round_nearest_even;
379 break;
380 case 1:
381 /* Smaller magnitude (round toward zero) */
382 rnd_type = float_round_to_zero;
383 break;
384 case 2:
385 /* Round toward +infinite */
386 rnd_type = float_round_up;
387 break;
388 default:
389 case 3:
390 /* Round toward -infinite */
391 rnd_type = float_round_down;
392 break;
393 }
394 set_float_rounding_mode(rnd_type, &env->fp_status);
395 }
396
397 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
398 {
399 int prev;
400
401 prev = (env->fpscr >> bit) & 1;
402 env->fpscr &= ~(1 << bit);
403 if (prev == 1) {
404 switch (bit) {
405 case FPSCR_RN1:
406 case FPSCR_RN:
407 fpscr_set_rounding_mode(env);
408 break;
409 case FPSCR_VXSNAN:
410 case FPSCR_VXISI:
411 case FPSCR_VXIDI:
412 case FPSCR_VXZDZ:
413 case FPSCR_VXIMZ:
414 case FPSCR_VXVC:
415 case FPSCR_VXSOFT:
416 case FPSCR_VXSQRT:
417 case FPSCR_VXCVI:
418 if (!fpscr_ix) {
419 /* Set VX bit to zero */
420 env->fpscr &= ~(1 << FPSCR_VX);
421 }
422 break;
423 case FPSCR_OX:
424 case FPSCR_UX:
425 case FPSCR_ZX:
426 case FPSCR_XX:
427 case FPSCR_VE:
428 case FPSCR_OE:
429 case FPSCR_UE:
430 case FPSCR_ZE:
431 case FPSCR_XE:
432 if (!fpscr_eex) {
433 /* Set the FEX bit */
434 env->fpscr &= ~(1 << FPSCR_FEX);
435 }
436 break;
437 default:
438 break;
439 }
440 }
441 }
442
443 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
444 {
445 CPUState *cs = env_cpu(env);
446 int prev;
447
448 prev = (env->fpscr >> bit) & 1;
449 env->fpscr |= 1 << bit;
450 if (prev == 0) {
451 switch (bit) {
452 case FPSCR_VX:
453 env->fpscr |= FP_FX;
454 if (fpscr_ve) {
455 goto raise_ve;
456 }
457 break;
458 case FPSCR_OX:
459 env->fpscr |= FP_FX;
460 if (fpscr_oe) {
461 goto raise_oe;
462 }
463 break;
464 case FPSCR_UX:
465 env->fpscr |= FP_FX;
466 if (fpscr_ue) {
467 goto raise_ue;
468 }
469 break;
470 case FPSCR_ZX:
471 env->fpscr |= FP_FX;
472 if (fpscr_ze) {
473 goto raise_ze;
474 }
475 break;
476 case FPSCR_XX:
477 env->fpscr |= FP_FX;
478 if (fpscr_xe) {
479 goto raise_xe;
480 }
481 break;
482 case FPSCR_VXSNAN:
483 case FPSCR_VXISI:
484 case FPSCR_VXIDI:
485 case FPSCR_VXZDZ:
486 case FPSCR_VXIMZ:
487 case FPSCR_VXVC:
488 case FPSCR_VXSOFT:
489 case FPSCR_VXSQRT:
490 case FPSCR_VXCVI:
491 env->fpscr |= 1 << FPSCR_VX;
492 env->fpscr |= FP_FX;
493 if (fpscr_ve != 0) {
494 goto raise_ve;
495 }
496 break;
497 case FPSCR_VE:
498 if (fpscr_vx != 0) {
499 raise_ve:
500 env->error_code = POWERPC_EXCP_FP;
501 if (fpscr_vxsnan) {
502 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
503 }
504 if (fpscr_vxisi) {
505 env->error_code |= POWERPC_EXCP_FP_VXISI;
506 }
507 if (fpscr_vxidi) {
508 env->error_code |= POWERPC_EXCP_FP_VXIDI;
509 }
510 if (fpscr_vxzdz) {
511 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
512 }
513 if (fpscr_vximz) {
514 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
515 }
516 if (fpscr_vxvc) {
517 env->error_code |= POWERPC_EXCP_FP_VXVC;
518 }
519 if (fpscr_vxsoft) {
520 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
521 }
522 if (fpscr_vxsqrt) {
523 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
524 }
525 if (fpscr_vxcvi) {
526 env->error_code |= POWERPC_EXCP_FP_VXCVI;
527 }
528 goto raise_excp;
529 }
530 break;
531 case FPSCR_OE:
532 if (fpscr_ox != 0) {
533 raise_oe:
534 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
535 goto raise_excp;
536 }
537 break;
538 case FPSCR_UE:
539 if (fpscr_ux != 0) {
540 raise_ue:
541 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
542 goto raise_excp;
543 }
544 break;
545 case FPSCR_ZE:
546 if (fpscr_zx != 0) {
547 raise_ze:
548 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
549 goto raise_excp;
550 }
551 break;
552 case FPSCR_XE:
553 if (fpscr_xx != 0) {
554 raise_xe:
555 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
556 goto raise_excp;
557 }
558 break;
559 case FPSCR_RN1:
560 case FPSCR_RN:
561 fpscr_set_rounding_mode(env);
562 break;
563 default:
564 break;
565 raise_excp:
566 /* Update the floating-point enabled exception summary */
567 env->fpscr |= 1 << FPSCR_FEX;
568 /* We have to update Rc1 before raising the exception */
569 cs->exception_index = POWERPC_EXCP_PROGRAM;
570 break;
571 }
572 }
573 }
574
575 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
576 {
577 CPUState *cs = env_cpu(env);
578 target_ulong prev, new;
579 int i;
580
581 prev = env->fpscr;
582 new = (target_ulong)arg;
583 new &= ~0x60000000LL;
584 new |= prev & 0x60000000LL;
585 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
586 if (mask & (1 << i)) {
587 env->fpscr &= ~(0xFLL << (4 * i));
588 env->fpscr |= new & (0xFLL << (4 * i));
589 }
590 }
591 /* Update VX and FEX */
592 if (fpscr_ix != 0) {
593 env->fpscr |= 1 << FPSCR_VX;
594 } else {
595 env->fpscr &= ~(1 << FPSCR_VX);
596 }
597 if ((fpscr_ex & fpscr_eex) != 0) {
598 env->fpscr |= 1 << FPSCR_FEX;
599 cs->exception_index = POWERPC_EXCP_PROGRAM;
600 /* XXX: we should compute it properly */
601 env->error_code = POWERPC_EXCP_FP;
602 } else {
603 env->fpscr &= ~(1 << FPSCR_FEX);
604 }
605 fpscr_set_rounding_mode(env);
606 }
607
608 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
609 {
610 helper_store_fpscr(env, arg, mask);
611 }
612
613 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
614 {
615 CPUState *cs = env_cpu(env);
616 int status = get_float_exception_flags(&env->fp_status);
617 bool inexact_happened = false;
618
619 if (status & float_flag_overflow) {
620 float_overflow_excp(env);
621 } else if (status & float_flag_underflow) {
622 float_underflow_excp(env);
623 } else if (status & float_flag_inexact) {
624 float_inexact_excp(env);
625 inexact_happened = true;
626 }
627
628 /* if the inexact flag was not set */
629 if (inexact_happened == false) {
630 env->fpscr &= ~(1 << FPSCR_FI); /* clear the FPSCR[FI] bit */
631 }
632
633 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
634 (env->error_code & POWERPC_EXCP_FP)) {
635 /* Differred floating-point exception after target FPR update */
636 if (fp_exceptions_enabled(env)) {
637 raise_exception_err_ra(env, cs->exception_index,
638 env->error_code, raddr);
639 }
640 }
641 }
642
643 void helper_float_check_status(CPUPPCState *env)
644 {
645 do_float_check_status(env, GETPC());
646 }
647
648 void helper_reset_fpstatus(CPUPPCState *env)
649 {
650 set_float_exception_flags(0, &env->fp_status);
651 }
652
653 static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc,
654 uintptr_t retaddr, int classes)
655 {
656 if ((classes & ~is_neg) == is_inf) {
657 /* Magnitude subtraction of infinities */
658 float_invalid_op_vxisi(env, set_fpcc, retaddr);
659 } else if (classes & is_snan) {
660 float_invalid_op_vxsnan(env, retaddr);
661 }
662 }
663
664 /* fadd - fadd. */
665 float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
666 {
667 float64 ret = float64_add(arg1, arg2, &env->fp_status);
668 int status = get_float_exception_flags(&env->fp_status);
669
670 if (unlikely(status & float_flag_invalid)) {
671 float_invalid_op_addsub(env, 1, GETPC(),
672 float64_classify(arg1) |
673 float64_classify(arg2));
674 }
675
676 return ret;
677 }
678
679 /* fsub - fsub. */
680 float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
681 {
682 float64 ret = float64_sub(arg1, arg2, &env->fp_status);
683 int status = get_float_exception_flags(&env->fp_status);
684
685 if (unlikely(status & float_flag_invalid)) {
686 float_invalid_op_addsub(env, 1, GETPC(),
687 float64_classify(arg1) |
688 float64_classify(arg2));
689 }
690
691 return ret;
692 }
693
694 static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc,
695 uintptr_t retaddr, int classes)
696 {
697 if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) {
698 /* Multiplication of zero by infinity */
699 float_invalid_op_vximz(env, set_fprc, retaddr);
700 } else if (classes & is_snan) {
701 float_invalid_op_vxsnan(env, retaddr);
702 }
703 }
704
705 /* fmul - fmul. */
706 float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
707 {
708 float64 ret = float64_mul(arg1, arg2, &env->fp_status);
709 int status = get_float_exception_flags(&env->fp_status);
710
711 if (unlikely(status & float_flag_invalid)) {
712 float_invalid_op_mul(env, 1, GETPC(),
713 float64_classify(arg1) |
714 float64_classify(arg2));
715 }
716
717 return ret;
718 }
719
720 static void float_invalid_op_div(CPUPPCState *env, bool set_fprc,
721 uintptr_t retaddr, int classes)
722 {
723 classes &= ~is_neg;
724 if (classes == is_inf) {
725 /* Division of infinity by infinity */
726 float_invalid_op_vxidi(env, set_fprc, retaddr);
727 } else if (classes == is_zero) {
728 /* Division of zero by zero */
729 float_invalid_op_vxzdz(env, set_fprc, retaddr);
730 } else if (classes & is_snan) {
731 float_invalid_op_vxsnan(env, retaddr);
732 }
733 }
734
735 /* fdiv - fdiv. */
736 float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
737 {
738 float64 ret = float64_div(arg1, arg2, &env->fp_status);
739 int status = get_float_exception_flags(&env->fp_status);
740
741 if (unlikely(status)) {
742 if (status & float_flag_invalid) {
743 float_invalid_op_div(env, 1, GETPC(),
744 float64_classify(arg1) |
745 float64_classify(arg2));
746 }
747 if (status & float_flag_divbyzero) {
748 float_zero_divide_excp(env, GETPC());
749 }
750 }
751
752 return ret;
753 }
754
755 static void float_invalid_cvt(CPUPPCState *env, bool set_fprc,
756 uintptr_t retaddr, int class1)
757 {
758 float_invalid_op_vxcvi(env, set_fprc, retaddr);
759 if (class1 & is_snan) {
760 float_invalid_op_vxsnan(env, retaddr);
761 }
762 }
763
764 #define FPU_FCTI(op, cvt, nanval) \
765 uint64_t helper_##op(CPUPPCState *env, float64 arg) \
766 { \
767 uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
768 int status = get_float_exception_flags(&env->fp_status); \
769 \
770 if (unlikely(status)) { \
771 if (status & float_flag_invalid) { \
772 float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \
773 ret = nanval; \
774 } \
775 do_float_check_status(env, GETPC()); \
776 } \
777 return ret; \
778 }
779
780 FPU_FCTI(fctiw, int32, 0x80000000U)
781 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
782 FPU_FCTI(fctiwu, uint32, 0x00000000U)
783 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
784 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
785 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
786 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
787 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
788
789 #define FPU_FCFI(op, cvtr, is_single) \
790 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
791 { \
792 CPU_DoubleU farg; \
793 \
794 if (is_single) { \
795 float32 tmp = cvtr(arg, &env->fp_status); \
796 farg.d = float32_to_float64(tmp, &env->fp_status); \
797 } else { \
798 farg.d = cvtr(arg, &env->fp_status); \
799 } \
800 do_float_check_status(env, GETPC()); \
801 return farg.ll; \
802 }
803
804 FPU_FCFI(fcfid, int64_to_float64, 0)
805 FPU_FCFI(fcfids, int64_to_float32, 1)
806 FPU_FCFI(fcfidu, uint64_to_float64, 0)
807 FPU_FCFI(fcfidus, uint64_to_float32, 1)
808
809 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
810 int rounding_mode)
811 {
812 CPU_DoubleU farg;
813
814 farg.ll = arg;
815
816 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
817 /* sNaN round */
818 float_invalid_op_vxsnan(env, GETPC());
819 farg.ll = arg | 0x0008000000000000ULL;
820 } else {
821 int inexact = get_float_exception_flags(&env->fp_status) &
822 float_flag_inexact;
823 set_float_rounding_mode(rounding_mode, &env->fp_status);
824 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
825 /* Restore rounding mode from FPSCR */
826 fpscr_set_rounding_mode(env);
827
828 /* fri* does not set FPSCR[XX] */
829 if (!inexact) {
830 env->fp_status.float_exception_flags &= ~float_flag_inexact;
831 }
832 }
833 do_float_check_status(env, GETPC());
834 return farg.ll;
835 }
836
837 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
838 {
839 return do_fri(env, arg, float_round_ties_away);
840 }
841
842 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
843 {
844 return do_fri(env, arg, float_round_to_zero);
845 }
846
847 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
848 {
849 return do_fri(env, arg, float_round_up);
850 }
851
852 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
853 {
854 return do_fri(env, arg, float_round_down);
855 }
856
857 #define FPU_MADDSUB_UPDATE(NAME, TP) \
858 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3, \
859 unsigned int madd_flags, uintptr_t retaddr) \
860 { \
861 if (TP##_is_signaling_nan(arg1, &env->fp_status) || \
862 TP##_is_signaling_nan(arg2, &env->fp_status) || \
863 TP##_is_signaling_nan(arg3, &env->fp_status)) { \
864 /* sNaN operation */ \
865 float_invalid_op_vxsnan(env, retaddr); \
866 } \
867 if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) || \
868 (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) { \
869 /* Multiplication of zero by infinity */ \
870 float_invalid_op_vximz(env, 1, retaddr); \
871 } \
872 if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) && \
873 TP##_is_infinity(arg3)) { \
874 uint8_t aSign, bSign, cSign; \
875 \
876 aSign = TP##_is_neg(arg1); \
877 bSign = TP##_is_neg(arg2); \
878 cSign = TP##_is_neg(arg3); \
879 if (madd_flags & float_muladd_negate_c) { \
880 cSign ^= 1; \
881 } \
882 if (aSign ^ bSign ^ cSign) { \
883 float_invalid_op_vxisi(env, 1, retaddr); \
884 } \
885 } \
886 }
887 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
888 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
889
890 #define FPU_FMADD(op, madd_flags) \
891 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
892 uint64_t arg2, uint64_t arg3) \
893 { \
894 uint32_t flags; \
895 float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags, \
896 &env->fp_status); \
897 flags = get_float_exception_flags(&env->fp_status); \
898 if (flags) { \
899 if (flags & float_flag_invalid) { \
900 float64_maddsub_update_excp(env, arg1, arg2, arg3, \
901 madd_flags, GETPC()); \
902 } \
903 do_float_check_status(env, GETPC()); \
904 } \
905 return ret; \
906 }
907
908 #define MADD_FLGS 0
909 #define MSUB_FLGS float_muladd_negate_c
910 #define NMADD_FLGS float_muladd_negate_result
911 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
912
913 FPU_FMADD(fmadd, MADD_FLGS)
914 FPU_FMADD(fnmadd, NMADD_FLGS)
915 FPU_FMADD(fmsub, MSUB_FLGS)
916 FPU_FMADD(fnmsub, NMSUB_FLGS)
917
918 /* frsp - frsp. */
919 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
920 {
921 CPU_DoubleU farg;
922 float32 f32;
923
924 farg.ll = arg;
925
926 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
927 float_invalid_op_vxsnan(env, GETPC());
928 }
929 f32 = float64_to_float32(farg.d, &env->fp_status);
930 farg.d = float32_to_float64(f32, &env->fp_status);
931
932 return farg.ll;
933 }
934
935 /* fsqrt - fsqrt. */
936 float64 helper_fsqrt(CPUPPCState *env, float64 arg)
937 {
938 float64 ret = float64_sqrt(arg, &env->fp_status);
939 int status = get_float_exception_flags(&env->fp_status);
940
941 if (unlikely(status & float_flag_invalid)) {
942 if (unlikely(float64_is_any_nan(arg))) {
943 if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) {
944 /* sNaN square root */
945 float_invalid_op_vxsnan(env, GETPC());
946 }
947 } else {
948 /* Square root of a negative nonzero number */
949 float_invalid_op_vxsqrt(env, 1, GETPC());
950 }
951 }
952
953 return ret;
954 }
955
956 /* fre - fre. */
957 float64 helper_fre(CPUPPCState *env, float64 arg)
958 {
959 /* "Estimate" the reciprocal with actual division. */
960 float64 ret = float64_div(float64_one, arg, &env->fp_status);
961 int status = get_float_exception_flags(&env->fp_status);
962
963 if (unlikely(status)) {
964 if (status & float_flag_invalid) {
965 if (float64_is_signaling_nan(arg, &env->fp_status)) {
966 /* sNaN reciprocal */
967 float_invalid_op_vxsnan(env, GETPC());
968 }
969 }
970 if (status & float_flag_divbyzero) {
971 float_zero_divide_excp(env, GETPC());
972 /* For FPSCR.ZE == 0, the result is 1/2. */
973 ret = float64_set_sign(float64_half, float64_is_neg(arg));
974 }
975 }
976
977 return ret;
978 }
979
980 /* fres - fres. */
981 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
982 {
983 CPU_DoubleU farg;
984 float32 f32;
985
986 farg.ll = arg;
987
988 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
989 /* sNaN reciprocal */
990 float_invalid_op_vxsnan(env, GETPC());
991 }
992 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
993 f32 = float64_to_float32(farg.d, &env->fp_status);
994 farg.d = float32_to_float64(f32, &env->fp_status);
995
996 return farg.ll;
997 }
998
999 /* frsqrte - frsqrte. */
1000 float64 helper_frsqrte(CPUPPCState *env, float64 arg)
1001 {
1002 /* "Estimate" the reciprocal with actual division. */
1003 float64 rets = float64_sqrt(arg, &env->fp_status);
1004 float64 retd = float64_div(float64_one, rets, &env->fp_status);
1005 int status = get_float_exception_flags(&env->fp_status);
1006
1007 if (unlikely(status)) {
1008 if (status & float_flag_invalid) {
1009 if (float64_is_signaling_nan(arg, &env->fp_status)) {
1010 /* sNaN reciprocal */
1011 float_invalid_op_vxsnan(env, GETPC());
1012 } else {
1013 /* Square root of a negative nonzero number */
1014 float_invalid_op_vxsqrt(env, 1, GETPC());
1015 }
1016 }
1017 if (status & float_flag_divbyzero) {
1018 /* Reciprocal of (square root of) zero. */
1019 float_zero_divide_excp(env, GETPC());
1020 }
1021 }
1022
1023 return retd;
1024 }
1025
1026 /* fsel - fsel. */
1027 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1028 uint64_t arg3)
1029 {
1030 CPU_DoubleU farg1;
1031
1032 farg1.ll = arg1;
1033
1034 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1035 !float64_is_any_nan(farg1.d)) {
1036 return arg2;
1037 } else {
1038 return arg3;
1039 }
1040 }
1041
1042 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1043 {
1044 int fe_flag = 0;
1045 int fg_flag = 0;
1046
1047 if (unlikely(float64_is_infinity(fra) ||
1048 float64_is_infinity(frb) ||
1049 float64_is_zero(frb))) {
1050 fe_flag = 1;
1051 fg_flag = 1;
1052 } else {
1053 int e_a = ppc_float64_get_unbiased_exp(fra);
1054 int e_b = ppc_float64_get_unbiased_exp(frb);
1055
1056 if (unlikely(float64_is_any_nan(fra) ||
1057 float64_is_any_nan(frb))) {
1058 fe_flag = 1;
1059 } else if ((e_b <= -1022) || (e_b >= 1021)) {
1060 fe_flag = 1;
1061 } else if (!float64_is_zero(fra) &&
1062 (((e_a - e_b) >= 1023) ||
1063 ((e_a - e_b) <= -1021) ||
1064 (e_a <= -970))) {
1065 fe_flag = 1;
1066 }
1067
1068 if (unlikely(float64_is_zero_or_denormal(frb))) {
1069 /* XB is not zero because of the above check and */
1070 /* so must be denormalized. */
1071 fg_flag = 1;
1072 }
1073 }
1074
1075 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1076 }
1077
1078 uint32_t helper_ftsqrt(uint64_t frb)
1079 {
1080 int fe_flag = 0;
1081 int fg_flag = 0;
1082
1083 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1084 fe_flag = 1;
1085 fg_flag = 1;
1086 } else {
1087 int e_b = ppc_float64_get_unbiased_exp(frb);
1088
1089 if (unlikely(float64_is_any_nan(frb))) {
1090 fe_flag = 1;
1091 } else if (unlikely(float64_is_zero(frb))) {
1092 fe_flag = 1;
1093 } else if (unlikely(float64_is_neg(frb))) {
1094 fe_flag = 1;
1095 } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
1096 fe_flag = 1;
1097 }
1098
1099 if (unlikely(float64_is_zero_or_denormal(frb))) {
1100 /* XB is not zero because of the above check and */
1101 /* therefore must be denormalized. */
1102 fg_flag = 1;
1103 }
1104 }
1105
1106 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1107 }
1108
1109 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1110 uint32_t crfD)
1111 {
1112 CPU_DoubleU farg1, farg2;
1113 uint32_t ret = 0;
1114
1115 farg1.ll = arg1;
1116 farg2.ll = arg2;
1117
1118 if (unlikely(float64_is_any_nan(farg1.d) ||
1119 float64_is_any_nan(farg2.d))) {
1120 ret = 0x01UL;
1121 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1122 ret = 0x08UL;
1123 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1124 ret = 0x04UL;
1125 } else {
1126 ret = 0x02UL;
1127 }
1128
1129 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1130 env->fpscr |= ret << FPSCR_FPRF;
1131 env->crf[crfD] = ret;
1132 if (unlikely(ret == 0x01UL
1133 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1134 float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1135 /* sNaN comparison */
1136 float_invalid_op_vxsnan(env, GETPC());
1137 }
1138 }
1139
1140 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1141 uint32_t crfD)
1142 {
1143 CPU_DoubleU farg1, farg2;
1144 uint32_t ret = 0;
1145
1146 farg1.ll = arg1;
1147 farg2.ll = arg2;
1148
1149 if (unlikely(float64_is_any_nan(farg1.d) ||
1150 float64_is_any_nan(farg2.d))) {
1151 ret = 0x01UL;
1152 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1153 ret = 0x08UL;
1154 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1155 ret = 0x04UL;
1156 } else {
1157 ret = 0x02UL;
1158 }
1159
1160 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1161 env->fpscr |= ret << FPSCR_FPRF;
1162 env->crf[crfD] = ret;
1163 if (unlikely(ret == 0x01UL)) {
1164 float_invalid_op_vxvc(env, 1, GETPC());
1165 if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1166 float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1167 /* sNaN comparison */
1168 float_invalid_op_vxsnan(env, GETPC());
1169 }
1170 }
1171 }
1172
1173 /* Single-precision floating-point conversions */
1174 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1175 {
1176 CPU_FloatU u;
1177
1178 u.f = int32_to_float32(val, &env->vec_status);
1179
1180 return u.l;
1181 }
1182
1183 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1184 {
1185 CPU_FloatU u;
1186
1187 u.f = uint32_to_float32(val, &env->vec_status);
1188
1189 return u.l;
1190 }
1191
1192 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1193 {
1194 CPU_FloatU u;
1195
1196 u.l = val;
1197 /* NaN are not treated the same way IEEE 754 does */
1198 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1199 return 0;
1200 }
1201
1202 return float32_to_int32(u.f, &env->vec_status);
1203 }
1204
1205 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1206 {
1207 CPU_FloatU u;
1208
1209 u.l = val;
1210 /* NaN are not treated the same way IEEE 754 does */
1211 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1212 return 0;
1213 }
1214
1215 return float32_to_uint32(u.f, &env->vec_status);
1216 }
1217
1218 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1219 {
1220 CPU_FloatU u;
1221
1222 u.l = val;
1223 /* NaN are not treated the same way IEEE 754 does */
1224 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1225 return 0;
1226 }
1227
1228 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1229 }
1230
1231 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1232 {
1233 CPU_FloatU u;
1234
1235 u.l = val;
1236 /* NaN are not treated the same way IEEE 754 does */
1237 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1238 return 0;
1239 }
1240
1241 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1242 }
1243
1244 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1245 {
1246 CPU_FloatU u;
1247 float32 tmp;
1248
1249 u.f = int32_to_float32(val, &env->vec_status);
1250 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1251 u.f = float32_div(u.f, tmp, &env->vec_status);
1252
1253 return u.l;
1254 }
1255
1256 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1257 {
1258 CPU_FloatU u;
1259 float32 tmp;
1260
1261 u.f = uint32_to_float32(val, &env->vec_status);
1262 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1263 u.f = float32_div(u.f, tmp, &env->vec_status);
1264
1265 return u.l;
1266 }
1267
1268 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1269 {
1270 CPU_FloatU u;
1271 float32 tmp;
1272
1273 u.l = val;
1274 /* NaN are not treated the same way IEEE 754 does */
1275 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1276 return 0;
1277 }
1278 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1279 u.f = float32_mul(u.f, tmp, &env->vec_status);
1280
1281 return float32_to_int32(u.f, &env->vec_status);
1282 }
1283
1284 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1285 {
1286 CPU_FloatU u;
1287 float32 tmp;
1288
1289 u.l = val;
1290 /* NaN are not treated the same way IEEE 754 does */
1291 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1292 return 0;
1293 }
1294 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1295 u.f = float32_mul(u.f, tmp, &env->vec_status);
1296
1297 return float32_to_uint32(u.f, &env->vec_status);
1298 }
1299
1300 #define HELPER_SPE_SINGLE_CONV(name) \
1301 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1302 { \
1303 return e##name(env, val); \
1304 }
1305 /* efscfsi */
1306 HELPER_SPE_SINGLE_CONV(fscfsi);
1307 /* efscfui */
1308 HELPER_SPE_SINGLE_CONV(fscfui);
1309 /* efscfuf */
1310 HELPER_SPE_SINGLE_CONV(fscfuf);
1311 /* efscfsf */
1312 HELPER_SPE_SINGLE_CONV(fscfsf);
1313 /* efsctsi */
1314 HELPER_SPE_SINGLE_CONV(fsctsi);
1315 /* efsctui */
1316 HELPER_SPE_SINGLE_CONV(fsctui);
1317 /* efsctsiz */
1318 HELPER_SPE_SINGLE_CONV(fsctsiz);
1319 /* efsctuiz */
1320 HELPER_SPE_SINGLE_CONV(fsctuiz);
1321 /* efsctsf */
1322 HELPER_SPE_SINGLE_CONV(fsctsf);
1323 /* efsctuf */
1324 HELPER_SPE_SINGLE_CONV(fsctuf);
1325
1326 #define HELPER_SPE_VECTOR_CONV(name) \
1327 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1328 { \
1329 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1330 (uint64_t)e##name(env, val); \
1331 }
1332 /* evfscfsi */
1333 HELPER_SPE_VECTOR_CONV(fscfsi);
1334 /* evfscfui */
1335 HELPER_SPE_VECTOR_CONV(fscfui);
1336 /* evfscfuf */
1337 HELPER_SPE_VECTOR_CONV(fscfuf);
1338 /* evfscfsf */
1339 HELPER_SPE_VECTOR_CONV(fscfsf);
1340 /* evfsctsi */
1341 HELPER_SPE_VECTOR_CONV(fsctsi);
1342 /* evfsctui */
1343 HELPER_SPE_VECTOR_CONV(fsctui);
1344 /* evfsctsiz */
1345 HELPER_SPE_VECTOR_CONV(fsctsiz);
1346 /* evfsctuiz */
1347 HELPER_SPE_VECTOR_CONV(fsctuiz);
1348 /* evfsctsf */
1349 HELPER_SPE_VECTOR_CONV(fsctsf);
1350 /* evfsctuf */
1351 HELPER_SPE_VECTOR_CONV(fsctuf);
1352
1353 /* Single-precision floating-point arithmetic */
1354 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1355 {
1356 CPU_FloatU u1, u2;
1357
1358 u1.l = op1;
1359 u2.l = op2;
1360 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1361 return u1.l;
1362 }
1363
1364 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1365 {
1366 CPU_FloatU u1, u2;
1367
1368 u1.l = op1;
1369 u2.l = op2;
1370 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1371 return u1.l;
1372 }
1373
1374 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1375 {
1376 CPU_FloatU u1, u2;
1377
1378 u1.l = op1;
1379 u2.l = op2;
1380 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1381 return u1.l;
1382 }
1383
1384 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1385 {
1386 CPU_FloatU u1, u2;
1387
1388 u1.l = op1;
1389 u2.l = op2;
1390 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1391 return u1.l;
1392 }
1393
1394 #define HELPER_SPE_SINGLE_ARITH(name) \
1395 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1396 { \
1397 return e##name(env, op1, op2); \
1398 }
1399 /* efsadd */
1400 HELPER_SPE_SINGLE_ARITH(fsadd);
1401 /* efssub */
1402 HELPER_SPE_SINGLE_ARITH(fssub);
1403 /* efsmul */
1404 HELPER_SPE_SINGLE_ARITH(fsmul);
1405 /* efsdiv */
1406 HELPER_SPE_SINGLE_ARITH(fsdiv);
1407
1408 #define HELPER_SPE_VECTOR_ARITH(name) \
1409 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1410 { \
1411 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1412 (uint64_t)e##name(env, op1, op2); \
1413 }
1414 /* evfsadd */
1415 HELPER_SPE_VECTOR_ARITH(fsadd);
1416 /* evfssub */
1417 HELPER_SPE_VECTOR_ARITH(fssub);
1418 /* evfsmul */
1419 HELPER_SPE_VECTOR_ARITH(fsmul);
1420 /* evfsdiv */
1421 HELPER_SPE_VECTOR_ARITH(fsdiv);
1422
1423 /* Single-precision floating-point comparisons */
1424 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1425 {
1426 CPU_FloatU u1, u2;
1427
1428 u1.l = op1;
1429 u2.l = op2;
1430 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1431 }
1432
1433 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1434 {
1435 CPU_FloatU u1, u2;
1436
1437 u1.l = op1;
1438 u2.l = op2;
1439 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1440 }
1441
1442 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1443 {
1444 CPU_FloatU u1, u2;
1445
1446 u1.l = op1;
1447 u2.l = op2;
1448 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1449 }
1450
1451 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1452 {
1453 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1454 return efscmplt(env, op1, op2);
1455 }
1456
1457 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1458 {
1459 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1460 return efscmpgt(env, op1, op2);
1461 }
1462
1463 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1464 {
1465 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1466 return efscmpeq(env, op1, op2);
1467 }
1468
1469 #define HELPER_SINGLE_SPE_CMP(name) \
1470 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1471 { \
1472 return e##name(env, op1, op2); \
1473 }
1474 /* efststlt */
1475 HELPER_SINGLE_SPE_CMP(fststlt);
1476 /* efststgt */
1477 HELPER_SINGLE_SPE_CMP(fststgt);
1478 /* efststeq */
1479 HELPER_SINGLE_SPE_CMP(fststeq);
1480 /* efscmplt */
1481 HELPER_SINGLE_SPE_CMP(fscmplt);
1482 /* efscmpgt */
1483 HELPER_SINGLE_SPE_CMP(fscmpgt);
1484 /* efscmpeq */
1485 HELPER_SINGLE_SPE_CMP(fscmpeq);
1486
1487 static inline uint32_t evcmp_merge(int t0, int t1)
1488 {
1489 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1490 }
1491
1492 #define HELPER_VECTOR_SPE_CMP(name) \
1493 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1494 { \
1495 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1496 e##name(env, op1, op2)); \
1497 }
1498 /* evfststlt */
1499 HELPER_VECTOR_SPE_CMP(fststlt);
1500 /* evfststgt */
1501 HELPER_VECTOR_SPE_CMP(fststgt);
1502 /* evfststeq */
1503 HELPER_VECTOR_SPE_CMP(fststeq);
1504 /* evfscmplt */
1505 HELPER_VECTOR_SPE_CMP(fscmplt);
1506 /* evfscmpgt */
1507 HELPER_VECTOR_SPE_CMP(fscmpgt);
1508 /* evfscmpeq */
1509 HELPER_VECTOR_SPE_CMP(fscmpeq);
1510
1511 /* Double-precision floating-point conversion */
1512 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1513 {
1514 CPU_DoubleU u;
1515
1516 u.d = int32_to_float64(val, &env->vec_status);
1517
1518 return u.ll;
1519 }
1520
1521 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1522 {
1523 CPU_DoubleU u;
1524
1525 u.d = int64_to_float64(val, &env->vec_status);
1526
1527 return u.ll;
1528 }
1529
1530 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1531 {
1532 CPU_DoubleU u;
1533
1534 u.d = uint32_to_float64(val, &env->vec_status);
1535
1536 return u.ll;
1537 }
1538
1539 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1540 {
1541 CPU_DoubleU u;
1542
1543 u.d = uint64_to_float64(val, &env->vec_status);
1544
1545 return u.ll;
1546 }
1547
1548 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1549 {
1550 CPU_DoubleU u;
1551
1552 u.ll = val;
1553 /* NaN are not treated the same way IEEE 754 does */
1554 if (unlikely(float64_is_any_nan(u.d))) {
1555 return 0;
1556 }
1557
1558 return float64_to_int32(u.d, &env->vec_status);
1559 }
1560
1561 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1562 {
1563 CPU_DoubleU u;
1564
1565 u.ll = val;
1566 /* NaN are not treated the same way IEEE 754 does */
1567 if (unlikely(float64_is_any_nan(u.d))) {
1568 return 0;
1569 }
1570
1571 return float64_to_uint32(u.d, &env->vec_status);
1572 }
1573
1574 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1575 {
1576 CPU_DoubleU u;
1577
1578 u.ll = val;
1579 /* NaN are not treated the same way IEEE 754 does */
1580 if (unlikely(float64_is_any_nan(u.d))) {
1581 return 0;
1582 }
1583
1584 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1585 }
1586
1587 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1588 {
1589 CPU_DoubleU u;
1590
1591 u.ll = val;
1592 /* NaN are not treated the same way IEEE 754 does */
1593 if (unlikely(float64_is_any_nan(u.d))) {
1594 return 0;
1595 }
1596
1597 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1598 }
1599
1600 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1601 {
1602 CPU_DoubleU u;
1603
1604 u.ll = val;
1605 /* NaN are not treated the same way IEEE 754 does */
1606 if (unlikely(float64_is_any_nan(u.d))) {
1607 return 0;
1608 }
1609
1610 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1611 }
1612
1613 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1614 {
1615 CPU_DoubleU u;
1616
1617 u.ll = val;
1618 /* NaN are not treated the same way IEEE 754 does */
1619 if (unlikely(float64_is_any_nan(u.d))) {
1620 return 0;
1621 }
1622
1623 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1624 }
1625
1626 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1627 {
1628 CPU_DoubleU u;
1629 float64 tmp;
1630
1631 u.d = int32_to_float64(val, &env->vec_status);
1632 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1633 u.d = float64_div(u.d, tmp, &env->vec_status);
1634
1635 return u.ll;
1636 }
1637
1638 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1639 {
1640 CPU_DoubleU u;
1641 float64 tmp;
1642
1643 u.d = uint32_to_float64(val, &env->vec_status);
1644 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1645 u.d = float64_div(u.d, tmp, &env->vec_status);
1646
1647 return u.ll;
1648 }
1649
1650 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1651 {
1652 CPU_DoubleU u;
1653 float64 tmp;
1654
1655 u.ll = val;
1656 /* NaN are not treated the same way IEEE 754 does */
1657 if (unlikely(float64_is_any_nan(u.d))) {
1658 return 0;
1659 }
1660 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1661 u.d = float64_mul(u.d, tmp, &env->vec_status);
1662
1663 return float64_to_int32(u.d, &env->vec_status);
1664 }
1665
1666 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1667 {
1668 CPU_DoubleU u;
1669 float64 tmp;
1670
1671 u.ll = val;
1672 /* NaN are not treated the same way IEEE 754 does */
1673 if (unlikely(float64_is_any_nan(u.d))) {
1674 return 0;
1675 }
1676 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1677 u.d = float64_mul(u.d, tmp, &env->vec_status);
1678
1679 return float64_to_uint32(u.d, &env->vec_status);
1680 }
1681
1682 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1683 {
1684 CPU_DoubleU u1;
1685 CPU_FloatU u2;
1686
1687 u1.ll = val;
1688 u2.f = float64_to_float32(u1.d, &env->vec_status);
1689
1690 return u2.l;
1691 }
1692
1693 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1694 {
1695 CPU_DoubleU u2;
1696 CPU_FloatU u1;
1697
1698 u1.l = val;
1699 u2.d = float32_to_float64(u1.f, &env->vec_status);
1700
1701 return u2.ll;
1702 }
1703
1704 /* Double precision fixed-point arithmetic */
1705 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1706 {
1707 CPU_DoubleU u1, u2;
1708
1709 u1.ll = op1;
1710 u2.ll = op2;
1711 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1712 return u1.ll;
1713 }
1714
1715 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1716 {
1717 CPU_DoubleU u1, u2;
1718
1719 u1.ll = op1;
1720 u2.ll = op2;
1721 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1722 return u1.ll;
1723 }
1724
1725 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1726 {
1727 CPU_DoubleU u1, u2;
1728
1729 u1.ll = op1;
1730 u2.ll = op2;
1731 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1732 return u1.ll;
1733 }
1734
1735 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1736 {
1737 CPU_DoubleU u1, u2;
1738
1739 u1.ll = op1;
1740 u2.ll = op2;
1741 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1742 return u1.ll;
1743 }
1744
1745 /* Double precision floating point helpers */
1746 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1747 {
1748 CPU_DoubleU u1, u2;
1749
1750 u1.ll = op1;
1751 u2.ll = op2;
1752 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1753 }
1754
1755 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1756 {
1757 CPU_DoubleU u1, u2;
1758
1759 u1.ll = op1;
1760 u2.ll = op2;
1761 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1762 }
1763
1764 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1765 {
1766 CPU_DoubleU u1, u2;
1767
1768 u1.ll = op1;
1769 u2.ll = op2;
1770 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1771 }
1772
1773 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1774 {
1775 /* XXX: TODO: test special values (NaN, infinites, ...) */
1776 return helper_efdtstlt(env, op1, op2);
1777 }
1778
1779 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1780 {
1781 /* XXX: TODO: test special values (NaN, infinites, ...) */
1782 return helper_efdtstgt(env, op1, op2);
1783 }
1784
1785 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1786 {
1787 /* XXX: TODO: test special values (NaN, infinites, ...) */
1788 return helper_efdtsteq(env, op1, op2);
1789 }
1790
1791 #define float64_to_float64(x, env) x
1792
1793
1794 /*
1795 * VSX_ADD_SUB - VSX floating point add/subract
1796 * name - instruction mnemonic
1797 * op - operation (add or sub)
1798 * nels - number of elements (1, 2 or 4)
1799 * tp - type (float32 or float64)
1800 * fld - vsr_t field (VsrD(*) or VsrW(*))
1801 * sfprf - set FPRF
1802 */
1803 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1804 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
1805 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1806 { \
1807 ppc_vsr_t t = *xt; \
1808 int i; \
1809 \
1810 helper_reset_fpstatus(env); \
1811 \
1812 for (i = 0; i < nels; i++) { \
1813 float_status tstat = env->fp_status; \
1814 set_float_exception_flags(0, &tstat); \
1815 t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \
1816 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1817 \
1818 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1819 float_invalid_op_addsub(env, sfprf, GETPC(), \
1820 tp##_classify(xa->fld) | \
1821 tp##_classify(xb->fld)); \
1822 } \
1823 \
1824 if (r2sp) { \
1825 t.fld = helper_frsp(env, t.fld); \
1826 } \
1827 \
1828 if (sfprf) { \
1829 helper_compute_fprf_float64(env, t.fld); \
1830 } \
1831 } \
1832 *xt = t; \
1833 do_float_check_status(env, GETPC()); \
1834 }
1835
1836 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1837 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1838 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1839 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1840 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1841 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1842 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1843 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1844
1845 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode)
1846 {
1847 ppc_vsr_t *xt = &env->vsr[rD(opcode) + 32];
1848 ppc_vsr_t *xa = &env->vsr[rA(opcode) + 32];
1849 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32];
1850 ppc_vsr_t t = *xt;
1851 float_status tstat;
1852
1853 helper_reset_fpstatus(env);
1854
1855 tstat = env->fp_status;
1856 if (unlikely(Rc(opcode) != 0)) {
1857 tstat.float_rounding_mode = float_round_to_odd;
1858 }
1859
1860 set_float_exception_flags(0, &tstat);
1861 t.f128 = float128_add(xa->f128, xb->f128, &tstat);
1862 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1863
1864 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1865 float_invalid_op_addsub(env, 1, GETPC(),
1866 float128_classify(xa->f128) |
1867 float128_classify(xb->f128));
1868 }
1869
1870 helper_compute_fprf_float128(env, t.f128);
1871
1872 *xt = t;
1873 do_float_check_status(env, GETPC());
1874 }
1875
1876 /*
1877 * VSX_MUL - VSX floating point multiply
1878 * op - instruction mnemonic
1879 * nels - number of elements (1, 2 or 4)
1880 * tp - type (float32 or float64)
1881 * fld - vsr_t field (VsrD(*) or VsrW(*))
1882 * sfprf - set FPRF
1883 */
1884 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1885 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1886 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1887 { \
1888 ppc_vsr_t t = *xt; \
1889 int i; \
1890 \
1891 helper_reset_fpstatus(env); \
1892 \
1893 for (i = 0; i < nels; i++) { \
1894 float_status tstat = env->fp_status; \
1895 set_float_exception_flags(0, &tstat); \
1896 t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \
1897 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1898 \
1899 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1900 float_invalid_op_mul(env, sfprf, GETPC(), \
1901 tp##_classify(xa->fld) | \
1902 tp##_classify(xb->fld)); \
1903 } \
1904 \
1905 if (r2sp) { \
1906 t.fld = helper_frsp(env, t.fld); \
1907 } \
1908 \
1909 if (sfprf) { \
1910 helper_compute_fprf_float64(env, t.fld); \
1911 } \
1912 } \
1913 \
1914 *xt = t; \
1915 do_float_check_status(env, GETPC()); \
1916 }
1917
1918 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1919 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1920 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1921 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1922
1923 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode)
1924 {
1925 ppc_vsr_t *xt = &env->vsr[rD(opcode) + 32];
1926 ppc_vsr_t *xa = &env->vsr[rA(opcode) + 32];
1927 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32];
1928 ppc_vsr_t t = *xt;
1929 float_status tstat;
1930
1931 helper_reset_fpstatus(env);
1932 tstat = env->fp_status;
1933 if (unlikely(Rc(opcode) != 0)) {
1934 tstat.float_rounding_mode = float_round_to_odd;
1935 }
1936
1937 set_float_exception_flags(0, &tstat);
1938 t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
1939 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1940
1941 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1942 float_invalid_op_mul(env, 1, GETPC(),
1943 float128_classify(xa->f128) |
1944 float128_classify(xb->f128));
1945 }
1946 helper_compute_fprf_float128(env, t.f128);
1947
1948 *xt = t;
1949 do_float_check_status(env, GETPC());
1950 }
1951
1952 /*
1953 * VSX_DIV - VSX floating point divide
1954 * op - instruction mnemonic
1955 * nels - number of elements (1, 2 or 4)
1956 * tp - type (float32 or float64)
1957 * fld - vsr_t field (VsrD(*) or VsrW(*))
1958 * sfprf - set FPRF
1959 */
1960 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1961 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1962 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1963 { \
1964 ppc_vsr_t t = *xt; \
1965 int i; \
1966 \
1967 helper_reset_fpstatus(env); \
1968 \
1969 for (i = 0; i < nels; i++) { \
1970 float_status tstat = env->fp_status; \
1971 set_float_exception_flags(0, &tstat); \
1972 t.fld = tp##_div(xa->fld, xb->fld, &tstat); \
1973 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1974 \
1975 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1976 float_invalid_op_div(env, sfprf, GETPC(), \
1977 tp##_classify(xa->fld) | \
1978 tp##_classify(xb->fld)); \
1979 } \
1980 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
1981 float_zero_divide_excp(env, GETPC()); \
1982 } \
1983 \
1984 if (r2sp) { \
1985 t.fld = helper_frsp(env, t.fld); \
1986 } \
1987 \
1988 if (sfprf) { \
1989 helper_compute_fprf_float64(env, t.fld); \
1990 } \
1991 } \
1992 \
1993 *xt = t; \
1994 do_float_check_status(env, GETPC()); \
1995 }
1996
1997 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1998 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1999 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
2000 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
2001
2002 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode)
2003 {
2004 ppc_vsr_t *xt = &env->vsr[rD(opcode) + 32];
2005 ppc_vsr_t *xa = &env->vsr[rA(opcode) + 32];
2006 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32];
2007 ppc_vsr_t t = *xt;
2008 float_status tstat;
2009
2010 helper_reset_fpstatus(env);
2011 tstat = env->fp_status;
2012 if (unlikely(Rc(opcode) != 0)) {
2013 tstat.float_rounding_mode = float_round_to_odd;
2014 }
2015
2016 set_float_exception_flags(0, &tstat);
2017 t.f128 = float128_div(xa->f128, xb->f128, &tstat);
2018 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2019
2020 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
2021 float_invalid_op_div(env, 1, GETPC(),
2022 float128_classify(xa->f128) |
2023 float128_classify(xb->f128));
2024 }
2025 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
2026 float_zero_divide_excp(env, GETPC());
2027 }
2028
2029 helper_compute_fprf_float128(env, t.f128);
2030 *xt = t;
2031 do_float_check_status(env, GETPC());
2032 }
2033
2034 /*
2035 * VSX_RE - VSX floating point reciprocal estimate
2036 * op - instruction mnemonic
2037 * nels - number of elements (1, 2 or 4)
2038 * tp - type (float32 or float64)
2039 * fld - vsr_t field (VsrD(*) or VsrW(*))
2040 * sfprf - set FPRF
2041 */
2042 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
2043 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2044 { \
2045 ppc_vsr_t t = *xt; \
2046 int i; \
2047 \
2048 helper_reset_fpstatus(env); \
2049 \
2050 for (i = 0; i < nels; i++) { \
2051 if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2052 float_invalid_op_vxsnan(env, GETPC()); \
2053 } \
2054 t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \
2055 \
2056 if (r2sp) { \
2057 t.fld = helper_frsp(env, t.fld); \
2058 } \
2059 \
2060 if (sfprf) { \
2061 helper_compute_fprf_float64(env, t.fld); \
2062 } \
2063 } \
2064 \
2065 *xt = t; \
2066 do_float_check_status(env, GETPC()); \
2067 }
2068
2069 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2070 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2071 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2072 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2073
2074 /*
2075 * VSX_SQRT - VSX floating point square root
2076 * op - instruction mnemonic
2077 * nels - number of elements (1, 2 or 4)
2078 * tp - type (float32 or float64)
2079 * fld - vsr_t field (VsrD(*) or VsrW(*))
2080 * sfprf - set FPRF
2081 */
2082 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2083 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2084 { \
2085 ppc_vsr_t t = *xt; \
2086 int i; \
2087 \
2088 helper_reset_fpstatus(env); \
2089 \
2090 for (i = 0; i < nels; i++) { \
2091 float_status tstat = env->fp_status; \
2092 set_float_exception_flags(0, &tstat); \
2093 t.fld = tp##_sqrt(xb->fld, &tstat); \
2094 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2095 \
2096 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2097 if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
2098 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
2099 } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
2100 float_invalid_op_vxsnan(env, GETPC()); \
2101 } \
2102 } \
2103 \
2104 if (r2sp) { \
2105 t.fld = helper_frsp(env, t.fld); \
2106 } \
2107 \
2108 if (sfprf) { \
2109 helper_compute_fprf_float64(env, t.fld); \
2110 } \
2111 } \
2112 \
2113 *xt = t; \
2114 do_float_check_status(env, GETPC()); \
2115 }
2116
2117 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2118 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2119 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2120 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2121
2122 /*
2123 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
2124 * op - instruction mnemonic
2125 * nels - number of elements (1, 2 or 4)
2126 * tp - type (float32 or float64)
2127 * fld - vsr_t field (VsrD(*) or VsrW(*))
2128 * sfprf - set FPRF
2129 */
2130 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2131 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2132 { \
2133 ppc_vsr_t t = *xt; \
2134 int i; \
2135 \
2136 helper_reset_fpstatus(env); \
2137 \
2138 for (i = 0; i < nels; i++) { \
2139 float_status tstat = env->fp_status; \
2140 set_float_exception_flags(0, &tstat); \
2141 t.fld = tp##_sqrt(xb->fld, &tstat); \
2142 t.fld = tp##_div(tp##_one, t.fld, &tstat); \
2143 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2144 \
2145 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2146 if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
2147 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
2148 } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
2149 float_invalid_op_vxsnan(env, GETPC()); \
2150 } \
2151 } \
2152 \
2153 if (r2sp) { \
2154 t.fld = helper_frsp(env, t.fld); \
2155 } \
2156 \
2157 if (sfprf) { \
2158 helper_compute_fprf_float64(env, t.fld); \
2159 } \
2160 } \
2161 \
2162 *xt = t; \
2163 do_float_check_status(env, GETPC()); \
2164 }
2165
2166 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2167 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2168 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2169 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2170
2171 /*
2172 * VSX_TDIV - VSX floating point test for divide
2173 * op - instruction mnemonic
2174 * nels - number of elements (1, 2 or 4)
2175 * tp - type (float32 or float64)
2176 * fld - vsr_t field (VsrD(*) or VsrW(*))
2177 * emin - minimum unbiased exponent
2178 * emax - maximum unbiased exponent
2179 * nbits - number of fraction bits
2180 */
2181 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2182 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2183 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2184 { \
2185 int i; \
2186 int fe_flag = 0; \
2187 int fg_flag = 0; \
2188 \
2189 for (i = 0; i < nels; i++) { \
2190 if (unlikely(tp##_is_infinity(xa->fld) || \
2191 tp##_is_infinity(xb->fld) || \
2192 tp##_is_zero(xb->fld))) { \
2193 fe_flag = 1; \
2194 fg_flag = 1; \
2195 } else { \
2196 int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \
2197 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2198 \
2199 if (unlikely(tp##_is_any_nan(xa->fld) || \
2200 tp##_is_any_nan(xb->fld))) { \
2201 fe_flag = 1; \
2202 } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
2203 fe_flag = 1; \
2204 } else if (!tp##_is_zero(xa->fld) && \
2205 (((e_a - e_b) >= emax) || \
2206 ((e_a - e_b) <= (emin + 1)) || \
2207 (e_a <= (emin + nbits)))) { \
2208 fe_flag = 1; \
2209 } \
2210 \
2211 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2212 /* \
2213 * XB is not zero because of the above check and so \
2214 * must be denormalized. \
2215 */ \
2216 fg_flag = 1; \
2217 } \
2218 } \
2219 } \
2220 \
2221 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2222 }
2223
2224 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2225 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2226 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2227
2228 /*
2229 * VSX_TSQRT - VSX floating point test for square root
2230 * op - instruction mnemonic
2231 * nels - number of elements (1, 2 or 4)
2232 * tp - type (float32 or float64)
2233 * fld - vsr_t field (VsrD(*) or VsrW(*))
2234 * emin - minimum unbiased exponent
2235 * emax - maximum unbiased exponent
2236 * nbits - number of fraction bits
2237 */
2238 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2239 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2240 { \
2241 ppc_vsr_t *xb = &env->vsr[xB(opcode)]; \
2242 int i; \
2243 int fe_flag = 0; \
2244 int fg_flag = 0; \
2245 \
2246 for (i = 0; i < nels; i++) { \
2247 if (unlikely(tp##_is_infinity(xb->fld) || \
2248 tp##_is_zero(xb->fld))) { \
2249 fe_flag = 1; \
2250 fg_flag = 1; \
2251 } else { \
2252 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2253 \
2254 if (unlikely(tp##_is_any_nan(xb->fld))) { \
2255 fe_flag = 1; \
2256 } else if (unlikely(tp##_is_zero(xb->fld))) { \
2257 fe_flag = 1; \
2258 } else if (unlikely(tp##_is_neg(xb->fld))) { \
2259 fe_flag = 1; \
2260 } else if (!tp##_is_zero(xb->fld) && \
2261 (e_b <= (emin + nbits))) { \
2262 fe_flag = 1; \
2263 } \
2264 \
2265 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2266 /* \
2267 * XB is not zero because of the above check and \
2268 * therefore must be denormalized. \
2269 */ \
2270 fg_flag = 1; \
2271 } \
2272 } \
2273 } \
2274 \
2275 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2276 }
2277
2278 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2279 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2280 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2281
2282 /*
2283 * VSX_MADD - VSX floating point muliply/add variations
2284 * op - instruction mnemonic
2285 * nels - number of elements (1, 2 or 4)
2286 * tp - type (float32 or float64)
2287 * fld - vsr_t field (VsrD(*) or VsrW(*))
2288 * maddflgs - flags for the float*muladd routine that control the
2289 * various forms (madd, msub, nmadd, nmsub)
2290 * afrm - A form (1=A, 0=M)
2291 * sfprf - set FPRF
2292 */
2293 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \
2294 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2295 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2296 { \
2297 ppc_vsr_t t = *xt, *b, *c; \
2298 int i; \
2299 \
2300 if (afrm) { /* AxB + T */ \
2301 b = xb; \
2302 c = xt; \
2303 } else { /* AxT + B */ \
2304 b = xt; \
2305 c = xb; \
2306 } \
2307 \
2308 helper_reset_fpstatus(env); \
2309 \
2310 for (i = 0; i < nels; i++) { \
2311 float_status tstat = env->fp_status; \
2312 set_float_exception_flags(0, &tstat); \
2313 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2314 /* \
2315 * Avoid double rounding errors by rounding the intermediate \
2316 * result to odd. \
2317 */ \
2318 set_float_rounding_mode(float_round_to_zero, &tstat); \
2319 t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
2320 maddflgs, &tstat); \
2321 t.fld |= (get_float_exception_flags(&tstat) & \
2322 float_flag_inexact) != 0; \
2323 } else { \
2324 t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
2325 maddflgs, &tstat); \
2326 } \
2327 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2328 \
2329 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2330 tp##_maddsub_update_excp(env, xa->fld, b->fld, \
2331 c->fld, maddflgs, GETPC()); \
2332 } \
2333 \
2334 if (r2sp) { \
2335 t.fld = helper_frsp(env, t.fld); \
2336 } \
2337 \
2338 if (sfprf) { \
2339 helper_compute_fprf_float64(env, t.fld); \
2340 } \
2341 } \
2342 *xt = t; \
2343 do_float_check_status(env, GETPC()); \
2344 }
2345
2346 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2347 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2348 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2349 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2350 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2351 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2352 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2353 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2354
2355 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2356 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2357 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2358 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2359 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2360 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2361 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2362 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2363
2364 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2365 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2366 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2367 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2368 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2369 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2370 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2371 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2372
2373 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2374 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2375 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2376 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2377 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2378 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2379 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2380 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2381
2382 /*
2383 * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2384 * op - instruction mnemonic
2385 * cmp - comparison operation
2386 * exp - expected result of comparison
2387 * svxvc - set VXVC bit
2388 */
2389 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
2390 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2391 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2392 { \
2393 ppc_vsr_t t = *xt; \
2394 bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
2395 \
2396 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2397 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2398 vxsnan_flag = true; \
2399 if (fpscr_ve == 0 && svxvc) { \
2400 vxvc_flag = true; \
2401 } \
2402 } else if (svxvc) { \
2403 vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
2404 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status); \
2405 } \
2406 if (vxsnan_flag) { \
2407 float_invalid_op_vxsnan(env, GETPC()); \
2408 } \
2409 if (vxvc_flag) { \
2410 float_invalid_op_vxvc(env, 0, GETPC()); \
2411 } \
2412 vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
2413 \
2414 if (!vex_flag) { \
2415 if (float64_##cmp(xb->VsrD(0), xa->VsrD(0), \
2416 &env->fp_status) == exp) { \
2417 t.VsrD(0) = -1; \
2418 t.VsrD(1) = 0; \
2419 } else { \
2420 t.VsrD(0) = 0; \
2421 t.VsrD(1) = 0; \
2422 } \
2423 } \
2424 *xt = t; \
2425 do_float_check_status(env, GETPC()); \
2426 }
2427
2428 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2429 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2430 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2431 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2432
2433 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
2434 ppc_vsr_t *xa, ppc_vsr_t *xb)
2435 {
2436 int64_t exp_a, exp_b;
2437 uint32_t cc;
2438
2439 exp_a = extract64(xa->VsrD(0), 52, 11);
2440 exp_b = extract64(xb->VsrD(0), 52, 11);
2441
2442 if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
2443 float64_is_any_nan(xb->VsrD(0)))) {
2444 cc = CRF_SO;
2445 } else {
2446 if (exp_a < exp_b) {
2447 cc = CRF_LT;
2448 } else if (exp_a > exp_b) {
2449 cc = CRF_GT;
2450 } else {
2451 cc = CRF_EQ;
2452 }
2453 }
2454
2455 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2456 env->fpscr |= cc << FPSCR_FPRF;
2457 env->crf[BF(opcode)] = cc;
2458
2459 do_float_check_status(env, GETPC());
2460 }
2461
2462 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode)
2463 {
2464 ppc_vsr_t *xa = &env->vsr[rA(opcode) + 32];
2465 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32];
2466 int64_t exp_a, exp_b;
2467 uint32_t cc;
2468
2469 exp_a = extract64(xa->VsrD(0), 48, 15);
2470 exp_b = extract64(xb->VsrD(0), 48, 15);
2471
2472 if (unlikely(float128_is_any_nan(xa->f128) ||
2473 float128_is_any_nan(xb->f128))) {
2474 cc = CRF_SO;
2475 } else {
2476 if (exp_a < exp_b) {
2477 cc = CRF_LT;
2478 } else if (exp_a > exp_b) {
2479 cc = CRF_GT;
2480 } else {
2481 cc = CRF_EQ;
2482 }
2483 }
2484
2485 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2486 env->fpscr |= cc << FPSCR_FPRF;
2487 env->crf[BF(opcode)] = cc;
2488
2489 do_float_check_status(env, GETPC());
2490 }
2491
2492 #define VSX_SCALAR_CMP(op, ordered) \
2493 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2494 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2495 { \
2496 uint32_t cc = 0; \
2497 bool vxsnan_flag = false, vxvc_flag = false; \
2498 \
2499 helper_reset_fpstatus(env); \
2500 \
2501 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2502 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2503 vxsnan_flag = true; \
2504 cc = CRF_SO; \
2505 if (fpscr_ve == 0 && ordered) { \
2506 vxvc_flag = true; \
2507 } \
2508 } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
2509 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) { \
2510 cc = CRF_SO; \
2511 if (ordered) { \
2512 vxvc_flag = true; \
2513 } \
2514 } \
2515 if (vxsnan_flag) { \
2516 float_invalid_op_vxsnan(env, GETPC()); \
2517 } \
2518 if (vxvc_flag) { \
2519 float_invalid_op_vxvc(env, 0, GETPC()); \
2520 } \
2521 \
2522 if (float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \
2523 cc |= CRF_LT; \
2524 } else if (!float64_le(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \
2525 cc |= CRF_GT; \
2526 } else { \
2527 cc |= CRF_EQ; \
2528 } \
2529 \
2530 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2531 env->fpscr |= cc << FPSCR_FPRF; \
2532 env->crf[BF(opcode)] = cc; \
2533 \
2534 do_float_check_status(env, GETPC()); \
2535 }
2536
2537 VSX_SCALAR_CMP(xscmpodp, 1)
2538 VSX_SCALAR_CMP(xscmpudp, 0)
2539
2540 #define VSX_SCALAR_CMPQ(op, ordered) \
2541 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2542 { \
2543 ppc_vsr_t *xa = &env->vsr[rA(opcode) + 32]; \
2544 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32]; \
2545 uint32_t cc = 0; \
2546 bool vxsnan_flag = false, vxvc_flag = false; \
2547 \
2548 helper_reset_fpstatus(env); \
2549 \
2550 if (float128_is_signaling_nan(xa->f128, &env->fp_status) || \
2551 float128_is_signaling_nan(xb->f128, &env->fp_status)) { \
2552 vxsnan_flag = true; \
2553 cc = CRF_SO; \
2554 if (fpscr_ve == 0 && ordered) { \
2555 vxvc_flag = true; \
2556 } \
2557 } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) || \
2558 float128_is_quiet_nan(xb->f128, &env->fp_status)) { \
2559 cc = CRF_SO; \
2560 if (ordered) { \
2561 vxvc_flag = true; \
2562 } \
2563 } \
2564 if (vxsnan_flag) { \
2565 float_invalid_op_vxsnan(env, GETPC()); \
2566 } \
2567 if (vxvc_flag) { \
2568 float_invalid_op_vxvc(env, 0, GETPC()); \
2569 } \
2570 \
2571 if (float128_lt(xa->f128, xb->f128, &env->fp_status)) { \
2572 cc |= CRF_LT; \
2573 } else if (!float128_le(xa->f128, xb->f128, &env->fp_status)) { \
2574 cc |= CRF_GT; \
2575 } else { \
2576 cc |= CRF_EQ; \
2577 } \
2578 \
2579 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2580 env->fpscr |= cc << FPSCR_FPRF; \
2581 env->crf[BF(opcode)] = cc; \
2582 \
2583 do_float_check_status(env, GETPC()); \
2584 }
2585
2586 VSX_SCALAR_CMPQ(xscmpoqp, 1)
2587 VSX_SCALAR_CMPQ(xscmpuqp, 0)
2588
2589 /*
2590 * VSX_MAX_MIN - VSX floating point maximum/minimum
2591 * name - instruction mnemonic
2592 * op - operation (max or min)
2593 * nels - number of elements (1, 2 or 4)
2594 * tp - type (float32 or float64)
2595 * fld - vsr_t field (VsrD(*) or VsrW(*))
2596 */
2597 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2598 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
2599 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2600 { \
2601 ppc_vsr_t t = *xt; \
2602 int i; \
2603 \
2604 for (i = 0; i < nels; i++) { \
2605 t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \
2606 if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2607 tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2608 float_invalid_op_vxsnan(env, GETPC()); \
2609 } \
2610 } \
2611 \
2612 *xt = t; \
2613 do_float_check_status(env, GETPC()); \
2614 }
2615
2616 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2617 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2618 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2619 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2620 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2621 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2622
2623 #define VSX_MAX_MINC(name, max) \
2624 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2625 { \
2626 ppc_vsr_t *xt = &env->vsr[rD(opcode) + 32]; \
2627 ppc_vsr_t *xa = &env->vsr[rA(opcode) + 32]; \
2628 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32]; \
2629 ppc_vsr_t t = *xt; \
2630 bool vxsnan_flag = false, vex_flag = false; \
2631 \
2632 if (unlikely(float64_is_any_nan(xa->VsrD(0)) || \
2633 float64_is_any_nan(xb->VsrD(0)))) { \
2634 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2635 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2636 vxsnan_flag = true; \
2637 } \
2638 t.VsrD(0) = xb->VsrD(0); \
2639 } else if ((max && \
2640 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2641 (!max && \
2642 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2643 t.VsrD(0) = xa->VsrD(0); \
2644 } else { \
2645 t.VsrD(0) = xb->VsrD(0); \
2646 } \
2647 \
2648 vex_flag = fpscr_ve & vxsnan_flag; \
2649 if (vxsnan_flag) { \
2650 float_invalid_op_vxsnan(env, GETPC()); \
2651 } \
2652 if (!vex_flag) { \
2653 *xt = t; \
2654 } \
2655 } \
2656
2657 VSX_MAX_MINC(xsmaxcdp, 1);
2658 VSX_MAX_MINC(xsmincdp, 0);
2659
2660 #define VSX_MAX_MINJ(name, max) \
2661 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2662 { \
2663 ppc_vsr_t *xt = &env->vsr[rD(opcode) + 32]; \
2664 ppc_vsr_t *xa = &env->vsr[rA(opcode) + 32]; \
2665 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32]; \
2666 ppc_vsr_t t = *xt; \
2667 bool vxsnan_flag = false, vex_flag = false; \
2668 \
2669 if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \
2670 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \
2671 vxsnan_flag = true; \
2672 } \
2673 t.VsrD(0) = xa->VsrD(0); \
2674 } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \
2675 if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2676 vxsnan_flag = true; \
2677 } \
2678 t.VsrD(0) = xb->VsrD(0); \
2679 } else if (float64_is_zero(xa->VsrD(0)) && \
2680 float64_is_zero(xb->VsrD(0))) { \
2681 if (max) { \
2682 if (!float64_is_neg(xa->VsrD(0)) || \
2683 !float64_is_neg(xb->VsrD(0))) { \
2684 t.VsrD(0) = 0ULL; \
2685 } else { \
2686 t.VsrD(0) = 0x8000000000000000ULL; \
2687 } \
2688 } else { \
2689 if (float64_is_neg(xa->VsrD(0)) || \
2690 float64_is_neg(xb->VsrD(0))) { \
2691 t.VsrD(0) = 0x8000000000000000ULL; \
2692 } else { \
2693 t.VsrD(0) = 0ULL; \
2694 } \
2695 } \
2696 } else if ((max && \
2697 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2698 (!max && \
2699 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2700 t.VsrD(0) = xa->VsrD(0); \
2701 } else { \
2702 t.VsrD(0) = xb->VsrD(0); \
2703 } \
2704 \
2705 vex_flag = fpscr_ve & vxsnan_flag; \
2706 if (vxsnan_flag) { \
2707 float_invalid_op_vxsnan(env, GETPC()); \
2708 } \
2709 if (!vex_flag) { \
2710 *xt = t; \
2711 } \
2712 } \
2713
2714 VSX_MAX_MINJ(xsmaxjdp, 1);
2715 VSX_MAX_MINJ(xsminjdp, 0);
2716
2717 /*
2718 * VSX_CMP - VSX floating point compare
2719 * op - instruction mnemonic
2720 * nels - number of elements (1, 2 or 4)
2721 * tp - type (float32 or float64)
2722 * fld - vsr_t field (VsrD(*) or VsrW(*))
2723 * cmp - comparison operation
2724 * svxvc - set VXVC bit
2725 * exp - expected result of comparison
2726 */
2727 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2728 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2729 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2730 { \
2731 ppc_vsr_t t = *xt; \
2732 uint32_t crf6 = 0; \
2733 int i; \
2734 int all_true = 1; \
2735 int all_false = 1; \
2736 \
2737 for (i = 0; i < nels; i++) { \
2738 if (unlikely(tp##_is_any_nan(xa->fld) || \
2739 tp##_is_any_nan(xb->fld))) { \
2740 if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2741 tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \
2742 float_invalid_op_vxsnan(env, GETPC()); \
2743 } \
2744 if (svxvc) { \
2745 float_invalid_op_vxvc(env, 0, GETPC()); \
2746 } \
2747 t.fld = 0; \
2748 all_true = 0; \
2749 } else { \
2750 if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \
2751 t.fld = -1; \
2752 all_false = 0; \
2753 } else { \
2754 t.fld = 0; \
2755 all_true = 0; \
2756 } \
2757 } \
2758 } \
2759 \
2760 *xt = t; \
2761 crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2762 return crf6; \
2763 }
2764
2765 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2766 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2767 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2768 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2769 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2770 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2771 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2772 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2773
2774 /*
2775 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2776 * op - instruction mnemonic
2777 * nels - number of elements (1, 2 or 4)
2778 * stp - source type (float32 or float64)
2779 * ttp - target type (float32 or float64)
2780 * sfld - source vsr_t field
2781 * tfld - target vsr_t field (f32 or f64)
2782 * sfprf - set FPRF
2783 */
2784 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2785 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2786 { \
2787 ppc_vsr_t t = *xt; \
2788 int i; \
2789 \
2790 for (i = 0; i < nels; i++) { \
2791 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2792 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2793 &env->fp_status))) { \
2794 float_invalid_op_vxsnan(env, GETPC()); \
2795 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2796 } \
2797 if (sfprf) { \
2798 helper_compute_fprf_##ttp(env, t.tfld); \
2799 } \
2800 } \
2801 \
2802 *xt = t; \
2803 do_float_check_status(env, GETPC()); \
2804 }
2805
2806 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2807 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2808 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0)
2809 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2810
2811 /*
2812 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2813 * op - instruction mnemonic
2814 * nels - number of elements (1, 2 or 4)
2815 * stp - source type (float32 or float64)
2816 * ttp - target type (float32 or float64)
2817 * sfld - source vsr_t field
2818 * tfld - target vsr_t field (f32 or f64)
2819 * sfprf - set FPRF
2820 */
2821 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2822 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2823 { \
2824 ppc_vsr_t *xt = &env->vsr[rD(opcode) + 32]; \
2825 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32]; \
2826 ppc_vsr_t t = *xt; \
2827 int i; \
2828 \
2829 for (i = 0; i < nels; i++) { \
2830 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2831 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2832 &env->fp_status))) { \
2833 float_invalid_op_vxsnan(env, GETPC()); \
2834 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2835 } \
2836 if (sfprf) { \
2837 helper_compute_fprf_##ttp(env, t.tfld); \
2838 } \
2839 } \
2840 \
2841 *xt = t; \
2842 do_float_check_status(env, GETPC()); \
2843 }
2844
2845 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2846
2847 /*
2848 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2849 * involving one half precision value
2850 * op - instruction mnemonic
2851 * nels - number of elements (1, 2 or 4)
2852 * stp - source type
2853 * ttp - target type
2854 * sfld - source vsr_t field
2855 * tfld - target vsr_t field
2856 * sfprf - set FPRF
2857 */
2858 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2859 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2860 { \
2861 ppc_vsr_t t = { }; \
2862 int i; \
2863 \
2864 for (i = 0; i < nels; i++) { \
2865 t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \
2866 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2867 &env->fp_status))) { \
2868 float_invalid_op_vxsnan(env, GETPC()); \
2869 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2870 } \
2871 if (sfprf) { \
2872 helper_compute_fprf_##ttp(env, t.tfld); \
2873 } \
2874 } \
2875 \
2876 *xt = t; \
2877 do_float_check_status(env, GETPC()); \
2878 }
2879
2880 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2881 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2882 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0)
2883 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2884
2885 /*
2886 * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2887 * added to this later.
2888 */
2889 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode,
2890 ppc_vsr_t *xt, ppc_vsr_t *xb)
2891 {
2892 ppc_vsr_t t = { };
2893 float_status tstat;
2894
2895 tstat = env->fp_status;
2896 if (unlikely(Rc(opcode) != 0)) {
2897 tstat.float_rounding_mode = float_round_to_odd;
2898 }
2899
2900 t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
2901 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2902 if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
2903 float_invalid_op_vxsnan(env, GETPC());
2904 t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
2905 }
2906 helper_compute_fprf_float64(env, t.VsrD(0));
2907
2908 *xt = t;
2909 do_float_check_status(env, GETPC());
2910 }
2911
2912 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2913 {
2914 float_status tstat = env->fp_status;
2915 set_float_exception_flags(0, &tstat);
2916
2917 return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2918 }
2919
2920 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2921 {
2922 float_status tstat = env->fp_status;
2923 set_float_exception_flags(0, &tstat);
2924
2925 return float32_to_float64(xb >> 32, &tstat);
2926 }
2927
2928 /*
2929 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2930 * op - instruction mnemonic
2931 * nels - number of elements (1, 2 or 4)
2932 * stp - source type (float32 or float64)
2933 * ttp - target type (int32, uint32, int64 or uint64)
2934 * sfld - source vsr_t field
2935 * tfld - target vsr_t field
2936 * rnan - resulting NaN
2937 */
2938 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2939 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2940 { \
2941 int all_flags = env->fp_status.float_exception_flags, flags; \
2942 ppc_vsr_t t = *xt; \
2943 int i; \
2944 \
2945 for (i = 0; i < nels; i++) { \
2946 env->fp_status.float_exception_flags = 0; \
2947 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2948 flags = env->fp_status.float_exception_flags; \
2949 if (unlikely(flags & float_flag_invalid)) { \
2950 float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
2951 t.tfld = rnan; \
2952 } \
2953 all_flags |= flags; \
2954 } \
2955 \
2956 *xt = t; \
2957 env->fp_status.float_exception_flags = all_flags; \
2958 do_float_check_status(env, GETPC()); \
2959 }
2960
2961 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2962 0x8000000000000000ULL)
2963 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2964 0x80000000U)
2965 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2966 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2967 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2968 0x8000000000000000ULL)
2969 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \
2970 0x80000000U)
2971 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2972 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U)
2973 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \
2974 0x8000000000000000ULL)
2975 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2976 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL)
2977 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2978
2979 /*
2980 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2981 * op - instruction mnemonic
2982 * stp - source type (float32 or float64)
2983 * ttp - target type (int32, uint32, int64 or uint64)
2984 * sfld - source vsr_t field
2985 * tfld - target vsr_t field
2986 * rnan - resulting NaN
2987 */
2988 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
2989 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2990 { \
2991 ppc_vsr_t *xt = &env->vsr[rD(opcode) + 32]; \
2992 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32]; \
2993 ppc_vsr_t t = { }; \
2994 \
2995 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2996 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2997 float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
2998 t.tfld = rnan; \
2999 } \
3000 \
3001 *xt = t; \
3002 do_float_check_status(env, GETPC()); \
3003 }
3004
3005 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \
3006 0x8000000000000000ULL)
3007
3008 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \
3009 0xffffffff80000000ULL)
3010 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
3011 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
3012
3013 /*
3014 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
3015 * op - instruction mnemonic
3016 * nels - number of elements (1, 2 or 4)
3017 * stp - source type (int32, uint32, int64 or uint64)
3018 * ttp - target type (float32 or float64)
3019 * sfld - source vsr_t field
3020 * tfld - target vsr_t field
3021 * jdef - definition of the j index (i or 2*i)
3022 * sfprf - set FPRF
3023 */
3024 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
3025 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3026 { \
3027 ppc_vsr_t t = *xt; \
3028 int i; \
3029 \
3030 for (i = 0; i < nels; i++) { \
3031 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3032 if (r2sp) { \
3033 t.tfld = helper_frsp(env, t.tfld); \
3034 } \
3035 if (sfprf) { \
3036 helper_compute_fprf_float64(env, t.tfld); \
3037 } \
3038 } \
3039 \
3040 *xt = t; \
3041 do_float_check_status(env, GETPC()); \
3042 }
3043
3044 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3045 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3046 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3047 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3048 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3049 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3050 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
3051 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
3052 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3053 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3054 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3055 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3056
3057 /*
3058 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3059 * op - instruction mnemonic
3060 * stp - source type (int32, uint32, int64 or uint64)
3061 * ttp - target type (float32 or float64)
3062 * sfld - source vsr_t field
3063 * tfld - target vsr_t field
3064 */
3065 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
3066 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3067 { \
3068 ppc_vsr_t *xt = &env->vsr[rD(opcode) + 32]; \
3069 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32]; \
3070 ppc_vsr_t t = *xt; \
3071 \
3072 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3073 helper_compute_fprf_##ttp(env, t.tfld); \
3074 \
3075 *xt = t; \
3076 do_float_check_status(env, GETPC()); \
3077 }
3078
3079 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3080 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3081
3082 /*
3083 * For "use current rounding mode", define a value that will not be
3084 * one of the existing rounding model enums.
3085 */
3086 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3087 float_round_up + float_round_to_zero)
3088
3089 /*
3090 * VSX_ROUND - VSX floating point round
3091 * op - instruction mnemonic
3092 * nels - number of elements (1, 2 or 4)
3093 * tp - type (float32 or float64)
3094 * fld - vsr_t field (VsrD(*) or VsrW(*))
3095 * rmode - rounding mode
3096 * sfprf - set FPRF
3097 */
3098 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
3099 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3100 { \
3101 ppc_vsr_t t = *xt; \
3102 int i; \
3103 \
3104 if (rmode != FLOAT_ROUND_CURRENT) { \
3105 set_float_rounding_mode(rmode, &env->fp_status); \
3106 } \
3107 \
3108 for (i = 0; i < nels; i++) { \
3109 if (unlikely(tp##_is_signaling_nan(xb->fld, \
3110 &env->fp_status))) { \
3111 float_invalid_op_vxsnan(env, GETPC()); \
3112 t.fld = tp##_snan_to_qnan(xb->fld); \
3113 } else { \
3114 t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \
3115 } \
3116 if (sfprf) { \
3117 helper_compute_fprf_float64(env, t.fld); \
3118 } \
3119 } \
3120 \
3121 /* \
3122 * If this is not a "use current rounding mode" instruction, \
3123 * then inhibit setting of the XX bit and restore rounding \
3124 * mode from FPSCR \
3125 */ \
3126 if (rmode != FLOAT_ROUND_CURRENT) { \
3127 fpscr_set_rounding_mode(env); \
3128 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3129 } \
3130 \
3131 *xt = t; \
3132 do_float_check_status(env, GETPC()); \
3133 }
3134
3135 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3136 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3137 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3138 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3139 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3140
3141 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3142 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3143 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3144 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3145 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3146
3147 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3148 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3149 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3150 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3151 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3152
3153 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3154 {
3155 helper_reset_fpstatus(env);
3156
3157 uint64_t xt = helper_frsp(env, xb);
3158
3159 helper_compute_fprf_float64(env, xt);
3160 do_float_check_status(env, GETPC());
3161 return xt;
3162 }
3163
3164 #define VSX_XXPERM(op, indexed) \
3165 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
3166 ppc_vsr_t *xa, ppc_vsr_t *pcv) \
3167 { \
3168 ppc_vsr_t t = *xt; \
3169 int i, idx; \
3170 \
3171 for (i = 0; i < 16; i++) { \
3172 idx = pcv->VsrB(i) & 0x1F; \
3173 if (indexed) { \
3174 idx = 31 - idx; \
3175 } \
3176 t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx) \
3177 : xt->VsrB(idx - 16); \
3178 } \
3179 *xt = t; \
3180 }
3181
3182 VSX_XXPERM(xxperm, 0)
3183 VSX_XXPERM(xxpermr, 1)
3184
3185 void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
3186 {
3187 ppc_vsr_t t = { };
3188 uint32_t exp, i, fraction;
3189
3190 for (i = 0; i < 4; i++) {
3191 exp = (xb->VsrW(i) >> 23) & 0xFF;
3192 fraction = xb->VsrW(i) & 0x7FFFFF;
3193 if (exp != 0 && exp != 255) {
3194 t.VsrW(i) = fraction | 0x00800000;
3195 } else {
3196 t.VsrW(i) = fraction;
3197 }
3198 }
3199 *xt = t;
3200 }
3201
3202 /*
3203 * VSX_TEST_DC - VSX floating point test data class
3204 * op - instruction mnemonic
3205 * nels - number of elements (1, 2 or 4)
3206 * xbn - VSR register number
3207 * tp - type (float32 or float64)
3208 * fld - vsr_t field (VsrD(*) or VsrW(*))
3209 * tfld - target vsr_t field (VsrD(*) or VsrW(*))
3210 * fld_max - target field max
3211 * scrf - set result in CR and FPCC
3212 */
3213 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \
3214 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3215 { \
3216 ppc_vsr_t *xt = &env->vsr[xT(opcode)]; \
3217 ppc_vsr_t *xb = &env->vsr[xbn]; \
3218 ppc_vsr_t t = { }; \
3219 uint32_t i, sign, dcmx; \
3220 uint32_t cc, match = 0; \
3221 \
3222 if (!scrf) { \
3223 dcmx = DCMX_XV(opcode); \
3224 } else { \
3225 t = *xt; \
3226 dcmx = DCMX(opcode); \
3227 } \
3228 \
3229 for (i = 0; i < nels; i++) { \
3230 sign = tp##_is_neg(xb->fld); \
3231 if (tp##_is_any_nan(xb->fld)) { \
3232 match = extract32(dcmx, 6, 1); \
3233 } else if (tp##_is_infinity(xb->fld)) { \
3234 match = extract32(dcmx, 4 + !sign, 1); \
3235 } else if (tp##_is_zero(xb->fld)) { \
3236 match = extract32(dcmx, 2 + !sign, 1); \
3237 } else if (tp##_is_zero_or_denormal(xb->fld)) { \
3238 match = extract32(dcmx, 0 + !sign, 1); \
3239 } \
3240 \
3241 if (scrf) { \
3242 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3243 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
3244 env->fpscr |= cc << FPSCR_FPRF; \
3245 env->crf[BF(opcode)] = cc; \
3246 } else { \
3247 t.tfld = match ? fld_max : 0; \
3248 } \
3249 match = 0; \
3250 } \
3251 if (!scrf) { \
3252 *xt = t; \
3253 } \
3254 }
3255
3256 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3257 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3258 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3259 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3260
3261 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode)
3262 {
3263 ppc_vsr_t *xb = &env->vsr[xB(opcode)];
3264 uint32_t dcmx, sign, exp;
3265 uint32_t cc, match = 0, not_sp = 0;
3266
3267 dcmx = DCMX(opcode);
3268 exp = (xb->VsrD(0) >> 52) & 0x7FF;
3269
3270 sign = float64_is_neg(xb->VsrD(0));
3271 if (float64_is_any_nan(xb->VsrD(0))) {
3272 match = extract32(dcmx, 6, 1);
3273 } else if (float64_is_infinity(xb->VsrD(0))) {
3274 match = extract32(dcmx, 4 + !sign, 1);
3275 } else if (float64_is_zero(xb->VsrD(0))) {
3276 match = extract32(dcmx, 2 + !sign, 1);
3277 } else if (float64_is_zero_or_denormal(xb->VsrD(0)) ||
3278 (exp > 0 && exp < 0x381)) {
3279 match = extract32(dcmx, 0 + !sign, 1);
3280 }
3281
3282 not_sp = !float64_eq(xb->VsrD(0),
3283 float32_to_float64(
3284 float64_to_float32(xb->VsrD(0), &env->fp_status),
3285 &env->fp_status), &env->fp_status);
3286
3287 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3288 env->fpscr &= ~(0x0F << FPSCR_FPRF);
3289 env->fpscr |= cc << FPSCR_FPRF;
3290 env->crf[BF(opcode)] = cc;
3291 }
3292
3293 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode)
3294 {
3295 ppc_vsr_t *xt = &env->vsr[rD(opcode) + 32];
3296 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32];
3297 ppc_vsr_t t = { };
3298 uint8_t r = Rrm(opcode);
3299 uint8_t ex = Rc(opcode);
3300 uint8_t rmc = RMC(opcode);
3301 uint8_t rmode = 0;
3302 float_status tstat;
3303
3304 helper_reset_fpstatus(env);
3305
3306 if (r == 0 && rmc == 0) {
3307 rmode = float_round_ties_away;
3308 } else if (r == 0 && rmc == 0x3) {
3309 rmode = fpscr_rn;
3310 } else if (r == 1) {
3311 switch (rmc) {
3312 case 0:
3313 rmode = float_round_nearest_even;
3314 break;
3315 case 1:
3316 rmode = float_round_to_zero;
3317 break;
3318 case 2:
3319 rmode = float_round_up;
3320 break;
3321 case 3:
3322 rmode = float_round_down;
3323 break;
3324 default:
3325 abort();
3326 }
3327 }
3328
3329 tstat = env->fp_status;
3330 set_float_exception_flags(0, &tstat);
3331 set_float_rounding_mode(rmode, &tstat);
3332 t.f128 = float128_round_to_int(xb->f128, &tstat);
3333 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3334
3335 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3336 if (float128_is_signaling_nan(xb->f128, &tstat)) {
3337 float_invalid_op_vxsnan(env, GETPC());
3338 t.f128 = float128_snan_to_qnan(t.f128);
3339 }
3340 }
3341
3342 if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3343 env->fp_status.float_exception_flags &= ~float_flag_inexact;
3344 }
3345
3346 helper_compute_fprf_float128(env, t.f128);
3347 do_float_check_status(env, GETPC());
3348 *xt = t;
3349 }
3350
3351 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode)
3352 {
3353 ppc_vsr_t *xt = &env->vsr[rD(opcode) + 32];
3354 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32];
3355 ppc_vsr_t t = { };
3356 uint8_t r = Rrm(opcode);
3357 uint8_t rmc = RMC(opcode);
3358 uint8_t rmode = 0;
3359 floatx80 round_res;
3360 float_status tstat;
3361
3362 helper_reset_fpstatus(env);
3363
3364 if (r == 0 && rmc == 0) {
3365 rmode = float_round_ties_away;
3366 } else if (r == 0 && rmc == 0x3) {
3367 rmode = fpscr_rn;
3368 } else if (r == 1) {
3369 switch (rmc) {
3370 case 0:
3371 rmode = float_round_nearest_even;
3372 break;
3373 case 1:
3374 rmode = float_round_to_zero;
3375 break;
3376 case 2:
3377 rmode = float_round_up;
3378 break;
3379 case 3:
3380 rmode = float_round_down;
3381 break;
3382 default:
3383 abort();
3384 }
3385 }
3386
3387 tstat = env->fp_status;
3388 set_float_exception_flags(0, &tstat);
3389 set_float_rounding_mode(rmode, &tstat);
3390 round_res = float128_to_floatx80(xb->f128, &tstat);
3391 t.f128 = floatx80_to_float128(round_res, &tstat);
3392 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3393
3394 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3395 if (float128_is_signaling_nan(xb->f128, &tstat)) {
3396 float_invalid_op_vxsnan(env, GETPC());
3397 t.f128 = float128_snan_to_qnan(t.f128);
3398 }
3399 }
3400
3401 helper_compute_fprf_float128(env, t.f128);
3402 *xt = t;
3403 do_float_check_status(env, GETPC());
3404 }
3405
3406 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode)
3407 {
3408 ppc_vsr_t *xt = &env->vsr[rD(opcode) + 32];
3409 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32];
3410 ppc_vsr_t t = { };
3411 float_status tstat;
3412
3413 helper_reset_fpstatus(env);
3414
3415 tstat = env->fp_status;
3416 if (unlikely(Rc(opcode) != 0)) {
3417 tstat.float_rounding_mode = float_round_to_odd;
3418 }
3419
3420 set_float_exception_flags(0, &tstat);
3421 t.f128 = float128_sqrt(xb->f128, &tstat);
3422 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3423
3424 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3425 if (float128_is_signaling_nan(xb->f128, &tstat)) {
3426 float_invalid_op_vxsnan(env, GETPC());
3427 t.f128 = float128_snan_to_qnan(xb->f128);
3428 } else if (float128_is_quiet_nan(xb->f128, &tstat)) {
3429 t.f128 = xb->f128;
3430 } else if (float128_is_neg(xb->f128) && !float128_is_zero(xb->f128)) {
3431 float_invalid_op_vxsqrt(env, 1, GETPC());
3432 t.f128 = float128_default_nan(&env->fp_status);
3433 }
3434 }
3435
3436 helper_compute_fprf_float128(env, t.f128);
3437 *xt = t;
3438 do_float_check_status(env, GETPC());
3439 }
3440
3441 void helper_xssubqp(CPUPPCState *env, uint32_t opcode)
3442 {
3443 ppc_vsr_t *xt = &env->vsr[rD(opcode) + 32];
3444 ppc_vsr_t *xa = &env->vsr[rA(opcode) + 32];
3445 ppc_vsr_t *xb = &env->vsr[rB(opcode) + 32];
3446 ppc_vsr_t t = *xt;
3447 float_status tstat;
3448
3449 helper_reset_fpstatus(env);
3450
3451 tstat = env->fp_status;
3452 if (unlikely(Rc(opcode) != 0)) {
3453 tstat.float_rounding_mode = float_round_to_odd;
3454 }
3455
3456 set_float_exception_flags(0, &tstat);
3457 t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
3458 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3459
3460 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3461 float_invalid_op_addsub(env, 1, GETPC(),
3462 float128_classify(xa->f128) |
3463 float128_classify(xb->f128));
3464 }
3465
3466 helper_compute_fprf_float128(env, t.f128);
3467 *xt = t;
3468 do_float_check_status(env, GETPC());
3469 }