]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/fpu_helper.c
Merge tag 'pull-maintainer-may24-160524-2' of https://gitlab.com/stsquad/qemu into...
[mirror_qemu.git] / target / ppc / fpu_helper.c
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
25
26 static inline float128 float128_snan_to_qnan(float128 x)
27 {
28 float128 r;
29
30 r.high = x.high | 0x0000800000000000;
31 r.low = x.low;
32 return r;
33 }
34
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
38
39 static inline bool fp_exceptions_enabled(CPUPPCState *env)
40 {
41 #ifdef CONFIG_USER_ONLY
42 return true;
43 #else
44 return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
45 #endif
46 }
47
48 /*****************************************************************************/
49 /* Floating point operations helpers */
50
51 /*
52 * This is the non-arithmatic conversion that happens e.g. on loads.
53 * In the Power ISA pseudocode, this is called DOUBLE.
54 */
55 uint64_t helper_todouble(uint32_t arg)
56 {
57 uint32_t abs_arg = arg & 0x7fffffff;
58 uint64_t ret;
59
60 if (likely(abs_arg >= 0x00800000)) {
61 /* Normalized operand, or Inf, or NaN. */
62 ret = (uint64_t)extract32(arg, 30, 2) << 62;
63 ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
64 ret |= (uint64_t)extract32(arg, 0, 30) << 29;
65 } else {
66 /* Zero or Denormalized operand. */
67 ret = (uint64_t)extract32(arg, 31, 1) << 63;
68 if (unlikely(abs_arg != 0)) {
69 /* Denormalized operand. */
70 int shift = clz32(abs_arg) - 9;
71 int exp = -126 - shift + 1023;
72 ret |= (uint64_t)exp << 52;
73 ret |= abs_arg << (shift + 29);
74 }
75 }
76 return ret;
77 }
78
79 /*
80 * This is the non-arithmatic conversion that happens e.g. on stores.
81 * In the Power ISA pseudocode, this is called SINGLE.
82 */
83 uint32_t helper_tosingle(uint64_t arg)
84 {
85 int exp = extract64(arg, 52, 11);
86 uint32_t ret;
87
88 if (likely(exp > 896)) {
89 /* No denormalization required (includes Inf, NaN). */
90 ret = extract64(arg, 62, 2) << 30;
91 ret |= extract64(arg, 29, 30);
92 } else {
93 /*
94 * Zero or Denormal result. If the exponent is in bounds for
95 * a single-precision denormal result, extract the proper
96 * bits. If the input is not zero, and the exponent is out of
97 * bounds, then the result is undefined; this underflows to
98 * zero.
99 */
100 ret = extract64(arg, 63, 1) << 31;
101 if (unlikely(exp >= 874)) {
102 /* Denormal result. */
103 ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
104 }
105 }
106 return ret;
107 }
108
109 static inline int ppc_float32_get_unbiased_exp(float32 f)
110 {
111 return ((f >> 23) & 0xFF) - 127;
112 }
113
114 static inline int ppc_float64_get_unbiased_exp(float64 f)
115 {
116 return ((f >> 52) & 0x7FF) - 1023;
117 }
118
119 /* Classify a floating-point number. */
120 enum {
121 is_normal = 1,
122 is_zero = 2,
123 is_denormal = 4,
124 is_inf = 8,
125 is_qnan = 16,
126 is_snan = 32,
127 is_neg = 64,
128 };
129
130 #define COMPUTE_CLASS(tp) \
131 static int tp##_classify(tp arg) \
132 { \
133 int ret = tp##_is_neg(arg) * is_neg; \
134 if (unlikely(tp##_is_any_nan(arg))) { \
135 float_status dummy = { }; /* snan_bit_is_one = 0 */ \
136 ret |= (tp##_is_signaling_nan(arg, &dummy) \
137 ? is_snan : is_qnan); \
138 } else if (unlikely(tp##_is_infinity(arg))) { \
139 ret |= is_inf; \
140 } else if (tp##_is_zero(arg)) { \
141 ret |= is_zero; \
142 } else if (tp##_is_zero_or_denormal(arg)) { \
143 ret |= is_denormal; \
144 } else { \
145 ret |= is_normal; \
146 } \
147 return ret; \
148 }
149
150 COMPUTE_CLASS(float16)
151 COMPUTE_CLASS(float32)
152 COMPUTE_CLASS(float64)
153 COMPUTE_CLASS(float128)
154
155 static void set_fprf_from_class(CPUPPCState *env, int class)
156 {
157 static const uint8_t fprf[6][2] = {
158 { 0x04, 0x08 }, /* normalized */
159 { 0x02, 0x12 }, /* zero */
160 { 0x14, 0x18 }, /* denormalized */
161 { 0x05, 0x09 }, /* infinity */
162 { 0x11, 0x11 }, /* qnan */
163 { 0x00, 0x00 }, /* snan -- flags are undefined */
164 };
165 bool isneg = class & is_neg;
166
167 env->fpscr &= ~(0x1F << FPSCR_FPRF);
168 env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
169 }
170
171 #define COMPUTE_FPRF(tp) \
172 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
173 { \
174 set_fprf_from_class(env, tp##_classify(arg)); \
175 }
176
177 COMPUTE_FPRF(float16)
178 COMPUTE_FPRF(float32)
179 COMPUTE_FPRF(float64)
180 COMPUTE_FPRF(float128)
181
182 /* Floating-point invalid operations exception */
183 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
184 {
185 /* Update the floating-point invalid operation summary */
186 env->fpscr |= 1 << FPSCR_VX;
187 /* Update the floating-point exception summary */
188 env->fpscr |= FP_FX;
189 if (fpscr_ve != 0) {
190 /* Update the floating-point enabled exception summary */
191 env->fpscr |= 1 << FPSCR_FEX;
192 if (fp_exceptions_enabled(env)) {
193 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
194 POWERPC_EXCP_FP | op, retaddr);
195 }
196 }
197 }
198
199 static void finish_invalid_op_arith(CPUPPCState *env, int op,
200 bool set_fpcc, uintptr_t retaddr)
201 {
202 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
203 if (fpscr_ve == 0) {
204 if (set_fpcc) {
205 env->fpscr &= ~(0xF << FPSCR_FPCC);
206 env->fpscr |= 0x11 << FPSCR_FPCC;
207 }
208 }
209 finish_invalid_op_excp(env, op, retaddr);
210 }
211
212 /* Signalling NaN */
213 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
214 {
215 env->fpscr |= 1 << FPSCR_VXSNAN;
216 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
217 }
218
219 /* Magnitude subtraction of infinities */
220 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
221 uintptr_t retaddr)
222 {
223 env->fpscr |= 1 << FPSCR_VXISI;
224 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
225 }
226
227 /* Division of infinity by infinity */
228 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
229 uintptr_t retaddr)
230 {
231 env->fpscr |= 1 << FPSCR_VXIDI;
232 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
233 }
234
235 /* Division of zero by zero */
236 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
237 uintptr_t retaddr)
238 {
239 env->fpscr |= 1 << FPSCR_VXZDZ;
240 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
241 }
242
243 /* Multiplication of zero by infinity */
244 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
245 uintptr_t retaddr)
246 {
247 env->fpscr |= 1 << FPSCR_VXIMZ;
248 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
249 }
250
251 /* Square root of a negative number */
252 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
253 uintptr_t retaddr)
254 {
255 env->fpscr |= 1 << FPSCR_VXSQRT;
256 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
257 }
258
259 /* Ordered comparison of NaN */
260 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
261 uintptr_t retaddr)
262 {
263 env->fpscr |= 1 << FPSCR_VXVC;
264 if (set_fpcc) {
265 env->fpscr &= ~(0xF << FPSCR_FPCC);
266 env->fpscr |= 0x11 << FPSCR_FPCC;
267 }
268 /* Update the floating-point invalid operation summary */
269 env->fpscr |= 1 << FPSCR_VX;
270 /* Update the floating-point exception summary */
271 env->fpscr |= FP_FX;
272 /* We must update the target FPR before raising the exception */
273 if (fpscr_ve != 0) {
274 CPUState *cs = env_cpu(env);
275
276 cs->exception_index = POWERPC_EXCP_PROGRAM;
277 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
278 /* Update the floating-point enabled exception summary */
279 env->fpscr |= 1 << FPSCR_FEX;
280 /* Exception is differed */
281 }
282 }
283
284 /* Invalid conversion */
285 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
286 uintptr_t retaddr)
287 {
288 env->fpscr |= 1 << FPSCR_VXCVI;
289 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
290 if (fpscr_ve == 0) {
291 if (set_fpcc) {
292 env->fpscr &= ~(0xF << FPSCR_FPCC);
293 env->fpscr |= 0x11 << FPSCR_FPCC;
294 }
295 }
296 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
297 }
298
299 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
300 {
301 env->fpscr |= 1 << FPSCR_ZX;
302 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
303 /* Update the floating-point exception summary */
304 env->fpscr |= FP_FX;
305 if (fpscr_ze != 0) {
306 /* Update the floating-point enabled exception summary */
307 env->fpscr |= 1 << FPSCR_FEX;
308 if (fp_exceptions_enabled(env)) {
309 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
310 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
311 raddr);
312 }
313 }
314 }
315
316 static inline void float_overflow_excp(CPUPPCState *env)
317 {
318 CPUState *cs = env_cpu(env);
319
320 env->fpscr |= 1 << FPSCR_OX;
321 /* Update the floating-point exception summary */
322 env->fpscr |= FP_FX;
323 if (fpscr_oe != 0) {
324 /* XXX: should adjust the result */
325 /* Update the floating-point enabled exception summary */
326 env->fpscr |= 1 << FPSCR_FEX;
327 /* We must update the target FPR before raising the exception */
328 cs->exception_index = POWERPC_EXCP_PROGRAM;
329 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
330 } else {
331 env->fpscr |= 1 << FPSCR_XX;
332 env->fpscr |= 1 << FPSCR_FI;
333 }
334 }
335
336 static inline void float_underflow_excp(CPUPPCState *env)
337 {
338 CPUState *cs = env_cpu(env);
339
340 env->fpscr |= 1 << FPSCR_UX;
341 /* Update the floating-point exception summary */
342 env->fpscr |= FP_FX;
343 if (fpscr_ue != 0) {
344 /* XXX: should adjust the result */
345 /* Update the floating-point enabled exception summary */
346 env->fpscr |= 1 << FPSCR_FEX;
347 /* We must update the target FPR before raising the exception */
348 cs->exception_index = POWERPC_EXCP_PROGRAM;
349 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
350 }
351 }
352
353 static inline void float_inexact_excp(CPUPPCState *env)
354 {
355 CPUState *cs = env_cpu(env);
356
357 env->fpscr |= 1 << FPSCR_FI;
358 env->fpscr |= 1 << FPSCR_XX;
359 /* Update the floating-point exception summary */
360 env->fpscr |= FP_FX;
361 if (fpscr_xe != 0) {
362 /* Update the floating-point enabled exception summary */
363 env->fpscr |= 1 << FPSCR_FEX;
364 /* We must update the target FPR before raising the exception */
365 cs->exception_index = POWERPC_EXCP_PROGRAM;
366 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
367 }
368 }
369
370 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
371 {
372 int rnd_type;
373
374 /* Set rounding mode */
375 switch (fpscr_rn) {
376 case 0:
377 /* Best approximation (round to nearest) */
378 rnd_type = float_round_nearest_even;
379 break;
380 case 1:
381 /* Smaller magnitude (round toward zero) */
382 rnd_type = float_round_to_zero;
383 break;
384 case 2:
385 /* Round toward +infinite */
386 rnd_type = float_round_up;
387 break;
388 default:
389 case 3:
390 /* Round toward -infinite */
391 rnd_type = float_round_down;
392 break;
393 }
394 set_float_rounding_mode(rnd_type, &env->fp_status);
395 }
396
397 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
398 {
399 int prev;
400
401 prev = (env->fpscr >> bit) & 1;
402 env->fpscr &= ~(1 << bit);
403 if (prev == 1) {
404 switch (bit) {
405 case FPSCR_RN1:
406 case FPSCR_RN:
407 fpscr_set_rounding_mode(env);
408 break;
409 case FPSCR_VXSNAN:
410 case FPSCR_VXISI:
411 case FPSCR_VXIDI:
412 case FPSCR_VXZDZ:
413 case FPSCR_VXIMZ:
414 case FPSCR_VXVC:
415 case FPSCR_VXSOFT:
416 case FPSCR_VXSQRT:
417 case FPSCR_VXCVI:
418 if (!fpscr_ix) {
419 /* Set VX bit to zero */
420 env->fpscr &= ~(1 << FPSCR_VX);
421 }
422 break;
423 case FPSCR_OX:
424 case FPSCR_UX:
425 case FPSCR_ZX:
426 case FPSCR_XX:
427 case FPSCR_VE:
428 case FPSCR_OE:
429 case FPSCR_UE:
430 case FPSCR_ZE:
431 case FPSCR_XE:
432 if (!fpscr_eex) {
433 /* Set the FEX bit */
434 env->fpscr &= ~(1 << FPSCR_FEX);
435 }
436 break;
437 default:
438 break;
439 }
440 }
441 }
442
443 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
444 {
445 CPUState *cs = env_cpu(env);
446 int prev;
447
448 prev = (env->fpscr >> bit) & 1;
449 env->fpscr |= 1 << bit;
450 if (prev == 0) {
451 switch (bit) {
452 case FPSCR_VX:
453 env->fpscr |= FP_FX;
454 if (fpscr_ve) {
455 goto raise_ve;
456 }
457 break;
458 case FPSCR_OX:
459 env->fpscr |= FP_FX;
460 if (fpscr_oe) {
461 goto raise_oe;
462 }
463 break;
464 case FPSCR_UX:
465 env->fpscr |= FP_FX;
466 if (fpscr_ue) {
467 goto raise_ue;
468 }
469 break;
470 case FPSCR_ZX:
471 env->fpscr |= FP_FX;
472 if (fpscr_ze) {
473 goto raise_ze;
474 }
475 break;
476 case FPSCR_XX:
477 env->fpscr |= FP_FX;
478 if (fpscr_xe) {
479 goto raise_xe;
480 }
481 break;
482 case FPSCR_VXSNAN:
483 case FPSCR_VXISI:
484 case FPSCR_VXIDI:
485 case FPSCR_VXZDZ:
486 case FPSCR_VXIMZ:
487 case FPSCR_VXVC:
488 case FPSCR_VXSOFT:
489 case FPSCR_VXSQRT:
490 case FPSCR_VXCVI:
491 env->fpscr |= 1 << FPSCR_VX;
492 env->fpscr |= FP_FX;
493 if (fpscr_ve != 0) {
494 goto raise_ve;
495 }
496 break;
497 case FPSCR_VE:
498 if (fpscr_vx != 0) {
499 raise_ve:
500 env->error_code = POWERPC_EXCP_FP;
501 if (fpscr_vxsnan) {
502 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
503 }
504 if (fpscr_vxisi) {
505 env->error_code |= POWERPC_EXCP_FP_VXISI;
506 }
507 if (fpscr_vxidi) {
508 env->error_code |= POWERPC_EXCP_FP_VXIDI;
509 }
510 if (fpscr_vxzdz) {
511 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
512 }
513 if (fpscr_vximz) {
514 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
515 }
516 if (fpscr_vxvc) {
517 env->error_code |= POWERPC_EXCP_FP_VXVC;
518 }
519 if (fpscr_vxsoft) {
520 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
521 }
522 if (fpscr_vxsqrt) {
523 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
524 }
525 if (fpscr_vxcvi) {
526 env->error_code |= POWERPC_EXCP_FP_VXCVI;
527 }
528 goto raise_excp;
529 }
530 break;
531 case FPSCR_OE:
532 if (fpscr_ox != 0) {
533 raise_oe:
534 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
535 goto raise_excp;
536 }
537 break;
538 case FPSCR_UE:
539 if (fpscr_ux != 0) {
540 raise_ue:
541 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
542 goto raise_excp;
543 }
544 break;
545 case FPSCR_ZE:
546 if (fpscr_zx != 0) {
547 raise_ze:
548 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
549 goto raise_excp;
550 }
551 break;
552 case FPSCR_XE:
553 if (fpscr_xx != 0) {
554 raise_xe:
555 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
556 goto raise_excp;
557 }
558 break;
559 case FPSCR_RN1:
560 case FPSCR_RN:
561 fpscr_set_rounding_mode(env);
562 break;
563 default:
564 break;
565 raise_excp:
566 /* Update the floating-point enabled exception summary */
567 env->fpscr |= 1 << FPSCR_FEX;
568 /* We have to update Rc1 before raising the exception */
569 cs->exception_index = POWERPC_EXCP_PROGRAM;
570 break;
571 }
572 }
573 }
574
575 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
576 {
577 CPUState *cs = env_cpu(env);
578 target_ulong prev, new;
579 int i;
580
581 prev = env->fpscr;
582 new = (target_ulong)arg;
583 new &= ~0x60000000LL;
584 new |= prev & 0x60000000LL;
585 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
586 if (mask & (1 << i)) {
587 env->fpscr &= ~(0xFLL << (4 * i));
588 env->fpscr |= new & (0xFLL << (4 * i));
589 }
590 }
591 /* Update VX and FEX */
592 if (fpscr_ix != 0) {
593 env->fpscr |= 1 << FPSCR_VX;
594 } else {
595 env->fpscr &= ~(1 << FPSCR_VX);
596 }
597 if ((fpscr_ex & fpscr_eex) != 0) {
598 env->fpscr |= 1 << FPSCR_FEX;
599 cs->exception_index = POWERPC_EXCP_PROGRAM;
600 /* XXX: we should compute it properly */
601 env->error_code = POWERPC_EXCP_FP;
602 } else {
603 env->fpscr &= ~(1 << FPSCR_FEX);
604 }
605 fpscr_set_rounding_mode(env);
606 }
607
608 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
609 {
610 helper_store_fpscr(env, arg, mask);
611 }
612
613 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
614 {
615 CPUState *cs = env_cpu(env);
616 int status = get_float_exception_flags(&env->fp_status);
617 bool inexact_happened = false;
618
619 if (status & float_flag_overflow) {
620 float_overflow_excp(env);
621 } else if (status & float_flag_underflow) {
622 float_underflow_excp(env);
623 } else if (status & float_flag_inexact) {
624 float_inexact_excp(env);
625 inexact_happened = true;
626 }
627
628 /* if the inexact flag was not set */
629 if (inexact_happened == false) {
630 env->fpscr &= ~(1 << FPSCR_FI); /* clear the FPSCR[FI] bit */
631 }
632
633 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
634 (env->error_code & POWERPC_EXCP_FP)) {
635 /* Differred floating-point exception after target FPR update */
636 if (fp_exceptions_enabled(env)) {
637 raise_exception_err_ra(env, cs->exception_index,
638 env->error_code, raddr);
639 }
640 }
641 }
642
643 void helper_float_check_status(CPUPPCState *env)
644 {
645 do_float_check_status(env, GETPC());
646 }
647
648 void helper_reset_fpstatus(CPUPPCState *env)
649 {
650 set_float_exception_flags(0, &env->fp_status);
651 }
652
653 static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc,
654 uintptr_t retaddr, int classes)
655 {
656 if ((classes & ~is_neg) == is_inf) {
657 /* Magnitude subtraction of infinities */
658 float_invalid_op_vxisi(env, set_fpcc, retaddr);
659 } else if (classes & is_snan) {
660 float_invalid_op_vxsnan(env, retaddr);
661 }
662 }
663
664 /* fadd - fadd. */
665 float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
666 {
667 float64 ret = float64_add(arg1, arg2, &env->fp_status);
668 int status = get_float_exception_flags(&env->fp_status);
669
670 if (unlikely(status & float_flag_invalid)) {
671 float_invalid_op_addsub(env, 1, GETPC(),
672 float64_classify(arg1) |
673 float64_classify(arg2));
674 }
675
676 return ret;
677 }
678
679 /* fsub - fsub. */
680 float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
681 {
682 float64 ret = float64_sub(arg1, arg2, &env->fp_status);
683 int status = get_float_exception_flags(&env->fp_status);
684
685 if (unlikely(status & float_flag_invalid)) {
686 float_invalid_op_addsub(env, 1, GETPC(),
687 float64_classify(arg1) |
688 float64_classify(arg2));
689 }
690
691 return ret;
692 }
693
694 static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc,
695 uintptr_t retaddr, int classes)
696 {
697 if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) {
698 /* Multiplication of zero by infinity */
699 float_invalid_op_vximz(env, set_fprc, retaddr);
700 } else if (classes & is_snan) {
701 float_invalid_op_vxsnan(env, retaddr);
702 }
703 }
704
705 /* fmul - fmul. */
706 float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
707 {
708 float64 ret = float64_mul(arg1, arg2, &env->fp_status);
709 int status = get_float_exception_flags(&env->fp_status);
710
711 if (unlikely(status & float_flag_invalid)) {
712 float_invalid_op_mul(env, 1, GETPC(),
713 float64_classify(arg1) |
714 float64_classify(arg2));
715 }
716
717 return ret;
718 }
719
720 static void float_invalid_op_div(CPUPPCState *env, bool set_fprc,
721 uintptr_t retaddr, int classes)
722 {
723 classes &= ~is_neg;
724 if (classes == is_inf) {
725 /* Division of infinity by infinity */
726 float_invalid_op_vxidi(env, set_fprc, retaddr);
727 } else if (classes == is_zero) {
728 /* Division of zero by zero */
729 float_invalid_op_vxzdz(env, set_fprc, retaddr);
730 } else if (classes & is_snan) {
731 float_invalid_op_vxsnan(env, retaddr);
732 }
733 }
734
735 /* fdiv - fdiv. */
736 float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
737 {
738 float64 ret = float64_div(arg1, arg2, &env->fp_status);
739 int status = get_float_exception_flags(&env->fp_status);
740
741 if (unlikely(status)) {
742 if (status & float_flag_invalid) {
743 float_invalid_op_div(env, 1, GETPC(),
744 float64_classify(arg1) |
745 float64_classify(arg2));
746 }
747 if (status & float_flag_divbyzero) {
748 float_zero_divide_excp(env, GETPC());
749 }
750 }
751
752 return ret;
753 }
754
755 static void float_invalid_cvt(CPUPPCState *env, bool set_fprc,
756 uintptr_t retaddr, int class1)
757 {
758 float_invalid_op_vxcvi(env, set_fprc, retaddr);
759 if (class1 & is_snan) {
760 float_invalid_op_vxsnan(env, retaddr);
761 }
762 }
763
764 #define FPU_FCTI(op, cvt, nanval) \
765 uint64_t helper_##op(CPUPPCState *env, float64 arg) \
766 { \
767 uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
768 int status = get_float_exception_flags(&env->fp_status); \
769 \
770 if (unlikely(status)) { \
771 if (status & float_flag_invalid) { \
772 float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \
773 ret = nanval; \
774 } \
775 do_float_check_status(env, GETPC()); \
776 } \
777 return ret; \
778 }
779
780 FPU_FCTI(fctiw, int32, 0x80000000U)
781 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
782 FPU_FCTI(fctiwu, uint32, 0x00000000U)
783 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
784 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
785 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
786 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
787 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
788
789 #define FPU_FCFI(op, cvtr, is_single) \
790 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
791 { \
792 CPU_DoubleU farg; \
793 \
794 if (is_single) { \
795 float32 tmp = cvtr(arg, &env->fp_status); \
796 farg.d = float32_to_float64(tmp, &env->fp_status); \
797 } else { \
798 farg.d = cvtr(arg, &env->fp_status); \
799 } \
800 do_float_check_status(env, GETPC()); \
801 return farg.ll; \
802 }
803
804 FPU_FCFI(fcfid, int64_to_float64, 0)
805 FPU_FCFI(fcfids, int64_to_float32, 1)
806 FPU_FCFI(fcfidu, uint64_to_float64, 0)
807 FPU_FCFI(fcfidus, uint64_to_float32, 1)
808
809 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
810 int rounding_mode)
811 {
812 CPU_DoubleU farg;
813
814 farg.ll = arg;
815
816 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
817 /* sNaN round */
818 float_invalid_op_vxsnan(env, GETPC());
819 farg.ll = arg | 0x0008000000000000ULL;
820 } else {
821 int inexact = get_float_exception_flags(&env->fp_status) &
822 float_flag_inexact;
823 set_float_rounding_mode(rounding_mode, &env->fp_status);
824 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
825 /* Restore rounding mode from FPSCR */
826 fpscr_set_rounding_mode(env);
827
828 /* fri* does not set FPSCR[XX] */
829 if (!inexact) {
830 env->fp_status.float_exception_flags &= ~float_flag_inexact;
831 }
832 }
833 do_float_check_status(env, GETPC());
834 return farg.ll;
835 }
836
837 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
838 {
839 return do_fri(env, arg, float_round_ties_away);
840 }
841
842 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
843 {
844 return do_fri(env, arg, float_round_to_zero);
845 }
846
847 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
848 {
849 return do_fri(env, arg, float_round_up);
850 }
851
852 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
853 {
854 return do_fri(env, arg, float_round_down);
855 }
856
857 #define FPU_MADDSUB_UPDATE(NAME, TP) \
858 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3, \
859 unsigned int madd_flags, uintptr_t retaddr) \
860 { \
861 if (TP##_is_signaling_nan(arg1, &env->fp_status) || \
862 TP##_is_signaling_nan(arg2, &env->fp_status) || \
863 TP##_is_signaling_nan(arg3, &env->fp_status)) { \
864 /* sNaN operation */ \
865 float_invalid_op_vxsnan(env, retaddr); \
866 } \
867 if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) || \
868 (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) { \
869 /* Multiplication of zero by infinity */ \
870 float_invalid_op_vximz(env, 1, retaddr); \
871 } \
872 if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) && \
873 TP##_is_infinity(arg3)) { \
874 uint8_t aSign, bSign, cSign; \
875 \
876 aSign = TP##_is_neg(arg1); \
877 bSign = TP##_is_neg(arg2); \
878 cSign = TP##_is_neg(arg3); \
879 if (madd_flags & float_muladd_negate_c) { \
880 cSign ^= 1; \
881 } \
882 if (aSign ^ bSign ^ cSign) { \
883 float_invalid_op_vxisi(env, 1, retaddr); \
884 } \
885 } \
886 }
887 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
888 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
889
890 #define FPU_FMADD(op, madd_flags) \
891 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
892 uint64_t arg2, uint64_t arg3) \
893 { \
894 uint32_t flags; \
895 float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags, \
896 &env->fp_status); \
897 flags = get_float_exception_flags(&env->fp_status); \
898 if (flags) { \
899 if (flags & float_flag_invalid) { \
900 float64_maddsub_update_excp(env, arg1, arg2, arg3, \
901 madd_flags, GETPC()); \
902 } \
903 do_float_check_status(env, GETPC()); \
904 } \
905 return ret; \
906 }
907
908 #define MADD_FLGS 0
909 #define MSUB_FLGS float_muladd_negate_c
910 #define NMADD_FLGS float_muladd_negate_result
911 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
912
913 FPU_FMADD(fmadd, MADD_FLGS)
914 FPU_FMADD(fnmadd, NMADD_FLGS)
915 FPU_FMADD(fmsub, MSUB_FLGS)
916 FPU_FMADD(fnmsub, NMSUB_FLGS)
917
918 /* frsp - frsp. */
919 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
920 {
921 CPU_DoubleU farg;
922 float32 f32;
923
924 farg.ll = arg;
925
926 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
927 float_invalid_op_vxsnan(env, GETPC());
928 }
929 f32 = float64_to_float32(farg.d, &env->fp_status);
930 farg.d = float32_to_float64(f32, &env->fp_status);
931
932 return farg.ll;
933 }
934
935 /* fsqrt - fsqrt. */
936 float64 helper_fsqrt(CPUPPCState *env, float64 arg)
937 {
938 float64 ret = float64_sqrt(arg, &env->fp_status);
939 int status = get_float_exception_flags(&env->fp_status);
940
941 if (unlikely(status & float_flag_invalid)) {
942 if (unlikely(float64_is_any_nan(arg))) {
943 if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) {
944 /* sNaN square root */
945 float_invalid_op_vxsnan(env, GETPC());
946 }
947 } else {
948 /* Square root of a negative nonzero number */
949 float_invalid_op_vxsqrt(env, 1, GETPC());
950 }
951 }
952
953 return ret;
954 }
955
956 /* fre - fre. */
957 float64 helper_fre(CPUPPCState *env, float64 arg)
958 {
959 /* "Estimate" the reciprocal with actual division. */
960 float64 ret = float64_div(float64_one, arg, &env->fp_status);
961 int status = get_float_exception_flags(&env->fp_status);
962
963 if (unlikely(status)) {
964 if (status & float_flag_invalid) {
965 if (float64_is_signaling_nan(arg, &env->fp_status)) {
966 /* sNaN reciprocal */
967 float_invalid_op_vxsnan(env, GETPC());
968 }
969 }
970 if (status & float_flag_divbyzero) {
971 float_zero_divide_excp(env, GETPC());
972 /* For FPSCR.ZE == 0, the result is 1/2. */
973 ret = float64_set_sign(float64_half, float64_is_neg(arg));
974 }
975 }
976
977 return ret;
978 }
979
980 /* fres - fres. */
981 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
982 {
983 CPU_DoubleU farg;
984 float32 f32;
985
986 farg.ll = arg;
987
988 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
989 /* sNaN reciprocal */
990 float_invalid_op_vxsnan(env, GETPC());
991 }
992 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
993 f32 = float64_to_float32(farg.d, &env->fp_status);
994 farg.d = float32_to_float64(f32, &env->fp_status);
995
996 return farg.ll;
997 }
998
999 /* frsqrte - frsqrte. */
1000 float64 helper_frsqrte(CPUPPCState *env, float64 arg)
1001 {
1002 /* "Estimate" the reciprocal with actual division. */
1003 float64 rets = float64_sqrt(arg, &env->fp_status);
1004 float64 retd = float64_div(float64_one, rets, &env->fp_status);
1005 int status = get_float_exception_flags(&env->fp_status);
1006
1007 if (unlikely(status)) {
1008 if (status & float_flag_invalid) {
1009 if (float64_is_signaling_nan(arg, &env->fp_status)) {
1010 /* sNaN reciprocal */
1011 float_invalid_op_vxsnan(env, GETPC());
1012 } else {
1013 /* Square root of a negative nonzero number */
1014 float_invalid_op_vxsqrt(env, 1, GETPC());
1015 }
1016 }
1017 if (status & float_flag_divbyzero) {
1018 /* Reciprocal of (square root of) zero. */
1019 float_zero_divide_excp(env, GETPC());
1020 }
1021 }
1022
1023 return retd;
1024 }
1025
1026 /* fsel - fsel. */
1027 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1028 uint64_t arg3)
1029 {
1030 CPU_DoubleU farg1;
1031
1032 farg1.ll = arg1;
1033
1034 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1035 !float64_is_any_nan(farg1.d)) {
1036 return arg2;
1037 } else {
1038 return arg3;
1039 }
1040 }
1041
1042 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1043 {
1044 int fe_flag = 0;
1045 int fg_flag = 0;
1046
1047 if (unlikely(float64_is_infinity(fra) ||
1048 float64_is_infinity(frb) ||
1049 float64_is_zero(frb))) {
1050 fe_flag = 1;
1051 fg_flag = 1;
1052 } else {
1053 int e_a = ppc_float64_get_unbiased_exp(fra);
1054 int e_b = ppc_float64_get_unbiased_exp(frb);
1055
1056 if (unlikely(float64_is_any_nan(fra) ||
1057 float64_is_any_nan(frb))) {
1058 fe_flag = 1;
1059 } else if ((e_b <= -1022) || (e_b >= 1021)) {
1060 fe_flag = 1;
1061 } else if (!float64_is_zero(fra) &&
1062 (((e_a - e_b) >= 1023) ||
1063 ((e_a - e_b) <= -1021) ||
1064 (e_a <= -970))) {
1065 fe_flag = 1;
1066 }
1067
1068 if (unlikely(float64_is_zero_or_denormal(frb))) {
1069 /* XB is not zero because of the above check and */
1070 /* so must be denormalized. */
1071 fg_flag = 1;
1072 }
1073 }
1074
1075 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1076 }
1077
1078 uint32_t helper_ftsqrt(uint64_t frb)
1079 {
1080 int fe_flag = 0;
1081 int fg_flag = 0;
1082
1083 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1084 fe_flag = 1;
1085 fg_flag = 1;
1086 } else {
1087 int e_b = ppc_float64_get_unbiased_exp(frb);
1088
1089 if (unlikely(float64_is_any_nan(frb))) {
1090 fe_flag = 1;
1091 } else if (unlikely(float64_is_zero(frb))) {
1092 fe_flag = 1;
1093 } else if (unlikely(float64_is_neg(frb))) {
1094 fe_flag = 1;
1095 } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
1096 fe_flag = 1;
1097 }
1098
1099 if (unlikely(float64_is_zero_or_denormal(frb))) {
1100 /* XB is not zero because of the above check and */
1101 /* therefore must be denormalized. */
1102 fg_flag = 1;
1103 }
1104 }
1105
1106 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1107 }
1108
1109 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1110 uint32_t crfD)
1111 {
1112 CPU_DoubleU farg1, farg2;
1113 uint32_t ret = 0;
1114
1115 farg1.ll = arg1;
1116 farg2.ll = arg2;
1117
1118 if (unlikely(float64_is_any_nan(farg1.d) ||
1119 float64_is_any_nan(farg2.d))) {
1120 ret = 0x01UL;
1121 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1122 ret = 0x08UL;
1123 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1124 ret = 0x04UL;
1125 } else {
1126 ret = 0x02UL;
1127 }
1128
1129 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1130 env->fpscr |= ret << FPSCR_FPRF;
1131 env->crf[crfD] = ret;
1132 if (unlikely(ret == 0x01UL
1133 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1134 float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1135 /* sNaN comparison */
1136 float_invalid_op_vxsnan(env, GETPC());
1137 }
1138 }
1139
1140 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1141 uint32_t crfD)
1142 {
1143 CPU_DoubleU farg1, farg2;
1144 uint32_t ret = 0;
1145
1146 farg1.ll = arg1;
1147 farg2.ll = arg2;
1148
1149 if (unlikely(float64_is_any_nan(farg1.d) ||
1150 float64_is_any_nan(farg2.d))) {
1151 ret = 0x01UL;
1152 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1153 ret = 0x08UL;
1154 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1155 ret = 0x04UL;
1156 } else {
1157 ret = 0x02UL;
1158 }
1159
1160 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1161 env->fpscr |= ret << FPSCR_FPRF;
1162 env->crf[crfD] = ret;
1163 if (unlikely(ret == 0x01UL)) {
1164 float_invalid_op_vxvc(env, 1, GETPC());
1165 if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1166 float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1167 /* sNaN comparison */
1168 float_invalid_op_vxsnan(env, GETPC());
1169 }
1170 }
1171 }
1172
1173 /* Single-precision floating-point conversions */
1174 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1175 {
1176 CPU_FloatU u;
1177
1178 u.f = int32_to_float32(val, &env->vec_status);
1179
1180 return u.l;
1181 }
1182
1183 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1184 {
1185 CPU_FloatU u;
1186
1187 u.f = uint32_to_float32(val, &env->vec_status);
1188
1189 return u.l;
1190 }
1191
1192 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1193 {
1194 CPU_FloatU u;
1195
1196 u.l = val;
1197 /* NaN are not treated the same way IEEE 754 does */
1198 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1199 return 0;
1200 }
1201
1202 return float32_to_int32(u.f, &env->vec_status);
1203 }
1204
1205 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1206 {
1207 CPU_FloatU u;
1208
1209 u.l = val;
1210 /* NaN are not treated the same way IEEE 754 does */
1211 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1212 return 0;
1213 }
1214
1215 return float32_to_uint32(u.f, &env->vec_status);
1216 }
1217
1218 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1219 {
1220 CPU_FloatU u;
1221
1222 u.l = val;
1223 /* NaN are not treated the same way IEEE 754 does */
1224 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1225 return 0;
1226 }
1227
1228 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1229 }
1230
1231 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1232 {
1233 CPU_FloatU u;
1234
1235 u.l = val;
1236 /* NaN are not treated the same way IEEE 754 does */
1237 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1238 return 0;
1239 }
1240
1241 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1242 }
1243
1244 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1245 {
1246 CPU_FloatU u;
1247 float32 tmp;
1248
1249 u.f = int32_to_float32(val, &env->vec_status);
1250 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1251 u.f = float32_div(u.f, tmp, &env->vec_status);
1252
1253 return u.l;
1254 }
1255
1256 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1257 {
1258 CPU_FloatU u;
1259 float32 tmp;
1260
1261 u.f = uint32_to_float32(val, &env->vec_status);
1262 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1263 u.f = float32_div(u.f, tmp, &env->vec_status);
1264
1265 return u.l;
1266 }
1267
1268 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1269 {
1270 CPU_FloatU u;
1271 float32 tmp;
1272
1273 u.l = val;
1274 /* NaN are not treated the same way IEEE 754 does */
1275 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1276 return 0;
1277 }
1278 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1279 u.f = float32_mul(u.f, tmp, &env->vec_status);
1280
1281 return float32_to_int32(u.f, &env->vec_status);
1282 }
1283
1284 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1285 {
1286 CPU_FloatU u;
1287 float32 tmp;
1288
1289 u.l = val;
1290 /* NaN are not treated the same way IEEE 754 does */
1291 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1292 return 0;
1293 }
1294 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1295 u.f = float32_mul(u.f, tmp, &env->vec_status);
1296
1297 return float32_to_uint32(u.f, &env->vec_status);
1298 }
1299
1300 #define HELPER_SPE_SINGLE_CONV(name) \
1301 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1302 { \
1303 return e##name(env, val); \
1304 }
1305 /* efscfsi */
1306 HELPER_SPE_SINGLE_CONV(fscfsi);
1307 /* efscfui */
1308 HELPER_SPE_SINGLE_CONV(fscfui);
1309 /* efscfuf */
1310 HELPER_SPE_SINGLE_CONV(fscfuf);
1311 /* efscfsf */
1312 HELPER_SPE_SINGLE_CONV(fscfsf);
1313 /* efsctsi */
1314 HELPER_SPE_SINGLE_CONV(fsctsi);
1315 /* efsctui */
1316 HELPER_SPE_SINGLE_CONV(fsctui);
1317 /* efsctsiz */
1318 HELPER_SPE_SINGLE_CONV(fsctsiz);
1319 /* efsctuiz */
1320 HELPER_SPE_SINGLE_CONV(fsctuiz);
1321 /* efsctsf */
1322 HELPER_SPE_SINGLE_CONV(fsctsf);
1323 /* efsctuf */
1324 HELPER_SPE_SINGLE_CONV(fsctuf);
1325
1326 #define HELPER_SPE_VECTOR_CONV(name) \
1327 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1328 { \
1329 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1330 (uint64_t)e##name(env, val); \
1331 }
1332 /* evfscfsi */
1333 HELPER_SPE_VECTOR_CONV(fscfsi);
1334 /* evfscfui */
1335 HELPER_SPE_VECTOR_CONV(fscfui);
1336 /* evfscfuf */
1337 HELPER_SPE_VECTOR_CONV(fscfuf);
1338 /* evfscfsf */
1339 HELPER_SPE_VECTOR_CONV(fscfsf);
1340 /* evfsctsi */
1341 HELPER_SPE_VECTOR_CONV(fsctsi);
1342 /* evfsctui */
1343 HELPER_SPE_VECTOR_CONV(fsctui);
1344 /* evfsctsiz */
1345 HELPER_SPE_VECTOR_CONV(fsctsiz);
1346 /* evfsctuiz */
1347 HELPER_SPE_VECTOR_CONV(fsctuiz);
1348 /* evfsctsf */
1349 HELPER_SPE_VECTOR_CONV(fsctsf);
1350 /* evfsctuf */
1351 HELPER_SPE_VECTOR_CONV(fsctuf);
1352
1353 /* Single-precision floating-point arithmetic */
1354 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1355 {
1356 CPU_FloatU u1, u2;
1357
1358 u1.l = op1;
1359 u2.l = op2;
1360 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1361 return u1.l;
1362 }
1363
1364 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1365 {
1366 CPU_FloatU u1, u2;
1367
1368 u1.l = op1;
1369 u2.l = op2;
1370 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1371 return u1.l;
1372 }
1373
1374 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1375 {
1376 CPU_FloatU u1, u2;
1377
1378 u1.l = op1;
1379 u2.l = op2;
1380 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1381 return u1.l;
1382 }
1383
1384 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1385 {
1386 CPU_FloatU u1, u2;
1387
1388 u1.l = op1;
1389 u2.l = op2;
1390 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1391 return u1.l;
1392 }
1393
1394 #define HELPER_SPE_SINGLE_ARITH(name) \
1395 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1396 { \
1397 return e##name(env, op1, op2); \
1398 }
1399 /* efsadd */
1400 HELPER_SPE_SINGLE_ARITH(fsadd);
1401 /* efssub */
1402 HELPER_SPE_SINGLE_ARITH(fssub);
1403 /* efsmul */
1404 HELPER_SPE_SINGLE_ARITH(fsmul);
1405 /* efsdiv */
1406 HELPER_SPE_SINGLE_ARITH(fsdiv);
1407
1408 #define HELPER_SPE_VECTOR_ARITH(name) \
1409 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1410 { \
1411 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1412 (uint64_t)e##name(env, op1, op2); \
1413 }
1414 /* evfsadd */
1415 HELPER_SPE_VECTOR_ARITH(fsadd);
1416 /* evfssub */
1417 HELPER_SPE_VECTOR_ARITH(fssub);
1418 /* evfsmul */
1419 HELPER_SPE_VECTOR_ARITH(fsmul);
1420 /* evfsdiv */
1421 HELPER_SPE_VECTOR_ARITH(fsdiv);
1422
1423 /* Single-precision floating-point comparisons */
1424 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1425 {
1426 CPU_FloatU u1, u2;
1427
1428 u1.l = op1;
1429 u2.l = op2;
1430 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1431 }
1432
1433 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1434 {
1435 CPU_FloatU u1, u2;
1436
1437 u1.l = op1;
1438 u2.l = op2;
1439 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1440 }
1441
1442 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1443 {
1444 CPU_FloatU u1, u2;
1445
1446 u1.l = op1;
1447 u2.l = op2;
1448 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1449 }
1450
1451 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1452 {
1453 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1454 return efscmplt(env, op1, op2);
1455 }
1456
1457 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1458 {
1459 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1460 return efscmpgt(env, op1, op2);
1461 }
1462
1463 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1464 {
1465 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1466 return efscmpeq(env, op1, op2);
1467 }
1468
1469 #define HELPER_SINGLE_SPE_CMP(name) \
1470 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1471 { \
1472 return e##name(env, op1, op2); \
1473 }
1474 /* efststlt */
1475 HELPER_SINGLE_SPE_CMP(fststlt);
1476 /* efststgt */
1477 HELPER_SINGLE_SPE_CMP(fststgt);
1478 /* efststeq */
1479 HELPER_SINGLE_SPE_CMP(fststeq);
1480 /* efscmplt */
1481 HELPER_SINGLE_SPE_CMP(fscmplt);
1482 /* efscmpgt */
1483 HELPER_SINGLE_SPE_CMP(fscmpgt);
1484 /* efscmpeq */
1485 HELPER_SINGLE_SPE_CMP(fscmpeq);
1486
1487 static inline uint32_t evcmp_merge(int t0, int t1)
1488 {
1489 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1490 }
1491
1492 #define HELPER_VECTOR_SPE_CMP(name) \
1493 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1494 { \
1495 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1496 e##name(env, op1, op2)); \
1497 }
1498 /* evfststlt */
1499 HELPER_VECTOR_SPE_CMP(fststlt);
1500 /* evfststgt */
1501 HELPER_VECTOR_SPE_CMP(fststgt);
1502 /* evfststeq */
1503 HELPER_VECTOR_SPE_CMP(fststeq);
1504 /* evfscmplt */
1505 HELPER_VECTOR_SPE_CMP(fscmplt);
1506 /* evfscmpgt */
1507 HELPER_VECTOR_SPE_CMP(fscmpgt);
1508 /* evfscmpeq */
1509 HELPER_VECTOR_SPE_CMP(fscmpeq);
1510
1511 /* Double-precision floating-point conversion */
1512 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1513 {
1514 CPU_DoubleU u;
1515
1516 u.d = int32_to_float64(val, &env->vec_status);
1517
1518 return u.ll;
1519 }
1520
1521 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1522 {
1523 CPU_DoubleU u;
1524
1525 u.d = int64_to_float64(val, &env->vec_status);
1526
1527 return u.ll;
1528 }
1529
1530 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1531 {
1532 CPU_DoubleU u;
1533
1534 u.d = uint32_to_float64(val, &env->vec_status);
1535
1536 return u.ll;
1537 }
1538
1539 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1540 {
1541 CPU_DoubleU u;
1542
1543 u.d = uint64_to_float64(val, &env->vec_status);
1544
1545 return u.ll;
1546 }
1547
1548 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1549 {
1550 CPU_DoubleU u;
1551
1552 u.ll = val;
1553 /* NaN are not treated the same way IEEE 754 does */
1554 if (unlikely(float64_is_any_nan(u.d))) {
1555 return 0;
1556 }
1557
1558 return float64_to_int32(u.d, &env->vec_status);
1559 }
1560
1561 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1562 {
1563 CPU_DoubleU u;
1564
1565 u.ll = val;
1566 /* NaN are not treated the same way IEEE 754 does */
1567 if (unlikely(float64_is_any_nan(u.d))) {
1568 return 0;
1569 }
1570
1571 return float64_to_uint32(u.d, &env->vec_status);
1572 }
1573
1574 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1575 {
1576 CPU_DoubleU u;
1577
1578 u.ll = val;
1579 /* NaN are not treated the same way IEEE 754 does */
1580 if (unlikely(float64_is_any_nan(u.d))) {
1581 return 0;
1582 }
1583
1584 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1585 }
1586
1587 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1588 {
1589 CPU_DoubleU u;
1590
1591 u.ll = val;
1592 /* NaN are not treated the same way IEEE 754 does */
1593 if (unlikely(float64_is_any_nan(u.d))) {
1594 return 0;
1595 }
1596
1597 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1598 }
1599
1600 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1601 {
1602 CPU_DoubleU u;
1603
1604 u.ll = val;
1605 /* NaN are not treated the same way IEEE 754 does */
1606 if (unlikely(float64_is_any_nan(u.d))) {
1607 return 0;
1608 }
1609
1610 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1611 }
1612
1613 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1614 {
1615 CPU_DoubleU u;
1616
1617 u.ll = val;
1618 /* NaN are not treated the same way IEEE 754 does */
1619 if (unlikely(float64_is_any_nan(u.d))) {
1620 return 0;
1621 }
1622
1623 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1624 }
1625
1626 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1627 {
1628 CPU_DoubleU u;
1629 float64 tmp;
1630
1631 u.d = int32_to_float64(val, &env->vec_status);
1632 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1633 u.d = float64_div(u.d, tmp, &env->vec_status);
1634
1635 return u.ll;
1636 }
1637
1638 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1639 {
1640 CPU_DoubleU u;
1641 float64 tmp;
1642
1643 u.d = uint32_to_float64(val, &env->vec_status);
1644 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1645 u.d = float64_div(u.d, tmp, &env->vec_status);
1646
1647 return u.ll;
1648 }
1649
1650 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1651 {
1652 CPU_DoubleU u;
1653 float64 tmp;
1654
1655 u.ll = val;
1656 /* NaN are not treated the same way IEEE 754 does */
1657 if (unlikely(float64_is_any_nan(u.d))) {
1658 return 0;
1659 }
1660 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1661 u.d = float64_mul(u.d, tmp, &env->vec_status);
1662
1663 return float64_to_int32(u.d, &env->vec_status);
1664 }
1665
1666 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1667 {
1668 CPU_DoubleU u;
1669 float64 tmp;
1670
1671 u.ll = val;
1672 /* NaN are not treated the same way IEEE 754 does */
1673 if (unlikely(float64_is_any_nan(u.d))) {
1674 return 0;
1675 }
1676 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1677 u.d = float64_mul(u.d, tmp, &env->vec_status);
1678
1679 return float64_to_uint32(u.d, &env->vec_status);
1680 }
1681
1682 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1683 {
1684 CPU_DoubleU u1;
1685 CPU_FloatU u2;
1686
1687 u1.ll = val;
1688 u2.f = float64_to_float32(u1.d, &env->vec_status);
1689
1690 return u2.l;
1691 }
1692
1693 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1694 {
1695 CPU_DoubleU u2;
1696 CPU_FloatU u1;
1697
1698 u1.l = val;
1699 u2.d = float32_to_float64(u1.f, &env->vec_status);
1700
1701 return u2.ll;
1702 }
1703
1704 /* Double precision fixed-point arithmetic */
1705 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1706 {
1707 CPU_DoubleU u1, u2;
1708
1709 u1.ll = op1;
1710 u2.ll = op2;
1711 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1712 return u1.ll;
1713 }
1714
1715 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1716 {
1717 CPU_DoubleU u1, u2;
1718
1719 u1.ll = op1;
1720 u2.ll = op2;
1721 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1722 return u1.ll;
1723 }
1724
1725 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1726 {
1727 CPU_DoubleU u1, u2;
1728
1729 u1.ll = op1;
1730 u2.ll = op2;
1731 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1732 return u1.ll;
1733 }
1734
1735 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1736 {
1737 CPU_DoubleU u1, u2;
1738
1739 u1.ll = op1;
1740 u2.ll = op2;
1741 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1742 return u1.ll;
1743 }
1744
1745 /* Double precision floating point helpers */
1746 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1747 {
1748 CPU_DoubleU u1, u2;
1749
1750 u1.ll = op1;
1751 u2.ll = op2;
1752 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1753 }
1754
1755 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1756 {
1757 CPU_DoubleU u1, u2;
1758
1759 u1.ll = op1;
1760 u2.ll = op2;
1761 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1762 }
1763
1764 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1765 {
1766 CPU_DoubleU u1, u2;
1767
1768 u1.ll = op1;
1769 u2.ll = op2;
1770 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1771 }
1772
1773 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1774 {
1775 /* XXX: TODO: test special values (NaN, infinites, ...) */
1776 return helper_efdtstlt(env, op1, op2);
1777 }
1778
1779 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1780 {
1781 /* XXX: TODO: test special values (NaN, infinites, ...) */
1782 return helper_efdtstgt(env, op1, op2);
1783 }
1784
1785 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1786 {
1787 /* XXX: TODO: test special values (NaN, infinites, ...) */
1788 return helper_efdtsteq(env, op1, op2);
1789 }
1790
1791 #define float64_to_float64(x, env) x
1792
1793
1794 /*
1795 * VSX_ADD_SUB - VSX floating point add/subract
1796 * name - instruction mnemonic
1797 * op - operation (add or sub)
1798 * nels - number of elements (1, 2 or 4)
1799 * tp - type (float32 or float64)
1800 * fld - vsr_t field (VsrD(*) or VsrW(*))
1801 * sfprf - set FPRF
1802 */
1803 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1804 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
1805 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1806 { \
1807 ppc_vsr_t t = *xt; \
1808 int i; \
1809 \
1810 helper_reset_fpstatus(env); \
1811 \
1812 for (i = 0; i < nels; i++) { \
1813 float_status tstat = env->fp_status; \
1814 set_float_exception_flags(0, &tstat); \
1815 t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \
1816 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1817 \
1818 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1819 float_invalid_op_addsub(env, sfprf, GETPC(), \
1820 tp##_classify(xa->fld) | \
1821 tp##_classify(xb->fld)); \
1822 } \
1823 \
1824 if (r2sp) { \
1825 t.fld = helper_frsp(env, t.fld); \
1826 } \
1827 \
1828 if (sfprf) { \
1829 helper_compute_fprf_float64(env, t.fld); \
1830 } \
1831 } \
1832 *xt = t; \
1833 do_float_check_status(env, GETPC()); \
1834 }
1835
1836 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1837 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1838 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1839 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1840 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1841 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1842 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1843 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1844
1845 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
1846 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1847 {
1848 ppc_vsr_t t = *xt;
1849 float_status tstat;
1850
1851 helper_reset_fpstatus(env);
1852
1853 tstat = env->fp_status;
1854 if (unlikely(Rc(opcode) != 0)) {
1855 tstat.float_rounding_mode = float_round_to_odd;
1856 }
1857
1858 set_float_exception_flags(0, &tstat);
1859 t.f128 = float128_add(xa->f128, xb->f128, &tstat);
1860 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1861
1862 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1863 float_invalid_op_addsub(env, 1, GETPC(),
1864 float128_classify(xa->f128) |
1865 float128_classify(xb->f128));
1866 }
1867
1868 helper_compute_fprf_float128(env, t.f128);
1869
1870 *xt = t;
1871 do_float_check_status(env, GETPC());
1872 }
1873
1874 /*
1875 * VSX_MUL - VSX floating point multiply
1876 * op - instruction mnemonic
1877 * nels - number of elements (1, 2 or 4)
1878 * tp - type (float32 or float64)
1879 * fld - vsr_t field (VsrD(*) or VsrW(*))
1880 * sfprf - set FPRF
1881 */
1882 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1883 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1884 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1885 { \
1886 ppc_vsr_t t = *xt; \
1887 int i; \
1888 \
1889 helper_reset_fpstatus(env); \
1890 \
1891 for (i = 0; i < nels; i++) { \
1892 float_status tstat = env->fp_status; \
1893 set_float_exception_flags(0, &tstat); \
1894 t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \
1895 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1896 \
1897 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1898 float_invalid_op_mul(env, sfprf, GETPC(), \
1899 tp##_classify(xa->fld) | \
1900 tp##_classify(xb->fld)); \
1901 } \
1902 \
1903 if (r2sp) { \
1904 t.fld = helper_frsp(env, t.fld); \
1905 } \
1906 \
1907 if (sfprf) { \
1908 helper_compute_fprf_float64(env, t.fld); \
1909 } \
1910 } \
1911 \
1912 *xt = t; \
1913 do_float_check_status(env, GETPC()); \
1914 }
1915
1916 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1917 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1918 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1919 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1920
1921 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
1922 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1923 {
1924 ppc_vsr_t t = *xt;
1925 float_status tstat;
1926
1927 helper_reset_fpstatus(env);
1928 tstat = env->fp_status;
1929 if (unlikely(Rc(opcode) != 0)) {
1930 tstat.float_rounding_mode = float_round_to_odd;
1931 }
1932
1933 set_float_exception_flags(0, &tstat);
1934 t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
1935 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1936
1937 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1938 float_invalid_op_mul(env, 1, GETPC(),
1939 float128_classify(xa->f128) |
1940 float128_classify(xb->f128));
1941 }
1942 helper_compute_fprf_float128(env, t.f128);
1943
1944 *xt = t;
1945 do_float_check_status(env, GETPC());
1946 }
1947
1948 /*
1949 * VSX_DIV - VSX floating point divide
1950 * op - instruction mnemonic
1951 * nels - number of elements (1, 2 or 4)
1952 * tp - type (float32 or float64)
1953 * fld - vsr_t field (VsrD(*) or VsrW(*))
1954 * sfprf - set FPRF
1955 */
1956 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1957 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1958 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1959 { \
1960 ppc_vsr_t t = *xt; \
1961 int i; \
1962 \
1963 helper_reset_fpstatus(env); \
1964 \
1965 for (i = 0; i < nels; i++) { \
1966 float_status tstat = env->fp_status; \
1967 set_float_exception_flags(0, &tstat); \
1968 t.fld = tp##_div(xa->fld, xb->fld, &tstat); \
1969 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1970 \
1971 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1972 float_invalid_op_div(env, sfprf, GETPC(), \
1973 tp##_classify(xa->fld) | \
1974 tp##_classify(xb->fld)); \
1975 } \
1976 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
1977 float_zero_divide_excp(env, GETPC()); \
1978 } \
1979 \
1980 if (r2sp) { \
1981 t.fld = helper_frsp(env, t.fld); \
1982 } \
1983 \
1984 if (sfprf) { \
1985 helper_compute_fprf_float64(env, t.fld); \
1986 } \
1987 } \
1988 \
1989 *xt = t; \
1990 do_float_check_status(env, GETPC()); \
1991 }
1992
1993 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1994 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1995 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1996 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1997
1998 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
1999 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
2000 {
2001 ppc_vsr_t t = *xt;
2002 float_status tstat;
2003
2004 helper_reset_fpstatus(env);
2005 tstat = env->fp_status;
2006 if (unlikely(Rc(opcode) != 0)) {
2007 tstat.float_rounding_mode = float_round_to_odd;
2008 }
2009
2010 set_float_exception_flags(0, &tstat);
2011 t.f128 = float128_div(xa->f128, xb->f128, &tstat);
2012 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2013
2014 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
2015 float_invalid_op_div(env, 1, GETPC(),
2016 float128_classify(xa->f128) |
2017 float128_classify(xb->f128));
2018 }
2019 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
2020 float_zero_divide_excp(env, GETPC());
2021 }
2022
2023 helper_compute_fprf_float128(env, t.f128);
2024 *xt = t;
2025 do_float_check_status(env, GETPC());
2026 }
2027
2028 /*
2029 * VSX_RE - VSX floating point reciprocal estimate
2030 * op - instruction mnemonic
2031 * nels - number of elements (1, 2 or 4)
2032 * tp - type (float32 or float64)
2033 * fld - vsr_t field (VsrD(*) or VsrW(*))
2034 * sfprf - set FPRF
2035 */
2036 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
2037 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2038 { \
2039 ppc_vsr_t t = *xt; \
2040 int i; \
2041 \
2042 helper_reset_fpstatus(env); \
2043 \
2044 for (i = 0; i < nels; i++) { \
2045 if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2046 float_invalid_op_vxsnan(env, GETPC()); \
2047 } \
2048 t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \
2049 \
2050 if (r2sp) { \
2051 t.fld = helper_frsp(env, t.fld); \
2052 } \
2053 \
2054 if (sfprf) { \
2055 helper_compute_fprf_float64(env, t.fld); \
2056 } \
2057 } \
2058 \
2059 *xt = t; \
2060 do_float_check_status(env, GETPC()); \
2061 }
2062
2063 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2064 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2065 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2066 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2067
2068 /*
2069 * VSX_SQRT - VSX floating point square root
2070 * op - instruction mnemonic
2071 * nels - number of elements (1, 2 or 4)
2072 * tp - type (float32 or float64)
2073 * fld - vsr_t field (VsrD(*) or VsrW(*))
2074 * sfprf - set FPRF
2075 */
2076 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2077 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2078 { \
2079 ppc_vsr_t t = *xt; \
2080 int i; \
2081 \
2082 helper_reset_fpstatus(env); \
2083 \
2084 for (i = 0; i < nels; i++) { \
2085 float_status tstat = env->fp_status; \
2086 set_float_exception_flags(0, &tstat); \
2087 t.fld = tp##_sqrt(xb->fld, &tstat); \
2088 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2089 \
2090 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2091 if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
2092 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
2093 } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
2094 float_invalid_op_vxsnan(env, GETPC()); \
2095 } \
2096 } \
2097 \
2098 if (r2sp) { \
2099 t.fld = helper_frsp(env, t.fld); \
2100 } \
2101 \
2102 if (sfprf) { \
2103 helper_compute_fprf_float64(env, t.fld); \
2104 } \
2105 } \
2106 \
2107 *xt = t; \
2108 do_float_check_status(env, GETPC()); \
2109 }
2110
2111 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2112 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2113 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2114 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2115
2116 /*
2117 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
2118 * op - instruction mnemonic
2119 * nels - number of elements (1, 2 or 4)
2120 * tp - type (float32 or float64)
2121 * fld - vsr_t field (VsrD(*) or VsrW(*))
2122 * sfprf - set FPRF
2123 */
2124 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2125 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2126 { \
2127 ppc_vsr_t t = *xt; \
2128 int i; \
2129 \
2130 helper_reset_fpstatus(env); \
2131 \
2132 for (i = 0; i < nels; i++) { \
2133 float_status tstat = env->fp_status; \
2134 set_float_exception_flags(0, &tstat); \
2135 t.fld = tp##_sqrt(xb->fld, &tstat); \
2136 t.fld = tp##_div(tp##_one, t.fld, &tstat); \
2137 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2138 \
2139 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2140 if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \
2141 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
2142 } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \
2143 float_invalid_op_vxsnan(env, GETPC()); \
2144 } \
2145 } \
2146 \
2147 if (r2sp) { \
2148 t.fld = helper_frsp(env, t.fld); \
2149 } \
2150 \
2151 if (sfprf) { \
2152 helper_compute_fprf_float64(env, t.fld); \
2153 } \
2154 } \
2155 \
2156 *xt = t; \
2157 do_float_check_status(env, GETPC()); \
2158 }
2159
2160 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2161 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2162 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2163 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2164
2165 /*
2166 * VSX_TDIV - VSX floating point test for divide
2167 * op - instruction mnemonic
2168 * nels - number of elements (1, 2 or 4)
2169 * tp - type (float32 or float64)
2170 * fld - vsr_t field (VsrD(*) or VsrW(*))
2171 * emin - minimum unbiased exponent
2172 * emax - maximum unbiased exponent
2173 * nbits - number of fraction bits
2174 */
2175 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2176 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2177 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2178 { \
2179 int i; \
2180 int fe_flag = 0; \
2181 int fg_flag = 0; \
2182 \
2183 for (i = 0; i < nels; i++) { \
2184 if (unlikely(tp##_is_infinity(xa->fld) || \
2185 tp##_is_infinity(xb->fld) || \
2186 tp##_is_zero(xb->fld))) { \
2187 fe_flag = 1; \
2188 fg_flag = 1; \
2189 } else { \
2190 int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \
2191 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2192 \
2193 if (unlikely(tp##_is_any_nan(xa->fld) || \
2194 tp##_is_any_nan(xb->fld))) { \
2195 fe_flag = 1; \
2196 } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
2197 fe_flag = 1; \
2198 } else if (!tp##_is_zero(xa->fld) && \
2199 (((e_a - e_b) >= emax) || \
2200 ((e_a - e_b) <= (emin + 1)) || \
2201 (e_a <= (emin + nbits)))) { \
2202 fe_flag = 1; \
2203 } \
2204 \
2205 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2206 /* \
2207 * XB is not zero because of the above check and so \
2208 * must be denormalized. \
2209 */ \
2210 fg_flag = 1; \
2211 } \
2212 } \
2213 } \
2214 \
2215 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2216 }
2217
2218 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2219 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2220 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2221
2222 /*
2223 * VSX_TSQRT - VSX floating point test for square root
2224 * op - instruction mnemonic
2225 * nels - number of elements (1, 2 or 4)
2226 * tp - type (float32 or float64)
2227 * fld - vsr_t field (VsrD(*) or VsrW(*))
2228 * emin - minimum unbiased exponent
2229 * emax - maximum unbiased exponent
2230 * nbits - number of fraction bits
2231 */
2232 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2233 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \
2234 { \
2235 int i; \
2236 int fe_flag = 0; \
2237 int fg_flag = 0; \
2238 \
2239 for (i = 0; i < nels; i++) { \
2240 if (unlikely(tp##_is_infinity(xb->fld) || \
2241 tp##_is_zero(xb->fld))) { \
2242 fe_flag = 1; \
2243 fg_flag = 1; \
2244 } else { \
2245 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
2246 \
2247 if (unlikely(tp##_is_any_nan(xb->fld))) { \
2248 fe_flag = 1; \
2249 } else if (unlikely(tp##_is_zero(xb->fld))) { \
2250 fe_flag = 1; \
2251 } else if (unlikely(tp##_is_neg(xb->fld))) { \
2252 fe_flag = 1; \
2253 } else if (!tp##_is_zero(xb->fld) && \
2254 (e_b <= (emin + nbits))) { \
2255 fe_flag = 1; \
2256 } \
2257 \
2258 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2259 /* \
2260 * XB is not zero because of the above check and \
2261 * therefore must be denormalized. \
2262 */ \
2263 fg_flag = 1; \
2264 } \
2265 } \
2266 } \
2267 \
2268 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2269 }
2270
2271 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2272 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2273 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2274
2275 /*
2276 * VSX_MADD - VSX floating point muliply/add variations
2277 * op - instruction mnemonic
2278 * nels - number of elements (1, 2 or 4)
2279 * tp - type (float32 or float64)
2280 * fld - vsr_t field (VsrD(*) or VsrW(*))
2281 * maddflgs - flags for the float*muladd routine that control the
2282 * various forms (madd, msub, nmadd, nmsub)
2283 * sfprf - set FPRF
2284 */
2285 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp) \
2286 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2287 ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c) \
2288 { \
2289 ppc_vsr_t t = *xt; \
2290 int i; \
2291 \
2292 helper_reset_fpstatus(env); \
2293 \
2294 for (i = 0; i < nels; i++) { \
2295 float_status tstat = env->fp_status; \
2296 set_float_exception_flags(0, &tstat); \
2297 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2298 /* \
2299 * Avoid double rounding errors by rounding the intermediate \
2300 * result to odd. \
2301 */ \
2302 set_float_rounding_mode(float_round_to_zero, &tstat); \
2303 t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
2304 maddflgs, &tstat); \
2305 t.fld |= (get_float_exception_flags(&tstat) & \
2306 float_flag_inexact) != 0; \
2307 } else { \
2308 t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \
2309 maddflgs, &tstat); \
2310 } \
2311 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2312 \
2313 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2314 tp##_maddsub_update_excp(env, xa->fld, b->fld, \
2315 c->fld, maddflgs, GETPC()); \
2316 } \
2317 \
2318 if (r2sp) { \
2319 t.fld = helper_frsp(env, t.fld); \
2320 } \
2321 \
2322 if (sfprf) { \
2323 helper_compute_fprf_float64(env, t.fld); \
2324 } \
2325 } \
2326 *xt = t; \
2327 do_float_check_status(env, GETPC()); \
2328 }
2329
2330 VSX_MADD(xsmadddp, 1, float64, VsrD(0), MADD_FLGS, 1, 0)
2331 VSX_MADD(xsmsubdp, 1, float64, VsrD(0), MSUB_FLGS, 1, 0)
2332 VSX_MADD(xsnmadddp, 1, float64, VsrD(0), NMADD_FLGS, 1, 0)
2333 VSX_MADD(xsnmsubdp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 0)
2334 VSX_MADD(xsmaddsp, 1, float64, VsrD(0), MADD_FLGS, 1, 1)
2335 VSX_MADD(xsmsubsp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1)
2336 VSX_MADD(xsnmaddsp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1)
2337 VSX_MADD(xsnmsubsp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1)
2338
2339 VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0, 0)
2340 VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0)
2341 VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0)
2342 VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0)
2343
2344 VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0)
2345 VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0)
2346 VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0)
2347 VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0)
2348
2349 /*
2350 * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2351 * op - instruction mnemonic
2352 * cmp - comparison operation
2353 * exp - expected result of comparison
2354 * svxvc - set VXVC bit
2355 */
2356 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
2357 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2358 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2359 { \
2360 ppc_vsr_t t = *xt; \
2361 bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
2362 \
2363 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2364 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2365 vxsnan_flag = true; \
2366 if (fpscr_ve == 0 && svxvc) { \
2367 vxvc_flag = true; \
2368 } \
2369 } else if (svxvc) { \
2370 vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
2371 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status); \
2372 } \
2373 if (vxsnan_flag) { \
2374 float_invalid_op_vxsnan(env, GETPC()); \
2375 } \
2376 if (vxvc_flag) { \
2377 float_invalid_op_vxvc(env, 0, GETPC()); \
2378 } \
2379 vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
2380 \
2381 if (!vex_flag) { \
2382 if (float64_##cmp(xb->VsrD(0), xa->VsrD(0), \
2383 &env->fp_status) == exp) { \
2384 t.VsrD(0) = -1; \
2385 t.VsrD(1) = 0; \
2386 } else { \
2387 t.VsrD(0) = 0; \
2388 t.VsrD(1) = 0; \
2389 } \
2390 } \
2391 *xt = t; \
2392 do_float_check_status(env, GETPC()); \
2393 }
2394
2395 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2396 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2397 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2398 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2399
2400 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
2401 ppc_vsr_t *xa, ppc_vsr_t *xb)
2402 {
2403 int64_t exp_a, exp_b;
2404 uint32_t cc;
2405
2406 exp_a = extract64(xa->VsrD(0), 52, 11);
2407 exp_b = extract64(xb->VsrD(0), 52, 11);
2408
2409 if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
2410 float64_is_any_nan(xb->VsrD(0)))) {
2411 cc = CRF_SO;
2412 } else {
2413 if (exp_a < exp_b) {
2414 cc = CRF_LT;
2415 } else if (exp_a > exp_b) {
2416 cc = CRF_GT;
2417 } else {
2418 cc = CRF_EQ;
2419 }
2420 }
2421
2422 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2423 env->fpscr |= cc << FPSCR_FPRF;
2424 env->crf[BF(opcode)] = cc;
2425
2426 do_float_check_status(env, GETPC());
2427 }
2428
2429 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
2430 ppc_vsr_t *xa, ppc_vsr_t *xb)
2431 {
2432 int64_t exp_a, exp_b;
2433 uint32_t cc;
2434
2435 exp_a = extract64(xa->VsrD(0), 48, 15);
2436 exp_b = extract64(xb->VsrD(0), 48, 15);
2437
2438 if (unlikely(float128_is_any_nan(xa->f128) ||
2439 float128_is_any_nan(xb->f128))) {
2440 cc = CRF_SO;
2441 } else {
2442 if (exp_a < exp_b) {
2443 cc = CRF_LT;
2444 } else if (exp_a > exp_b) {
2445 cc = CRF_GT;
2446 } else {
2447 cc = CRF_EQ;
2448 }
2449 }
2450
2451 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2452 env->fpscr |= cc << FPSCR_FPRF;
2453 env->crf[BF(opcode)] = cc;
2454
2455 do_float_check_status(env, GETPC());
2456 }
2457
2458 #define VSX_SCALAR_CMP(op, ordered) \
2459 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2460 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2461 { \
2462 uint32_t cc = 0; \
2463 bool vxsnan_flag = false, vxvc_flag = false; \
2464 \
2465 helper_reset_fpstatus(env); \
2466 \
2467 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2468 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2469 vxsnan_flag = true; \
2470 cc = CRF_SO; \
2471 if (fpscr_ve == 0 && ordered) { \
2472 vxvc_flag = true; \
2473 } \
2474 } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \
2475 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) { \
2476 cc = CRF_SO; \
2477 if (ordered) { \
2478 vxvc_flag = true; \
2479 } \
2480 } \
2481 if (vxsnan_flag) { \
2482 float_invalid_op_vxsnan(env, GETPC()); \
2483 } \
2484 if (vxvc_flag) { \
2485 float_invalid_op_vxvc(env, 0, GETPC()); \
2486 } \
2487 \
2488 if (float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \
2489 cc |= CRF_LT; \
2490 } else if (!float64_le(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \
2491 cc |= CRF_GT; \
2492 } else { \
2493 cc |= CRF_EQ; \
2494 } \
2495 \
2496 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2497 env->fpscr |= cc << FPSCR_FPRF; \
2498 env->crf[BF(opcode)] = cc; \
2499 \
2500 do_float_check_status(env, GETPC()); \
2501 }
2502
2503 VSX_SCALAR_CMP(xscmpodp, 1)
2504 VSX_SCALAR_CMP(xscmpudp, 0)
2505
2506 #define VSX_SCALAR_CMPQ(op, ordered) \
2507 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2508 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2509 { \
2510 uint32_t cc = 0; \
2511 bool vxsnan_flag = false, vxvc_flag = false; \
2512 \
2513 helper_reset_fpstatus(env); \
2514 \
2515 if (float128_is_signaling_nan(xa->f128, &env->fp_status) || \
2516 float128_is_signaling_nan(xb->f128, &env->fp_status)) { \
2517 vxsnan_flag = true; \
2518 cc = CRF_SO; \
2519 if (fpscr_ve == 0 && ordered) { \
2520 vxvc_flag = true; \
2521 } \
2522 } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) || \
2523 float128_is_quiet_nan(xb->f128, &env->fp_status)) { \
2524 cc = CRF_SO; \
2525 if (ordered) { \
2526 vxvc_flag = true; \
2527 } \
2528 } \
2529 if (vxsnan_flag) { \
2530 float_invalid_op_vxsnan(env, GETPC()); \
2531 } \
2532 if (vxvc_flag) { \
2533 float_invalid_op_vxvc(env, 0, GETPC()); \
2534 } \
2535 \
2536 if (float128_lt(xa->f128, xb->f128, &env->fp_status)) { \
2537 cc |= CRF_LT; \
2538 } else if (!float128_le(xa->f128, xb->f128, &env->fp_status)) { \
2539 cc |= CRF_GT; \
2540 } else { \
2541 cc |= CRF_EQ; \
2542 } \
2543 \
2544 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2545 env->fpscr |= cc << FPSCR_FPRF; \
2546 env->crf[BF(opcode)] = cc; \
2547 \
2548 do_float_check_status(env, GETPC()); \
2549 }
2550
2551 VSX_SCALAR_CMPQ(xscmpoqp, 1)
2552 VSX_SCALAR_CMPQ(xscmpuqp, 0)
2553
2554 /*
2555 * VSX_MAX_MIN - VSX floating point maximum/minimum
2556 * name - instruction mnemonic
2557 * op - operation (max or min)
2558 * nels - number of elements (1, 2 or 4)
2559 * tp - type (float32 or float64)
2560 * fld - vsr_t field (VsrD(*) or VsrW(*))
2561 */
2562 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2563 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
2564 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2565 { \
2566 ppc_vsr_t t = *xt; \
2567 int i; \
2568 \
2569 for (i = 0; i < nels; i++) { \
2570 t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \
2571 if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2572 tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2573 float_invalid_op_vxsnan(env, GETPC()); \
2574 } \
2575 } \
2576 \
2577 *xt = t; \
2578 do_float_check_status(env, GETPC()); \
2579 }
2580
2581 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2582 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2583 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2584 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2585 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2586 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2587
2588 #define VSX_MAX_MINC(name, max) \
2589 void helper_##name(CPUPPCState *env, uint32_t opcode, \
2590 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2591 { \
2592 ppc_vsr_t t = *xt; \
2593 bool vxsnan_flag = false, vex_flag = false; \
2594 \
2595 if (unlikely(float64_is_any_nan(xa->VsrD(0)) || \
2596 float64_is_any_nan(xb->VsrD(0)))) { \
2597 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \
2598 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2599 vxsnan_flag = true; \
2600 } \
2601 t.VsrD(0) = xb->VsrD(0); \
2602 } else if ((max && \
2603 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2604 (!max && \
2605 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2606 t.VsrD(0) = xa->VsrD(0); \
2607 } else { \
2608 t.VsrD(0) = xb->VsrD(0); \
2609 } \
2610 \
2611 vex_flag = fpscr_ve & vxsnan_flag; \
2612 if (vxsnan_flag) { \
2613 float_invalid_op_vxsnan(env, GETPC()); \
2614 } \
2615 if (!vex_flag) { \
2616 *xt = t; \
2617 } \
2618 } \
2619
2620 VSX_MAX_MINC(xsmaxcdp, 1);
2621 VSX_MAX_MINC(xsmincdp, 0);
2622
2623 #define VSX_MAX_MINJ(name, max) \
2624 void helper_##name(CPUPPCState *env, uint32_t opcode, \
2625 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2626 { \
2627 ppc_vsr_t t = *xt; \
2628 bool vxsnan_flag = false, vex_flag = false; \
2629 \
2630 if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \
2631 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \
2632 vxsnan_flag = true; \
2633 } \
2634 t.VsrD(0) = xa->VsrD(0); \
2635 } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \
2636 if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2637 vxsnan_flag = true; \
2638 } \
2639 t.VsrD(0) = xb->VsrD(0); \
2640 } else if (float64_is_zero(xa->VsrD(0)) && \
2641 float64_is_zero(xb->VsrD(0))) { \
2642 if (max) { \
2643 if (!float64_is_neg(xa->VsrD(0)) || \
2644 !float64_is_neg(xb->VsrD(0))) { \
2645 t.VsrD(0) = 0ULL; \
2646 } else { \
2647 t.VsrD(0) = 0x8000000000000000ULL; \
2648 } \
2649 } else { \
2650 if (float64_is_neg(xa->VsrD(0)) || \
2651 float64_is_neg(xb->VsrD(0))) { \
2652 t.VsrD(0) = 0x8000000000000000ULL; \
2653 } else { \
2654 t.VsrD(0) = 0ULL; \
2655 } \
2656 } \
2657 } else if ((max && \
2658 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2659 (!max && \
2660 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2661 t.VsrD(0) = xa->VsrD(0); \
2662 } else { \
2663 t.VsrD(0) = xb->VsrD(0); \
2664 } \
2665 \
2666 vex_flag = fpscr_ve & vxsnan_flag; \
2667 if (vxsnan_flag) { \
2668 float_invalid_op_vxsnan(env, GETPC()); \
2669 } \
2670 if (!vex_flag) { \
2671 *xt = t; \
2672 } \
2673 } \
2674
2675 VSX_MAX_MINJ(xsmaxjdp, 1);
2676 VSX_MAX_MINJ(xsminjdp, 0);
2677
2678 /*
2679 * VSX_CMP - VSX floating point compare
2680 * op - instruction mnemonic
2681 * nels - number of elements (1, 2 or 4)
2682 * tp - type (float32 or float64)
2683 * fld - vsr_t field (VsrD(*) or VsrW(*))
2684 * cmp - comparison operation
2685 * svxvc - set VXVC bit
2686 * exp - expected result of comparison
2687 */
2688 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2689 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2690 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2691 { \
2692 ppc_vsr_t t = *xt; \
2693 uint32_t crf6 = 0; \
2694 int i; \
2695 int all_true = 1; \
2696 int all_false = 1; \
2697 \
2698 for (i = 0; i < nels; i++) { \
2699 if (unlikely(tp##_is_any_nan(xa->fld) || \
2700 tp##_is_any_nan(xb->fld))) { \
2701 if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2702 tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \
2703 float_invalid_op_vxsnan(env, GETPC()); \
2704 } \
2705 if (svxvc) { \
2706 float_invalid_op_vxvc(env, 0, GETPC()); \
2707 } \
2708 t.fld = 0; \
2709 all_true = 0; \
2710 } else { \
2711 if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \
2712 t.fld = -1; \
2713 all_false = 0; \
2714 } else { \
2715 t.fld = 0; \
2716 all_true = 0; \
2717 } \
2718 } \
2719 } \
2720 \
2721 *xt = t; \
2722 crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2723 return crf6; \
2724 }
2725
2726 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2727 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2728 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2729 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2730 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2731 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2732 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2733 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2734
2735 /*
2736 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2737 * op - instruction mnemonic
2738 * nels - number of elements (1, 2 or 4)
2739 * stp - source type (float32 or float64)
2740 * ttp - target type (float32 or float64)
2741 * sfld - source vsr_t field
2742 * tfld - target vsr_t field (f32 or f64)
2743 * sfprf - set FPRF
2744 */
2745 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2746 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2747 { \
2748 ppc_vsr_t t = *xt; \
2749 int i; \
2750 \
2751 for (i = 0; i < nels; i++) { \
2752 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2753 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2754 &env->fp_status))) { \
2755 float_invalid_op_vxsnan(env, GETPC()); \
2756 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2757 } \
2758 if (sfprf) { \
2759 helper_compute_fprf_##ttp(env, t.tfld); \
2760 } \
2761 } \
2762 \
2763 *xt = t; \
2764 do_float_check_status(env, GETPC()); \
2765 }
2766
2767 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2768 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2769 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0)
2770 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2771
2772 /*
2773 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2774 * op - instruction mnemonic
2775 * nels - number of elements (1, 2 or 4)
2776 * stp - source type (float32 or float64)
2777 * ttp - target type (float32 or float64)
2778 * sfld - source vsr_t field
2779 * tfld - target vsr_t field (f32 or f64)
2780 * sfprf - set FPRF
2781 */
2782 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2783 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2784 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2785 { \
2786 ppc_vsr_t t = *xt; \
2787 int i; \
2788 \
2789 for (i = 0; i < nels; i++) { \
2790 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2791 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2792 &env->fp_status))) { \
2793 float_invalid_op_vxsnan(env, GETPC()); \
2794 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2795 } \
2796 if (sfprf) { \
2797 helper_compute_fprf_##ttp(env, t.tfld); \
2798 } \
2799 } \
2800 \
2801 *xt = t; \
2802 do_float_check_status(env, GETPC()); \
2803 }
2804
2805 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2806
2807 /*
2808 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2809 * involving one half precision value
2810 * op - instruction mnemonic
2811 * nels - number of elements (1, 2 or 4)
2812 * stp - source type
2813 * ttp - target type
2814 * sfld - source vsr_t field
2815 * tfld - target vsr_t field
2816 * sfprf - set FPRF
2817 */
2818 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2819 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2820 { \
2821 ppc_vsr_t t = { }; \
2822 int i; \
2823 \
2824 for (i = 0; i < nels; i++) { \
2825 t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \
2826 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2827 &env->fp_status))) { \
2828 float_invalid_op_vxsnan(env, GETPC()); \
2829 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2830 } \
2831 if (sfprf) { \
2832 helper_compute_fprf_##ttp(env, t.tfld); \
2833 } \
2834 } \
2835 \
2836 *xt = t; \
2837 do_float_check_status(env, GETPC()); \
2838 }
2839
2840 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2841 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2842 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0)
2843 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2844
2845 /*
2846 * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2847 * added to this later.
2848 */
2849 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode,
2850 ppc_vsr_t *xt, ppc_vsr_t *xb)
2851 {
2852 ppc_vsr_t t = { };
2853 float_status tstat;
2854
2855 tstat = env->fp_status;
2856 if (unlikely(Rc(opcode) != 0)) {
2857 tstat.float_rounding_mode = float_round_to_odd;
2858 }
2859
2860 t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
2861 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2862 if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
2863 float_invalid_op_vxsnan(env, GETPC());
2864 t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
2865 }
2866 helper_compute_fprf_float64(env, t.VsrD(0));
2867
2868 *xt = t;
2869 do_float_check_status(env, GETPC());
2870 }
2871
2872 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2873 {
2874 float_status tstat = env->fp_status;
2875 set_float_exception_flags(0, &tstat);
2876
2877 return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2878 }
2879
2880 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2881 {
2882 float_status tstat = env->fp_status;
2883 set_float_exception_flags(0, &tstat);
2884
2885 return float32_to_float64(xb >> 32, &tstat);
2886 }
2887
2888 /*
2889 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2890 * op - instruction mnemonic
2891 * nels - number of elements (1, 2 or 4)
2892 * stp - source type (float32 or float64)
2893 * ttp - target type (int32, uint32, int64 or uint64)
2894 * sfld - source vsr_t field
2895 * tfld - target vsr_t field
2896 * rnan - resulting NaN
2897 */
2898 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2899 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2900 { \
2901 int all_flags = env->fp_status.float_exception_flags, flags; \
2902 ppc_vsr_t t = *xt; \
2903 int i; \
2904 \
2905 for (i = 0; i < nels; i++) { \
2906 env->fp_status.float_exception_flags = 0; \
2907 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2908 flags = env->fp_status.float_exception_flags; \
2909 if (unlikely(flags & float_flag_invalid)) { \
2910 float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
2911 t.tfld = rnan; \
2912 } \
2913 all_flags |= flags; \
2914 } \
2915 \
2916 *xt = t; \
2917 env->fp_status.float_exception_flags = all_flags; \
2918 do_float_check_status(env, GETPC()); \
2919 }
2920
2921 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2922 0x8000000000000000ULL)
2923 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2924 0x80000000U)
2925 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2926 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2927 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2928 0x8000000000000000ULL)
2929 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \
2930 0x80000000U)
2931 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2932 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U)
2933 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \
2934 0x8000000000000000ULL)
2935 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2936 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL)
2937 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2938
2939 /*
2940 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2941 * op - instruction mnemonic
2942 * stp - source type (float32 or float64)
2943 * ttp - target type (int32, uint32, int64 or uint64)
2944 * sfld - source vsr_t field
2945 * tfld - target vsr_t field
2946 * rnan - resulting NaN
2947 */
2948 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
2949 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2950 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2951 { \
2952 ppc_vsr_t t = { }; \
2953 \
2954 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2955 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2956 float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \
2957 t.tfld = rnan; \
2958 } \
2959 \
2960 *xt = t; \
2961 do_float_check_status(env, GETPC()); \
2962 }
2963
2964 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \
2965 0x8000000000000000ULL)
2966
2967 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \
2968 0xffffffff80000000ULL)
2969 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
2970 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
2971
2972 /*
2973 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2974 * op - instruction mnemonic
2975 * nels - number of elements (1, 2 or 4)
2976 * stp - source type (int32, uint32, int64 or uint64)
2977 * ttp - target type (float32 or float64)
2978 * sfld - source vsr_t field
2979 * tfld - target vsr_t field
2980 * jdef - definition of the j index (i or 2*i)
2981 * sfprf - set FPRF
2982 */
2983 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
2984 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2985 { \
2986 ppc_vsr_t t = *xt; \
2987 int i; \
2988 \
2989 for (i = 0; i < nels; i++) { \
2990 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2991 if (r2sp) { \
2992 t.tfld = helper_frsp(env, t.tfld); \
2993 } \
2994 if (sfprf) { \
2995 helper_compute_fprf_float64(env, t.tfld); \
2996 } \
2997 } \
2998 \
2999 *xt = t; \
3000 do_float_check_status(env, GETPC()); \
3001 }
3002
3003 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3004 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3005 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3006 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3007 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3008 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3009 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
3010 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
3011 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3012 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3013 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3014 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3015
3016 /*
3017 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3018 * op - instruction mnemonic
3019 * stp - source type (int32, uint32, int64 or uint64)
3020 * ttp - target type (float32 or float64)
3021 * sfld - source vsr_t field
3022 * tfld - target vsr_t field
3023 */
3024 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
3025 void helper_##op(CPUPPCState *env, uint32_t opcode, \
3026 ppc_vsr_t *xt, ppc_vsr_t *xb) \
3027 { \
3028 ppc_vsr_t t = *xt; \
3029 \
3030 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3031 helper_compute_fprf_##ttp(env, t.tfld); \
3032 \
3033 *xt = t; \
3034 do_float_check_status(env, GETPC()); \
3035 }
3036
3037 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3038 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3039
3040 /*
3041 * For "use current rounding mode", define a value that will not be
3042 * one of the existing rounding model enums.
3043 */
3044 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3045 float_round_up + float_round_to_zero)
3046
3047 /*
3048 * VSX_ROUND - VSX floating point round
3049 * op - instruction mnemonic
3050 * nels - number of elements (1, 2 or 4)
3051 * tp - type (float32 or float64)
3052 * fld - vsr_t field (VsrD(*) or VsrW(*))
3053 * rmode - rounding mode
3054 * sfprf - set FPRF
3055 */
3056 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
3057 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3058 { \
3059 ppc_vsr_t t = *xt; \
3060 int i; \
3061 \
3062 if (rmode != FLOAT_ROUND_CURRENT) { \
3063 set_float_rounding_mode(rmode, &env->fp_status); \
3064 } \
3065 \
3066 for (i = 0; i < nels; i++) { \
3067 if (unlikely(tp##_is_signaling_nan(xb->fld, \
3068 &env->fp_status))) { \
3069 float_invalid_op_vxsnan(env, GETPC()); \
3070 t.fld = tp##_snan_to_qnan(xb->fld); \
3071 } else { \
3072 t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \
3073 } \
3074 if (sfprf) { \
3075 helper_compute_fprf_float64(env, t.fld); \
3076 } \
3077 } \
3078 \
3079 /* \
3080 * If this is not a "use current rounding mode" instruction, \
3081 * then inhibit setting of the XX bit and restore rounding \
3082 * mode from FPSCR \
3083 */ \
3084 if (rmode != FLOAT_ROUND_CURRENT) { \
3085 fpscr_set_rounding_mode(env); \
3086 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3087 } \
3088 \
3089 *xt = t; \
3090 do_float_check_status(env, GETPC()); \
3091 }
3092
3093 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3094 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3095 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3096 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3097 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3098
3099 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3100 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3101 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3102 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3103 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3104
3105 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3106 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3107 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3108 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3109 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3110
3111 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3112 {
3113 helper_reset_fpstatus(env);
3114
3115 uint64_t xt = helper_frsp(env, xb);
3116
3117 helper_compute_fprf_float64(env, xt);
3118 do_float_check_status(env, GETPC());
3119 return xt;
3120 }
3121
3122 #define VSX_XXPERM(op, indexed) \
3123 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
3124 ppc_vsr_t *xa, ppc_vsr_t *pcv) \
3125 { \
3126 ppc_vsr_t t = *xt; \
3127 int i, idx; \
3128 \
3129 for (i = 0; i < 16; i++) { \
3130 idx = pcv->VsrB(i) & 0x1F; \
3131 if (indexed) { \
3132 idx = 31 - idx; \
3133 } \
3134 t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx) \
3135 : xt->VsrB(idx - 16); \
3136 } \
3137 *xt = t; \
3138 }
3139
3140 VSX_XXPERM(xxperm, 0)
3141 VSX_XXPERM(xxpermr, 1)
3142
3143 void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
3144 {
3145 ppc_vsr_t t = { };
3146 uint32_t exp, i, fraction;
3147
3148 for (i = 0; i < 4; i++) {
3149 exp = (xb->VsrW(i) >> 23) & 0xFF;
3150 fraction = xb->VsrW(i) & 0x7FFFFF;
3151 if (exp != 0 && exp != 255) {
3152 t.VsrW(i) = fraction | 0x00800000;
3153 } else {
3154 t.VsrW(i) = fraction;
3155 }
3156 }
3157 *xt = t;
3158 }
3159
3160 /*
3161 * VSX_TEST_DC - VSX floating point test data class
3162 * op - instruction mnemonic
3163 * nels - number of elements (1, 2 or 4)
3164 * xbn - VSR register number
3165 * tp - type (float32 or float64)
3166 * fld - vsr_t field (VsrD(*) or VsrW(*))
3167 * tfld - target vsr_t field (VsrD(*) or VsrW(*))
3168 * fld_max - target field max
3169 * scrf - set result in CR and FPCC
3170 */
3171 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \
3172 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3173 { \
3174 ppc_vsr_t *xt = &env->vsr[xT(opcode)]; \
3175 ppc_vsr_t *xb = &env->vsr[xbn]; \
3176 ppc_vsr_t t = { }; \
3177 uint32_t i, sign, dcmx; \
3178 uint32_t cc, match = 0; \
3179 \
3180 if (!scrf) { \
3181 dcmx = DCMX_XV(opcode); \
3182 } else { \
3183 t = *xt; \
3184 dcmx = DCMX(opcode); \
3185 } \
3186 \
3187 for (i = 0; i < nels; i++) { \
3188 sign = tp##_is_neg(xb->fld); \
3189 if (tp##_is_any_nan(xb->fld)) { \
3190 match = extract32(dcmx, 6, 1); \
3191 } else if (tp##_is_infinity(xb->fld)) { \
3192 match = extract32(dcmx, 4 + !sign, 1); \
3193 } else if (tp##_is_zero(xb->fld)) { \
3194 match = extract32(dcmx, 2 + !sign, 1); \
3195 } else if (tp##_is_zero_or_denormal(xb->fld)) { \
3196 match = extract32(dcmx, 0 + !sign, 1); \
3197 } \
3198 \
3199 if (scrf) { \
3200 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3201 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
3202 env->fpscr |= cc << FPSCR_FPRF; \
3203 env->crf[BF(opcode)] = cc; \
3204 } else { \
3205 t.tfld = match ? fld_max : 0; \
3206 } \
3207 match = 0; \
3208 } \
3209 if (!scrf) { \
3210 *xt = t; \
3211 } \
3212 }
3213
3214 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3215 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3216 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3217 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3218
3219 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)
3220 {
3221 uint32_t dcmx, sign, exp;
3222 uint32_t cc, match = 0, not_sp = 0;
3223
3224 dcmx = DCMX(opcode);
3225 exp = (xb->VsrD(0) >> 52) & 0x7FF;
3226
3227 sign = float64_is_neg(xb->VsrD(0));
3228 if (float64_is_any_nan(xb->VsrD(0))) {
3229 match = extract32(dcmx, 6, 1);
3230 } else if (float64_is_infinity(xb->VsrD(0))) {
3231 match = extract32(dcmx, 4 + !sign, 1);
3232 } else if (float64_is_zero(xb->VsrD(0))) {
3233 match = extract32(dcmx, 2 + !sign, 1);
3234 } else if (float64_is_zero_or_denormal(xb->VsrD(0)) ||
3235 (exp > 0 && exp < 0x381)) {
3236 match = extract32(dcmx, 0 + !sign, 1);
3237 }
3238
3239 not_sp = !float64_eq(xb->VsrD(0),
3240 float32_to_float64(
3241 float64_to_float32(xb->VsrD(0), &env->fp_status),
3242 &env->fp_status), &env->fp_status);
3243
3244 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3245 env->fpscr &= ~(0x0F << FPSCR_FPRF);
3246 env->fpscr |= cc << FPSCR_FPRF;
3247 env->crf[BF(opcode)] = cc;
3248 }
3249
3250 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
3251 ppc_vsr_t *xt, ppc_vsr_t *xb)
3252 {
3253 ppc_vsr_t t = { };
3254 uint8_t r = Rrm(opcode);
3255 uint8_t ex = Rc(opcode);
3256 uint8_t rmc = RMC(opcode);
3257 uint8_t rmode = 0;
3258 float_status tstat;
3259
3260 helper_reset_fpstatus(env);
3261
3262 if (r == 0 && rmc == 0) {
3263 rmode = float_round_ties_away;
3264 } else if (r == 0 && rmc == 0x3) {
3265 rmode = fpscr_rn;
3266 } else if (r == 1) {
3267 switch (rmc) {
3268 case 0:
3269 rmode = float_round_nearest_even;
3270 break;
3271 case 1:
3272 rmode = float_round_to_zero;
3273 break;
3274 case 2:
3275 rmode = float_round_up;
3276 break;
3277 case 3:
3278 rmode = float_round_down;
3279 break;
3280 default:
3281 abort();
3282 }
3283 }
3284
3285 tstat = env->fp_status;
3286 set_float_exception_flags(0, &tstat);
3287 set_float_rounding_mode(rmode, &tstat);
3288 t.f128 = float128_round_to_int(xb->f128, &tstat);
3289 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3290
3291 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3292 if (float128_is_signaling_nan(xb->f128, &tstat)) {
3293 float_invalid_op_vxsnan(env, GETPC());
3294 t.f128 = float128_snan_to_qnan(t.f128);
3295 }
3296 }
3297
3298 if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3299 env->fp_status.float_exception_flags &= ~float_flag_inexact;
3300 }
3301
3302 helper_compute_fprf_float128(env, t.f128);
3303 do_float_check_status(env, GETPC());
3304 *xt = t;
3305 }
3306
3307 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
3308 ppc_vsr_t *xt, ppc_vsr_t *xb)
3309 {
3310 ppc_vsr_t t = { };
3311 uint8_t r = Rrm(opcode);
3312 uint8_t rmc = RMC(opcode);
3313 uint8_t rmode = 0;
3314 floatx80 round_res;
3315 float_status tstat;
3316
3317 helper_reset_fpstatus(env);
3318
3319 if (r == 0 && rmc == 0) {
3320 rmode = float_round_ties_away;
3321 } else if (r == 0 && rmc == 0x3) {
3322 rmode = fpscr_rn;
3323 } else if (r == 1) {
3324 switch (rmc) {
3325 case 0:
3326 rmode = float_round_nearest_even;
3327 break;
3328 case 1:
3329 rmode = float_round_to_zero;
3330 break;
3331 case 2:
3332 rmode = float_round_up;
3333 break;
3334 case 3:
3335 rmode = float_round_down;
3336 break;
3337 default:
3338 abort();
3339 }
3340 }
3341
3342 tstat = env->fp_status;
3343 set_float_exception_flags(0, &tstat);
3344 set_float_rounding_mode(rmode, &tstat);
3345 round_res = float128_to_floatx80(xb->f128, &tstat);
3346 t.f128 = floatx80_to_float128(round_res, &tstat);
3347 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3348
3349 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3350 if (float128_is_signaling_nan(xb->f128, &tstat)) {
3351 float_invalid_op_vxsnan(env, GETPC());
3352 t.f128 = float128_snan_to_qnan(t.f128);
3353 }
3354 }
3355
3356 helper_compute_fprf_float128(env, t.f128);
3357 *xt = t;
3358 do_float_check_status(env, GETPC());
3359 }
3360
3361 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
3362 ppc_vsr_t *xt, ppc_vsr_t *xb)
3363 {
3364 ppc_vsr_t t = { };
3365 float_status tstat;
3366
3367 helper_reset_fpstatus(env);
3368
3369 tstat = env->fp_status;
3370 if (unlikely(Rc(opcode) != 0)) {
3371 tstat.float_rounding_mode = float_round_to_odd;
3372 }
3373
3374 set_float_exception_flags(0, &tstat);
3375 t.f128 = float128_sqrt(xb->f128, &tstat);
3376 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3377
3378 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3379 if (float128_is_signaling_nan(xb->f128, &tstat)) {
3380 float_invalid_op_vxsnan(env, GETPC());
3381 t.f128 = float128_snan_to_qnan(xb->f128);
3382 } else if (float128_is_quiet_nan(xb->f128, &tstat)) {
3383 t.f128 = xb->f128;
3384 } else if (float128_is_neg(xb->f128) && !float128_is_zero(xb->f128)) {
3385 float_invalid_op_vxsqrt(env, 1, GETPC());
3386 t.f128 = float128_default_nan(&env->fp_status);
3387 }
3388 }
3389
3390 helper_compute_fprf_float128(env, t.f128);
3391 *xt = t;
3392 do_float_check_status(env, GETPC());
3393 }
3394
3395 void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
3396 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
3397 {
3398 ppc_vsr_t t = *xt;
3399 float_status tstat;
3400
3401 helper_reset_fpstatus(env);
3402
3403 tstat = env->fp_status;
3404 if (unlikely(Rc(opcode) != 0)) {
3405 tstat.float_rounding_mode = float_round_to_odd;
3406 }
3407
3408 set_float_exception_flags(0, &tstat);
3409 t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
3410 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3411
3412 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3413 float_invalid_op_addsub(env, 1, GETPC(),
3414 float128_classify(xa->f128) |
3415 float128_classify(xb->f128));
3416 }
3417
3418 helper_compute_fprf_float128(env, t.f128);
3419 *xt = t;
3420 do_float_check_status(env, GETPC());
3421 }