]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/int_helper.c
target/ppc: Implement Vector Extract Double to VSR using GPR index insns
[mirror_qemu.git] / target / ppc / int_helper.c
1 /*
2 * PowerPC integer and vector emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/log.h"
26 #include "exec/helper-proto.h"
27 #include "crypto/aes.h"
28 #include "fpu/softfloat.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
31
32 #include "helper_regs.h"
33 /*****************************************************************************/
34 /* Fixed point operations helpers */
35
36 static inline void helper_update_ov_legacy(CPUPPCState *env, int ov)
37 {
38 if (unlikely(ov)) {
39 env->so = env->ov = 1;
40 } else {
41 env->ov = 0;
42 }
43 }
44
45 target_ulong helper_divweu(CPUPPCState *env, target_ulong ra, target_ulong rb,
46 uint32_t oe)
47 {
48 uint64_t rt = 0;
49 int overflow = 0;
50
51 uint64_t dividend = (uint64_t)ra << 32;
52 uint64_t divisor = (uint32_t)rb;
53
54 if (unlikely(divisor == 0)) {
55 overflow = 1;
56 } else {
57 rt = dividend / divisor;
58 overflow = rt > UINT32_MAX;
59 }
60
61 if (unlikely(overflow)) {
62 rt = 0; /* Undefined */
63 }
64
65 if (oe) {
66 helper_update_ov_legacy(env, overflow);
67 }
68
69 return (target_ulong)rt;
70 }
71
72 target_ulong helper_divwe(CPUPPCState *env, target_ulong ra, target_ulong rb,
73 uint32_t oe)
74 {
75 int64_t rt = 0;
76 int overflow = 0;
77
78 int64_t dividend = (int64_t)ra << 32;
79 int64_t divisor = (int64_t)((int32_t)rb);
80
81 if (unlikely((divisor == 0) ||
82 ((divisor == -1ull) && (dividend == INT64_MIN)))) {
83 overflow = 1;
84 } else {
85 rt = dividend / divisor;
86 overflow = rt != (int32_t)rt;
87 }
88
89 if (unlikely(overflow)) {
90 rt = 0; /* Undefined */
91 }
92
93 if (oe) {
94 helper_update_ov_legacy(env, overflow);
95 }
96
97 return (target_ulong)rt;
98 }
99
100 #if defined(TARGET_PPC64)
101
102 uint64_t helper_divdeu(CPUPPCState *env, uint64_t ra, uint64_t rb, uint32_t oe)
103 {
104 uint64_t rt = 0;
105 int overflow = 0;
106
107 if (unlikely(rb == 0 || ra >= rb)) {
108 overflow = 1;
109 rt = 0; /* Undefined */
110 } else {
111 divu128(&rt, &ra, rb);
112 }
113
114 if (oe) {
115 helper_update_ov_legacy(env, overflow);
116 }
117
118 return rt;
119 }
120
121 uint64_t helper_divde(CPUPPCState *env, uint64_t rau, uint64_t rbu, uint32_t oe)
122 {
123 uint64_t rt = 0;
124 int64_t ra = (int64_t)rau;
125 int64_t rb = (int64_t)rbu;
126 int overflow = 0;
127
128 if (unlikely(rb == 0 || uabs64(ra) >= uabs64(rb))) {
129 overflow = 1;
130 rt = 0; /* Undefined */
131 } else {
132 divs128(&rt, &ra, rb);
133 }
134
135 if (oe) {
136 helper_update_ov_legacy(env, overflow);
137 }
138
139 return rt;
140 }
141
142 #endif
143
144
145 #if defined(TARGET_PPC64)
146 /* if x = 0xab, returns 0xababababababababa */
147 #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
148
149 /*
150 * subtract 1 from each byte, and with inverse, check if MSB is set at each
151 * byte.
152 * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
153 * (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
154 */
155 #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
156
157 /* When you XOR the pattern and there is a match, that byte will be zero */
158 #define hasvalue(x, n) (haszero((x) ^ pattern(n)))
159
160 uint32_t helper_cmpeqb(target_ulong ra, target_ulong rb)
161 {
162 return hasvalue(rb, ra) ? CRF_GT : 0;
163 }
164
165 #undef pattern
166 #undef haszero
167 #undef hasvalue
168
169 /*
170 * Return a random number.
171 */
172 uint64_t helper_darn32(void)
173 {
174 Error *err = NULL;
175 uint32_t ret;
176
177 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
178 qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s",
179 error_get_pretty(err));
180 error_free(err);
181 return -1;
182 }
183
184 return ret;
185 }
186
187 uint64_t helper_darn64(void)
188 {
189 Error *err = NULL;
190 uint64_t ret;
191
192 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
193 qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s",
194 error_get_pretty(err));
195 error_free(err);
196 return -1;
197 }
198
199 return ret;
200 }
201
202 uint64_t helper_bpermd(uint64_t rs, uint64_t rb)
203 {
204 int i;
205 uint64_t ra = 0;
206
207 for (i = 0; i < 8; i++) {
208 int index = (rs >> (i * 8)) & 0xFF;
209 if (index < 64) {
210 if (rb & PPC_BIT(index)) {
211 ra |= 1 << i;
212 }
213 }
214 }
215 return ra;
216 }
217
218 #endif
219
220 target_ulong helper_cmpb(target_ulong rs, target_ulong rb)
221 {
222 target_ulong mask = 0xff;
223 target_ulong ra = 0;
224 int i;
225
226 for (i = 0; i < sizeof(target_ulong); i++) {
227 if ((rs & mask) == (rb & mask)) {
228 ra |= mask;
229 }
230 mask <<= 8;
231 }
232 return ra;
233 }
234
235 /* shift right arithmetic helper */
236 target_ulong helper_sraw(CPUPPCState *env, target_ulong value,
237 target_ulong shift)
238 {
239 int32_t ret;
240
241 if (likely(!(shift & 0x20))) {
242 if (likely((uint32_t)shift != 0)) {
243 shift &= 0x1f;
244 ret = (int32_t)value >> shift;
245 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
246 env->ca32 = env->ca = 0;
247 } else {
248 env->ca32 = env->ca = 1;
249 }
250 } else {
251 ret = (int32_t)value;
252 env->ca32 = env->ca = 0;
253 }
254 } else {
255 ret = (int32_t)value >> 31;
256 env->ca32 = env->ca = (ret != 0);
257 }
258 return (target_long)ret;
259 }
260
261 #if defined(TARGET_PPC64)
262 target_ulong helper_srad(CPUPPCState *env, target_ulong value,
263 target_ulong shift)
264 {
265 int64_t ret;
266
267 if (likely(!(shift & 0x40))) {
268 if (likely((uint64_t)shift != 0)) {
269 shift &= 0x3f;
270 ret = (int64_t)value >> shift;
271 if (likely(ret >= 0 || (value & ((1ULL << shift) - 1)) == 0)) {
272 env->ca32 = env->ca = 0;
273 } else {
274 env->ca32 = env->ca = 1;
275 }
276 } else {
277 ret = (int64_t)value;
278 env->ca32 = env->ca = 0;
279 }
280 } else {
281 ret = (int64_t)value >> 63;
282 env->ca32 = env->ca = (ret != 0);
283 }
284 return ret;
285 }
286 #endif
287
288 #if defined(TARGET_PPC64)
289 target_ulong helper_popcntb(target_ulong val)
290 {
291 /* Note that we don't fold past bytes */
292 val = (val & 0x5555555555555555ULL) + ((val >> 1) &
293 0x5555555555555555ULL);
294 val = (val & 0x3333333333333333ULL) + ((val >> 2) &
295 0x3333333333333333ULL);
296 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
297 0x0f0f0f0f0f0f0f0fULL);
298 return val;
299 }
300
301 target_ulong helper_popcntw(target_ulong val)
302 {
303 /* Note that we don't fold past words. */
304 val = (val & 0x5555555555555555ULL) + ((val >> 1) &
305 0x5555555555555555ULL);
306 val = (val & 0x3333333333333333ULL) + ((val >> 2) &
307 0x3333333333333333ULL);
308 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
309 0x0f0f0f0f0f0f0f0fULL);
310 val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) &
311 0x00ff00ff00ff00ffULL);
312 val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
313 0x0000ffff0000ffffULL);
314 return val;
315 }
316 #else
317 target_ulong helper_popcntb(target_ulong val)
318 {
319 /* Note that we don't fold past bytes */
320 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
321 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
322 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
323 return val;
324 }
325 #endif
326
327 uint64_t helper_CFUGED(uint64_t src, uint64_t mask)
328 {
329 /*
330 * Instead of processing the mask bit-by-bit from the most significant to
331 * the least significant bit, as described in PowerISA, we'll handle it in
332 * blocks of 'n' zeros/ones from LSB to MSB. To avoid the decision to use
333 * ctz or cto, we negate the mask at the end of the loop.
334 */
335 target_ulong m, left = 0, right = 0;
336 unsigned int n, i = 64;
337 bool bit = false; /* tracks if we are processing zeros or ones */
338
339 if (mask == 0 || mask == -1) {
340 return src;
341 }
342
343 /* Processes the mask in blocks, from LSB to MSB */
344 while (i) {
345 /* Find how many bits we should take */
346 n = ctz64(mask);
347 if (n > i) {
348 n = i;
349 }
350
351 /*
352 * Extracts 'n' trailing bits of src and put them on the leading 'n'
353 * bits of 'right' or 'left', pushing down the previously extracted
354 * values.
355 */
356 m = (1ll << n) - 1;
357 if (bit) {
358 right = ror64(right | (src & m), n);
359 } else {
360 left = ror64(left | (src & m), n);
361 }
362
363 /*
364 * Discards the processed bits from 'src' and 'mask'. Note that we are
365 * removing 'n' trailing zeros from 'mask', but the logical shift will
366 * add 'n' leading zeros back, so the population count of 'mask' is kept
367 * the same.
368 */
369 src >>= n;
370 mask >>= n;
371 i -= n;
372 bit = !bit;
373 mask = ~mask;
374 }
375
376 /*
377 * At the end, right was ror'ed ctpop(mask) times. To put it back in place,
378 * we'll shift it more 64-ctpop(mask) times.
379 */
380 if (bit) {
381 n = ctpop64(mask);
382 } else {
383 n = 64 - ctpop64(mask);
384 }
385
386 return left | (right >> n);
387 }
388
389 uint64_t helper_PDEPD(uint64_t src, uint64_t mask)
390 {
391 int i, o;
392 uint64_t result = 0;
393
394 if (mask == -1) {
395 return src;
396 }
397
398 for (i = 0; mask != 0; i++) {
399 o = ctz64(mask);
400 mask &= mask - 1;
401 result |= ((src >> i) & 1) << o;
402 }
403
404 return result;
405 }
406
407 uint64_t helper_PEXTD(uint64_t src, uint64_t mask)
408 {
409 int i, o;
410 uint64_t result = 0;
411
412 if (mask == -1) {
413 return src;
414 }
415
416 for (o = 0; mask != 0; o++) {
417 i = ctz64(mask);
418 mask &= mask - 1;
419 result |= ((src >> i) & 1) << o;
420 }
421
422 return result;
423 }
424
425 /*****************************************************************************/
426 /* PowerPC 601 specific instructions (POWER bridge) */
427 target_ulong helper_div(CPUPPCState *env, target_ulong arg1, target_ulong arg2)
428 {
429 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
430
431 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
432 (int32_t)arg2 == 0) {
433 env->spr[SPR_MQ] = 0;
434 return INT32_MIN;
435 } else {
436 env->spr[SPR_MQ] = tmp % arg2;
437 return tmp / (int32_t)arg2;
438 }
439 }
440
441 target_ulong helper_divo(CPUPPCState *env, target_ulong arg1,
442 target_ulong arg2)
443 {
444 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
445
446 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
447 (int32_t)arg2 == 0) {
448 env->so = env->ov = 1;
449 env->spr[SPR_MQ] = 0;
450 return INT32_MIN;
451 } else {
452 env->spr[SPR_MQ] = tmp % arg2;
453 tmp /= (int32_t)arg2;
454 if ((int32_t)tmp != tmp) {
455 env->so = env->ov = 1;
456 } else {
457 env->ov = 0;
458 }
459 return tmp;
460 }
461 }
462
463 target_ulong helper_divs(CPUPPCState *env, target_ulong arg1,
464 target_ulong arg2)
465 {
466 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
467 (int32_t)arg2 == 0) {
468 env->spr[SPR_MQ] = 0;
469 return INT32_MIN;
470 } else {
471 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
472 return (int32_t)arg1 / (int32_t)arg2;
473 }
474 }
475
476 target_ulong helper_divso(CPUPPCState *env, target_ulong arg1,
477 target_ulong arg2)
478 {
479 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
480 (int32_t)arg2 == 0) {
481 env->so = env->ov = 1;
482 env->spr[SPR_MQ] = 0;
483 return INT32_MIN;
484 } else {
485 env->ov = 0;
486 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
487 return (int32_t)arg1 / (int32_t)arg2;
488 }
489 }
490
491 /*****************************************************************************/
492 /* 602 specific instructions */
493 /* mfrom is the most crazy instruction ever seen, imho ! */
494 /* Real implementation uses a ROM table. Do the same */
495 /*
496 * Extremely decomposed:
497 * -arg / 256
498 * return 256 * log10(10 + 1.0) + 0.5
499 */
500 #if !defined(CONFIG_USER_ONLY)
501 target_ulong helper_602_mfrom(target_ulong arg)
502 {
503 if (likely(arg < 602)) {
504 #include "mfrom_table.c.inc"
505 return mfrom_ROM_table[arg];
506 } else {
507 return 0;
508 }
509 }
510 #endif
511
512 /*****************************************************************************/
513 /* Altivec extension helpers */
514 #if defined(HOST_WORDS_BIGENDIAN)
515 #define VECTOR_FOR_INORDER_I(index, element) \
516 for (index = 0; index < ARRAY_SIZE(r->element); index++)
517 #else
518 #define VECTOR_FOR_INORDER_I(index, element) \
519 for (index = ARRAY_SIZE(r->element) - 1; index >= 0; index--)
520 #endif
521
522 /* Saturating arithmetic helpers. */
523 #define SATCVT(from, to, from_type, to_type, min, max) \
524 static inline to_type cvt##from##to(from_type x, int *sat) \
525 { \
526 to_type r; \
527 \
528 if (x < (from_type)min) { \
529 r = min; \
530 *sat = 1; \
531 } else if (x > (from_type)max) { \
532 r = max; \
533 *sat = 1; \
534 } else { \
535 r = x; \
536 } \
537 return r; \
538 }
539 #define SATCVTU(from, to, from_type, to_type, min, max) \
540 static inline to_type cvt##from##to(from_type x, int *sat) \
541 { \
542 to_type r; \
543 \
544 if (x > (from_type)max) { \
545 r = max; \
546 *sat = 1; \
547 } else { \
548 r = x; \
549 } \
550 return r; \
551 }
552 SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
553 SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
554 SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
555
556 SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
557 SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
558 SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
559 SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
560 SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
561 SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
562 #undef SATCVT
563 #undef SATCVTU
564
565 void helper_mtvscr(CPUPPCState *env, uint32_t vscr)
566 {
567 ppc_store_vscr(env, vscr);
568 }
569
570 uint32_t helper_mfvscr(CPUPPCState *env)
571 {
572 return ppc_get_vscr(env);
573 }
574
575 static inline void set_vscr_sat(CPUPPCState *env)
576 {
577 /* The choice of non-zero value is arbitrary. */
578 env->vscr_sat.u32[0] = 1;
579 }
580
581 void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
582 {
583 int i;
584
585 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
586 r->u32[i] = ~a->u32[i] < b->u32[i];
587 }
588 }
589
590 /* vprtybw */
591 void helper_vprtybw(ppc_avr_t *r, ppc_avr_t *b)
592 {
593 int i;
594 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
595 uint64_t res = b->u32[i] ^ (b->u32[i] >> 16);
596 res ^= res >> 8;
597 r->u32[i] = res & 1;
598 }
599 }
600
601 /* vprtybd */
602 void helper_vprtybd(ppc_avr_t *r, ppc_avr_t *b)
603 {
604 int i;
605 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
606 uint64_t res = b->u64[i] ^ (b->u64[i] >> 32);
607 res ^= res >> 16;
608 res ^= res >> 8;
609 r->u64[i] = res & 1;
610 }
611 }
612
613 /* vprtybq */
614 void helper_vprtybq(ppc_avr_t *r, ppc_avr_t *b)
615 {
616 uint64_t res = b->u64[0] ^ b->u64[1];
617 res ^= res >> 32;
618 res ^= res >> 16;
619 res ^= res >> 8;
620 r->VsrD(1) = res & 1;
621 r->VsrD(0) = 0;
622 }
623
624 #define VARITHFP(suffix, func) \
625 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
626 ppc_avr_t *b) \
627 { \
628 int i; \
629 \
630 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
631 r->f32[i] = func(a->f32[i], b->f32[i], &env->vec_status); \
632 } \
633 }
634 VARITHFP(addfp, float32_add)
635 VARITHFP(subfp, float32_sub)
636 VARITHFP(minfp, float32_min)
637 VARITHFP(maxfp, float32_max)
638 #undef VARITHFP
639
640 #define VARITHFPFMA(suffix, type) \
641 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
642 ppc_avr_t *b, ppc_avr_t *c) \
643 { \
644 int i; \
645 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
646 r->f32[i] = float32_muladd(a->f32[i], c->f32[i], b->f32[i], \
647 type, &env->vec_status); \
648 } \
649 }
650 VARITHFPFMA(maddfp, 0);
651 VARITHFPFMA(nmsubfp, float_muladd_negate_result | float_muladd_negate_c);
652 #undef VARITHFPFMA
653
654 #define VARITHSAT_CASE(type, op, cvt, element) \
655 { \
656 type result = (type)a->element[i] op (type)b->element[i]; \
657 r->element[i] = cvt(result, &sat); \
658 }
659
660 #define VARITHSAT_DO(name, op, optype, cvt, element) \
661 void helper_v##name(ppc_avr_t *r, ppc_avr_t *vscr_sat, \
662 ppc_avr_t *a, ppc_avr_t *b, uint32_t desc) \
663 { \
664 int sat = 0; \
665 int i; \
666 \
667 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
668 VARITHSAT_CASE(optype, op, cvt, element); \
669 } \
670 if (sat) { \
671 vscr_sat->u32[0] = 1; \
672 } \
673 }
674 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
675 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
676 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
677 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
678 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
679 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
680 VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
681 VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
682 VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
683 VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
684 VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
685 VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
686 #undef VARITHSAT_CASE
687 #undef VARITHSAT_DO
688 #undef VARITHSAT_SIGNED
689 #undef VARITHSAT_UNSIGNED
690
691 #define VAVG_DO(name, element, etype) \
692 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
693 { \
694 int i; \
695 \
696 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
697 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
698 r->element[i] = x >> 1; \
699 } \
700 }
701
702 #define VAVG(type, signed_element, signed_type, unsigned_element, \
703 unsigned_type) \
704 VAVG_DO(avgs##type, signed_element, signed_type) \
705 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
706 VAVG(b, s8, int16_t, u8, uint16_t)
707 VAVG(h, s16, int32_t, u16, uint32_t)
708 VAVG(w, s32, int64_t, u32, uint64_t)
709 #undef VAVG_DO
710 #undef VAVG
711
712 #define VABSDU_DO(name, element) \
713 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
714 { \
715 int i; \
716 \
717 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
718 r->element[i] = (a->element[i] > b->element[i]) ? \
719 (a->element[i] - b->element[i]) : \
720 (b->element[i] - a->element[i]); \
721 } \
722 }
723
724 /*
725 * VABSDU - Vector absolute difference unsigned
726 * name - instruction mnemonic suffix (b: byte, h: halfword, w: word)
727 * element - element type to access from vector
728 */
729 #define VABSDU(type, element) \
730 VABSDU_DO(absdu##type, element)
731 VABSDU(b, u8)
732 VABSDU(h, u16)
733 VABSDU(w, u32)
734 #undef VABSDU_DO
735 #undef VABSDU
736
737 #define VCF(suffix, cvt, element) \
738 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
739 ppc_avr_t *b, uint32_t uim) \
740 { \
741 int i; \
742 \
743 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
744 float32 t = cvt(b->element[i], &env->vec_status); \
745 r->f32[i] = float32_scalbn(t, -uim, &env->vec_status); \
746 } \
747 }
748 VCF(ux, uint32_to_float32, u32)
749 VCF(sx, int32_to_float32, s32)
750 #undef VCF
751
752 #define VCMP_DO(suffix, compare, element, record) \
753 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
754 ppc_avr_t *a, ppc_avr_t *b) \
755 { \
756 uint64_t ones = (uint64_t)-1; \
757 uint64_t all = ones; \
758 uint64_t none = 0; \
759 int i; \
760 \
761 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
762 uint64_t result = (a->element[i] compare b->element[i] ? \
763 ones : 0x0); \
764 switch (sizeof(a->element[0])) { \
765 case 8: \
766 r->u64[i] = result; \
767 break; \
768 case 4: \
769 r->u32[i] = result; \
770 break; \
771 case 2: \
772 r->u16[i] = result; \
773 break; \
774 case 1: \
775 r->u8[i] = result; \
776 break; \
777 } \
778 all &= result; \
779 none |= result; \
780 } \
781 if (record) { \
782 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
783 } \
784 }
785 #define VCMP(suffix, compare, element) \
786 VCMP_DO(suffix, compare, element, 0) \
787 VCMP_DO(suffix##_dot, compare, element, 1)
788 VCMP(equb, ==, u8)
789 VCMP(equh, ==, u16)
790 VCMP(equw, ==, u32)
791 VCMP(equd, ==, u64)
792 VCMP(gtub, >, u8)
793 VCMP(gtuh, >, u16)
794 VCMP(gtuw, >, u32)
795 VCMP(gtud, >, u64)
796 VCMP(gtsb, >, s8)
797 VCMP(gtsh, >, s16)
798 VCMP(gtsw, >, s32)
799 VCMP(gtsd, >, s64)
800 #undef VCMP_DO
801 #undef VCMP
802
803 #define VCMPNE_DO(suffix, element, etype, cmpzero, record) \
804 void helper_vcmpne##suffix(CPUPPCState *env, ppc_avr_t *r, \
805 ppc_avr_t *a, ppc_avr_t *b) \
806 { \
807 etype ones = (etype)-1; \
808 etype all = ones; \
809 etype result, none = 0; \
810 int i; \
811 \
812 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
813 if (cmpzero) { \
814 result = ((a->element[i] == 0) \
815 || (b->element[i] == 0) \
816 || (a->element[i] != b->element[i]) ? \
817 ones : 0x0); \
818 } else { \
819 result = (a->element[i] != b->element[i]) ? ones : 0x0; \
820 } \
821 r->element[i] = result; \
822 all &= result; \
823 none |= result; \
824 } \
825 if (record) { \
826 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
827 } \
828 }
829
830 /*
831 * VCMPNEZ - Vector compare not equal to zero
832 * suffix - instruction mnemonic suffix (b: byte, h: halfword, w: word)
833 * element - element type to access from vector
834 */
835 #define VCMPNE(suffix, element, etype, cmpzero) \
836 VCMPNE_DO(suffix, element, etype, cmpzero, 0) \
837 VCMPNE_DO(suffix##_dot, element, etype, cmpzero, 1)
838 VCMPNE(zb, u8, uint8_t, 1)
839 VCMPNE(zh, u16, uint16_t, 1)
840 VCMPNE(zw, u32, uint32_t, 1)
841 VCMPNE(b, u8, uint8_t, 0)
842 VCMPNE(h, u16, uint16_t, 0)
843 VCMPNE(w, u32, uint32_t, 0)
844 #undef VCMPNE_DO
845 #undef VCMPNE
846
847 #define VCMPFP_DO(suffix, compare, order, record) \
848 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
849 ppc_avr_t *a, ppc_avr_t *b) \
850 { \
851 uint32_t ones = (uint32_t)-1; \
852 uint32_t all = ones; \
853 uint32_t none = 0; \
854 int i; \
855 \
856 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
857 uint32_t result; \
858 FloatRelation rel = \
859 float32_compare_quiet(a->f32[i], b->f32[i], \
860 &env->vec_status); \
861 if (rel == float_relation_unordered) { \
862 result = 0; \
863 } else if (rel compare order) { \
864 result = ones; \
865 } else { \
866 result = 0; \
867 } \
868 r->u32[i] = result; \
869 all &= result; \
870 none |= result; \
871 } \
872 if (record) { \
873 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
874 } \
875 }
876 #define VCMPFP(suffix, compare, order) \
877 VCMPFP_DO(suffix, compare, order, 0) \
878 VCMPFP_DO(suffix##_dot, compare, order, 1)
879 VCMPFP(eqfp, ==, float_relation_equal)
880 VCMPFP(gefp, !=, float_relation_less)
881 VCMPFP(gtfp, ==, float_relation_greater)
882 #undef VCMPFP_DO
883 #undef VCMPFP
884
885 static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r,
886 ppc_avr_t *a, ppc_avr_t *b, int record)
887 {
888 int i;
889 int all_in = 0;
890
891 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
892 FloatRelation le_rel = float32_compare_quiet(a->f32[i], b->f32[i],
893 &env->vec_status);
894 if (le_rel == float_relation_unordered) {
895 r->u32[i] = 0xc0000000;
896 all_in = 1;
897 } else {
898 float32 bneg = float32_chs(b->f32[i]);
899 FloatRelation ge_rel = float32_compare_quiet(a->f32[i], bneg,
900 &env->vec_status);
901 int le = le_rel != float_relation_greater;
902 int ge = ge_rel != float_relation_less;
903
904 r->u32[i] = ((!le) << 31) | ((!ge) << 30);
905 all_in |= (!le | !ge);
906 }
907 }
908 if (record) {
909 env->crf[6] = (all_in == 0) << 1;
910 }
911 }
912
913 void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
914 {
915 vcmpbfp_internal(env, r, a, b, 0);
916 }
917
918 void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
919 ppc_avr_t *b)
920 {
921 vcmpbfp_internal(env, r, a, b, 1);
922 }
923
924 #define VCT(suffix, satcvt, element) \
925 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
926 ppc_avr_t *b, uint32_t uim) \
927 { \
928 int i; \
929 int sat = 0; \
930 float_status s = env->vec_status; \
931 \
932 set_float_rounding_mode(float_round_to_zero, &s); \
933 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
934 if (float32_is_any_nan(b->f32[i])) { \
935 r->element[i] = 0; \
936 } else { \
937 float64 t = float32_to_float64(b->f32[i], &s); \
938 int64_t j; \
939 \
940 t = float64_scalbn(t, uim, &s); \
941 j = float64_to_int64(t, &s); \
942 r->element[i] = satcvt(j, &sat); \
943 } \
944 } \
945 if (sat) { \
946 set_vscr_sat(env); \
947 } \
948 }
949 VCT(uxs, cvtsduw, u32)
950 VCT(sxs, cvtsdsw, s32)
951 #undef VCT
952
953 target_ulong helper_vclzlsbb(ppc_avr_t *r)
954 {
955 target_ulong count = 0;
956 int i;
957 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
958 if (r->VsrB(i) & 0x01) {
959 break;
960 }
961 count++;
962 }
963 return count;
964 }
965
966 target_ulong helper_vctzlsbb(ppc_avr_t *r)
967 {
968 target_ulong count = 0;
969 int i;
970 for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
971 if (r->VsrB(i) & 0x01) {
972 break;
973 }
974 count++;
975 }
976 return count;
977 }
978
979 void helper_vmhaddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
980 ppc_avr_t *b, ppc_avr_t *c)
981 {
982 int sat = 0;
983 int i;
984
985 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
986 int32_t prod = a->s16[i] * b->s16[i];
987 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
988
989 r->s16[i] = cvtswsh(t, &sat);
990 }
991
992 if (sat) {
993 set_vscr_sat(env);
994 }
995 }
996
997 void helper_vmhraddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
998 ppc_avr_t *b, ppc_avr_t *c)
999 {
1000 int sat = 0;
1001 int i;
1002
1003 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
1004 int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
1005 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
1006 r->s16[i] = cvtswsh(t, &sat);
1007 }
1008
1009 if (sat) {
1010 set_vscr_sat(env);
1011 }
1012 }
1013
1014 void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
1015 {
1016 int i;
1017
1018 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
1019 int32_t prod = a->s16[i] * b->s16[i];
1020 r->s16[i] = (int16_t) (prod + c->s16[i]);
1021 }
1022 }
1023
1024 #define VMRG_DO(name, element, access, ofs) \
1025 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1026 { \
1027 ppc_avr_t result; \
1028 int i, half = ARRAY_SIZE(r->element) / 2; \
1029 \
1030 for (i = 0; i < half; i++) { \
1031 result.access(i * 2 + 0) = a->access(i + ofs); \
1032 result.access(i * 2 + 1) = b->access(i + ofs); \
1033 } \
1034 *r = result; \
1035 }
1036
1037 #define VMRG(suffix, element, access) \
1038 VMRG_DO(mrgl##suffix, element, access, half) \
1039 VMRG_DO(mrgh##suffix, element, access, 0)
1040 VMRG(b, u8, VsrB)
1041 VMRG(h, u16, VsrH)
1042 VMRG(w, u32, VsrW)
1043 #undef VMRG_DO
1044 #undef VMRG
1045
1046 void helper_vmsummbm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1047 ppc_avr_t *b, ppc_avr_t *c)
1048 {
1049 int32_t prod[16];
1050 int i;
1051
1052 for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
1053 prod[i] = (int32_t)a->s8[i] * b->u8[i];
1054 }
1055
1056 VECTOR_FOR_INORDER_I(i, s32) {
1057 r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
1058 prod[4 * i + 2] + prod[4 * i + 3];
1059 }
1060 }
1061
1062 void helper_vmsumshm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1063 ppc_avr_t *b, ppc_avr_t *c)
1064 {
1065 int32_t prod[8];
1066 int i;
1067
1068 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
1069 prod[i] = a->s16[i] * b->s16[i];
1070 }
1071
1072 VECTOR_FOR_INORDER_I(i, s32) {
1073 r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
1074 }
1075 }
1076
1077 void helper_vmsumshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1078 ppc_avr_t *b, ppc_avr_t *c)
1079 {
1080 int32_t prod[8];
1081 int i;
1082 int sat = 0;
1083
1084 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
1085 prod[i] = (int32_t)a->s16[i] * b->s16[i];
1086 }
1087
1088 VECTOR_FOR_INORDER_I(i, s32) {
1089 int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
1090
1091 r->u32[i] = cvtsdsw(t, &sat);
1092 }
1093
1094 if (sat) {
1095 set_vscr_sat(env);
1096 }
1097 }
1098
1099 void helper_vmsumubm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1100 ppc_avr_t *b, ppc_avr_t *c)
1101 {
1102 uint16_t prod[16];
1103 int i;
1104
1105 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1106 prod[i] = a->u8[i] * b->u8[i];
1107 }
1108
1109 VECTOR_FOR_INORDER_I(i, u32) {
1110 r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
1111 prod[4 * i + 2] + prod[4 * i + 3];
1112 }
1113 }
1114
1115 void helper_vmsumuhm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1116 ppc_avr_t *b, ppc_avr_t *c)
1117 {
1118 uint32_t prod[8];
1119 int i;
1120
1121 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
1122 prod[i] = a->u16[i] * b->u16[i];
1123 }
1124
1125 VECTOR_FOR_INORDER_I(i, u32) {
1126 r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
1127 }
1128 }
1129
1130 void helper_vmsumuhs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1131 ppc_avr_t *b, ppc_avr_t *c)
1132 {
1133 uint32_t prod[8];
1134 int i;
1135 int sat = 0;
1136
1137 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
1138 prod[i] = a->u16[i] * b->u16[i];
1139 }
1140
1141 VECTOR_FOR_INORDER_I(i, s32) {
1142 uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
1143
1144 r->u32[i] = cvtuduw(t, &sat);
1145 }
1146
1147 if (sat) {
1148 set_vscr_sat(env);
1149 }
1150 }
1151
1152 #define VMUL_DO_EVN(name, mul_element, mul_access, prod_access, cast) \
1153 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1154 { \
1155 int i; \
1156 \
1157 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1158 r->prod_access(i >> 1) = (cast)a->mul_access(i) * \
1159 (cast)b->mul_access(i); \
1160 } \
1161 }
1162
1163 #define VMUL_DO_ODD(name, mul_element, mul_access, prod_access, cast) \
1164 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1165 { \
1166 int i; \
1167 \
1168 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1169 r->prod_access(i >> 1) = (cast)a->mul_access(i + 1) * \
1170 (cast)b->mul_access(i + 1); \
1171 } \
1172 }
1173
1174 #define VMUL(suffix, mul_element, mul_access, prod_access, cast) \
1175 VMUL_DO_EVN(mule##suffix, mul_element, mul_access, prod_access, cast) \
1176 VMUL_DO_ODD(mulo##suffix, mul_element, mul_access, prod_access, cast)
1177 VMUL(sb, s8, VsrSB, VsrSH, int16_t)
1178 VMUL(sh, s16, VsrSH, VsrSW, int32_t)
1179 VMUL(sw, s32, VsrSW, VsrSD, int64_t)
1180 VMUL(ub, u8, VsrB, VsrH, uint16_t)
1181 VMUL(uh, u16, VsrH, VsrW, uint32_t)
1182 VMUL(uw, u32, VsrW, VsrD, uint64_t)
1183 #undef VMUL_DO_EVN
1184 #undef VMUL_DO_ODD
1185 #undef VMUL
1186
1187 void helper_vmulhsw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1188 {
1189 int i;
1190
1191 for (i = 0; i < 4; i++) {
1192 r->s32[i] = (int32_t)(((int64_t)a->s32[i] * (int64_t)b->s32[i]) >> 32);
1193 }
1194 }
1195
1196 void helper_vmulhuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1197 {
1198 int i;
1199
1200 for (i = 0; i < 4; i++) {
1201 r->u32[i] = (uint32_t)(((uint64_t)a->u32[i] *
1202 (uint64_t)b->u32[i]) >> 32);
1203 }
1204 }
1205
1206 void helper_vmulhsd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1207 {
1208 uint64_t discard;
1209
1210 muls64(&discard, &r->u64[0], a->s64[0], b->s64[0]);
1211 muls64(&discard, &r->u64[1], a->s64[1], b->s64[1]);
1212 }
1213
1214 void helper_vmulhud(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1215 {
1216 uint64_t discard;
1217
1218 mulu64(&discard, &r->u64[0], a->u64[0], b->u64[0]);
1219 mulu64(&discard, &r->u64[1], a->u64[1], b->u64[1]);
1220 }
1221
1222 void helper_vperm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1223 ppc_avr_t *c)
1224 {
1225 ppc_avr_t result;
1226 int i;
1227
1228 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1229 int s = c->VsrB(i) & 0x1f;
1230 int index = s & 0xf;
1231
1232 if (s & 0x10) {
1233 result.VsrB(i) = b->VsrB(index);
1234 } else {
1235 result.VsrB(i) = a->VsrB(index);
1236 }
1237 }
1238 *r = result;
1239 }
1240
1241 void helper_vpermr(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1242 ppc_avr_t *c)
1243 {
1244 ppc_avr_t result;
1245 int i;
1246
1247 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1248 int s = c->VsrB(i) & 0x1f;
1249 int index = 15 - (s & 0xf);
1250
1251 if (s & 0x10) {
1252 result.VsrB(i) = a->VsrB(index);
1253 } else {
1254 result.VsrB(i) = b->VsrB(index);
1255 }
1256 }
1257 *r = result;
1258 }
1259
1260 #if defined(HOST_WORDS_BIGENDIAN)
1261 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
1262 #define VBPERMD_INDEX(i) (i)
1263 #define VBPERMQ_DW(index) (((index) & 0x40) != 0)
1264 #define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1))
1265 #else
1266 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15 - (i)])
1267 #define VBPERMD_INDEX(i) (1 - i)
1268 #define VBPERMQ_DW(index) (((index) & 0x40) == 0)
1269 #define EXTRACT_BIT(avr, i, index) \
1270 (extract64((avr)->u64[1 - i], 63 - index, 1))
1271 #endif
1272
1273 void helper_vbpermd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1274 {
1275 int i, j;
1276 ppc_avr_t result = { .u64 = { 0, 0 } };
1277 VECTOR_FOR_INORDER_I(i, u64) {
1278 for (j = 0; j < 8; j++) {
1279 int index = VBPERMQ_INDEX(b, (i * 8) + j);
1280 if (index < 64 && EXTRACT_BIT(a, i, index)) {
1281 result.u64[VBPERMD_INDEX(i)] |= (0x80 >> j);
1282 }
1283 }
1284 }
1285 *r = result;
1286 }
1287
1288 void helper_vbpermq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1289 {
1290 int i;
1291 uint64_t perm = 0;
1292
1293 VECTOR_FOR_INORDER_I(i, u8) {
1294 int index = VBPERMQ_INDEX(b, i);
1295
1296 if (index < 128) {
1297 uint64_t mask = (1ull << (63 - (index & 0x3F)));
1298 if (a->u64[VBPERMQ_DW(index)] & mask) {
1299 perm |= (0x8000 >> i);
1300 }
1301 }
1302 }
1303
1304 r->VsrD(0) = perm;
1305 r->VsrD(1) = 0;
1306 }
1307
1308 #undef VBPERMQ_INDEX
1309 #undef VBPERMQ_DW
1310
1311 #define PMSUM(name, srcfld, trgfld, trgtyp) \
1312 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1313 { \
1314 int i, j; \
1315 trgtyp prod[sizeof(ppc_avr_t) / sizeof(a->srcfld[0])]; \
1316 \
1317 VECTOR_FOR_INORDER_I(i, srcfld) { \
1318 prod[i] = 0; \
1319 for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
1320 if (a->srcfld[i] & (1ull << j)) { \
1321 prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
1322 } \
1323 } \
1324 } \
1325 \
1326 VECTOR_FOR_INORDER_I(i, trgfld) { \
1327 r->trgfld[i] = prod[2 * i] ^ prod[2 * i + 1]; \
1328 } \
1329 }
1330
1331 PMSUM(vpmsumb, u8, u16, uint16_t)
1332 PMSUM(vpmsumh, u16, u32, uint32_t)
1333 PMSUM(vpmsumw, u32, u64, uint64_t)
1334
1335 void helper_vpmsumd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1336 {
1337
1338 #ifdef CONFIG_INT128
1339 int i, j;
1340 __uint128_t prod[2];
1341
1342 VECTOR_FOR_INORDER_I(i, u64) {
1343 prod[i] = 0;
1344 for (j = 0; j < 64; j++) {
1345 if (a->u64[i] & (1ull << j)) {
1346 prod[i] ^= (((__uint128_t)b->u64[i]) << j);
1347 }
1348 }
1349 }
1350
1351 r->u128 = prod[0] ^ prod[1];
1352
1353 #else
1354 int i, j;
1355 ppc_avr_t prod[2];
1356
1357 VECTOR_FOR_INORDER_I(i, u64) {
1358 prod[i].VsrD(1) = prod[i].VsrD(0) = 0;
1359 for (j = 0; j < 64; j++) {
1360 if (a->u64[i] & (1ull << j)) {
1361 ppc_avr_t bshift;
1362 if (j == 0) {
1363 bshift.VsrD(0) = 0;
1364 bshift.VsrD(1) = b->u64[i];
1365 } else {
1366 bshift.VsrD(0) = b->u64[i] >> (64 - j);
1367 bshift.VsrD(1) = b->u64[i] << j;
1368 }
1369 prod[i].VsrD(1) ^= bshift.VsrD(1);
1370 prod[i].VsrD(0) ^= bshift.VsrD(0);
1371 }
1372 }
1373 }
1374
1375 r->VsrD(1) = prod[0].VsrD(1) ^ prod[1].VsrD(1);
1376 r->VsrD(0) = prod[0].VsrD(0) ^ prod[1].VsrD(0);
1377 #endif
1378 }
1379
1380
1381 #if defined(HOST_WORDS_BIGENDIAN)
1382 #define PKBIG 1
1383 #else
1384 #define PKBIG 0
1385 #endif
1386 void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1387 {
1388 int i, j;
1389 ppc_avr_t result;
1390 #if defined(HOST_WORDS_BIGENDIAN)
1391 const ppc_avr_t *x[2] = { a, b };
1392 #else
1393 const ppc_avr_t *x[2] = { b, a };
1394 #endif
1395
1396 VECTOR_FOR_INORDER_I(i, u64) {
1397 VECTOR_FOR_INORDER_I(j, u32) {
1398 uint32_t e = x[i]->u32[j];
1399
1400 result.u16[4 * i + j] = (((e >> 9) & 0xfc00) |
1401 ((e >> 6) & 0x3e0) |
1402 ((e >> 3) & 0x1f));
1403 }
1404 }
1405 *r = result;
1406 }
1407
1408 #define VPK(suffix, from, to, cvt, dosat) \
1409 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
1410 ppc_avr_t *a, ppc_avr_t *b) \
1411 { \
1412 int i; \
1413 int sat = 0; \
1414 ppc_avr_t result; \
1415 ppc_avr_t *a0 = PKBIG ? a : b; \
1416 ppc_avr_t *a1 = PKBIG ? b : a; \
1417 \
1418 VECTOR_FOR_INORDER_I(i, from) { \
1419 result.to[i] = cvt(a0->from[i], &sat); \
1420 result.to[i + ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);\
1421 } \
1422 *r = result; \
1423 if (dosat && sat) { \
1424 set_vscr_sat(env); \
1425 } \
1426 }
1427 #define I(x, y) (x)
1428 VPK(shss, s16, s8, cvtshsb, 1)
1429 VPK(shus, s16, u8, cvtshub, 1)
1430 VPK(swss, s32, s16, cvtswsh, 1)
1431 VPK(swus, s32, u16, cvtswuh, 1)
1432 VPK(sdss, s64, s32, cvtsdsw, 1)
1433 VPK(sdus, s64, u32, cvtsduw, 1)
1434 VPK(uhus, u16, u8, cvtuhub, 1)
1435 VPK(uwus, u32, u16, cvtuwuh, 1)
1436 VPK(udus, u64, u32, cvtuduw, 1)
1437 VPK(uhum, u16, u8, I, 0)
1438 VPK(uwum, u32, u16, I, 0)
1439 VPK(udum, u64, u32, I, 0)
1440 #undef I
1441 #undef VPK
1442 #undef PKBIG
1443
1444 void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1445 {
1446 int i;
1447
1448 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1449 r->f32[i] = float32_div(float32_one, b->f32[i], &env->vec_status);
1450 }
1451 }
1452
1453 #define VRFI(suffix, rounding) \
1454 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
1455 ppc_avr_t *b) \
1456 { \
1457 int i; \
1458 float_status s = env->vec_status; \
1459 \
1460 set_float_rounding_mode(rounding, &s); \
1461 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
1462 r->f32[i] = float32_round_to_int (b->f32[i], &s); \
1463 } \
1464 }
1465 VRFI(n, float_round_nearest_even)
1466 VRFI(m, float_round_down)
1467 VRFI(p, float_round_up)
1468 VRFI(z, float_round_to_zero)
1469 #undef VRFI
1470
1471 void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1472 {
1473 int i;
1474
1475 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1476 float32 t = float32_sqrt(b->f32[i], &env->vec_status);
1477
1478 r->f32[i] = float32_div(float32_one, t, &env->vec_status);
1479 }
1480 }
1481
1482 #define VRLMI(name, size, element, insert) \
1483 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1484 { \
1485 int i; \
1486 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1487 uint##size##_t src1 = a->element[i]; \
1488 uint##size##_t src2 = b->element[i]; \
1489 uint##size##_t src3 = r->element[i]; \
1490 uint##size##_t begin, end, shift, mask, rot_val; \
1491 \
1492 shift = extract##size(src2, 0, 6); \
1493 end = extract##size(src2, 8, 6); \
1494 begin = extract##size(src2, 16, 6); \
1495 rot_val = rol##size(src1, shift); \
1496 mask = mask_u##size(begin, end); \
1497 if (insert) { \
1498 r->element[i] = (rot_val & mask) | (src3 & ~mask); \
1499 } else { \
1500 r->element[i] = (rot_val & mask); \
1501 } \
1502 } \
1503 }
1504
1505 VRLMI(vrldmi, 64, u64, 1);
1506 VRLMI(vrlwmi, 32, u32, 1);
1507 VRLMI(vrldnm, 64, u64, 0);
1508 VRLMI(vrlwnm, 32, u32, 0);
1509
1510 void helper_vsel(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1511 ppc_avr_t *c)
1512 {
1513 r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
1514 r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
1515 }
1516
1517 void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1518 {
1519 int i;
1520
1521 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1522 r->f32[i] = float32_exp2(b->f32[i], &env->vec_status);
1523 }
1524 }
1525
1526 void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1527 {
1528 int i;
1529
1530 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1531 r->f32[i] = float32_log2(b->f32[i], &env->vec_status);
1532 }
1533 }
1534
1535 #define VEXTU_X_DO(name, size, left) \
1536 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1537 { \
1538 int index = (a & 0xf) * 8; \
1539 if (left) { \
1540 index = 128 - index - size; \
1541 } \
1542 return int128_getlo(int128_rshift(b->s128, index)) & \
1543 MAKE_64BIT_MASK(0, size); \
1544 }
1545 VEXTU_X_DO(vextublx, 8, 1)
1546 VEXTU_X_DO(vextuhlx, 16, 1)
1547 VEXTU_X_DO(vextuwlx, 32, 1)
1548 VEXTU_X_DO(vextubrx, 8, 0)
1549 VEXTU_X_DO(vextuhrx, 16, 0)
1550 VEXTU_X_DO(vextuwrx, 32, 0)
1551 #undef VEXTU_X_DO
1552
1553 void helper_vslv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1554 {
1555 int i;
1556 unsigned int shift, bytes, size;
1557
1558 size = ARRAY_SIZE(r->u8);
1559 for (i = 0; i < size; i++) {
1560 shift = b->VsrB(i) & 0x7; /* extract shift value */
1561 bytes = (a->VsrB(i) << 8) + /* extract adjacent bytes */
1562 (((i + 1) < size) ? a->VsrB(i + 1) : 0);
1563 r->VsrB(i) = (bytes << shift) >> 8; /* shift and store result */
1564 }
1565 }
1566
1567 void helper_vsrv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1568 {
1569 int i;
1570 unsigned int shift, bytes;
1571
1572 /*
1573 * Use reverse order, as destination and source register can be
1574 * same. Its being modified in place saving temporary, reverse
1575 * order will guarantee that computed result is not fed back.
1576 */
1577 for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
1578 shift = b->VsrB(i) & 0x7; /* extract shift value */
1579 bytes = ((i ? a->VsrB(i - 1) : 0) << 8) + a->VsrB(i);
1580 /* extract adjacent bytes */
1581 r->VsrB(i) = (bytes >> shift) & 0xFF; /* shift and store result */
1582 }
1583 }
1584
1585 void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
1586 {
1587 int sh = shift & 0xf;
1588 int i;
1589 ppc_avr_t result;
1590
1591 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1592 int index = sh + i;
1593 if (index > 0xf) {
1594 result.VsrB(i) = b->VsrB(index - 0x10);
1595 } else {
1596 result.VsrB(i) = a->VsrB(index);
1597 }
1598 }
1599 *r = result;
1600 }
1601
1602 void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1603 {
1604 int sh = (b->VsrB(0xf) >> 3) & 0xf;
1605
1606 #if defined(HOST_WORDS_BIGENDIAN)
1607 memmove(&r->u8[0], &a->u8[sh], 16 - sh);
1608 memset(&r->u8[16 - sh], 0, sh);
1609 #else
1610 memmove(&r->u8[sh], &a->u8[0], 16 - sh);
1611 memset(&r->u8[0], 0, sh);
1612 #endif
1613 }
1614
1615 #if defined(HOST_WORDS_BIGENDIAN)
1616 #define ELEM_ADDR(VEC, IDX, SIZE) (&(VEC)->u8[IDX])
1617 #else
1618 #define ELEM_ADDR(VEC, IDX, SIZE) (&(VEC)->u8[15 - (IDX)] - (SIZE) + 1)
1619 #endif
1620
1621 #define VINSX(SUFFIX, TYPE) \
1622 void glue(glue(helper_VINS, SUFFIX), LX)(CPUPPCState *env, ppc_avr_t *t, \
1623 uint64_t val, target_ulong index) \
1624 { \
1625 const int maxidx = ARRAY_SIZE(t->u8) - sizeof(TYPE); \
1626 target_long idx = index; \
1627 \
1628 if (idx < 0 || idx > maxidx) { \
1629 idx = idx < 0 ? sizeof(TYPE) - idx : idx; \
1630 qemu_log_mask(LOG_GUEST_ERROR, \
1631 "Invalid index for Vector Insert Element after 0x" TARGET_FMT_lx \
1632 ", RA = " TARGET_FMT_ld " > %d\n", env->nip, idx, maxidx); \
1633 } else { \
1634 TYPE src = val; \
1635 memcpy(ELEM_ADDR(t, idx, sizeof(TYPE)), &src, sizeof(TYPE)); \
1636 } \
1637 }
1638 VINSX(B, uint8_t)
1639 VINSX(H, uint16_t)
1640 VINSX(W, uint32_t)
1641 VINSX(D, uint64_t)
1642 #undef ELEM_ADDR
1643 #undef VINSX
1644 #if defined(HOST_WORDS_BIGENDIAN)
1645 #define VEXTDVLX(NAME, SIZE) \
1646 void helper_##NAME(CPUPPCState *env, ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
1647 target_ulong index) \
1648 { \
1649 const target_long idx = index; \
1650 ppc_avr_t tmp[2] = { *a, *b }; \
1651 memset(t, 0, sizeof(*t)); \
1652 if (idx >= 0 && idx + SIZE <= sizeof(tmp)) { \
1653 memcpy(&t->u8[ARRAY_SIZE(t->u8) / 2 - SIZE], (void *)tmp + idx, SIZE); \
1654 } else { \
1655 qemu_log_mask(LOG_GUEST_ERROR, "Invalid index for " #NAME " after 0x" \
1656 TARGET_FMT_lx ", RC = " TARGET_FMT_ld " > %d\n", \
1657 env->nip, idx < 0 ? SIZE - idx : idx, 32 - SIZE); \
1658 } \
1659 }
1660 #else
1661 #define VEXTDVLX(NAME, SIZE) \
1662 void helper_##NAME(CPUPPCState *env, ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
1663 target_ulong index) \
1664 { \
1665 const target_long idx = index; \
1666 ppc_avr_t tmp[2] = { *b, *a }; \
1667 memset(t, 0, sizeof(*t)); \
1668 if (idx >= 0 && idx + SIZE <= sizeof(tmp)) { \
1669 memcpy(&t->u8[ARRAY_SIZE(t->u8) / 2], \
1670 (void *)tmp + sizeof(tmp) - SIZE - idx, SIZE); \
1671 } else { \
1672 qemu_log_mask(LOG_GUEST_ERROR, "Invalid index for " #NAME " after 0x" \
1673 TARGET_FMT_lx ", RC = " TARGET_FMT_ld " > %d\n", \
1674 env->nip, idx < 0 ? SIZE - idx : idx, 32 - SIZE); \
1675 } \
1676 }
1677 #endif
1678 VEXTDVLX(VEXTDUBVLX, 1)
1679 VEXTDVLX(VEXTDUHVLX, 2)
1680 VEXTDVLX(VEXTDUWVLX, 4)
1681 VEXTDVLX(VEXTDDVLX, 8)
1682 #undef VEXTDVLX
1683 #if defined(HOST_WORDS_BIGENDIAN)
1684 #define VEXTRACT(suffix, element) \
1685 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1686 { \
1687 uint32_t es = sizeof(r->element[0]); \
1688 memmove(&r->u8[8 - es], &b->u8[index], es); \
1689 memset(&r->u8[8], 0, 8); \
1690 memset(&r->u8[0], 0, 8 - es); \
1691 }
1692 #else
1693 #define VEXTRACT(suffix, element) \
1694 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1695 { \
1696 uint32_t es = sizeof(r->element[0]); \
1697 uint32_t s = (16 - index) - es; \
1698 memmove(&r->u8[8], &b->u8[s], es); \
1699 memset(&r->u8[0], 0, 8); \
1700 memset(&r->u8[8 + es], 0, 8 - es); \
1701 }
1702 #endif
1703 VEXTRACT(ub, u8)
1704 VEXTRACT(uh, u16)
1705 VEXTRACT(uw, u32)
1706 VEXTRACT(d, u64)
1707 #undef VEXTRACT
1708
1709 void helper_xxextractuw(CPUPPCState *env, ppc_vsr_t *xt,
1710 ppc_vsr_t *xb, uint32_t index)
1711 {
1712 ppc_vsr_t t = { };
1713 size_t es = sizeof(uint32_t);
1714 uint32_t ext_index;
1715 int i;
1716
1717 ext_index = index;
1718 for (i = 0; i < es; i++, ext_index++) {
1719 t.VsrB(8 - es + i) = xb->VsrB(ext_index % 16);
1720 }
1721
1722 *xt = t;
1723 }
1724
1725 void helper_xxinsertw(CPUPPCState *env, ppc_vsr_t *xt,
1726 ppc_vsr_t *xb, uint32_t index)
1727 {
1728 ppc_vsr_t t = *xt;
1729 size_t es = sizeof(uint32_t);
1730 int ins_index, i = 0;
1731
1732 ins_index = index;
1733 for (i = 0; i < es && ins_index < 16; i++, ins_index++) {
1734 t.VsrB(ins_index) = xb->VsrB(8 - es + i);
1735 }
1736
1737 *xt = t;
1738 }
1739
1740 #define VEXT_SIGNED(name, element, cast) \
1741 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1742 { \
1743 int i; \
1744 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1745 r->element[i] = (cast)b->element[i]; \
1746 } \
1747 }
1748 VEXT_SIGNED(vextsb2w, s32, int8_t)
1749 VEXT_SIGNED(vextsb2d, s64, int8_t)
1750 VEXT_SIGNED(vextsh2w, s32, int16_t)
1751 VEXT_SIGNED(vextsh2d, s64, int16_t)
1752 VEXT_SIGNED(vextsw2d, s64, int32_t)
1753 #undef VEXT_SIGNED
1754
1755 #define VNEG(name, element) \
1756 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
1757 { \
1758 int i; \
1759 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1760 r->element[i] = -b->element[i]; \
1761 } \
1762 }
1763 VNEG(vnegw, s32)
1764 VNEG(vnegd, s64)
1765 #undef VNEG
1766
1767 void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1768 {
1769 int sh = (b->VsrB(0xf) >> 3) & 0xf;
1770
1771 #if defined(HOST_WORDS_BIGENDIAN)
1772 memmove(&r->u8[sh], &a->u8[0], 16 - sh);
1773 memset(&r->u8[0], 0, sh);
1774 #else
1775 memmove(&r->u8[0], &a->u8[sh], 16 - sh);
1776 memset(&r->u8[16 - sh], 0, sh);
1777 #endif
1778 }
1779
1780 void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1781 {
1782 int i;
1783
1784 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
1785 r->u32[i] = a->u32[i] >= b->u32[i];
1786 }
1787 }
1788
1789 void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1790 {
1791 int64_t t;
1792 int i, upper;
1793 ppc_avr_t result;
1794 int sat = 0;
1795
1796 upper = ARRAY_SIZE(r->s32) - 1;
1797 t = (int64_t)b->VsrSW(upper);
1798 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1799 t += a->VsrSW(i);
1800 result.VsrSW(i) = 0;
1801 }
1802 result.VsrSW(upper) = cvtsdsw(t, &sat);
1803 *r = result;
1804
1805 if (sat) {
1806 set_vscr_sat(env);
1807 }
1808 }
1809
1810 void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1811 {
1812 int i, j, upper;
1813 ppc_avr_t result;
1814 int sat = 0;
1815
1816 upper = 1;
1817 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
1818 int64_t t = (int64_t)b->VsrSW(upper + i * 2);
1819
1820 result.VsrD(i) = 0;
1821 for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
1822 t += a->VsrSW(2 * i + j);
1823 }
1824 result.VsrSW(upper + i * 2) = cvtsdsw(t, &sat);
1825 }
1826
1827 *r = result;
1828 if (sat) {
1829 set_vscr_sat(env);
1830 }
1831 }
1832
1833 void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1834 {
1835 int i, j;
1836 int sat = 0;
1837
1838 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1839 int64_t t = (int64_t)b->s32[i];
1840
1841 for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
1842 t += a->s8[4 * i + j];
1843 }
1844 r->s32[i] = cvtsdsw(t, &sat);
1845 }
1846
1847 if (sat) {
1848 set_vscr_sat(env);
1849 }
1850 }
1851
1852 void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1853 {
1854 int sat = 0;
1855 int i;
1856
1857 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1858 int64_t t = (int64_t)b->s32[i];
1859
1860 t += a->s16[2 * i] + a->s16[2 * i + 1];
1861 r->s32[i] = cvtsdsw(t, &sat);
1862 }
1863
1864 if (sat) {
1865 set_vscr_sat(env);
1866 }
1867 }
1868
1869 void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1870 {
1871 int i, j;
1872 int sat = 0;
1873
1874 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
1875 uint64_t t = (uint64_t)b->u32[i];
1876
1877 for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
1878 t += a->u8[4 * i + j];
1879 }
1880 r->u32[i] = cvtuduw(t, &sat);
1881 }
1882
1883 if (sat) {
1884 set_vscr_sat(env);
1885 }
1886 }
1887
1888 #if defined(HOST_WORDS_BIGENDIAN)
1889 #define UPKHI 1
1890 #define UPKLO 0
1891 #else
1892 #define UPKHI 0
1893 #define UPKLO 1
1894 #endif
1895 #define VUPKPX(suffix, hi) \
1896 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1897 { \
1898 int i; \
1899 ppc_avr_t result; \
1900 \
1901 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
1902 uint16_t e = b->u16[hi ? i : i + 4]; \
1903 uint8_t a = (e >> 15) ? 0xff : 0; \
1904 uint8_t r = (e >> 10) & 0x1f; \
1905 uint8_t g = (e >> 5) & 0x1f; \
1906 uint8_t b = e & 0x1f; \
1907 \
1908 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
1909 } \
1910 *r = result; \
1911 }
1912 VUPKPX(lpx, UPKLO)
1913 VUPKPX(hpx, UPKHI)
1914 #undef VUPKPX
1915
1916 #define VUPK(suffix, unpacked, packee, hi) \
1917 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1918 { \
1919 int i; \
1920 ppc_avr_t result; \
1921 \
1922 if (hi) { \
1923 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
1924 result.unpacked[i] = b->packee[i]; \
1925 } \
1926 } else { \
1927 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
1928 i++) { \
1929 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
1930 } \
1931 } \
1932 *r = result; \
1933 }
1934 VUPK(hsb, s16, s8, UPKHI)
1935 VUPK(hsh, s32, s16, UPKHI)
1936 VUPK(hsw, s64, s32, UPKHI)
1937 VUPK(lsb, s16, s8, UPKLO)
1938 VUPK(lsh, s32, s16, UPKLO)
1939 VUPK(lsw, s64, s32, UPKLO)
1940 #undef VUPK
1941 #undef UPKHI
1942 #undef UPKLO
1943
1944 #define VGENERIC_DO(name, element) \
1945 void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
1946 { \
1947 int i; \
1948 \
1949 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1950 r->element[i] = name(b->element[i]); \
1951 } \
1952 }
1953
1954 #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
1955 #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
1956
1957 VGENERIC_DO(clzb, u8)
1958 VGENERIC_DO(clzh, u16)
1959
1960 #undef clzb
1961 #undef clzh
1962
1963 #define ctzb(v) ((v) ? ctz32(v) : 8)
1964 #define ctzh(v) ((v) ? ctz32(v) : 16)
1965 #define ctzw(v) ctz32((v))
1966 #define ctzd(v) ctz64((v))
1967
1968 VGENERIC_DO(ctzb, u8)
1969 VGENERIC_DO(ctzh, u16)
1970 VGENERIC_DO(ctzw, u32)
1971 VGENERIC_DO(ctzd, u64)
1972
1973 #undef ctzb
1974 #undef ctzh
1975 #undef ctzw
1976 #undef ctzd
1977
1978 #define popcntb(v) ctpop8(v)
1979 #define popcnth(v) ctpop16(v)
1980 #define popcntw(v) ctpop32(v)
1981 #define popcntd(v) ctpop64(v)
1982
1983 VGENERIC_DO(popcntb, u8)
1984 VGENERIC_DO(popcnth, u16)
1985 VGENERIC_DO(popcntw, u32)
1986 VGENERIC_DO(popcntd, u64)
1987
1988 #undef popcntb
1989 #undef popcnth
1990 #undef popcntw
1991 #undef popcntd
1992
1993 #undef VGENERIC_DO
1994
1995 #if defined(HOST_WORDS_BIGENDIAN)
1996 #define QW_ONE { .u64 = { 0, 1 } }
1997 #else
1998 #define QW_ONE { .u64 = { 1, 0 } }
1999 #endif
2000
2001 #ifndef CONFIG_INT128
2002
2003 static inline void avr_qw_not(ppc_avr_t *t, ppc_avr_t a)
2004 {
2005 t->u64[0] = ~a.u64[0];
2006 t->u64[1] = ~a.u64[1];
2007 }
2008
2009 static int avr_qw_cmpu(ppc_avr_t a, ppc_avr_t b)
2010 {
2011 if (a.VsrD(0) < b.VsrD(0)) {
2012 return -1;
2013 } else if (a.VsrD(0) > b.VsrD(0)) {
2014 return 1;
2015 } else if (a.VsrD(1) < b.VsrD(1)) {
2016 return -1;
2017 } else if (a.VsrD(1) > b.VsrD(1)) {
2018 return 1;
2019 } else {
2020 return 0;
2021 }
2022 }
2023
2024 static void avr_qw_add(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
2025 {
2026 t->VsrD(1) = a.VsrD(1) + b.VsrD(1);
2027 t->VsrD(0) = a.VsrD(0) + b.VsrD(0) +
2028 (~a.VsrD(1) < b.VsrD(1));
2029 }
2030
2031 static int avr_qw_addc(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
2032 {
2033 ppc_avr_t not_a;
2034 t->VsrD(1) = a.VsrD(1) + b.VsrD(1);
2035 t->VsrD(0) = a.VsrD(0) + b.VsrD(0) +
2036 (~a.VsrD(1) < b.VsrD(1));
2037 avr_qw_not(&not_a, a);
2038 return avr_qw_cmpu(not_a, b) < 0;
2039 }
2040
2041 #endif
2042
2043 void helper_vadduqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2044 {
2045 #ifdef CONFIG_INT128
2046 r->u128 = a->u128 + b->u128;
2047 #else
2048 avr_qw_add(r, *a, *b);
2049 #endif
2050 }
2051
2052 void helper_vaddeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2053 {
2054 #ifdef CONFIG_INT128
2055 r->u128 = a->u128 + b->u128 + (c->u128 & 1);
2056 #else
2057
2058 if (c->VsrD(1) & 1) {
2059 ppc_avr_t tmp;
2060
2061 tmp.VsrD(0) = 0;
2062 tmp.VsrD(1) = c->VsrD(1) & 1;
2063 avr_qw_add(&tmp, *a, tmp);
2064 avr_qw_add(r, tmp, *b);
2065 } else {
2066 avr_qw_add(r, *a, *b);
2067 }
2068 #endif
2069 }
2070
2071 void helper_vaddcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2072 {
2073 #ifdef CONFIG_INT128
2074 r->u128 = (~a->u128 < b->u128);
2075 #else
2076 ppc_avr_t not_a;
2077
2078 avr_qw_not(&not_a, *a);
2079
2080 r->VsrD(0) = 0;
2081 r->VsrD(1) = (avr_qw_cmpu(not_a, *b) < 0);
2082 #endif
2083 }
2084
2085 void helper_vaddecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2086 {
2087 #ifdef CONFIG_INT128
2088 int carry_out = (~a->u128 < b->u128);
2089 if (!carry_out && (c->u128 & 1)) {
2090 carry_out = ((a->u128 + b->u128 + 1) == 0) &&
2091 ((a->u128 != 0) || (b->u128 != 0));
2092 }
2093 r->u128 = carry_out;
2094 #else
2095
2096 int carry_in = c->VsrD(1) & 1;
2097 int carry_out = 0;
2098 ppc_avr_t tmp;
2099
2100 carry_out = avr_qw_addc(&tmp, *a, *b);
2101
2102 if (!carry_out && carry_in) {
2103 ppc_avr_t one = QW_ONE;
2104 carry_out = avr_qw_addc(&tmp, tmp, one);
2105 }
2106 r->VsrD(0) = 0;
2107 r->VsrD(1) = carry_out;
2108 #endif
2109 }
2110
2111 void helper_vsubuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2112 {
2113 #ifdef CONFIG_INT128
2114 r->u128 = a->u128 - b->u128;
2115 #else
2116 ppc_avr_t tmp;
2117 ppc_avr_t one = QW_ONE;
2118
2119 avr_qw_not(&tmp, *b);
2120 avr_qw_add(&tmp, *a, tmp);
2121 avr_qw_add(r, tmp, one);
2122 #endif
2123 }
2124
2125 void helper_vsubeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2126 {
2127 #ifdef CONFIG_INT128
2128 r->u128 = a->u128 + ~b->u128 + (c->u128 & 1);
2129 #else
2130 ppc_avr_t tmp, sum;
2131
2132 avr_qw_not(&tmp, *b);
2133 avr_qw_add(&sum, *a, tmp);
2134
2135 tmp.VsrD(0) = 0;
2136 tmp.VsrD(1) = c->VsrD(1) & 1;
2137 avr_qw_add(r, sum, tmp);
2138 #endif
2139 }
2140
2141 void helper_vsubcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2142 {
2143 #ifdef CONFIG_INT128
2144 r->u128 = (~a->u128 < ~b->u128) ||
2145 (a->u128 + ~b->u128 == (__uint128_t)-1);
2146 #else
2147 int carry = (avr_qw_cmpu(*a, *b) > 0);
2148 if (!carry) {
2149 ppc_avr_t tmp;
2150 avr_qw_not(&tmp, *b);
2151 avr_qw_add(&tmp, *a, tmp);
2152 carry = ((tmp.VsrSD(0) == -1ull) && (tmp.VsrSD(1) == -1ull));
2153 }
2154 r->VsrD(0) = 0;
2155 r->VsrD(1) = carry;
2156 #endif
2157 }
2158
2159 void helper_vsubecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2160 {
2161 #ifdef CONFIG_INT128
2162 r->u128 =
2163 (~a->u128 < ~b->u128) ||
2164 ((c->u128 & 1) && (a->u128 + ~b->u128 == (__uint128_t)-1));
2165 #else
2166 int carry_in = c->VsrD(1) & 1;
2167 int carry_out = (avr_qw_cmpu(*a, *b) > 0);
2168 if (!carry_out && carry_in) {
2169 ppc_avr_t tmp;
2170 avr_qw_not(&tmp, *b);
2171 avr_qw_add(&tmp, *a, tmp);
2172 carry_out = ((tmp.VsrD(0) == -1ull) && (tmp.VsrD(1) == -1ull));
2173 }
2174
2175 r->VsrD(0) = 0;
2176 r->VsrD(1) = carry_out;
2177 #endif
2178 }
2179
2180 #define BCD_PLUS_PREF_1 0xC
2181 #define BCD_PLUS_PREF_2 0xF
2182 #define BCD_PLUS_ALT_1 0xA
2183 #define BCD_NEG_PREF 0xD
2184 #define BCD_NEG_ALT 0xB
2185 #define BCD_PLUS_ALT_2 0xE
2186 #define NATIONAL_PLUS 0x2B
2187 #define NATIONAL_NEG 0x2D
2188
2189 #define BCD_DIG_BYTE(n) (15 - ((n) / 2))
2190
2191 static int bcd_get_sgn(ppc_avr_t *bcd)
2192 {
2193 switch (bcd->VsrB(BCD_DIG_BYTE(0)) & 0xF) {
2194 case BCD_PLUS_PREF_1:
2195 case BCD_PLUS_PREF_2:
2196 case BCD_PLUS_ALT_1:
2197 case BCD_PLUS_ALT_2:
2198 {
2199 return 1;
2200 }
2201
2202 case BCD_NEG_PREF:
2203 case BCD_NEG_ALT:
2204 {
2205 return -1;
2206 }
2207
2208 default:
2209 {
2210 return 0;
2211 }
2212 }
2213 }
2214
2215 static int bcd_preferred_sgn(int sgn, int ps)
2216 {
2217 if (sgn >= 0) {
2218 return (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2;
2219 } else {
2220 return BCD_NEG_PREF;
2221 }
2222 }
2223
2224 static uint8_t bcd_get_digit(ppc_avr_t *bcd, int n, int *invalid)
2225 {
2226 uint8_t result;
2227 if (n & 1) {
2228 result = bcd->VsrB(BCD_DIG_BYTE(n)) >> 4;
2229 } else {
2230 result = bcd->VsrB(BCD_DIG_BYTE(n)) & 0xF;
2231 }
2232
2233 if (unlikely(result > 9)) {
2234 *invalid = true;
2235 }
2236 return result;
2237 }
2238
2239 static void bcd_put_digit(ppc_avr_t *bcd, uint8_t digit, int n)
2240 {
2241 if (n & 1) {
2242 bcd->VsrB(BCD_DIG_BYTE(n)) &= 0x0F;
2243 bcd->VsrB(BCD_DIG_BYTE(n)) |= (digit << 4);
2244 } else {
2245 bcd->VsrB(BCD_DIG_BYTE(n)) &= 0xF0;
2246 bcd->VsrB(BCD_DIG_BYTE(n)) |= digit;
2247 }
2248 }
2249
2250 static bool bcd_is_valid(ppc_avr_t *bcd)
2251 {
2252 int i;
2253 int invalid = 0;
2254
2255 if (bcd_get_sgn(bcd) == 0) {
2256 return false;
2257 }
2258
2259 for (i = 1; i < 32; i++) {
2260 bcd_get_digit(bcd, i, &invalid);
2261 if (unlikely(invalid)) {
2262 return false;
2263 }
2264 }
2265 return true;
2266 }
2267
2268 static int bcd_cmp_zero(ppc_avr_t *bcd)
2269 {
2270 if (bcd->VsrD(0) == 0 && (bcd->VsrD(1) >> 4) == 0) {
2271 return CRF_EQ;
2272 } else {
2273 return (bcd_get_sgn(bcd) == 1) ? CRF_GT : CRF_LT;
2274 }
2275 }
2276
2277 static uint16_t get_national_digit(ppc_avr_t *reg, int n)
2278 {
2279 return reg->VsrH(7 - n);
2280 }
2281
2282 static void set_national_digit(ppc_avr_t *reg, uint8_t val, int n)
2283 {
2284 reg->VsrH(7 - n) = val;
2285 }
2286
2287 static int bcd_cmp_mag(ppc_avr_t *a, ppc_avr_t *b)
2288 {
2289 int i;
2290 int invalid = 0;
2291 for (i = 31; i > 0; i--) {
2292 uint8_t dig_a = bcd_get_digit(a, i, &invalid);
2293 uint8_t dig_b = bcd_get_digit(b, i, &invalid);
2294 if (unlikely(invalid)) {
2295 return 0; /* doesn't matter */
2296 } else if (dig_a > dig_b) {
2297 return 1;
2298 } else if (dig_a < dig_b) {
2299 return -1;
2300 }
2301 }
2302
2303 return 0;
2304 }
2305
2306 static int bcd_add_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
2307 int *overflow)
2308 {
2309 int carry = 0;
2310 int i;
2311 int is_zero = 1;
2312
2313 for (i = 1; i <= 31; i++) {
2314 uint8_t digit = bcd_get_digit(a, i, invalid) +
2315 bcd_get_digit(b, i, invalid) + carry;
2316 is_zero &= (digit == 0);
2317 if (digit > 9) {
2318 carry = 1;
2319 digit -= 10;
2320 } else {
2321 carry = 0;
2322 }
2323
2324 bcd_put_digit(t, digit, i);
2325 }
2326
2327 *overflow = carry;
2328 return is_zero;
2329 }
2330
2331 static void bcd_sub_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
2332 int *overflow)
2333 {
2334 int carry = 0;
2335 int i;
2336
2337 for (i = 1; i <= 31; i++) {
2338 uint8_t digit = bcd_get_digit(a, i, invalid) -
2339 bcd_get_digit(b, i, invalid) + carry;
2340 if (digit & 0x80) {
2341 carry = -1;
2342 digit += 10;
2343 } else {
2344 carry = 0;
2345 }
2346
2347 bcd_put_digit(t, digit, i);
2348 }
2349
2350 *overflow = carry;
2351 }
2352
2353 uint32_t helper_bcdadd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2354 {
2355
2356 int sgna = bcd_get_sgn(a);
2357 int sgnb = bcd_get_sgn(b);
2358 int invalid = (sgna == 0) || (sgnb == 0);
2359 int overflow = 0;
2360 int zero = 0;
2361 uint32_t cr = 0;
2362 ppc_avr_t result = { .u64 = { 0, 0 } };
2363
2364 if (!invalid) {
2365 if (sgna == sgnb) {
2366 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps);
2367 zero = bcd_add_mag(&result, a, b, &invalid, &overflow);
2368 cr = (sgna > 0) ? CRF_GT : CRF_LT;
2369 } else {
2370 int magnitude = bcd_cmp_mag(a, b);
2371 if (magnitude > 0) {
2372 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps);
2373 bcd_sub_mag(&result, a, b, &invalid, &overflow);
2374 cr = (sgna > 0) ? CRF_GT : CRF_LT;
2375 } else if (magnitude < 0) {
2376 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgnb, ps);
2377 bcd_sub_mag(&result, b, a, &invalid, &overflow);
2378 cr = (sgnb > 0) ? CRF_GT : CRF_LT;
2379 } else {
2380 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(0, ps);
2381 cr = CRF_EQ;
2382 }
2383 }
2384 }
2385
2386 if (unlikely(invalid)) {
2387 result.VsrD(0) = result.VsrD(1) = -1;
2388 cr = CRF_SO;
2389 } else if (overflow) {
2390 cr |= CRF_SO;
2391 } else if (zero) {
2392 cr |= CRF_EQ;
2393 }
2394
2395 *r = result;
2396
2397 return cr;
2398 }
2399
2400 uint32_t helper_bcdsub(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2401 {
2402 ppc_avr_t bcopy = *b;
2403 int sgnb = bcd_get_sgn(b);
2404 if (sgnb < 0) {
2405 bcd_put_digit(&bcopy, BCD_PLUS_PREF_1, 0);
2406 } else if (sgnb > 0) {
2407 bcd_put_digit(&bcopy, BCD_NEG_PREF, 0);
2408 }
2409 /* else invalid ... defer to bcdadd code for proper handling */
2410
2411 return helper_bcdadd(r, a, &bcopy, ps);
2412 }
2413
2414 uint32_t helper_bcdcfn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2415 {
2416 int i;
2417 int cr = 0;
2418 uint16_t national = 0;
2419 uint16_t sgnb = get_national_digit(b, 0);
2420 ppc_avr_t ret = { .u64 = { 0, 0 } };
2421 int invalid = (sgnb != NATIONAL_PLUS && sgnb != NATIONAL_NEG);
2422
2423 for (i = 1; i < 8; i++) {
2424 national = get_national_digit(b, i);
2425 if (unlikely(national < 0x30 || national > 0x39)) {
2426 invalid = 1;
2427 break;
2428 }
2429
2430 bcd_put_digit(&ret, national & 0xf, i);
2431 }
2432
2433 if (sgnb == NATIONAL_PLUS) {
2434 bcd_put_digit(&ret, (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2, 0);
2435 } else {
2436 bcd_put_digit(&ret, BCD_NEG_PREF, 0);
2437 }
2438
2439 cr = bcd_cmp_zero(&ret);
2440
2441 if (unlikely(invalid)) {
2442 cr = CRF_SO;
2443 }
2444
2445 *r = ret;
2446
2447 return cr;
2448 }
2449
2450 uint32_t helper_bcdctn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2451 {
2452 int i;
2453 int cr = 0;
2454 int sgnb = bcd_get_sgn(b);
2455 int invalid = (sgnb == 0);
2456 ppc_avr_t ret = { .u64 = { 0, 0 } };
2457
2458 int ox_flag = (b->VsrD(0) != 0) || ((b->VsrD(1) >> 32) != 0);
2459
2460 for (i = 1; i < 8; i++) {
2461 set_national_digit(&ret, 0x30 + bcd_get_digit(b, i, &invalid), i);
2462
2463 if (unlikely(invalid)) {
2464 break;
2465 }
2466 }
2467 set_national_digit(&ret, (sgnb == -1) ? NATIONAL_NEG : NATIONAL_PLUS, 0);
2468
2469 cr = bcd_cmp_zero(b);
2470
2471 if (ox_flag) {
2472 cr |= CRF_SO;
2473 }
2474
2475 if (unlikely(invalid)) {
2476 cr = CRF_SO;
2477 }
2478
2479 *r = ret;
2480
2481 return cr;
2482 }
2483
2484 uint32_t helper_bcdcfz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2485 {
2486 int i;
2487 int cr = 0;
2488 int invalid = 0;
2489 int zone_digit = 0;
2490 int zone_lead = ps ? 0xF : 0x3;
2491 int digit = 0;
2492 ppc_avr_t ret = { .u64 = { 0, 0 } };
2493 int sgnb = b->VsrB(BCD_DIG_BYTE(0)) >> 4;
2494
2495 if (unlikely((sgnb < 0xA) && ps)) {
2496 invalid = 1;
2497 }
2498
2499 for (i = 0; i < 16; i++) {
2500 zone_digit = i ? b->VsrB(BCD_DIG_BYTE(i * 2)) >> 4 : zone_lead;
2501 digit = b->VsrB(BCD_DIG_BYTE(i * 2)) & 0xF;
2502 if (unlikely(zone_digit != zone_lead || digit > 0x9)) {
2503 invalid = 1;
2504 break;
2505 }
2506
2507 bcd_put_digit(&ret, digit, i + 1);
2508 }
2509
2510 if ((ps && (sgnb == 0xB || sgnb == 0xD)) ||
2511 (!ps && (sgnb & 0x4))) {
2512 bcd_put_digit(&ret, BCD_NEG_PREF, 0);
2513 } else {
2514 bcd_put_digit(&ret, BCD_PLUS_PREF_1, 0);
2515 }
2516
2517 cr = bcd_cmp_zero(&ret);
2518
2519 if (unlikely(invalid)) {
2520 cr = CRF_SO;
2521 }
2522
2523 *r = ret;
2524
2525 return cr;
2526 }
2527
2528 uint32_t helper_bcdctz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2529 {
2530 int i;
2531 int cr = 0;
2532 uint8_t digit = 0;
2533 int sgnb = bcd_get_sgn(b);
2534 int zone_lead = (ps) ? 0xF0 : 0x30;
2535 int invalid = (sgnb == 0);
2536 ppc_avr_t ret = { .u64 = { 0, 0 } };
2537
2538 int ox_flag = ((b->VsrD(0) >> 4) != 0);
2539
2540 for (i = 0; i < 16; i++) {
2541 digit = bcd_get_digit(b, i + 1, &invalid);
2542
2543 if (unlikely(invalid)) {
2544 break;
2545 }
2546
2547 ret.VsrB(BCD_DIG_BYTE(i * 2)) = zone_lead + digit;
2548 }
2549
2550 if (ps) {
2551 bcd_put_digit(&ret, (sgnb == 1) ? 0xC : 0xD, 1);
2552 } else {
2553 bcd_put_digit(&ret, (sgnb == 1) ? 0x3 : 0x7, 1);
2554 }
2555
2556 cr = bcd_cmp_zero(b);
2557
2558 if (ox_flag) {
2559 cr |= CRF_SO;
2560 }
2561
2562 if (unlikely(invalid)) {
2563 cr = CRF_SO;
2564 }
2565
2566 *r = ret;
2567
2568 return cr;
2569 }
2570
2571 /**
2572 * Compare 2 128-bit unsigned integers, passed in as unsigned 64-bit pairs
2573 *
2574 * Returns:
2575 * > 0 if ahi|alo > bhi|blo,
2576 * 0 if ahi|alo == bhi|blo,
2577 * < 0 if ahi|alo < bhi|blo
2578 */
2579 static inline int ucmp128(uint64_t alo, uint64_t ahi,
2580 uint64_t blo, uint64_t bhi)
2581 {
2582 return (ahi == bhi) ?
2583 (alo > blo ? 1 : (alo == blo ? 0 : -1)) :
2584 (ahi > bhi ? 1 : -1);
2585 }
2586
2587 uint32_t helper_bcdcfsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2588 {
2589 int i;
2590 int cr;
2591 uint64_t lo_value;
2592 uint64_t hi_value;
2593 uint64_t rem;
2594 ppc_avr_t ret = { .u64 = { 0, 0 } };
2595
2596 if (b->VsrSD(0) < 0) {
2597 lo_value = -b->VsrSD(1);
2598 hi_value = ~b->VsrD(0) + !lo_value;
2599 bcd_put_digit(&ret, 0xD, 0);
2600
2601 cr = CRF_LT;
2602 } else {
2603 lo_value = b->VsrD(1);
2604 hi_value = b->VsrD(0);
2605 bcd_put_digit(&ret, bcd_preferred_sgn(0, ps), 0);
2606
2607 if (hi_value == 0 && lo_value == 0) {
2608 cr = CRF_EQ;
2609 } else {
2610 cr = CRF_GT;
2611 }
2612 }
2613
2614 /*
2615 * Check src limits: abs(src) <= 10^31 - 1
2616 *
2617 * 10^31 - 1 = 0x0000007e37be2022 c0914b267fffffff
2618 */
2619 if (ucmp128(lo_value, hi_value,
2620 0xc0914b267fffffffULL, 0x7e37be2022ULL) > 0) {
2621 cr |= CRF_SO;
2622
2623 /*
2624 * According to the ISA, if src wouldn't fit in the destination
2625 * register, the result is undefined.
2626 * In that case, we leave r unchanged.
2627 */
2628 } else {
2629 rem = divu128(&lo_value, &hi_value, 1000000000000000ULL);
2630
2631 for (i = 1; i < 16; rem /= 10, i++) {
2632 bcd_put_digit(&ret, rem % 10, i);
2633 }
2634
2635 for (; i < 32; lo_value /= 10, i++) {
2636 bcd_put_digit(&ret, lo_value % 10, i);
2637 }
2638
2639 *r = ret;
2640 }
2641
2642 return cr;
2643 }
2644
2645 uint32_t helper_bcdctsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2646 {
2647 uint8_t i;
2648 int cr;
2649 uint64_t carry;
2650 uint64_t unused;
2651 uint64_t lo_value;
2652 uint64_t hi_value = 0;
2653 int sgnb = bcd_get_sgn(b);
2654 int invalid = (sgnb == 0);
2655
2656 lo_value = bcd_get_digit(b, 31, &invalid);
2657 for (i = 30; i > 0; i--) {
2658 mulu64(&lo_value, &carry, lo_value, 10ULL);
2659 mulu64(&hi_value, &unused, hi_value, 10ULL);
2660 lo_value += bcd_get_digit(b, i, &invalid);
2661 hi_value += carry;
2662
2663 if (unlikely(invalid)) {
2664 break;
2665 }
2666 }
2667
2668 if (sgnb == -1) {
2669 r->VsrSD(1) = -lo_value;
2670 r->VsrSD(0) = ~hi_value + !r->VsrSD(1);
2671 } else {
2672 r->VsrSD(1) = lo_value;
2673 r->VsrSD(0) = hi_value;
2674 }
2675
2676 cr = bcd_cmp_zero(b);
2677
2678 if (unlikely(invalid)) {
2679 cr = CRF_SO;
2680 }
2681
2682 return cr;
2683 }
2684
2685 uint32_t helper_bcdcpsgn(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2686 {
2687 int i;
2688 int invalid = 0;
2689
2690 if (bcd_get_sgn(a) == 0 || bcd_get_sgn(b) == 0) {
2691 return CRF_SO;
2692 }
2693
2694 *r = *a;
2695 bcd_put_digit(r, b->VsrB(BCD_DIG_BYTE(0)) & 0xF, 0);
2696
2697 for (i = 1; i < 32; i++) {
2698 bcd_get_digit(a, i, &invalid);
2699 bcd_get_digit(b, i, &invalid);
2700 if (unlikely(invalid)) {
2701 return CRF_SO;
2702 }
2703 }
2704
2705 return bcd_cmp_zero(r);
2706 }
2707
2708 uint32_t helper_bcdsetsgn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2709 {
2710 int sgnb = bcd_get_sgn(b);
2711
2712 *r = *b;
2713 bcd_put_digit(r, bcd_preferred_sgn(sgnb, ps), 0);
2714
2715 if (bcd_is_valid(b) == false) {
2716 return CRF_SO;
2717 }
2718
2719 return bcd_cmp_zero(r);
2720 }
2721
2722 uint32_t helper_bcds(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2723 {
2724 int cr;
2725 int i = a->VsrSB(7);
2726 bool ox_flag = false;
2727 int sgnb = bcd_get_sgn(b);
2728 ppc_avr_t ret = *b;
2729 ret.VsrD(1) &= ~0xf;
2730
2731 if (bcd_is_valid(b) == false) {
2732 return CRF_SO;
2733 }
2734
2735 if (unlikely(i > 31)) {
2736 i = 31;
2737 } else if (unlikely(i < -31)) {
2738 i = -31;
2739 }
2740
2741 if (i > 0) {
2742 ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
2743 } else {
2744 urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
2745 }
2746 bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0);
2747
2748 *r = ret;
2749
2750 cr = bcd_cmp_zero(r);
2751 if (ox_flag) {
2752 cr |= CRF_SO;
2753 }
2754
2755 return cr;
2756 }
2757
2758 uint32_t helper_bcdus(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2759 {
2760 int cr;
2761 int i;
2762 int invalid = 0;
2763 bool ox_flag = false;
2764 ppc_avr_t ret = *b;
2765
2766 for (i = 0; i < 32; i++) {
2767 bcd_get_digit(b, i, &invalid);
2768
2769 if (unlikely(invalid)) {
2770 return CRF_SO;
2771 }
2772 }
2773
2774 i = a->VsrSB(7);
2775 if (i >= 32) {
2776 ox_flag = true;
2777 ret.VsrD(1) = ret.VsrD(0) = 0;
2778 } else if (i <= -32) {
2779 ret.VsrD(1) = ret.VsrD(0) = 0;
2780 } else if (i > 0) {
2781 ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
2782 } else {
2783 urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
2784 }
2785 *r = ret;
2786
2787 cr = bcd_cmp_zero(r);
2788 if (ox_flag) {
2789 cr |= CRF_SO;
2790 }
2791
2792 return cr;
2793 }
2794
2795 uint32_t helper_bcdsr(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2796 {
2797 int cr;
2798 int unused = 0;
2799 int invalid = 0;
2800 bool ox_flag = false;
2801 int sgnb = bcd_get_sgn(b);
2802 ppc_avr_t ret = *b;
2803 ret.VsrD(1) &= ~0xf;
2804
2805 int i = a->VsrSB(7);
2806 ppc_avr_t bcd_one;
2807
2808 bcd_one.VsrD(0) = 0;
2809 bcd_one.VsrD(1) = 0x10;
2810
2811 if (bcd_is_valid(b) == false) {
2812 return CRF_SO;
2813 }
2814
2815 if (unlikely(i > 31)) {
2816 i = 31;
2817 } else if (unlikely(i < -31)) {
2818 i = -31;
2819 }
2820
2821 if (i > 0) {
2822 ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
2823 } else {
2824 urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
2825
2826 if (bcd_get_digit(&ret, 0, &invalid) >= 5) {
2827 bcd_add_mag(&ret, &ret, &bcd_one, &invalid, &unused);
2828 }
2829 }
2830 bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0);
2831
2832 cr = bcd_cmp_zero(&ret);
2833 if (ox_flag) {
2834 cr |= CRF_SO;
2835 }
2836 *r = ret;
2837
2838 return cr;
2839 }
2840
2841 uint32_t helper_bcdtrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2842 {
2843 uint64_t mask;
2844 uint32_t ox_flag = 0;
2845 int i = a->VsrSH(3) + 1;
2846 ppc_avr_t ret = *b;
2847
2848 if (bcd_is_valid(b) == false) {
2849 return CRF_SO;
2850 }
2851
2852 if (i > 16 && i < 32) {
2853 mask = (uint64_t)-1 >> (128 - i * 4);
2854 if (ret.VsrD(0) & ~mask) {
2855 ox_flag = CRF_SO;
2856 }
2857
2858 ret.VsrD(0) &= mask;
2859 } else if (i >= 0 && i <= 16) {
2860 mask = (uint64_t)-1 >> (64 - i * 4);
2861 if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) {
2862 ox_flag = CRF_SO;
2863 }
2864
2865 ret.VsrD(1) &= mask;
2866 ret.VsrD(0) = 0;
2867 }
2868 bcd_put_digit(&ret, bcd_preferred_sgn(bcd_get_sgn(b), ps), 0);
2869 *r = ret;
2870
2871 return bcd_cmp_zero(&ret) | ox_flag;
2872 }
2873
2874 uint32_t helper_bcdutrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2875 {
2876 int i;
2877 uint64_t mask;
2878 uint32_t ox_flag = 0;
2879 int invalid = 0;
2880 ppc_avr_t ret = *b;
2881
2882 for (i = 0; i < 32; i++) {
2883 bcd_get_digit(b, i, &invalid);
2884
2885 if (unlikely(invalid)) {
2886 return CRF_SO;
2887 }
2888 }
2889
2890 i = a->VsrSH(3);
2891 if (i > 16 && i < 33) {
2892 mask = (uint64_t)-1 >> (128 - i * 4);
2893 if (ret.VsrD(0) & ~mask) {
2894 ox_flag = CRF_SO;
2895 }
2896
2897 ret.VsrD(0) &= mask;
2898 } else if (i > 0 && i <= 16) {
2899 mask = (uint64_t)-1 >> (64 - i * 4);
2900 if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) {
2901 ox_flag = CRF_SO;
2902 }
2903
2904 ret.VsrD(1) &= mask;
2905 ret.VsrD(0) = 0;
2906 } else if (i == 0) {
2907 if (ret.VsrD(0) || ret.VsrD(1)) {
2908 ox_flag = CRF_SO;
2909 }
2910 ret.VsrD(0) = ret.VsrD(1) = 0;
2911 }
2912
2913 *r = ret;
2914 if (r->VsrD(0) == 0 && r->VsrD(1) == 0) {
2915 return ox_flag | CRF_EQ;
2916 }
2917
2918 return ox_flag | CRF_GT;
2919 }
2920
2921 void helper_vsbox(ppc_avr_t *r, ppc_avr_t *a)
2922 {
2923 int i;
2924 VECTOR_FOR_INORDER_I(i, u8) {
2925 r->u8[i] = AES_sbox[a->u8[i]];
2926 }
2927 }
2928
2929 void helper_vcipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2930 {
2931 ppc_avr_t result;
2932 int i;
2933
2934 VECTOR_FOR_INORDER_I(i, u32) {
2935 result.VsrW(i) = b->VsrW(i) ^
2936 (AES_Te0[a->VsrB(AES_shifts[4 * i + 0])] ^
2937 AES_Te1[a->VsrB(AES_shifts[4 * i + 1])] ^
2938 AES_Te2[a->VsrB(AES_shifts[4 * i + 2])] ^
2939 AES_Te3[a->VsrB(AES_shifts[4 * i + 3])]);
2940 }
2941 *r = result;
2942 }
2943
2944 void helper_vcipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2945 {
2946 ppc_avr_t result;
2947 int i;
2948
2949 VECTOR_FOR_INORDER_I(i, u8) {
2950 result.VsrB(i) = b->VsrB(i) ^ (AES_sbox[a->VsrB(AES_shifts[i])]);
2951 }
2952 *r = result;
2953 }
2954
2955 void helper_vncipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2956 {
2957 /* This differs from what is written in ISA V2.07. The RTL is */
2958 /* incorrect and will be fixed in V2.07B. */
2959 int i;
2960 ppc_avr_t tmp;
2961
2962 VECTOR_FOR_INORDER_I(i, u8) {
2963 tmp.VsrB(i) = b->VsrB(i) ^ AES_isbox[a->VsrB(AES_ishifts[i])];
2964 }
2965
2966 VECTOR_FOR_INORDER_I(i, u32) {
2967 r->VsrW(i) =
2968 AES_imc[tmp.VsrB(4 * i + 0)][0] ^
2969 AES_imc[tmp.VsrB(4 * i + 1)][1] ^
2970 AES_imc[tmp.VsrB(4 * i + 2)][2] ^
2971 AES_imc[tmp.VsrB(4 * i + 3)][3];
2972 }
2973 }
2974
2975 void helper_vncipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2976 {
2977 ppc_avr_t result;
2978 int i;
2979
2980 VECTOR_FOR_INORDER_I(i, u8) {
2981 result.VsrB(i) = b->VsrB(i) ^ (AES_isbox[a->VsrB(AES_ishifts[i])]);
2982 }
2983 *r = result;
2984 }
2985
2986 void helper_vshasigmaw(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
2987 {
2988 int st = (st_six & 0x10) != 0;
2989 int six = st_six & 0xF;
2990 int i;
2991
2992 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2993 if (st == 0) {
2994 if ((six & (0x8 >> i)) == 0) {
2995 r->VsrW(i) = ror32(a->VsrW(i), 7) ^
2996 ror32(a->VsrW(i), 18) ^
2997 (a->VsrW(i) >> 3);
2998 } else { /* six.bit[i] == 1 */
2999 r->VsrW(i) = ror32(a->VsrW(i), 17) ^
3000 ror32(a->VsrW(i), 19) ^
3001 (a->VsrW(i) >> 10);
3002 }
3003 } else { /* st == 1 */
3004 if ((six & (0x8 >> i)) == 0) {
3005 r->VsrW(i) = ror32(a->VsrW(i), 2) ^
3006 ror32(a->VsrW(i), 13) ^
3007 ror32(a->VsrW(i), 22);
3008 } else { /* six.bit[i] == 1 */
3009 r->VsrW(i) = ror32(a->VsrW(i), 6) ^
3010 ror32(a->VsrW(i), 11) ^
3011 ror32(a->VsrW(i), 25);
3012 }
3013 }
3014 }
3015 }
3016
3017 void helper_vshasigmad(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
3018 {
3019 int st = (st_six & 0x10) != 0;
3020 int six = st_six & 0xF;
3021 int i;
3022
3023 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
3024 if (st == 0) {
3025 if ((six & (0x8 >> (2 * i))) == 0) {
3026 r->VsrD(i) = ror64(a->VsrD(i), 1) ^
3027 ror64(a->VsrD(i), 8) ^
3028 (a->VsrD(i) >> 7);
3029 } else { /* six.bit[2*i] == 1 */
3030 r->VsrD(i) = ror64(a->VsrD(i), 19) ^
3031 ror64(a->VsrD(i), 61) ^
3032 (a->VsrD(i) >> 6);
3033 }
3034 } else { /* st == 1 */
3035 if ((six & (0x8 >> (2 * i))) == 0) {
3036 r->VsrD(i) = ror64(a->VsrD(i), 28) ^
3037 ror64(a->VsrD(i), 34) ^
3038 ror64(a->VsrD(i), 39);
3039 } else { /* six.bit[2*i] == 1 */
3040 r->VsrD(i) = ror64(a->VsrD(i), 14) ^
3041 ror64(a->VsrD(i), 18) ^
3042 ror64(a->VsrD(i), 41);
3043 }
3044 }
3045 }
3046 }
3047
3048 void helper_vpermxor(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
3049 {
3050 ppc_avr_t result;
3051 int i;
3052
3053 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
3054 int indexA = c->VsrB(i) >> 4;
3055 int indexB = c->VsrB(i) & 0xF;
3056
3057 result.VsrB(i) = a->VsrB(indexA) ^ b->VsrB(indexB);
3058 }
3059 *r = result;
3060 }
3061
3062 #undef VECTOR_FOR_INORDER_I
3063
3064 /*****************************************************************************/
3065 /* SPE extension helpers */
3066 /* Use a table to make this quicker */
3067 static const uint8_t hbrev[16] = {
3068 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
3069 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
3070 };
3071
3072 static inline uint8_t byte_reverse(uint8_t val)
3073 {
3074 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
3075 }
3076
3077 static inline uint32_t word_reverse(uint32_t val)
3078 {
3079 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
3080 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
3081 }
3082
3083 #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
3084 target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
3085 {
3086 uint32_t a, b, d, mask;
3087
3088 mask = UINT32_MAX >> (32 - MASKBITS);
3089 a = arg1 & mask;
3090 b = arg2 & mask;
3091 d = word_reverse(1 + word_reverse(a | ~b));
3092 return (arg1 & ~mask) | (d & b);
3093 }
3094
3095 uint32_t helper_cntlsw32(uint32_t val)
3096 {
3097 if (val & 0x80000000) {
3098 return clz32(~val);
3099 } else {
3100 return clz32(val);
3101 }
3102 }
3103
3104 uint32_t helper_cntlzw32(uint32_t val)
3105 {
3106 return clz32(val);
3107 }
3108
3109 /* 440 specific */
3110 target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high,
3111 target_ulong low, uint32_t update_Rc)
3112 {
3113 target_ulong mask;
3114 int i;
3115
3116 i = 1;
3117 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
3118 if ((high & mask) == 0) {
3119 if (update_Rc) {
3120 env->crf[0] = 0x4;
3121 }
3122 goto done;
3123 }
3124 i++;
3125 }
3126 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
3127 if ((low & mask) == 0) {
3128 if (update_Rc) {
3129 env->crf[0] = 0x8;
3130 }
3131 goto done;
3132 }
3133 i++;
3134 }
3135 i = 8;
3136 if (update_Rc) {
3137 env->crf[0] = 0x2;
3138 }
3139 done:
3140 env->xer = (env->xer & ~0x7F) | i;
3141 if (update_Rc) {
3142 env->crf[0] |= xer_so;
3143 }
3144 return i;
3145 }