]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/int_helper.c
target/ppc: Use aesdec_ISB_ISR_AK
[mirror_qemu.git] / target / ppc / int_helper.c
1 /*
2 * PowerPC integer and vector emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/log.h"
26 #include "exec/helper-proto.h"
27 #include "crypto/aes.h"
28 #include "crypto/aes-round.h"
29 #include "fpu/softfloat.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 #include "tcg/tcg-gvec-desc.h"
33
34 #include "helper_regs.h"
35 /*****************************************************************************/
36 /* Fixed point operations helpers */
37
38 static inline void helper_update_ov_legacy(CPUPPCState *env, int ov)
39 {
40 if (unlikely(ov)) {
41 env->so = env->ov = env->ov32 = 1;
42 } else {
43 env->ov = env->ov32 = 0;
44 }
45 }
46
47 target_ulong helper_divweu(CPUPPCState *env, target_ulong ra, target_ulong rb,
48 uint32_t oe)
49 {
50 uint64_t rt = 0;
51 int overflow = 0;
52
53 uint64_t dividend = (uint64_t)ra << 32;
54 uint64_t divisor = (uint32_t)rb;
55
56 if (unlikely(divisor == 0)) {
57 overflow = 1;
58 } else {
59 rt = dividend / divisor;
60 overflow = rt > UINT32_MAX;
61 }
62
63 if (unlikely(overflow)) {
64 rt = 0; /* Undefined */
65 }
66
67 if (oe) {
68 helper_update_ov_legacy(env, overflow);
69 }
70
71 return (target_ulong)rt;
72 }
73
74 target_ulong helper_divwe(CPUPPCState *env, target_ulong ra, target_ulong rb,
75 uint32_t oe)
76 {
77 int64_t rt = 0;
78 int overflow = 0;
79
80 int64_t dividend = (int64_t)ra << 32;
81 int64_t divisor = (int64_t)((int32_t)rb);
82
83 if (unlikely((divisor == 0) ||
84 ((divisor == -1ull) && (dividend == INT64_MIN)))) {
85 overflow = 1;
86 } else {
87 rt = dividend / divisor;
88 overflow = rt != (int32_t)rt;
89 }
90
91 if (unlikely(overflow)) {
92 rt = 0; /* Undefined */
93 }
94
95 if (oe) {
96 helper_update_ov_legacy(env, overflow);
97 }
98
99 return (target_ulong)rt;
100 }
101
102 #if defined(TARGET_PPC64)
103
104 uint64_t helper_divdeu(CPUPPCState *env, uint64_t ra, uint64_t rb, uint32_t oe)
105 {
106 uint64_t rt = 0;
107 int overflow = 0;
108
109 if (unlikely(rb == 0 || ra >= rb)) {
110 overflow = 1;
111 rt = 0; /* Undefined */
112 } else {
113 divu128(&rt, &ra, rb);
114 }
115
116 if (oe) {
117 helper_update_ov_legacy(env, overflow);
118 }
119
120 return rt;
121 }
122
123 uint64_t helper_divde(CPUPPCState *env, uint64_t rau, uint64_t rbu, uint32_t oe)
124 {
125 uint64_t rt = 0;
126 int64_t ra = (int64_t)rau;
127 int64_t rb = (int64_t)rbu;
128 int overflow = 0;
129
130 if (unlikely(rb == 0 || uabs64(ra) >= uabs64(rb))) {
131 overflow = 1;
132 rt = 0; /* Undefined */
133 } else {
134 divs128(&rt, &ra, rb);
135 }
136
137 if (oe) {
138 helper_update_ov_legacy(env, overflow);
139 }
140
141 return rt;
142 }
143
144 #endif
145
146
147 #if defined(TARGET_PPC64)
148 /* if x = 0xab, returns 0xababababababababa */
149 #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
150
151 /*
152 * subtract 1 from each byte, and with inverse, check if MSB is set at each
153 * byte.
154 * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
155 * (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
156 */
157 #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
158
159 /* When you XOR the pattern and there is a match, that byte will be zero */
160 #define hasvalue(x, n) (haszero((x) ^ pattern(n)))
161
162 uint32_t helper_cmpeqb(target_ulong ra, target_ulong rb)
163 {
164 return hasvalue(rb, ra) ? CRF_GT : 0;
165 }
166
167 #undef pattern
168 #undef haszero
169 #undef hasvalue
170
171 /*
172 * Return a random number.
173 */
174 uint64_t helper_darn32(void)
175 {
176 Error *err = NULL;
177 uint32_t ret;
178
179 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
180 qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s",
181 error_get_pretty(err));
182 error_free(err);
183 return -1;
184 }
185
186 return ret;
187 }
188
189 uint64_t helper_darn64(void)
190 {
191 Error *err = NULL;
192 uint64_t ret;
193
194 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
195 qemu_log_mask(LOG_UNIMP, "darn: Crypto failure: %s",
196 error_get_pretty(err));
197 error_free(err);
198 return -1;
199 }
200
201 return ret;
202 }
203
204 uint64_t helper_bpermd(uint64_t rs, uint64_t rb)
205 {
206 int i;
207 uint64_t ra = 0;
208
209 for (i = 0; i < 8; i++) {
210 int index = (rs >> (i * 8)) & 0xFF;
211 if (index < 64) {
212 if (rb & PPC_BIT(index)) {
213 ra |= 1 << i;
214 }
215 }
216 }
217 return ra;
218 }
219
220 #endif
221
222 target_ulong helper_cmpb(target_ulong rs, target_ulong rb)
223 {
224 target_ulong mask = 0xff;
225 target_ulong ra = 0;
226 int i;
227
228 for (i = 0; i < sizeof(target_ulong); i++) {
229 if ((rs & mask) == (rb & mask)) {
230 ra |= mask;
231 }
232 mask <<= 8;
233 }
234 return ra;
235 }
236
237 /* shift right arithmetic helper */
238 target_ulong helper_sraw(CPUPPCState *env, target_ulong value,
239 target_ulong shift)
240 {
241 int32_t ret;
242
243 if (likely(!(shift & 0x20))) {
244 if (likely((uint32_t)shift != 0)) {
245 shift &= 0x1f;
246 ret = (int32_t)value >> shift;
247 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
248 env->ca32 = env->ca = 0;
249 } else {
250 env->ca32 = env->ca = 1;
251 }
252 } else {
253 ret = (int32_t)value;
254 env->ca32 = env->ca = 0;
255 }
256 } else {
257 ret = (int32_t)value >> 31;
258 env->ca32 = env->ca = (ret != 0);
259 }
260 return (target_long)ret;
261 }
262
263 #if defined(TARGET_PPC64)
264 target_ulong helper_srad(CPUPPCState *env, target_ulong value,
265 target_ulong shift)
266 {
267 int64_t ret;
268
269 if (likely(!(shift & 0x40))) {
270 if (likely((uint64_t)shift != 0)) {
271 shift &= 0x3f;
272 ret = (int64_t)value >> shift;
273 if (likely(ret >= 0 || (value & ((1ULL << shift) - 1)) == 0)) {
274 env->ca32 = env->ca = 0;
275 } else {
276 env->ca32 = env->ca = 1;
277 }
278 } else {
279 ret = (int64_t)value;
280 env->ca32 = env->ca = 0;
281 }
282 } else {
283 ret = (int64_t)value >> 63;
284 env->ca32 = env->ca = (ret != 0);
285 }
286 return ret;
287 }
288 #endif
289
290 #if defined(TARGET_PPC64)
291 target_ulong helper_popcntb(target_ulong val)
292 {
293 /* Note that we don't fold past bytes */
294 val = (val & 0x5555555555555555ULL) + ((val >> 1) &
295 0x5555555555555555ULL);
296 val = (val & 0x3333333333333333ULL) + ((val >> 2) &
297 0x3333333333333333ULL);
298 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
299 0x0f0f0f0f0f0f0f0fULL);
300 return val;
301 }
302
303 target_ulong helper_popcntw(target_ulong val)
304 {
305 /* Note that we don't fold past words. */
306 val = (val & 0x5555555555555555ULL) + ((val >> 1) &
307 0x5555555555555555ULL);
308 val = (val & 0x3333333333333333ULL) + ((val >> 2) &
309 0x3333333333333333ULL);
310 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
311 0x0f0f0f0f0f0f0f0fULL);
312 val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) &
313 0x00ff00ff00ff00ffULL);
314 val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
315 0x0000ffff0000ffffULL);
316 return val;
317 }
318 #else
319 target_ulong helper_popcntb(target_ulong val)
320 {
321 /* Note that we don't fold past bytes */
322 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
323 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
324 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
325 return val;
326 }
327 #endif
328
329 uint64_t helper_CFUGED(uint64_t src, uint64_t mask)
330 {
331 /*
332 * Instead of processing the mask bit-by-bit from the most significant to
333 * the least significant bit, as described in PowerISA, we'll handle it in
334 * blocks of 'n' zeros/ones from LSB to MSB. To avoid the decision to use
335 * ctz or cto, we negate the mask at the end of the loop.
336 */
337 target_ulong m, left = 0, right = 0;
338 unsigned int n, i = 64;
339 bool bit = false; /* tracks if we are processing zeros or ones */
340
341 if (mask == 0 || mask == -1) {
342 return src;
343 }
344
345 /* Processes the mask in blocks, from LSB to MSB */
346 while (i) {
347 /* Find how many bits we should take */
348 n = ctz64(mask);
349 if (n > i) {
350 n = i;
351 }
352
353 /*
354 * Extracts 'n' trailing bits of src and put them on the leading 'n'
355 * bits of 'right' or 'left', pushing down the previously extracted
356 * values.
357 */
358 m = (1ll << n) - 1;
359 if (bit) {
360 right = ror64(right | (src & m), n);
361 } else {
362 left = ror64(left | (src & m), n);
363 }
364
365 /*
366 * Discards the processed bits from 'src' and 'mask'. Note that we are
367 * removing 'n' trailing zeros from 'mask', but the logical shift will
368 * add 'n' leading zeros back, so the population count of 'mask' is kept
369 * the same.
370 */
371 src >>= n;
372 mask >>= n;
373 i -= n;
374 bit = !bit;
375 mask = ~mask;
376 }
377
378 /*
379 * At the end, right was ror'ed ctpop(mask) times. To put it back in place,
380 * we'll shift it more 64-ctpop(mask) times.
381 */
382 if (bit) {
383 n = ctpop64(mask);
384 } else {
385 n = 64 - ctpop64(mask);
386 }
387
388 return left | (right >> n);
389 }
390
391 uint64_t helper_PDEPD(uint64_t src, uint64_t mask)
392 {
393 int i, o;
394 uint64_t result = 0;
395
396 if (mask == -1) {
397 return src;
398 }
399
400 for (i = 0; mask != 0; i++) {
401 o = ctz64(mask);
402 mask &= mask - 1;
403 result |= ((src >> i) & 1) << o;
404 }
405
406 return result;
407 }
408
409 uint64_t helper_PEXTD(uint64_t src, uint64_t mask)
410 {
411 int i, o;
412 uint64_t result = 0;
413
414 if (mask == -1) {
415 return src;
416 }
417
418 for (o = 0; mask != 0; o++) {
419 i = ctz64(mask);
420 mask &= mask - 1;
421 result |= ((src >> i) & 1) << o;
422 }
423
424 return result;
425 }
426
427 /*****************************************************************************/
428 /* Altivec extension helpers */
429 #if HOST_BIG_ENDIAN
430 #define VECTOR_FOR_INORDER_I(index, element) \
431 for (index = 0; index < ARRAY_SIZE(r->element); index++)
432 #else
433 #define VECTOR_FOR_INORDER_I(index, element) \
434 for (index = ARRAY_SIZE(r->element) - 1; index >= 0; index--)
435 #endif
436
437 /* Saturating arithmetic helpers. */
438 #define SATCVT(from, to, from_type, to_type, min, max) \
439 static inline to_type cvt##from##to(from_type x, int *sat) \
440 { \
441 to_type r; \
442 \
443 if (x < (from_type)min) { \
444 r = min; \
445 *sat = 1; \
446 } else if (x > (from_type)max) { \
447 r = max; \
448 *sat = 1; \
449 } else { \
450 r = x; \
451 } \
452 return r; \
453 }
454 #define SATCVTU(from, to, from_type, to_type, min, max) \
455 static inline to_type cvt##from##to(from_type x, int *sat) \
456 { \
457 to_type r; \
458 \
459 if (x > (from_type)max) { \
460 r = max; \
461 *sat = 1; \
462 } else { \
463 r = x; \
464 } \
465 return r; \
466 }
467 SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
468 SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
469 SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
470
471 SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
472 SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
473 SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
474 SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
475 SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
476 SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
477 #undef SATCVT
478 #undef SATCVTU
479
480 void helper_mtvscr(CPUPPCState *env, uint32_t vscr)
481 {
482 ppc_store_vscr(env, vscr);
483 }
484
485 uint32_t helper_mfvscr(CPUPPCState *env)
486 {
487 return ppc_get_vscr(env);
488 }
489
490 static inline void set_vscr_sat(CPUPPCState *env)
491 {
492 /* The choice of non-zero value is arbitrary. */
493 env->vscr_sat.u32[0] = 1;
494 }
495
496 /* vprtybq */
497 void helper_VPRTYBQ(ppc_avr_t *r, ppc_avr_t *b, uint32_t v)
498 {
499 uint64_t res = b->u64[0] ^ b->u64[1];
500 res ^= res >> 32;
501 res ^= res >> 16;
502 res ^= res >> 8;
503 r->VsrD(1) = res & 1;
504 r->VsrD(0) = 0;
505 }
506
507 #define VARITHFP(suffix, func) \
508 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
509 ppc_avr_t *b) \
510 { \
511 int i; \
512 \
513 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
514 r->f32[i] = func(a->f32[i], b->f32[i], &env->vec_status); \
515 } \
516 }
517 VARITHFP(addfp, float32_add)
518 VARITHFP(subfp, float32_sub)
519 VARITHFP(minfp, float32_min)
520 VARITHFP(maxfp, float32_max)
521 #undef VARITHFP
522
523 #define VARITHFPFMA(suffix, type) \
524 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
525 ppc_avr_t *b, ppc_avr_t *c) \
526 { \
527 int i; \
528 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
529 r->f32[i] = float32_muladd(a->f32[i], c->f32[i], b->f32[i], \
530 type, &env->vec_status); \
531 } \
532 }
533 VARITHFPFMA(maddfp, 0);
534 VARITHFPFMA(nmsubfp, float_muladd_negate_result | float_muladd_negate_c);
535 #undef VARITHFPFMA
536
537 #define VARITHSAT_CASE(type, op, cvt, element) \
538 { \
539 type result = (type)a->element[i] op (type)b->element[i]; \
540 r->element[i] = cvt(result, &sat); \
541 }
542
543 #define VARITHSAT_DO(name, op, optype, cvt, element) \
544 void helper_v##name(ppc_avr_t *r, ppc_avr_t *vscr_sat, \
545 ppc_avr_t *a, ppc_avr_t *b, uint32_t desc) \
546 { \
547 int sat = 0; \
548 int i; \
549 \
550 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
551 VARITHSAT_CASE(optype, op, cvt, element); \
552 } \
553 if (sat) { \
554 vscr_sat->u32[0] = 1; \
555 } \
556 }
557 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
558 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
559 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
560 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
561 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
562 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
563 VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
564 VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
565 VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
566 VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
567 VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
568 VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
569 #undef VARITHSAT_CASE
570 #undef VARITHSAT_DO
571 #undef VARITHSAT_SIGNED
572 #undef VARITHSAT_UNSIGNED
573
574 #define VAVG(name, element, etype) \
575 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t v)\
576 { \
577 int i; \
578 \
579 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
580 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
581 r->element[i] = x >> 1; \
582 } \
583 }
584
585 VAVG(VAVGSB, s8, int16_t)
586 VAVG(VAVGUB, u8, uint16_t)
587 VAVG(VAVGSH, s16, int32_t)
588 VAVG(VAVGUH, u16, uint32_t)
589 VAVG(VAVGSW, s32, int64_t)
590 VAVG(VAVGUW, u32, uint64_t)
591 #undef VAVG
592
593 #define VABSDU(name, element) \
594 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t v)\
595 { \
596 int i; \
597 \
598 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
599 r->element[i] = (a->element[i] > b->element[i]) ? \
600 (a->element[i] - b->element[i]) : \
601 (b->element[i] - a->element[i]); \
602 } \
603 }
604
605 /*
606 * VABSDU - Vector absolute difference unsigned
607 * name - instruction mnemonic suffix (b: byte, h: halfword, w: word)
608 * element - element type to access from vector
609 */
610 VABSDU(VABSDUB, u8)
611 VABSDU(VABSDUH, u16)
612 VABSDU(VABSDUW, u32)
613 #undef VABSDU
614
615 #define VCF(suffix, cvt, element) \
616 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
617 ppc_avr_t *b, uint32_t uim) \
618 { \
619 int i; \
620 \
621 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
622 float32 t = cvt(b->element[i], &env->vec_status); \
623 r->f32[i] = float32_scalbn(t, -uim, &env->vec_status); \
624 } \
625 }
626 VCF(ux, uint32_to_float32, u32)
627 VCF(sx, int32_to_float32, s32)
628 #undef VCF
629
630 #define VCMPNEZ(NAME, ELEM) \
631 void helper_##NAME(ppc_vsr_t *t, ppc_vsr_t *a, ppc_vsr_t *b, uint32_t desc) \
632 { \
633 for (int i = 0; i < ARRAY_SIZE(t->ELEM); i++) { \
634 t->ELEM[i] = ((a->ELEM[i] == 0) || (b->ELEM[i] == 0) || \
635 (a->ELEM[i] != b->ELEM[i])) ? -1 : 0; \
636 } \
637 }
638 VCMPNEZ(VCMPNEZB, u8)
639 VCMPNEZ(VCMPNEZH, u16)
640 VCMPNEZ(VCMPNEZW, u32)
641 #undef VCMPNEZ
642
643 #define VCMPFP_DO(suffix, compare, order, record) \
644 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
645 ppc_avr_t *a, ppc_avr_t *b) \
646 { \
647 uint32_t ones = (uint32_t)-1; \
648 uint32_t all = ones; \
649 uint32_t none = 0; \
650 int i; \
651 \
652 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
653 uint32_t result; \
654 FloatRelation rel = \
655 float32_compare_quiet(a->f32[i], b->f32[i], \
656 &env->vec_status); \
657 if (rel == float_relation_unordered) { \
658 result = 0; \
659 } else if (rel compare order) { \
660 result = ones; \
661 } else { \
662 result = 0; \
663 } \
664 r->u32[i] = result; \
665 all &= result; \
666 none |= result; \
667 } \
668 if (record) { \
669 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
670 } \
671 }
672 #define VCMPFP(suffix, compare, order) \
673 VCMPFP_DO(suffix, compare, order, 0) \
674 VCMPFP_DO(suffix##_dot, compare, order, 1)
675 VCMPFP(eqfp, ==, float_relation_equal)
676 VCMPFP(gefp, !=, float_relation_less)
677 VCMPFP(gtfp, ==, float_relation_greater)
678 #undef VCMPFP_DO
679 #undef VCMPFP
680
681 static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r,
682 ppc_avr_t *a, ppc_avr_t *b, int record)
683 {
684 int i;
685 int all_in = 0;
686
687 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
688 FloatRelation le_rel = float32_compare_quiet(a->f32[i], b->f32[i],
689 &env->vec_status);
690 if (le_rel == float_relation_unordered) {
691 r->u32[i] = 0xc0000000;
692 all_in = 1;
693 } else {
694 float32 bneg = float32_chs(b->f32[i]);
695 FloatRelation ge_rel = float32_compare_quiet(a->f32[i], bneg,
696 &env->vec_status);
697 int le = le_rel != float_relation_greater;
698 int ge = ge_rel != float_relation_less;
699
700 r->u32[i] = ((!le) << 31) | ((!ge) << 30);
701 all_in |= (!le | !ge);
702 }
703 }
704 if (record) {
705 env->crf[6] = (all_in == 0) << 1;
706 }
707 }
708
709 void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
710 {
711 vcmpbfp_internal(env, r, a, b, 0);
712 }
713
714 void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
715 ppc_avr_t *b)
716 {
717 vcmpbfp_internal(env, r, a, b, 1);
718 }
719
720 #define VCT(suffix, satcvt, element) \
721 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
722 ppc_avr_t *b, uint32_t uim) \
723 { \
724 int i; \
725 int sat = 0; \
726 float_status s = env->vec_status; \
727 \
728 set_float_rounding_mode(float_round_to_zero, &s); \
729 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
730 if (float32_is_any_nan(b->f32[i])) { \
731 r->element[i] = 0; \
732 } else { \
733 float64 t = float32_to_float64(b->f32[i], &s); \
734 int64_t j; \
735 \
736 t = float64_scalbn(t, uim, &s); \
737 j = float64_to_int64(t, &s); \
738 r->element[i] = satcvt(j, &sat); \
739 } \
740 } \
741 if (sat) { \
742 set_vscr_sat(env); \
743 } \
744 }
745 VCT(uxs, cvtsduw, u32)
746 VCT(sxs, cvtsdsw, s32)
747 #undef VCT
748
749 typedef int64_t do_ger(uint32_t, uint32_t, uint32_t);
750
751 static int64_t ger_rank8(uint32_t a, uint32_t b, uint32_t mask)
752 {
753 int64_t psum = 0;
754 for (int i = 0; i < 8; i++, mask >>= 1) {
755 if (mask & 1) {
756 psum += (int64_t)sextract32(a, 4 * i, 4) * sextract32(b, 4 * i, 4);
757 }
758 }
759 return psum;
760 }
761
762 static int64_t ger_rank4(uint32_t a, uint32_t b, uint32_t mask)
763 {
764 int64_t psum = 0;
765 for (int i = 0; i < 4; i++, mask >>= 1) {
766 if (mask & 1) {
767 psum += sextract32(a, 8 * i, 8) * (int64_t)extract32(b, 8 * i, 8);
768 }
769 }
770 return psum;
771 }
772
773 static int64_t ger_rank2(uint32_t a, uint32_t b, uint32_t mask)
774 {
775 int64_t psum = 0;
776 for (int i = 0; i < 2; i++, mask >>= 1) {
777 if (mask & 1) {
778 psum += (int64_t)sextract32(a, 16 * i, 16) *
779 sextract32(b, 16 * i, 16);
780 }
781 }
782 return psum;
783 }
784
785 static void xviger(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, ppc_acc_t *at,
786 uint32_t mask, bool sat, bool acc, do_ger ger)
787 {
788 uint8_t pmsk = FIELD_EX32(mask, GER_MSK, PMSK),
789 xmsk = FIELD_EX32(mask, GER_MSK, XMSK),
790 ymsk = FIELD_EX32(mask, GER_MSK, YMSK);
791 uint8_t xmsk_bit, ymsk_bit;
792 int64_t psum;
793 int i, j;
794 for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) {
795 for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) {
796 if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) {
797 psum = ger(a->VsrW(i), b->VsrW(j), pmsk);
798 if (acc) {
799 psum += at[i].VsrSW(j);
800 }
801 if (sat && psum > INT32_MAX) {
802 set_vscr_sat(env);
803 at[i].VsrSW(j) = INT32_MAX;
804 } else if (sat && psum < INT32_MIN) {
805 set_vscr_sat(env);
806 at[i].VsrSW(j) = INT32_MIN;
807 } else {
808 at[i].VsrSW(j) = (int32_t) psum;
809 }
810 } else {
811 at[i].VsrSW(j) = 0;
812 }
813 }
814 }
815 }
816
817 QEMU_FLATTEN
818 void helper_XVI4GER8(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
819 ppc_acc_t *at, uint32_t mask)
820 {
821 xviger(env, a, b, at, mask, false, false, ger_rank8);
822 }
823
824 QEMU_FLATTEN
825 void helper_XVI4GER8PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
826 ppc_acc_t *at, uint32_t mask)
827 {
828 xviger(env, a, b, at, mask, false, true, ger_rank8);
829 }
830
831 QEMU_FLATTEN
832 void helper_XVI8GER4(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
833 ppc_acc_t *at, uint32_t mask)
834 {
835 xviger(env, a, b, at, mask, false, false, ger_rank4);
836 }
837
838 QEMU_FLATTEN
839 void helper_XVI8GER4PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
840 ppc_acc_t *at, uint32_t mask)
841 {
842 xviger(env, a, b, at, mask, false, true, ger_rank4);
843 }
844
845 QEMU_FLATTEN
846 void helper_XVI8GER4SPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
847 ppc_acc_t *at, uint32_t mask)
848 {
849 xviger(env, a, b, at, mask, true, true, ger_rank4);
850 }
851
852 QEMU_FLATTEN
853 void helper_XVI16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
854 ppc_acc_t *at, uint32_t mask)
855 {
856 xviger(env, a, b, at, mask, false, false, ger_rank2);
857 }
858
859 QEMU_FLATTEN
860 void helper_XVI16GER2S(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
861 ppc_acc_t *at, uint32_t mask)
862 {
863 xviger(env, a, b, at, mask, true, false, ger_rank2);
864 }
865
866 QEMU_FLATTEN
867 void helper_XVI16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
868 ppc_acc_t *at, uint32_t mask)
869 {
870 xviger(env, a, b, at, mask, false, true, ger_rank2);
871 }
872
873 QEMU_FLATTEN
874 void helper_XVI16GER2SPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
875 ppc_acc_t *at, uint32_t mask)
876 {
877 xviger(env, a, b, at, mask, true, true, ger_rank2);
878 }
879
880 target_ulong helper_vclzlsbb(ppc_avr_t *r)
881 {
882 target_ulong count = 0;
883 int i;
884 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
885 if (r->VsrB(i) & 0x01) {
886 break;
887 }
888 count++;
889 }
890 return count;
891 }
892
893 target_ulong helper_vctzlsbb(ppc_avr_t *r)
894 {
895 target_ulong count = 0;
896 int i;
897 for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
898 if (r->VsrB(i) & 0x01) {
899 break;
900 }
901 count++;
902 }
903 return count;
904 }
905
906 void helper_VMHADDSHS(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
907 ppc_avr_t *b, ppc_avr_t *c)
908 {
909 int sat = 0;
910 int i;
911
912 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
913 int32_t prod = a->s16[i] * b->s16[i];
914 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
915
916 r->s16[i] = cvtswsh(t, &sat);
917 }
918
919 if (sat) {
920 set_vscr_sat(env);
921 }
922 }
923
924 void helper_VMHRADDSHS(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
925 ppc_avr_t *b, ppc_avr_t *c)
926 {
927 int sat = 0;
928 int i;
929
930 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
931 int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
932 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
933 r->s16[i] = cvtswsh(t, &sat);
934 }
935
936 if (sat) {
937 set_vscr_sat(env);
938 }
939 }
940
941 void helper_VMLADDUHM(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c,
942 uint32_t v)
943 {
944 int i;
945
946 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
947 int32_t prod = a->s16[i] * b->s16[i];
948 r->s16[i] = (int16_t) (prod + c->s16[i]);
949 }
950 }
951
952 #define VMRG_DO(name, element, access, ofs) \
953 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
954 { \
955 ppc_avr_t result; \
956 int i, half = ARRAY_SIZE(r->element) / 2; \
957 \
958 for (i = 0; i < half; i++) { \
959 result.access(i * 2 + 0) = a->access(i + ofs); \
960 result.access(i * 2 + 1) = b->access(i + ofs); \
961 } \
962 *r = result; \
963 }
964
965 #define VMRG(suffix, element, access) \
966 VMRG_DO(mrgl##suffix, element, access, half) \
967 VMRG_DO(mrgh##suffix, element, access, 0)
968 VMRG(b, u8, VsrB)
969 VMRG(h, u16, VsrH)
970 VMRG(w, u32, VsrW)
971 #undef VMRG_DO
972 #undef VMRG
973
974 void helper_VMSUMMBM(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
975 {
976 int32_t prod[16];
977 int i;
978
979 for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
980 prod[i] = (int32_t)a->s8[i] * b->u8[i];
981 }
982
983 VECTOR_FOR_INORDER_I(i, s32) {
984 r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
985 prod[4 * i + 2] + prod[4 * i + 3];
986 }
987 }
988
989 void helper_VMSUMSHM(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
990 {
991 int32_t prod[8];
992 int i;
993
994 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
995 prod[i] = a->s16[i] * b->s16[i];
996 }
997
998 VECTOR_FOR_INORDER_I(i, s32) {
999 r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
1000 }
1001 }
1002
1003 void helper_VMSUMSHS(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1004 ppc_avr_t *b, ppc_avr_t *c)
1005 {
1006 int32_t prod[8];
1007 int i;
1008 int sat = 0;
1009
1010 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
1011 prod[i] = (int32_t)a->s16[i] * b->s16[i];
1012 }
1013
1014 VECTOR_FOR_INORDER_I(i, s32) {
1015 int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
1016
1017 r->u32[i] = cvtsdsw(t, &sat);
1018 }
1019
1020 if (sat) {
1021 set_vscr_sat(env);
1022 }
1023 }
1024
1025 void helper_VMSUMUBM(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
1026 {
1027 uint16_t prod[16];
1028 int i;
1029
1030 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1031 prod[i] = a->u8[i] * b->u8[i];
1032 }
1033
1034 VECTOR_FOR_INORDER_I(i, u32) {
1035 r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
1036 prod[4 * i + 2] + prod[4 * i + 3];
1037 }
1038 }
1039
1040 void helper_VMSUMUHM(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
1041 {
1042 uint32_t prod[8];
1043 int i;
1044
1045 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
1046 prod[i] = a->u16[i] * b->u16[i];
1047 }
1048
1049 VECTOR_FOR_INORDER_I(i, u32) {
1050 r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
1051 }
1052 }
1053
1054 void helper_VMSUMUHS(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1055 ppc_avr_t *b, ppc_avr_t *c)
1056 {
1057 uint32_t prod[8];
1058 int i;
1059 int sat = 0;
1060
1061 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
1062 prod[i] = a->u16[i] * b->u16[i];
1063 }
1064
1065 VECTOR_FOR_INORDER_I(i, s32) {
1066 uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
1067
1068 r->u32[i] = cvtuduw(t, &sat);
1069 }
1070
1071 if (sat) {
1072 set_vscr_sat(env);
1073 }
1074 }
1075
1076 #define VMUL_DO_EVN(name, mul_element, mul_access, prod_access, cast) \
1077 void helper_V##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1078 { \
1079 int i; \
1080 \
1081 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1082 r->prod_access(i >> 1) = (cast)a->mul_access(i) * \
1083 (cast)b->mul_access(i); \
1084 } \
1085 }
1086
1087 #define VMUL_DO_ODD(name, mul_element, mul_access, prod_access, cast) \
1088 void helper_V##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1089 { \
1090 int i; \
1091 \
1092 for (i = 0; i < ARRAY_SIZE(r->mul_element); i += 2) { \
1093 r->prod_access(i >> 1) = (cast)a->mul_access(i + 1) * \
1094 (cast)b->mul_access(i + 1); \
1095 } \
1096 }
1097
1098 #define VMUL(suffix, mul_element, mul_access, prod_access, cast) \
1099 VMUL_DO_EVN(MULE##suffix, mul_element, mul_access, prod_access, cast) \
1100 VMUL_DO_ODD(MULO##suffix, mul_element, mul_access, prod_access, cast)
1101 VMUL(SB, s8, VsrSB, VsrSH, int16_t)
1102 VMUL(SH, s16, VsrSH, VsrSW, int32_t)
1103 VMUL(SW, s32, VsrSW, VsrSD, int64_t)
1104 VMUL(UB, u8, VsrB, VsrH, uint16_t)
1105 VMUL(UH, u16, VsrH, VsrW, uint32_t)
1106 VMUL(UW, u32, VsrW, VsrD, uint64_t)
1107 #undef VMUL_DO_EVN
1108 #undef VMUL_DO_ODD
1109 #undef VMUL
1110
1111 void helper_XXPERMX(ppc_vsr_t *t, ppc_vsr_t *s0, ppc_vsr_t *s1, ppc_vsr_t *pcv,
1112 target_ulong uim)
1113 {
1114 int i, idx;
1115 ppc_vsr_t tmp = { .u64 = {0, 0} };
1116
1117 for (i = 0; i < ARRAY_SIZE(t->u8); i++) {
1118 if ((pcv->VsrB(i) >> 5) == uim) {
1119 idx = pcv->VsrB(i) & 0x1f;
1120 if (idx < ARRAY_SIZE(t->u8)) {
1121 tmp.VsrB(i) = s0->VsrB(idx);
1122 } else {
1123 tmp.VsrB(i) = s1->VsrB(idx - ARRAY_SIZE(t->u8));
1124 }
1125 }
1126 }
1127
1128 *t = tmp;
1129 }
1130
1131 void helper_VDIVSQ(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b)
1132 {
1133 Int128 neg1 = int128_makes64(-1);
1134 Int128 int128_min = int128_make128(0, INT64_MIN);
1135 if (likely(int128_nz(b->s128) &&
1136 (int128_ne(a->s128, int128_min) || int128_ne(b->s128, neg1)))) {
1137 t->s128 = int128_divs(a->s128, b->s128);
1138 } else {
1139 t->s128 = a->s128; /* Undefined behavior */
1140 }
1141 }
1142
1143 void helper_VDIVUQ(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b)
1144 {
1145 if (int128_nz(b->s128)) {
1146 t->s128 = int128_divu(a->s128, b->s128);
1147 } else {
1148 t->s128 = a->s128; /* Undefined behavior */
1149 }
1150 }
1151
1152 void helper_VDIVESD(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b)
1153 {
1154 int i;
1155 int64_t high;
1156 uint64_t low;
1157 for (i = 0; i < 2; i++) {
1158 high = a->s64[i];
1159 low = 0;
1160 if (unlikely((high == INT64_MIN && b->s64[i] == -1) || !b->s64[i])) {
1161 t->s64[i] = a->s64[i]; /* Undefined behavior */
1162 } else {
1163 divs128(&low, &high, b->s64[i]);
1164 t->s64[i] = low;
1165 }
1166 }
1167 }
1168
1169 void helper_VDIVEUD(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b)
1170 {
1171 int i;
1172 uint64_t high, low;
1173 for (i = 0; i < 2; i++) {
1174 high = a->u64[i];
1175 low = 0;
1176 if (unlikely(!b->u64[i])) {
1177 t->u64[i] = a->u64[i]; /* Undefined behavior */
1178 } else {
1179 divu128(&low, &high, b->u64[i]);
1180 t->u64[i] = low;
1181 }
1182 }
1183 }
1184
1185 void helper_VDIVESQ(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b)
1186 {
1187 Int128 high, low;
1188 Int128 int128_min = int128_make128(0, INT64_MIN);
1189 Int128 neg1 = int128_makes64(-1);
1190
1191 high = a->s128;
1192 low = int128_zero();
1193 if (unlikely(!int128_nz(b->s128) ||
1194 (int128_eq(b->s128, neg1) && int128_eq(high, int128_min)))) {
1195 t->s128 = a->s128; /* Undefined behavior */
1196 } else {
1197 divs256(&low, &high, b->s128);
1198 t->s128 = low;
1199 }
1200 }
1201
1202 void helper_VDIVEUQ(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b)
1203 {
1204 Int128 high, low;
1205
1206 high = a->s128;
1207 low = int128_zero();
1208 if (unlikely(!int128_nz(b->s128))) {
1209 t->s128 = a->s128; /* Undefined behavior */
1210 } else {
1211 divu256(&low, &high, b->s128);
1212 t->s128 = low;
1213 }
1214 }
1215
1216 void helper_VMODSQ(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b)
1217 {
1218 Int128 neg1 = int128_makes64(-1);
1219 Int128 int128_min = int128_make128(0, INT64_MIN);
1220 if (likely(int128_nz(b->s128) &&
1221 (int128_ne(a->s128, int128_min) || int128_ne(b->s128, neg1)))) {
1222 t->s128 = int128_rems(a->s128, b->s128);
1223 } else {
1224 t->s128 = int128_zero(); /* Undefined behavior */
1225 }
1226 }
1227
1228 void helper_VMODUQ(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b)
1229 {
1230 if (likely(int128_nz(b->s128))) {
1231 t->s128 = int128_remu(a->s128, b->s128);
1232 } else {
1233 t->s128 = int128_zero(); /* Undefined behavior */
1234 }
1235 }
1236
1237 void helper_VPERM(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
1238 {
1239 ppc_avr_t result;
1240 int i;
1241
1242 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1243 int s = c->VsrB(i) & 0x1f;
1244 int index = s & 0xf;
1245
1246 if (s & 0x10) {
1247 result.VsrB(i) = b->VsrB(index);
1248 } else {
1249 result.VsrB(i) = a->VsrB(index);
1250 }
1251 }
1252 *r = result;
1253 }
1254
1255 void helper_VPERMR(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
1256 {
1257 ppc_avr_t result;
1258 int i;
1259
1260 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1261 int s = c->VsrB(i) & 0x1f;
1262 int index = 15 - (s & 0xf);
1263
1264 if (s & 0x10) {
1265 result.VsrB(i) = a->VsrB(index);
1266 } else {
1267 result.VsrB(i) = b->VsrB(index);
1268 }
1269 }
1270 *r = result;
1271 }
1272
1273 #define XXGENPCV_BE_EXP(NAME, SZ) \
1274 void glue(helper_, glue(NAME, _be_exp))(ppc_vsr_t *t, ppc_vsr_t *b) \
1275 { \
1276 ppc_vsr_t tmp; \
1277 \
1278 /* Initialize tmp with the result of an all-zeros mask */ \
1279 tmp.VsrD(0) = 0x1011121314151617; \
1280 tmp.VsrD(1) = 0x18191A1B1C1D1E1F; \
1281 \
1282 /* Iterate over the most significant byte of each element */ \
1283 for (int i = 0, j = 0; i < ARRAY_SIZE(b->u8); i += SZ) { \
1284 if (b->VsrB(i) & 0x80) { \
1285 /* Update each byte of the element */ \
1286 for (int k = 0; k < SZ; k++) { \
1287 tmp.VsrB(i + k) = j + k; \
1288 } \
1289 j += SZ; \
1290 } \
1291 } \
1292 \
1293 *t = tmp; \
1294 }
1295
1296 #define XXGENPCV_BE_COMP(NAME, SZ) \
1297 void glue(helper_, glue(NAME, _be_comp))(ppc_vsr_t *t, ppc_vsr_t *b)\
1298 { \
1299 ppc_vsr_t tmp = { .u64 = { 0, 0 } }; \
1300 \
1301 /* Iterate over the most significant byte of each element */ \
1302 for (int i = 0, j = 0; i < ARRAY_SIZE(b->u8); i += SZ) { \
1303 if (b->VsrB(i) & 0x80) { \
1304 /* Update each byte of the element */ \
1305 for (int k = 0; k < SZ; k++) { \
1306 tmp.VsrB(j + k) = i + k; \
1307 } \
1308 j += SZ; \
1309 } \
1310 } \
1311 \
1312 *t = tmp; \
1313 }
1314
1315 #define XXGENPCV_LE_EXP(NAME, SZ) \
1316 void glue(helper_, glue(NAME, _le_exp))(ppc_vsr_t *t, ppc_vsr_t *b) \
1317 { \
1318 ppc_vsr_t tmp; \
1319 \
1320 /* Initialize tmp with the result of an all-zeros mask */ \
1321 tmp.VsrD(0) = 0x1F1E1D1C1B1A1918; \
1322 tmp.VsrD(1) = 0x1716151413121110; \
1323 \
1324 /* Iterate over the most significant byte of each element */ \
1325 for (int i = 0, j = 0; i < ARRAY_SIZE(b->u8); i += SZ) { \
1326 /* Reverse indexing of "i" */ \
1327 const int idx = ARRAY_SIZE(b->u8) - i - SZ; \
1328 if (b->VsrB(idx) & 0x80) { \
1329 /* Update each byte of the element */ \
1330 for (int k = 0, rk = SZ - 1; k < SZ; k++, rk--) { \
1331 tmp.VsrB(idx + rk) = j + k; \
1332 } \
1333 j += SZ; \
1334 } \
1335 } \
1336 \
1337 *t = tmp; \
1338 }
1339
1340 #define XXGENPCV_LE_COMP(NAME, SZ) \
1341 void glue(helper_, glue(NAME, _le_comp))(ppc_vsr_t *t, ppc_vsr_t *b)\
1342 { \
1343 ppc_vsr_t tmp = { .u64 = { 0, 0 } }; \
1344 \
1345 /* Iterate over the most significant byte of each element */ \
1346 for (int i = 0, j = 0; i < ARRAY_SIZE(b->u8); i += SZ) { \
1347 if (b->VsrB(ARRAY_SIZE(b->u8) - i - SZ) & 0x80) { \
1348 /* Update each byte of the element */ \
1349 for (int k = 0, rk = SZ - 1; k < SZ; k++, rk--) { \
1350 /* Reverse indexing of "j" */ \
1351 const int idx = ARRAY_SIZE(b->u8) - j - SZ; \
1352 tmp.VsrB(idx + rk) = i + k; \
1353 } \
1354 j += SZ; \
1355 } \
1356 } \
1357 \
1358 *t = tmp; \
1359 }
1360
1361 #define XXGENPCV(NAME, SZ) \
1362 XXGENPCV_BE_EXP(NAME, SZ) \
1363 XXGENPCV_BE_COMP(NAME, SZ) \
1364 XXGENPCV_LE_EXP(NAME, SZ) \
1365 XXGENPCV_LE_COMP(NAME, SZ) \
1366
1367 XXGENPCV(XXGENPCVBM, 1)
1368 XXGENPCV(XXGENPCVHM, 2)
1369 XXGENPCV(XXGENPCVWM, 4)
1370 XXGENPCV(XXGENPCVDM, 8)
1371
1372 #undef XXGENPCV_BE_EXP
1373 #undef XXGENPCV_BE_COMP
1374 #undef XXGENPCV_LE_EXP
1375 #undef XXGENPCV_LE_COMP
1376 #undef XXGENPCV
1377
1378 #if HOST_BIG_ENDIAN
1379 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
1380 #define VBPERMD_INDEX(i) (i)
1381 #define VBPERMQ_DW(index) (((index) & 0x40) != 0)
1382 #else
1383 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15 - (i)])
1384 #define VBPERMD_INDEX(i) (1 - i)
1385 #define VBPERMQ_DW(index) (((index) & 0x40) == 0)
1386 #endif
1387 #define EXTRACT_BIT(avr, i, index) \
1388 (extract64((avr)->VsrD(i), 63 - index, 1))
1389
1390 void helper_vbpermd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1391 {
1392 int i, j;
1393 ppc_avr_t result = { .u64 = { 0, 0 } };
1394 VECTOR_FOR_INORDER_I(i, u64) {
1395 for (j = 0; j < 8; j++) {
1396 int index = VBPERMQ_INDEX(b, (i * 8) + j);
1397 if (index < 64 && EXTRACT_BIT(a, i, index)) {
1398 result.u64[VBPERMD_INDEX(i)] |= (0x80 >> j);
1399 }
1400 }
1401 }
1402 *r = result;
1403 }
1404
1405 void helper_vbpermq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1406 {
1407 int i;
1408 uint64_t perm = 0;
1409
1410 VECTOR_FOR_INORDER_I(i, u8) {
1411 int index = VBPERMQ_INDEX(b, i);
1412
1413 if (index < 128) {
1414 uint64_t mask = (1ull << (63 - (index & 0x3F)));
1415 if (a->u64[VBPERMQ_DW(index)] & mask) {
1416 perm |= (0x8000 >> i);
1417 }
1418 }
1419 }
1420
1421 r->VsrD(0) = perm;
1422 r->VsrD(1) = 0;
1423 }
1424
1425 #undef VBPERMQ_INDEX
1426 #undef VBPERMQ_DW
1427
1428 #define PMSUM(name, srcfld, trgfld, trgtyp) \
1429 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1430 { \
1431 int i, j; \
1432 trgtyp prod[sizeof(ppc_avr_t) / sizeof(a->srcfld[0])]; \
1433 \
1434 VECTOR_FOR_INORDER_I(i, srcfld) { \
1435 prod[i] = 0; \
1436 for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
1437 if (a->srcfld[i] & (1ull << j)) { \
1438 prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
1439 } \
1440 } \
1441 } \
1442 \
1443 VECTOR_FOR_INORDER_I(i, trgfld) { \
1444 r->trgfld[i] = prod[2 * i] ^ prod[2 * i + 1]; \
1445 } \
1446 }
1447
1448 PMSUM(vpmsumb, u8, u16, uint16_t)
1449 PMSUM(vpmsumh, u16, u32, uint32_t)
1450 PMSUM(vpmsumw, u32, u64, uint64_t)
1451
1452 void helper_VPMSUMD(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1453 {
1454 int i, j;
1455 Int128 tmp, prod[2] = {int128_zero(), int128_zero()};
1456
1457 for (j = 0; j < 64; j++) {
1458 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
1459 if (a->VsrD(i) & (1ull << j)) {
1460 tmp = int128_make64(b->VsrD(i));
1461 tmp = int128_lshift(tmp, j);
1462 prod[i] = int128_xor(prod[i], tmp);
1463 }
1464 }
1465 }
1466
1467 r->s128 = int128_xor(prod[0], prod[1]);
1468 }
1469
1470 #if HOST_BIG_ENDIAN
1471 #define PKBIG 1
1472 #else
1473 #define PKBIG 0
1474 #endif
1475 void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1476 {
1477 int i, j;
1478 ppc_avr_t result;
1479 #if HOST_BIG_ENDIAN
1480 const ppc_avr_t *x[2] = { a, b };
1481 #else
1482 const ppc_avr_t *x[2] = { b, a };
1483 #endif
1484
1485 VECTOR_FOR_INORDER_I(i, u64) {
1486 VECTOR_FOR_INORDER_I(j, u32) {
1487 uint32_t e = x[i]->u32[j];
1488
1489 result.u16[4 * i + j] = (((e >> 9) & 0xfc00) |
1490 ((e >> 6) & 0x3e0) |
1491 ((e >> 3) & 0x1f));
1492 }
1493 }
1494 *r = result;
1495 }
1496
1497 #define VPK(suffix, from, to, cvt, dosat) \
1498 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
1499 ppc_avr_t *a, ppc_avr_t *b) \
1500 { \
1501 int i; \
1502 int sat = 0; \
1503 ppc_avr_t result; \
1504 ppc_avr_t *a0 = PKBIG ? a : b; \
1505 ppc_avr_t *a1 = PKBIG ? b : a; \
1506 \
1507 VECTOR_FOR_INORDER_I(i, from) { \
1508 result.to[i] = cvt(a0->from[i], &sat); \
1509 result.to[i + ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);\
1510 } \
1511 *r = result; \
1512 if (dosat && sat) { \
1513 set_vscr_sat(env); \
1514 } \
1515 }
1516 #define I(x, y) (x)
1517 VPK(shss, s16, s8, cvtshsb, 1)
1518 VPK(shus, s16, u8, cvtshub, 1)
1519 VPK(swss, s32, s16, cvtswsh, 1)
1520 VPK(swus, s32, u16, cvtswuh, 1)
1521 VPK(sdss, s64, s32, cvtsdsw, 1)
1522 VPK(sdus, s64, u32, cvtsduw, 1)
1523 VPK(uhus, u16, u8, cvtuhub, 1)
1524 VPK(uwus, u32, u16, cvtuwuh, 1)
1525 VPK(udus, u64, u32, cvtuduw, 1)
1526 VPK(uhum, u16, u8, I, 0)
1527 VPK(uwum, u32, u16, I, 0)
1528 VPK(udum, u64, u32, I, 0)
1529 #undef I
1530 #undef VPK
1531 #undef PKBIG
1532
1533 void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1534 {
1535 int i;
1536
1537 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1538 r->f32[i] = float32_div(float32_one, b->f32[i], &env->vec_status);
1539 }
1540 }
1541
1542 #define VRFI(suffix, rounding) \
1543 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
1544 ppc_avr_t *b) \
1545 { \
1546 int i; \
1547 float_status s = env->vec_status; \
1548 \
1549 set_float_rounding_mode(rounding, &s); \
1550 for (i = 0; i < ARRAY_SIZE(r->f32); i++) { \
1551 r->f32[i] = float32_round_to_int (b->f32[i], &s); \
1552 } \
1553 }
1554 VRFI(n, float_round_nearest_even)
1555 VRFI(m, float_round_down)
1556 VRFI(p, float_round_up)
1557 VRFI(z, float_round_to_zero)
1558 #undef VRFI
1559
1560 void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1561 {
1562 int i;
1563
1564 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1565 float32 t = float32_sqrt(b->f32[i], &env->vec_status);
1566
1567 r->f32[i] = float32_div(float32_one, t, &env->vec_status);
1568 }
1569 }
1570
1571 #define VRLMI(name, size, element, insert) \
1572 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t desc) \
1573 { \
1574 int i; \
1575 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1576 uint##size##_t src1 = a->element[i]; \
1577 uint##size##_t src2 = b->element[i]; \
1578 uint##size##_t src3 = r->element[i]; \
1579 uint##size##_t begin, end, shift, mask, rot_val; \
1580 \
1581 shift = extract##size(src2, 0, 6); \
1582 end = extract##size(src2, 8, 6); \
1583 begin = extract##size(src2, 16, 6); \
1584 rot_val = rol##size(src1, shift); \
1585 mask = mask_u##size(begin, end); \
1586 if (insert) { \
1587 r->element[i] = (rot_val & mask) | (src3 & ~mask); \
1588 } else { \
1589 r->element[i] = (rot_val & mask); \
1590 } \
1591 } \
1592 }
1593
1594 VRLMI(VRLDMI, 64, u64, 1);
1595 VRLMI(VRLWMI, 32, u32, 1);
1596 VRLMI(VRLDNM, 64, u64, 0);
1597 VRLMI(VRLWNM, 32, u32, 0);
1598
1599 void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1600 {
1601 int i;
1602
1603 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1604 r->f32[i] = float32_exp2(b->f32[i], &env->vec_status);
1605 }
1606 }
1607
1608 void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1609 {
1610 int i;
1611
1612 for (i = 0; i < ARRAY_SIZE(r->f32); i++) {
1613 r->f32[i] = float32_log2(b->f32[i], &env->vec_status);
1614 }
1615 }
1616
1617 #define VEXTU_X_DO(name, size, left) \
1618 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1619 { \
1620 int index = (a & 0xf) * 8; \
1621 if (left) { \
1622 index = 128 - index - size; \
1623 } \
1624 return int128_getlo(int128_rshift(b->s128, index)) & \
1625 MAKE_64BIT_MASK(0, size); \
1626 }
1627 VEXTU_X_DO(vextublx, 8, 1)
1628 VEXTU_X_DO(vextuhlx, 16, 1)
1629 VEXTU_X_DO(vextuwlx, 32, 1)
1630 VEXTU_X_DO(vextubrx, 8, 0)
1631 VEXTU_X_DO(vextuhrx, 16, 0)
1632 VEXTU_X_DO(vextuwrx, 32, 0)
1633 #undef VEXTU_X_DO
1634
1635 void helper_vslv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1636 {
1637 int i;
1638 unsigned int shift, bytes, size;
1639
1640 size = ARRAY_SIZE(r->u8);
1641 for (i = 0; i < size; i++) {
1642 shift = b->VsrB(i) & 0x7; /* extract shift value */
1643 bytes = (a->VsrB(i) << 8) + /* extract adjacent bytes */
1644 (((i + 1) < size) ? a->VsrB(i + 1) : 0);
1645 r->VsrB(i) = (bytes << shift) >> 8; /* shift and store result */
1646 }
1647 }
1648
1649 void helper_vsrv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1650 {
1651 int i;
1652 unsigned int shift, bytes;
1653
1654 /*
1655 * Use reverse order, as destination and source register can be
1656 * same. Its being modified in place saving temporary, reverse
1657 * order will guarantee that computed result is not fed back.
1658 */
1659 for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
1660 shift = b->VsrB(i) & 0x7; /* extract shift value */
1661 bytes = ((i ? a->VsrB(i - 1) : 0) << 8) + a->VsrB(i);
1662 /* extract adjacent bytes */
1663 r->VsrB(i) = (bytes >> shift) & 0xFF; /* shift and store result */
1664 }
1665 }
1666
1667 void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
1668 {
1669 int sh = shift & 0xf;
1670 int i;
1671 ppc_avr_t result;
1672
1673 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1674 int index = sh + i;
1675 if (index > 0xf) {
1676 result.VsrB(i) = b->VsrB(index - 0x10);
1677 } else {
1678 result.VsrB(i) = a->VsrB(index);
1679 }
1680 }
1681 *r = result;
1682 }
1683
1684 void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1685 {
1686 int sh = (b->VsrB(0xf) >> 3) & 0xf;
1687
1688 #if HOST_BIG_ENDIAN
1689 memmove(&r->u8[0], &a->u8[sh], 16 - sh);
1690 memset(&r->u8[16 - sh], 0, sh);
1691 #else
1692 memmove(&r->u8[sh], &a->u8[0], 16 - sh);
1693 memset(&r->u8[0], 0, sh);
1694 #endif
1695 }
1696
1697 #if HOST_BIG_ENDIAN
1698 #define ELEM_ADDR(VEC, IDX, SIZE) (&(VEC)->u8[IDX])
1699 #else
1700 #define ELEM_ADDR(VEC, IDX, SIZE) (&(VEC)->u8[15 - (IDX)] - (SIZE) + 1)
1701 #endif
1702
1703 #define VINSX(SUFFIX, TYPE) \
1704 void glue(glue(helper_VINS, SUFFIX), LX)(CPUPPCState *env, ppc_avr_t *t, \
1705 uint64_t val, target_ulong index) \
1706 { \
1707 const int maxidx = ARRAY_SIZE(t->u8) - sizeof(TYPE); \
1708 target_long idx = index; \
1709 \
1710 if (idx < 0 || idx > maxidx) { \
1711 idx = idx < 0 ? sizeof(TYPE) - idx : idx; \
1712 qemu_log_mask(LOG_GUEST_ERROR, \
1713 "Invalid index for Vector Insert Element after 0x" TARGET_FMT_lx \
1714 ", RA = " TARGET_FMT_ld " > %d\n", env->nip, idx, maxidx); \
1715 } else { \
1716 TYPE src = val; \
1717 memcpy(ELEM_ADDR(t, idx, sizeof(TYPE)), &src, sizeof(TYPE)); \
1718 } \
1719 }
1720 VINSX(B, uint8_t)
1721 VINSX(H, uint16_t)
1722 VINSX(W, uint32_t)
1723 VINSX(D, uint64_t)
1724 #undef ELEM_ADDR
1725 #undef VINSX
1726 #if HOST_BIG_ENDIAN
1727 #define VEXTDVLX(NAME, SIZE) \
1728 void helper_##NAME(CPUPPCState *env, ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
1729 target_ulong index) \
1730 { \
1731 const target_long idx = index; \
1732 ppc_avr_t tmp[2] = { *a, *b }; \
1733 memset(t, 0, sizeof(*t)); \
1734 if (idx >= 0 && idx + SIZE <= sizeof(tmp)) { \
1735 memcpy(&t->u8[ARRAY_SIZE(t->u8) / 2 - SIZE], (void *)tmp + idx, SIZE); \
1736 } else { \
1737 qemu_log_mask(LOG_GUEST_ERROR, "Invalid index for " #NAME " after 0x" \
1738 TARGET_FMT_lx ", RC = " TARGET_FMT_ld " > %d\n", \
1739 env->nip, idx < 0 ? SIZE - idx : idx, 32 - SIZE); \
1740 } \
1741 }
1742 #else
1743 #define VEXTDVLX(NAME, SIZE) \
1744 void helper_##NAME(CPUPPCState *env, ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
1745 target_ulong index) \
1746 { \
1747 const target_long idx = index; \
1748 ppc_avr_t tmp[2] = { *b, *a }; \
1749 memset(t, 0, sizeof(*t)); \
1750 if (idx >= 0 && idx + SIZE <= sizeof(tmp)) { \
1751 memcpy(&t->u8[ARRAY_SIZE(t->u8) / 2], \
1752 (void *)tmp + sizeof(tmp) - SIZE - idx, SIZE); \
1753 } else { \
1754 qemu_log_mask(LOG_GUEST_ERROR, "Invalid index for " #NAME " after 0x" \
1755 TARGET_FMT_lx ", RC = " TARGET_FMT_ld " > %d\n", \
1756 env->nip, idx < 0 ? SIZE - idx : idx, 32 - SIZE); \
1757 } \
1758 }
1759 #endif
1760 VEXTDVLX(VEXTDUBVLX, 1)
1761 VEXTDVLX(VEXTDUHVLX, 2)
1762 VEXTDVLX(VEXTDUWVLX, 4)
1763 VEXTDVLX(VEXTDDVLX, 8)
1764 #undef VEXTDVLX
1765 #if HOST_BIG_ENDIAN
1766 #define VEXTRACT(suffix, element) \
1767 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1768 { \
1769 uint32_t es = sizeof(r->element[0]); \
1770 memmove(&r->u8[8 - es], &b->u8[index], es); \
1771 memset(&r->u8[8], 0, 8); \
1772 memset(&r->u8[0], 0, 8 - es); \
1773 }
1774 #else
1775 #define VEXTRACT(suffix, element) \
1776 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1777 { \
1778 uint32_t es = sizeof(r->element[0]); \
1779 uint32_t s = (16 - index) - es; \
1780 memmove(&r->u8[8], &b->u8[s], es); \
1781 memset(&r->u8[0], 0, 8); \
1782 memset(&r->u8[8 + es], 0, 8 - es); \
1783 }
1784 #endif
1785 VEXTRACT(ub, u8)
1786 VEXTRACT(uh, u16)
1787 VEXTRACT(uw, u32)
1788 VEXTRACT(d, u64)
1789 #undef VEXTRACT
1790
1791 #define VSTRI(NAME, ELEM, NUM_ELEMS, LEFT) \
1792 uint32_t helper_##NAME(ppc_avr_t *t, ppc_avr_t *b) \
1793 { \
1794 int i, idx, crf = 0; \
1795 \
1796 for (i = 0; i < NUM_ELEMS; i++) { \
1797 idx = LEFT ? i : NUM_ELEMS - i - 1; \
1798 if (b->Vsr##ELEM(idx)) { \
1799 t->Vsr##ELEM(idx) = b->Vsr##ELEM(idx); \
1800 } else { \
1801 crf = 0b0010; \
1802 break; \
1803 } \
1804 } \
1805 \
1806 for (; i < NUM_ELEMS; i++) { \
1807 idx = LEFT ? i : NUM_ELEMS - i - 1; \
1808 t->Vsr##ELEM(idx) = 0; \
1809 } \
1810 \
1811 return crf; \
1812 }
1813 VSTRI(VSTRIBL, B, 16, true)
1814 VSTRI(VSTRIBR, B, 16, false)
1815 VSTRI(VSTRIHL, H, 8, true)
1816 VSTRI(VSTRIHR, H, 8, false)
1817 #undef VSTRI
1818
1819 void helper_XXEXTRACTUW(ppc_vsr_t *xt, ppc_vsr_t *xb, uint32_t index)
1820 {
1821 ppc_vsr_t t = { };
1822 size_t es = sizeof(uint32_t);
1823 uint32_t ext_index;
1824 int i;
1825
1826 ext_index = index;
1827 for (i = 0; i < es; i++, ext_index++) {
1828 t.VsrB(8 - es + i) = xb->VsrB(ext_index % 16);
1829 }
1830
1831 *xt = t;
1832 }
1833
1834 void helper_XXINSERTW(ppc_vsr_t *xt, ppc_vsr_t *xb, uint32_t index)
1835 {
1836 ppc_vsr_t t = *xt;
1837 size_t es = sizeof(uint32_t);
1838 int ins_index, i = 0;
1839
1840 ins_index = index;
1841 for (i = 0; i < es && ins_index < 16; i++, ins_index++) {
1842 t.VsrB(ins_index) = xb->VsrB(8 - es + i);
1843 }
1844
1845 *xt = t;
1846 }
1847
1848 void helper_XXEVAL(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c,
1849 uint32_t desc)
1850 {
1851 /*
1852 * Instead of processing imm bit-by-bit, we'll skip the computation of
1853 * conjunctions whose corresponding bit is unset.
1854 */
1855 int bit, imm = simd_data(desc);
1856 Int128 conj, disj = int128_zero();
1857
1858 /* Iterate over set bits from the least to the most significant bit */
1859 while (imm) {
1860 /*
1861 * Get the next bit to be processed with ctz64. Invert the result of
1862 * ctz64 to match the indexing used by PowerISA.
1863 */
1864 bit = 7 - ctzl(imm);
1865 if (bit & 0x4) {
1866 conj = a->s128;
1867 } else {
1868 conj = int128_not(a->s128);
1869 }
1870 if (bit & 0x2) {
1871 conj = int128_and(conj, b->s128);
1872 } else {
1873 conj = int128_and(conj, int128_not(b->s128));
1874 }
1875 if (bit & 0x1) {
1876 conj = int128_and(conj, c->s128);
1877 } else {
1878 conj = int128_and(conj, int128_not(c->s128));
1879 }
1880 disj = int128_or(disj, conj);
1881
1882 /* Unset the least significant bit that is set */
1883 imm &= imm - 1;
1884 }
1885
1886 t->s128 = disj;
1887 }
1888
1889 #define XXBLEND(name, sz) \
1890 void glue(helper_XXBLENDV, name)(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, \
1891 ppc_avr_t *c, uint32_t desc) \
1892 { \
1893 for (int i = 0; i < ARRAY_SIZE(t->glue(u, sz)); i++) { \
1894 t->glue(u, sz)[i] = (c->glue(s, sz)[i] >> (sz - 1)) ? \
1895 b->glue(u, sz)[i] : a->glue(u, sz)[i]; \
1896 } \
1897 }
1898 XXBLEND(B, 8)
1899 XXBLEND(H, 16)
1900 XXBLEND(W, 32)
1901 XXBLEND(D, 64)
1902 #undef XXBLEND
1903
1904 void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1905 {
1906 int sh = (b->VsrB(0xf) >> 3) & 0xf;
1907
1908 #if HOST_BIG_ENDIAN
1909 memmove(&r->u8[sh], &a->u8[0], 16 - sh);
1910 memset(&r->u8[0], 0, sh);
1911 #else
1912 memmove(&r->u8[0], &a->u8[sh], 16 - sh);
1913 memset(&r->u8[16 - sh], 0, sh);
1914 #endif
1915 }
1916
1917 void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1918 {
1919 int64_t t;
1920 int i, upper;
1921 ppc_avr_t result;
1922 int sat = 0;
1923
1924 upper = ARRAY_SIZE(r->s32) - 1;
1925 t = (int64_t)b->VsrSW(upper);
1926 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1927 t += a->VsrSW(i);
1928 result.VsrSW(i) = 0;
1929 }
1930 result.VsrSW(upper) = cvtsdsw(t, &sat);
1931 *r = result;
1932
1933 if (sat) {
1934 set_vscr_sat(env);
1935 }
1936 }
1937
1938 void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1939 {
1940 int i, j, upper;
1941 ppc_avr_t result;
1942 int sat = 0;
1943
1944 upper = 1;
1945 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
1946 int64_t t = (int64_t)b->VsrSW(upper + i * 2);
1947
1948 result.VsrD(i) = 0;
1949 for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
1950 t += a->VsrSW(2 * i + j);
1951 }
1952 result.VsrSW(upper + i * 2) = cvtsdsw(t, &sat);
1953 }
1954
1955 *r = result;
1956 if (sat) {
1957 set_vscr_sat(env);
1958 }
1959 }
1960
1961 void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1962 {
1963 int i, j;
1964 int sat = 0;
1965
1966 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1967 int64_t t = (int64_t)b->s32[i];
1968
1969 for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
1970 t += a->s8[4 * i + j];
1971 }
1972 r->s32[i] = cvtsdsw(t, &sat);
1973 }
1974
1975 if (sat) {
1976 set_vscr_sat(env);
1977 }
1978 }
1979
1980 void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1981 {
1982 int sat = 0;
1983 int i;
1984
1985 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1986 int64_t t = (int64_t)b->s32[i];
1987
1988 t += a->s16[2 * i] + a->s16[2 * i + 1];
1989 r->s32[i] = cvtsdsw(t, &sat);
1990 }
1991
1992 if (sat) {
1993 set_vscr_sat(env);
1994 }
1995 }
1996
1997 void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1998 {
1999 int i, j;
2000 int sat = 0;
2001
2002 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2003 uint64_t t = (uint64_t)b->u32[i];
2004
2005 for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
2006 t += a->u8[4 * i + j];
2007 }
2008 r->u32[i] = cvtuduw(t, &sat);
2009 }
2010
2011 if (sat) {
2012 set_vscr_sat(env);
2013 }
2014 }
2015
2016 #if HOST_BIG_ENDIAN
2017 #define UPKHI 1
2018 #define UPKLO 0
2019 #else
2020 #define UPKHI 0
2021 #define UPKLO 1
2022 #endif
2023 #define VUPKPX(suffix, hi) \
2024 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
2025 { \
2026 int i; \
2027 ppc_avr_t result; \
2028 \
2029 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
2030 uint16_t e = b->u16[hi ? i : i + 4]; \
2031 uint8_t a = (e >> 15) ? 0xff : 0; \
2032 uint8_t r = (e >> 10) & 0x1f; \
2033 uint8_t g = (e >> 5) & 0x1f; \
2034 uint8_t b = e & 0x1f; \
2035 \
2036 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
2037 } \
2038 *r = result; \
2039 }
2040 VUPKPX(lpx, UPKLO)
2041 VUPKPX(hpx, UPKHI)
2042 #undef VUPKPX
2043
2044 #define VUPK(suffix, unpacked, packee, hi) \
2045 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
2046 { \
2047 int i; \
2048 ppc_avr_t result; \
2049 \
2050 if (hi) { \
2051 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
2052 result.unpacked[i] = b->packee[i]; \
2053 } \
2054 } else { \
2055 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
2056 i++) { \
2057 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
2058 } \
2059 } \
2060 *r = result; \
2061 }
2062 VUPK(hsb, s16, s8, UPKHI)
2063 VUPK(hsh, s32, s16, UPKHI)
2064 VUPK(hsw, s64, s32, UPKHI)
2065 VUPK(lsb, s16, s8, UPKLO)
2066 VUPK(lsh, s32, s16, UPKLO)
2067 VUPK(lsw, s64, s32, UPKLO)
2068 #undef VUPK
2069 #undef UPKHI
2070 #undef UPKLO
2071
2072 #define VGENERIC_DO(name, element) \
2073 void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
2074 { \
2075 int i; \
2076 \
2077 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2078 r->element[i] = name(b->element[i]); \
2079 } \
2080 }
2081
2082 #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
2083 #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
2084
2085 VGENERIC_DO(clzb, u8)
2086 VGENERIC_DO(clzh, u16)
2087
2088 #undef clzb
2089 #undef clzh
2090
2091 #define ctzb(v) ((v) ? ctz32(v) : 8)
2092 #define ctzh(v) ((v) ? ctz32(v) : 16)
2093 #define ctzw(v) ctz32((v))
2094 #define ctzd(v) ctz64((v))
2095
2096 VGENERIC_DO(ctzb, u8)
2097 VGENERIC_DO(ctzh, u16)
2098 VGENERIC_DO(ctzw, u32)
2099 VGENERIC_DO(ctzd, u64)
2100
2101 #undef ctzb
2102 #undef ctzh
2103 #undef ctzw
2104 #undef ctzd
2105
2106 #define popcntb(v) ctpop8(v)
2107 #define popcnth(v) ctpop16(v)
2108 #define popcntw(v) ctpop32(v)
2109 #define popcntd(v) ctpop64(v)
2110
2111 VGENERIC_DO(popcntb, u8)
2112 VGENERIC_DO(popcnth, u16)
2113 VGENERIC_DO(popcntw, u32)
2114 VGENERIC_DO(popcntd, u64)
2115
2116 #undef popcntb
2117 #undef popcnth
2118 #undef popcntw
2119 #undef popcntd
2120
2121 #undef VGENERIC_DO
2122
2123 void helper_VADDUQM(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2124 {
2125 r->s128 = int128_add(a->s128, b->s128);
2126 }
2127
2128 void helper_VADDEUQM(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2129 {
2130 r->s128 = int128_add(int128_add(a->s128, b->s128),
2131 int128_make64(int128_getlo(c->s128) & 1));
2132 }
2133
2134 void helper_VADDCUQ(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2135 {
2136 r->VsrD(1) = int128_ult(int128_not(a->s128), b->s128);
2137 r->VsrD(0) = 0;
2138 }
2139
2140 void helper_VADDECUQ(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2141 {
2142 bool carry_out = int128_ult(int128_not(a->s128), b->s128),
2143 carry_in = int128_getlo(c->s128) & 1;
2144
2145 if (!carry_out && carry_in) {
2146 carry_out = (int128_nz(a->s128) || int128_nz(b->s128)) &&
2147 int128_eq(int128_add(a->s128, b->s128), int128_makes64(-1));
2148 }
2149
2150 r->VsrD(0) = 0;
2151 r->VsrD(1) = carry_out;
2152 }
2153
2154 void helper_VSUBUQM(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2155 {
2156 r->s128 = int128_sub(a->s128, b->s128);
2157 }
2158
2159 void helper_VSUBEUQM(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2160 {
2161 r->s128 = int128_add(int128_add(a->s128, int128_not(b->s128)),
2162 int128_make64(int128_getlo(c->s128) & 1));
2163 }
2164
2165 void helper_VSUBCUQ(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2166 {
2167 Int128 tmp = int128_not(b->s128);
2168
2169 r->VsrD(1) = int128_ult(int128_not(a->s128), tmp) ||
2170 int128_eq(int128_add(a->s128, tmp), int128_makes64(-1));
2171 r->VsrD(0) = 0;
2172 }
2173
2174 void helper_VSUBECUQ(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2175 {
2176 Int128 tmp = int128_not(b->s128);
2177 bool carry_out = int128_ult(int128_not(a->s128), tmp),
2178 carry_in = int128_getlo(c->s128) & 1;
2179
2180 r->VsrD(1) = carry_out || (carry_in && int128_eq(int128_add(a->s128, tmp),
2181 int128_makes64(-1)));
2182 r->VsrD(0) = 0;
2183 }
2184
2185 #define BCD_PLUS_PREF_1 0xC
2186 #define BCD_PLUS_PREF_2 0xF
2187 #define BCD_PLUS_ALT_1 0xA
2188 #define BCD_NEG_PREF 0xD
2189 #define BCD_NEG_ALT 0xB
2190 #define BCD_PLUS_ALT_2 0xE
2191 #define NATIONAL_PLUS 0x2B
2192 #define NATIONAL_NEG 0x2D
2193
2194 #define BCD_DIG_BYTE(n) (15 - ((n) / 2))
2195
2196 static int bcd_get_sgn(ppc_avr_t *bcd)
2197 {
2198 switch (bcd->VsrB(BCD_DIG_BYTE(0)) & 0xF) {
2199 case BCD_PLUS_PREF_1:
2200 case BCD_PLUS_PREF_2:
2201 case BCD_PLUS_ALT_1:
2202 case BCD_PLUS_ALT_2:
2203 {
2204 return 1;
2205 }
2206
2207 case BCD_NEG_PREF:
2208 case BCD_NEG_ALT:
2209 {
2210 return -1;
2211 }
2212
2213 default:
2214 {
2215 return 0;
2216 }
2217 }
2218 }
2219
2220 static int bcd_preferred_sgn(int sgn, int ps)
2221 {
2222 if (sgn >= 0) {
2223 return (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2;
2224 } else {
2225 return BCD_NEG_PREF;
2226 }
2227 }
2228
2229 static uint8_t bcd_get_digit(ppc_avr_t *bcd, int n, int *invalid)
2230 {
2231 uint8_t result;
2232 if (n & 1) {
2233 result = bcd->VsrB(BCD_DIG_BYTE(n)) >> 4;
2234 } else {
2235 result = bcd->VsrB(BCD_DIG_BYTE(n)) & 0xF;
2236 }
2237
2238 if (unlikely(result > 9)) {
2239 *invalid = true;
2240 }
2241 return result;
2242 }
2243
2244 static void bcd_put_digit(ppc_avr_t *bcd, uint8_t digit, int n)
2245 {
2246 if (n & 1) {
2247 bcd->VsrB(BCD_DIG_BYTE(n)) &= 0x0F;
2248 bcd->VsrB(BCD_DIG_BYTE(n)) |= (digit << 4);
2249 } else {
2250 bcd->VsrB(BCD_DIG_BYTE(n)) &= 0xF0;
2251 bcd->VsrB(BCD_DIG_BYTE(n)) |= digit;
2252 }
2253 }
2254
2255 static bool bcd_is_valid(ppc_avr_t *bcd)
2256 {
2257 int i;
2258 int invalid = 0;
2259
2260 if (bcd_get_sgn(bcd) == 0) {
2261 return false;
2262 }
2263
2264 for (i = 1; i < 32; i++) {
2265 bcd_get_digit(bcd, i, &invalid);
2266 if (unlikely(invalid)) {
2267 return false;
2268 }
2269 }
2270 return true;
2271 }
2272
2273 static int bcd_cmp_zero(ppc_avr_t *bcd)
2274 {
2275 if (bcd->VsrD(0) == 0 && (bcd->VsrD(1) >> 4) == 0) {
2276 return CRF_EQ;
2277 } else {
2278 return (bcd_get_sgn(bcd) == 1) ? CRF_GT : CRF_LT;
2279 }
2280 }
2281
2282 static uint16_t get_national_digit(ppc_avr_t *reg, int n)
2283 {
2284 return reg->VsrH(7 - n);
2285 }
2286
2287 static void set_national_digit(ppc_avr_t *reg, uint8_t val, int n)
2288 {
2289 reg->VsrH(7 - n) = val;
2290 }
2291
2292 static int bcd_cmp_mag(ppc_avr_t *a, ppc_avr_t *b)
2293 {
2294 int i;
2295 int invalid = 0;
2296 for (i = 31; i > 0; i--) {
2297 uint8_t dig_a = bcd_get_digit(a, i, &invalid);
2298 uint8_t dig_b = bcd_get_digit(b, i, &invalid);
2299 if (unlikely(invalid)) {
2300 return 0; /* doesn't matter */
2301 } else if (dig_a > dig_b) {
2302 return 1;
2303 } else if (dig_a < dig_b) {
2304 return -1;
2305 }
2306 }
2307
2308 return 0;
2309 }
2310
2311 static int bcd_add_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
2312 int *overflow)
2313 {
2314 int carry = 0;
2315 int i;
2316 int is_zero = 1;
2317
2318 for (i = 1; i <= 31; i++) {
2319 uint8_t digit = bcd_get_digit(a, i, invalid) +
2320 bcd_get_digit(b, i, invalid) + carry;
2321 is_zero &= (digit == 0);
2322 if (digit > 9) {
2323 carry = 1;
2324 digit -= 10;
2325 } else {
2326 carry = 0;
2327 }
2328
2329 bcd_put_digit(t, digit, i);
2330 }
2331
2332 *overflow = carry;
2333 return is_zero;
2334 }
2335
2336 static void bcd_sub_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
2337 int *overflow)
2338 {
2339 int carry = 0;
2340 int i;
2341
2342 for (i = 1; i <= 31; i++) {
2343 uint8_t digit = bcd_get_digit(a, i, invalid) -
2344 bcd_get_digit(b, i, invalid) + carry;
2345 if (digit & 0x80) {
2346 carry = -1;
2347 digit += 10;
2348 } else {
2349 carry = 0;
2350 }
2351
2352 bcd_put_digit(t, digit, i);
2353 }
2354
2355 *overflow = carry;
2356 }
2357
2358 uint32_t helper_bcdadd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2359 {
2360
2361 int sgna = bcd_get_sgn(a);
2362 int sgnb = bcd_get_sgn(b);
2363 int invalid = (sgna == 0) || (sgnb == 0);
2364 int overflow = 0;
2365 int zero = 0;
2366 uint32_t cr = 0;
2367 ppc_avr_t result = { .u64 = { 0, 0 } };
2368
2369 if (!invalid) {
2370 if (sgna == sgnb) {
2371 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps);
2372 zero = bcd_add_mag(&result, a, b, &invalid, &overflow);
2373 cr = (sgna > 0) ? CRF_GT : CRF_LT;
2374 } else {
2375 int magnitude = bcd_cmp_mag(a, b);
2376 if (magnitude > 0) {
2377 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgna, ps);
2378 bcd_sub_mag(&result, a, b, &invalid, &overflow);
2379 cr = (sgna > 0) ? CRF_GT : CRF_LT;
2380 } else if (magnitude < 0) {
2381 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(sgnb, ps);
2382 bcd_sub_mag(&result, b, a, &invalid, &overflow);
2383 cr = (sgnb > 0) ? CRF_GT : CRF_LT;
2384 } else {
2385 result.VsrB(BCD_DIG_BYTE(0)) = bcd_preferred_sgn(0, ps);
2386 cr = CRF_EQ;
2387 }
2388 }
2389 }
2390
2391 if (unlikely(invalid)) {
2392 result.VsrD(0) = result.VsrD(1) = -1;
2393 cr = CRF_SO;
2394 } else if (overflow) {
2395 cr |= CRF_SO;
2396 } else if (zero) {
2397 cr |= CRF_EQ;
2398 }
2399
2400 *r = result;
2401
2402 return cr;
2403 }
2404
2405 uint32_t helper_bcdsub(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2406 {
2407 ppc_avr_t bcopy = *b;
2408 int sgnb = bcd_get_sgn(b);
2409 if (sgnb < 0) {
2410 bcd_put_digit(&bcopy, BCD_PLUS_PREF_1, 0);
2411 } else if (sgnb > 0) {
2412 bcd_put_digit(&bcopy, BCD_NEG_PREF, 0);
2413 }
2414 /* else invalid ... defer to bcdadd code for proper handling */
2415
2416 return helper_bcdadd(r, a, &bcopy, ps);
2417 }
2418
2419 uint32_t helper_bcdcfn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2420 {
2421 int i;
2422 int cr = 0;
2423 uint16_t national = 0;
2424 uint16_t sgnb = get_national_digit(b, 0);
2425 ppc_avr_t ret = { .u64 = { 0, 0 } };
2426 int invalid = (sgnb != NATIONAL_PLUS && sgnb != NATIONAL_NEG);
2427
2428 for (i = 1; i < 8; i++) {
2429 national = get_national_digit(b, i);
2430 if (unlikely(national < 0x30 || national > 0x39)) {
2431 invalid = 1;
2432 break;
2433 }
2434
2435 bcd_put_digit(&ret, national & 0xf, i);
2436 }
2437
2438 if (sgnb == NATIONAL_PLUS) {
2439 bcd_put_digit(&ret, (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2, 0);
2440 } else {
2441 bcd_put_digit(&ret, BCD_NEG_PREF, 0);
2442 }
2443
2444 cr = bcd_cmp_zero(&ret);
2445
2446 if (unlikely(invalid)) {
2447 cr = CRF_SO;
2448 }
2449
2450 *r = ret;
2451
2452 return cr;
2453 }
2454
2455 uint32_t helper_bcdctn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2456 {
2457 int i;
2458 int cr = 0;
2459 int sgnb = bcd_get_sgn(b);
2460 int invalid = (sgnb == 0);
2461 ppc_avr_t ret = { .u64 = { 0, 0 } };
2462
2463 int ox_flag = (b->VsrD(0) != 0) || ((b->VsrD(1) >> 32) != 0);
2464
2465 for (i = 1; i < 8; i++) {
2466 set_national_digit(&ret, 0x30 + bcd_get_digit(b, i, &invalid), i);
2467
2468 if (unlikely(invalid)) {
2469 break;
2470 }
2471 }
2472 set_national_digit(&ret, (sgnb == -1) ? NATIONAL_NEG : NATIONAL_PLUS, 0);
2473
2474 cr = bcd_cmp_zero(b);
2475
2476 if (ox_flag) {
2477 cr |= CRF_SO;
2478 }
2479
2480 if (unlikely(invalid)) {
2481 cr = CRF_SO;
2482 }
2483
2484 *r = ret;
2485
2486 return cr;
2487 }
2488
2489 uint32_t helper_bcdcfz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2490 {
2491 int i;
2492 int cr = 0;
2493 int invalid = 0;
2494 int zone_digit = 0;
2495 int zone_lead = ps ? 0xF : 0x3;
2496 int digit = 0;
2497 ppc_avr_t ret = { .u64 = { 0, 0 } };
2498 int sgnb = b->VsrB(BCD_DIG_BYTE(0)) >> 4;
2499
2500 if (unlikely((sgnb < 0xA) && ps)) {
2501 invalid = 1;
2502 }
2503
2504 for (i = 0; i < 16; i++) {
2505 zone_digit = i ? b->VsrB(BCD_DIG_BYTE(i * 2)) >> 4 : zone_lead;
2506 digit = b->VsrB(BCD_DIG_BYTE(i * 2)) & 0xF;
2507 if (unlikely(zone_digit != zone_lead || digit > 0x9)) {
2508 invalid = 1;
2509 break;
2510 }
2511
2512 bcd_put_digit(&ret, digit, i + 1);
2513 }
2514
2515 if ((ps && (sgnb == 0xB || sgnb == 0xD)) ||
2516 (!ps && (sgnb & 0x4))) {
2517 bcd_put_digit(&ret, BCD_NEG_PREF, 0);
2518 } else {
2519 bcd_put_digit(&ret, BCD_PLUS_PREF_1, 0);
2520 }
2521
2522 cr = bcd_cmp_zero(&ret);
2523
2524 if (unlikely(invalid)) {
2525 cr = CRF_SO;
2526 }
2527
2528 *r = ret;
2529
2530 return cr;
2531 }
2532
2533 uint32_t helper_bcdctz(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2534 {
2535 int i;
2536 int cr = 0;
2537 uint8_t digit = 0;
2538 int sgnb = bcd_get_sgn(b);
2539 int zone_lead = (ps) ? 0xF0 : 0x30;
2540 int invalid = (sgnb == 0);
2541 ppc_avr_t ret = { .u64 = { 0, 0 } };
2542
2543 int ox_flag = ((b->VsrD(0) >> 4) != 0);
2544
2545 for (i = 0; i < 16; i++) {
2546 digit = bcd_get_digit(b, i + 1, &invalid);
2547
2548 if (unlikely(invalid)) {
2549 break;
2550 }
2551
2552 ret.VsrB(BCD_DIG_BYTE(i * 2)) = zone_lead + digit;
2553 }
2554
2555 if (ps) {
2556 bcd_put_digit(&ret, (sgnb == 1) ? 0xC : 0xD, 1);
2557 } else {
2558 bcd_put_digit(&ret, (sgnb == 1) ? 0x3 : 0x7, 1);
2559 }
2560
2561 cr = bcd_cmp_zero(b);
2562
2563 if (ox_flag) {
2564 cr |= CRF_SO;
2565 }
2566
2567 if (unlikely(invalid)) {
2568 cr = CRF_SO;
2569 }
2570
2571 *r = ret;
2572
2573 return cr;
2574 }
2575
2576 /**
2577 * Compare 2 128-bit unsigned integers, passed in as unsigned 64-bit pairs
2578 *
2579 * Returns:
2580 * > 0 if ahi|alo > bhi|blo,
2581 * 0 if ahi|alo == bhi|blo,
2582 * < 0 if ahi|alo < bhi|blo
2583 */
2584 static inline int ucmp128(uint64_t alo, uint64_t ahi,
2585 uint64_t blo, uint64_t bhi)
2586 {
2587 return (ahi == bhi) ?
2588 (alo > blo ? 1 : (alo == blo ? 0 : -1)) :
2589 (ahi > bhi ? 1 : -1);
2590 }
2591
2592 uint32_t helper_bcdcfsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2593 {
2594 int i;
2595 int cr;
2596 uint64_t lo_value;
2597 uint64_t hi_value;
2598 uint64_t rem;
2599 ppc_avr_t ret = { .u64 = { 0, 0 } };
2600
2601 if (b->VsrSD(0) < 0) {
2602 lo_value = -b->VsrSD(1);
2603 hi_value = ~b->VsrD(0) + !lo_value;
2604 bcd_put_digit(&ret, 0xD, 0);
2605
2606 cr = CRF_LT;
2607 } else {
2608 lo_value = b->VsrD(1);
2609 hi_value = b->VsrD(0);
2610 bcd_put_digit(&ret, bcd_preferred_sgn(0, ps), 0);
2611
2612 if (hi_value == 0 && lo_value == 0) {
2613 cr = CRF_EQ;
2614 } else {
2615 cr = CRF_GT;
2616 }
2617 }
2618
2619 /*
2620 * Check src limits: abs(src) <= 10^31 - 1
2621 *
2622 * 10^31 - 1 = 0x0000007e37be2022 c0914b267fffffff
2623 */
2624 if (ucmp128(lo_value, hi_value,
2625 0xc0914b267fffffffULL, 0x7e37be2022ULL) > 0) {
2626 cr |= CRF_SO;
2627
2628 /*
2629 * According to the ISA, if src wouldn't fit in the destination
2630 * register, the result is undefined.
2631 * In that case, we leave r unchanged.
2632 */
2633 } else {
2634 rem = divu128(&lo_value, &hi_value, 1000000000000000ULL);
2635
2636 for (i = 1; i < 16; rem /= 10, i++) {
2637 bcd_put_digit(&ret, rem % 10, i);
2638 }
2639
2640 for (; i < 32; lo_value /= 10, i++) {
2641 bcd_put_digit(&ret, lo_value % 10, i);
2642 }
2643
2644 *r = ret;
2645 }
2646
2647 return cr;
2648 }
2649
2650 uint32_t helper_bcdctsq(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2651 {
2652 uint8_t i;
2653 int cr;
2654 uint64_t carry;
2655 uint64_t unused;
2656 uint64_t lo_value;
2657 uint64_t hi_value = 0;
2658 int sgnb = bcd_get_sgn(b);
2659 int invalid = (sgnb == 0);
2660
2661 lo_value = bcd_get_digit(b, 31, &invalid);
2662 for (i = 30; i > 0; i--) {
2663 mulu64(&lo_value, &carry, lo_value, 10ULL);
2664 mulu64(&hi_value, &unused, hi_value, 10ULL);
2665 lo_value += bcd_get_digit(b, i, &invalid);
2666 hi_value += carry;
2667
2668 if (unlikely(invalid)) {
2669 break;
2670 }
2671 }
2672
2673 if (sgnb == -1) {
2674 r->VsrSD(1) = -lo_value;
2675 r->VsrSD(0) = ~hi_value + !r->VsrSD(1);
2676 } else {
2677 r->VsrSD(1) = lo_value;
2678 r->VsrSD(0) = hi_value;
2679 }
2680
2681 cr = bcd_cmp_zero(b);
2682
2683 if (unlikely(invalid)) {
2684 cr = CRF_SO;
2685 }
2686
2687 return cr;
2688 }
2689
2690 uint32_t helper_bcdcpsgn(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2691 {
2692 int i;
2693 int invalid = 0;
2694
2695 if (bcd_get_sgn(a) == 0 || bcd_get_sgn(b) == 0) {
2696 return CRF_SO;
2697 }
2698
2699 *r = *a;
2700 bcd_put_digit(r, b->VsrB(BCD_DIG_BYTE(0)) & 0xF, 0);
2701
2702 for (i = 1; i < 32; i++) {
2703 bcd_get_digit(a, i, &invalid);
2704 bcd_get_digit(b, i, &invalid);
2705 if (unlikely(invalid)) {
2706 return CRF_SO;
2707 }
2708 }
2709
2710 return bcd_cmp_zero(r);
2711 }
2712
2713 uint32_t helper_bcdsetsgn(ppc_avr_t *r, ppc_avr_t *b, uint32_t ps)
2714 {
2715 int sgnb = bcd_get_sgn(b);
2716
2717 *r = *b;
2718 bcd_put_digit(r, bcd_preferred_sgn(sgnb, ps), 0);
2719
2720 if (bcd_is_valid(b) == false) {
2721 return CRF_SO;
2722 }
2723
2724 return bcd_cmp_zero(r);
2725 }
2726
2727 uint32_t helper_bcds(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2728 {
2729 int cr;
2730 int i = a->VsrSB(7);
2731 bool ox_flag = false;
2732 int sgnb = bcd_get_sgn(b);
2733 ppc_avr_t ret = *b;
2734 ret.VsrD(1) &= ~0xf;
2735
2736 if (bcd_is_valid(b) == false) {
2737 return CRF_SO;
2738 }
2739
2740 if (unlikely(i > 31)) {
2741 i = 31;
2742 } else if (unlikely(i < -31)) {
2743 i = -31;
2744 }
2745
2746 if (i > 0) {
2747 ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
2748 } else {
2749 urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
2750 }
2751 bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0);
2752
2753 *r = ret;
2754
2755 cr = bcd_cmp_zero(r);
2756 if (ox_flag) {
2757 cr |= CRF_SO;
2758 }
2759
2760 return cr;
2761 }
2762
2763 uint32_t helper_bcdus(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2764 {
2765 int cr;
2766 int i;
2767 int invalid = 0;
2768 bool ox_flag = false;
2769 ppc_avr_t ret = *b;
2770
2771 for (i = 0; i < 32; i++) {
2772 bcd_get_digit(b, i, &invalid);
2773
2774 if (unlikely(invalid)) {
2775 return CRF_SO;
2776 }
2777 }
2778
2779 i = a->VsrSB(7);
2780 if (i >= 32) {
2781 ox_flag = true;
2782 ret.VsrD(1) = ret.VsrD(0) = 0;
2783 } else if (i <= -32) {
2784 ret.VsrD(1) = ret.VsrD(0) = 0;
2785 } else if (i > 0) {
2786 ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
2787 } else {
2788 urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
2789 }
2790 *r = ret;
2791
2792 cr = bcd_cmp_zero(r);
2793 if (ox_flag) {
2794 cr |= CRF_SO;
2795 }
2796
2797 return cr;
2798 }
2799
2800 uint32_t helper_bcdsr(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2801 {
2802 int cr;
2803 int unused = 0;
2804 int invalid = 0;
2805 bool ox_flag = false;
2806 int sgnb = bcd_get_sgn(b);
2807 ppc_avr_t ret = *b;
2808 ret.VsrD(1) &= ~0xf;
2809
2810 int i = a->VsrSB(7);
2811 ppc_avr_t bcd_one;
2812
2813 bcd_one.VsrD(0) = 0;
2814 bcd_one.VsrD(1) = 0x10;
2815
2816 if (bcd_is_valid(b) == false) {
2817 return CRF_SO;
2818 }
2819
2820 if (unlikely(i > 31)) {
2821 i = 31;
2822 } else if (unlikely(i < -31)) {
2823 i = -31;
2824 }
2825
2826 if (i > 0) {
2827 ulshift(&ret.VsrD(1), &ret.VsrD(0), i * 4, &ox_flag);
2828 } else {
2829 urshift(&ret.VsrD(1), &ret.VsrD(0), -i * 4);
2830
2831 if (bcd_get_digit(&ret, 0, &invalid) >= 5) {
2832 bcd_add_mag(&ret, &ret, &bcd_one, &invalid, &unused);
2833 }
2834 }
2835 bcd_put_digit(&ret, bcd_preferred_sgn(sgnb, ps), 0);
2836
2837 cr = bcd_cmp_zero(&ret);
2838 if (ox_flag) {
2839 cr |= CRF_SO;
2840 }
2841 *r = ret;
2842
2843 return cr;
2844 }
2845
2846 uint32_t helper_bcdtrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2847 {
2848 uint64_t mask;
2849 uint32_t ox_flag = 0;
2850 int i = a->VsrSH(3) + 1;
2851 ppc_avr_t ret = *b;
2852
2853 if (bcd_is_valid(b) == false) {
2854 return CRF_SO;
2855 }
2856
2857 if (i > 16 && i < 32) {
2858 mask = (uint64_t)-1 >> (128 - i * 4);
2859 if (ret.VsrD(0) & ~mask) {
2860 ox_flag = CRF_SO;
2861 }
2862
2863 ret.VsrD(0) &= mask;
2864 } else if (i >= 0 && i <= 16) {
2865 mask = (uint64_t)-1 >> (64 - i * 4);
2866 if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) {
2867 ox_flag = CRF_SO;
2868 }
2869
2870 ret.VsrD(1) &= mask;
2871 ret.VsrD(0) = 0;
2872 }
2873 bcd_put_digit(&ret, bcd_preferred_sgn(bcd_get_sgn(b), ps), 0);
2874 *r = ret;
2875
2876 return bcd_cmp_zero(&ret) | ox_flag;
2877 }
2878
2879 uint32_t helper_bcdutrunc(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2880 {
2881 int i;
2882 uint64_t mask;
2883 uint32_t ox_flag = 0;
2884 int invalid = 0;
2885 ppc_avr_t ret = *b;
2886
2887 for (i = 0; i < 32; i++) {
2888 bcd_get_digit(b, i, &invalid);
2889
2890 if (unlikely(invalid)) {
2891 return CRF_SO;
2892 }
2893 }
2894
2895 i = a->VsrSH(3);
2896 if (i > 16 && i < 33) {
2897 mask = (uint64_t)-1 >> (128 - i * 4);
2898 if (ret.VsrD(0) & ~mask) {
2899 ox_flag = CRF_SO;
2900 }
2901
2902 ret.VsrD(0) &= mask;
2903 } else if (i > 0 && i <= 16) {
2904 mask = (uint64_t)-1 >> (64 - i * 4);
2905 if (ret.VsrD(0) || (ret.VsrD(1) & ~mask)) {
2906 ox_flag = CRF_SO;
2907 }
2908
2909 ret.VsrD(1) &= mask;
2910 ret.VsrD(0) = 0;
2911 } else if (i == 0) {
2912 if (ret.VsrD(0) || ret.VsrD(1)) {
2913 ox_flag = CRF_SO;
2914 }
2915 ret.VsrD(0) = ret.VsrD(1) = 0;
2916 }
2917
2918 *r = ret;
2919 if (r->VsrD(0) == 0 && r->VsrD(1) == 0) {
2920 return ox_flag | CRF_EQ;
2921 }
2922
2923 return ox_flag | CRF_GT;
2924 }
2925
2926 void helper_vsbox(ppc_avr_t *r, ppc_avr_t *a)
2927 {
2928 int i;
2929 VECTOR_FOR_INORDER_I(i, u8) {
2930 r->u8[i] = AES_sbox[a->u8[i]];
2931 }
2932 }
2933
2934 void helper_vcipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2935 {
2936 ppc_avr_t result;
2937 int i;
2938
2939 VECTOR_FOR_INORDER_I(i, u32) {
2940 result.VsrW(i) = b->VsrW(i) ^
2941 (AES_Te0[a->VsrB(AES_shifts[4 * i + 0])] ^
2942 AES_Te1[a->VsrB(AES_shifts[4 * i + 1])] ^
2943 AES_Te2[a->VsrB(AES_shifts[4 * i + 2])] ^
2944 AES_Te3[a->VsrB(AES_shifts[4 * i + 3])]);
2945 }
2946 *r = result;
2947 }
2948
2949 void helper_vcipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2950 {
2951 aesenc_SB_SR_AK((AESState *)r, (AESState *)a, (AESState *)b, true);
2952 }
2953
2954 void helper_vncipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2955 {
2956 /* This differs from what is written in ISA V2.07. The RTL is */
2957 /* incorrect and will be fixed in V2.07B. */
2958 int i;
2959 ppc_avr_t tmp;
2960
2961 VECTOR_FOR_INORDER_I(i, u8) {
2962 tmp.VsrB(i) = b->VsrB(i) ^ AES_isbox[a->VsrB(AES_ishifts[i])];
2963 }
2964
2965 VECTOR_FOR_INORDER_I(i, u32) {
2966 r->VsrW(i) =
2967 AES_imc[tmp.VsrB(4 * i + 0)][0] ^
2968 AES_imc[tmp.VsrB(4 * i + 1)][1] ^
2969 AES_imc[tmp.VsrB(4 * i + 2)][2] ^
2970 AES_imc[tmp.VsrB(4 * i + 3)][3];
2971 }
2972 }
2973
2974 void helper_vncipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2975 {
2976 aesdec_ISB_ISR_AK((AESState *)r, (AESState *)a, (AESState *)b, true);
2977 }
2978
2979 void helper_vshasigmaw(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
2980 {
2981 int st = (st_six & 0x10) != 0;
2982 int six = st_six & 0xF;
2983 int i;
2984
2985 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2986 if (st == 0) {
2987 if ((six & (0x8 >> i)) == 0) {
2988 r->VsrW(i) = ror32(a->VsrW(i), 7) ^
2989 ror32(a->VsrW(i), 18) ^
2990 (a->VsrW(i) >> 3);
2991 } else { /* six.bit[i] == 1 */
2992 r->VsrW(i) = ror32(a->VsrW(i), 17) ^
2993 ror32(a->VsrW(i), 19) ^
2994 (a->VsrW(i) >> 10);
2995 }
2996 } else { /* st == 1 */
2997 if ((six & (0x8 >> i)) == 0) {
2998 r->VsrW(i) = ror32(a->VsrW(i), 2) ^
2999 ror32(a->VsrW(i), 13) ^
3000 ror32(a->VsrW(i), 22);
3001 } else { /* six.bit[i] == 1 */
3002 r->VsrW(i) = ror32(a->VsrW(i), 6) ^
3003 ror32(a->VsrW(i), 11) ^
3004 ror32(a->VsrW(i), 25);
3005 }
3006 }
3007 }
3008 }
3009
3010 void helper_vshasigmad(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
3011 {
3012 int st = (st_six & 0x10) != 0;
3013 int six = st_six & 0xF;
3014 int i;
3015
3016 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
3017 if (st == 0) {
3018 if ((six & (0x8 >> (2 * i))) == 0) {
3019 r->VsrD(i) = ror64(a->VsrD(i), 1) ^
3020 ror64(a->VsrD(i), 8) ^
3021 (a->VsrD(i) >> 7);
3022 } else { /* six.bit[2*i] == 1 */
3023 r->VsrD(i) = ror64(a->VsrD(i), 19) ^
3024 ror64(a->VsrD(i), 61) ^
3025 (a->VsrD(i) >> 6);
3026 }
3027 } else { /* st == 1 */
3028 if ((six & (0x8 >> (2 * i))) == 0) {
3029 r->VsrD(i) = ror64(a->VsrD(i), 28) ^
3030 ror64(a->VsrD(i), 34) ^
3031 ror64(a->VsrD(i), 39);
3032 } else { /* six.bit[2*i] == 1 */
3033 r->VsrD(i) = ror64(a->VsrD(i), 14) ^
3034 ror64(a->VsrD(i), 18) ^
3035 ror64(a->VsrD(i), 41);
3036 }
3037 }
3038 }
3039 }
3040
3041 void helper_vpermxor(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
3042 {
3043 ppc_avr_t result;
3044 int i;
3045
3046 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
3047 int indexA = c->VsrB(i) >> 4;
3048 int indexB = c->VsrB(i) & 0xF;
3049
3050 result.VsrB(i) = a->VsrB(indexA) ^ b->VsrB(indexB);
3051 }
3052 *r = result;
3053 }
3054
3055 #undef VECTOR_FOR_INORDER_I
3056
3057 /*****************************************************************************/
3058 /* SPE extension helpers */
3059 /* Use a table to make this quicker */
3060 static const uint8_t hbrev[16] = {
3061 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
3062 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
3063 };
3064
3065 static inline uint8_t byte_reverse(uint8_t val)
3066 {
3067 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
3068 }
3069
3070 static inline uint32_t word_reverse(uint32_t val)
3071 {
3072 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
3073 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
3074 }
3075
3076 #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
3077 target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
3078 {
3079 uint32_t a, b, d, mask;
3080
3081 mask = UINT32_MAX >> (32 - MASKBITS);
3082 a = arg1 & mask;
3083 b = arg2 & mask;
3084 d = word_reverse(1 + word_reverse(a | ~b));
3085 return (arg1 & ~mask) | (d & b);
3086 }
3087
3088 uint32_t helper_cntlsw32(uint32_t val)
3089 {
3090 if (val & 0x80000000) {
3091 return clz32(~val);
3092 } else {
3093 return clz32(val);
3094 }
3095 }
3096
3097 uint32_t helper_cntlzw32(uint32_t val)
3098 {
3099 return clz32(val);
3100 }
3101
3102 /* 440 specific */
3103 target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high,
3104 target_ulong low, uint32_t update_Rc)
3105 {
3106 target_ulong mask;
3107 int i;
3108
3109 i = 1;
3110 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
3111 if ((high & mask) == 0) {
3112 if (update_Rc) {
3113 env->crf[0] = 0x4;
3114 }
3115 goto done;
3116 }
3117 i++;
3118 }
3119 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
3120 if ((low & mask) == 0) {
3121 if (update_Rc) {
3122 env->crf[0] = 0x8;
3123 }
3124 goto done;
3125 }
3126 i++;
3127 }
3128 i = 8;
3129 if (update_Rc) {
3130 env->crf[0] = 0x2;
3131 }
3132 done:
3133 env->xer = (env->xer & ~0x7F) | i;
3134 if (update_Rc) {
3135 env->crf[0] |= xer_so;
3136 }
3137 return i;
3138 }