]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/kvm.c
Merge remote-tracking branch 'remotes/xtensa/tags/20180918-xtensa' into staging
[mirror_qemu.git] / target / ppc / kvm.c
1 /*
2 * PowerPC implementation of KVM hooks
3 *
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
6 *
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
14 *
15 */
16
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
21
22 #include <linux/kvm.h>
23
24 #include "qemu-common.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "cpu.h"
28 #include "cpu-models.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/hw_accel.h"
32 #include "kvm_ppc.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/device_tree.h"
35 #include "mmu-hash64.h"
36
37 #include "hw/sysbus.h"
38 #include "hw/ppc/spapr.h"
39 #include "hw/ppc/spapr_vio.h"
40 #include "hw/ppc/spapr_cpu_core.h"
41 #include "hw/ppc/ppc.h"
42 #include "sysemu/watchdog.h"
43 #include "trace.h"
44 #include "exec/gdbstub.h"
45 #include "exec/memattrs.h"
46 #include "exec/ram_addr.h"
47 #include "sysemu/hostmem.h"
48 #include "qemu/cutils.h"
49 #include "qemu/mmap-alloc.h"
50 #include "elf.h"
51 #include "sysemu/kvm_int.h"
52
53 //#define DEBUG_KVM
54
55 #ifdef DEBUG_KVM
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60 do { } while (0)
61 #endif
62
63 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
64
65 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
66 KVM_CAP_LAST_INFO
67 };
68
69 static int cap_interrupt_unset = false;
70 static int cap_interrupt_level = false;
71 static int cap_segstate;
72 static int cap_booke_sregs;
73 static int cap_ppc_smt;
74 static int cap_ppc_smt_possible;
75 static int cap_spapr_tce;
76 static int cap_spapr_tce_64;
77 static int cap_spapr_multitce;
78 static int cap_spapr_vfio;
79 static int cap_hior;
80 static int cap_one_reg;
81 static int cap_epr;
82 static int cap_ppc_watchdog;
83 static int cap_papr;
84 static int cap_htab_fd;
85 static int cap_fixup_hcalls;
86 static int cap_htm; /* Hardware transactional memory support */
87 static int cap_mmu_radix;
88 static int cap_mmu_hash_v3;
89 static int cap_resize_hpt;
90 static int cap_ppc_pvr_compat;
91 static int cap_ppc_safe_cache;
92 static int cap_ppc_safe_bounds_check;
93 static int cap_ppc_safe_indirect_branch;
94
95 static uint32_t debug_inst_opcode;
96
97 /* XXX We have a race condition where we actually have a level triggered
98 * interrupt, but the infrastructure can't expose that yet, so the guest
99 * takes but ignores it, goes to sleep and never gets notified that there's
100 * still an interrupt pending.
101 *
102 * As a quick workaround, let's just wake up again 20 ms after we injected
103 * an interrupt. That way we can assure that we're always reinjecting
104 * interrupts in case the guest swallowed them.
105 */
106 static QEMUTimer *idle_timer;
107
108 static void kvm_kick_cpu(void *opaque)
109 {
110 PowerPCCPU *cpu = opaque;
111
112 qemu_cpu_kick(CPU(cpu));
113 }
114
115 /* Check whether we are running with KVM-PR (instead of KVM-HV). This
116 * should only be used for fallback tests - generally we should use
117 * explicit capabilities for the features we want, rather than
118 * assuming what is/isn't available depending on the KVM variant. */
119 static bool kvmppc_is_pr(KVMState *ks)
120 {
121 /* Assume KVM-PR if the GET_PVINFO capability is available */
122 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
123 }
124
125 static int kvm_ppc_register_host_cpu_type(MachineState *ms);
126 static void kvmppc_get_cpu_characteristics(KVMState *s);
127
128 int kvm_arch_init(MachineState *ms, KVMState *s)
129 {
130 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
131 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
132 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
133 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
134 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
135 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
136 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
137 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
138 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
139 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
140 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
141 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
142 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
143 /* Note: we don't set cap_papr here, because this capability is
144 * only activated after this by kvmppc_set_papr() */
145 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
146 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
147 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
148 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
149 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
150 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
151 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
152 kvmppc_get_cpu_characteristics(s);
153 /*
154 * Note: setting it to false because there is not such capability
155 * in KVM at this moment.
156 *
157 * TODO: call kvm_vm_check_extension() with the right capability
158 * after the kernel starts implementing it.*/
159 cap_ppc_pvr_compat = false;
160
161 if (!cap_interrupt_level) {
162 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
163 "VM to stall at times!\n");
164 }
165
166 kvm_ppc_register_host_cpu_type(ms);
167
168 return 0;
169 }
170
171 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
172 {
173 return 0;
174 }
175
176 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
177 {
178 CPUPPCState *cenv = &cpu->env;
179 CPUState *cs = CPU(cpu);
180 struct kvm_sregs sregs;
181 int ret;
182
183 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
184 /* What we're really trying to say is "if we're on BookE, we use
185 the native PVR for now". This is the only sane way to check
186 it though, so we potentially confuse users that they can run
187 BookE guests on BookS. Let's hope nobody dares enough :) */
188 return 0;
189 } else {
190 if (!cap_segstate) {
191 fprintf(stderr, "kvm error: missing PVR setting capability\n");
192 return -ENOSYS;
193 }
194 }
195
196 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
197 if (ret) {
198 return ret;
199 }
200
201 sregs.pvr = cenv->spr[SPR_PVR];
202 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
203 }
204
205 /* Set up a shared TLB array with KVM */
206 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
207 {
208 CPUPPCState *env = &cpu->env;
209 CPUState *cs = CPU(cpu);
210 struct kvm_book3e_206_tlb_params params = {};
211 struct kvm_config_tlb cfg = {};
212 unsigned int entries = 0;
213 int ret, i;
214
215 if (!kvm_enabled() ||
216 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
217 return 0;
218 }
219
220 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
221
222 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
223 params.tlb_sizes[i] = booke206_tlb_size(env, i);
224 params.tlb_ways[i] = booke206_tlb_ways(env, i);
225 entries += params.tlb_sizes[i];
226 }
227
228 assert(entries == env->nb_tlb);
229 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
230
231 env->tlb_dirty = true;
232
233 cfg.array = (uintptr_t)env->tlb.tlbm;
234 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
235 cfg.params = (uintptr_t)&params;
236 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
237
238 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
239 if (ret < 0) {
240 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
241 __func__, strerror(-ret));
242 return ret;
243 }
244
245 env->kvm_sw_tlb = true;
246 return 0;
247 }
248
249
250 #if defined(TARGET_PPC64)
251 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
252 {
253 int ret;
254
255 assert(kvm_state != NULL);
256
257 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
258 error_setg(errp, "KVM doesn't expose the MMU features it supports");
259 error_append_hint(errp, "Consider switching to a newer KVM\n");
260 return;
261 }
262
263 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
264 if (ret == 0) {
265 return;
266 }
267
268 error_setg_errno(errp, -ret,
269 "KVM failed to provide the MMU features it supports");
270 }
271
272 struct ppc_radix_page_info *kvm_get_radix_page_info(void)
273 {
274 KVMState *s = KVM_STATE(current_machine->accelerator);
275 struct ppc_radix_page_info *radix_page_info;
276 struct kvm_ppc_rmmu_info rmmu_info;
277 int i;
278
279 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
280 return NULL;
281 }
282 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
283 return NULL;
284 }
285 radix_page_info = g_malloc0(sizeof(*radix_page_info));
286 radix_page_info->count = 0;
287 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
288 if (rmmu_info.ap_encodings[i]) {
289 radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
290 radix_page_info->count++;
291 }
292 }
293 return radix_page_info;
294 }
295
296 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
297 bool radix, bool gtse,
298 uint64_t proc_tbl)
299 {
300 CPUState *cs = CPU(cpu);
301 int ret;
302 uint64_t flags = 0;
303 struct kvm_ppc_mmuv3_cfg cfg = {
304 .process_table = proc_tbl,
305 };
306
307 if (radix) {
308 flags |= KVM_PPC_MMUV3_RADIX;
309 }
310 if (gtse) {
311 flags |= KVM_PPC_MMUV3_GTSE;
312 }
313 cfg.flags = flags;
314 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
315 switch (ret) {
316 case 0:
317 return H_SUCCESS;
318 case -EINVAL:
319 return H_PARAMETER;
320 case -ENODEV:
321 return H_NOT_AVAILABLE;
322 default:
323 return H_HARDWARE;
324 }
325 }
326
327 bool kvmppc_hpt_needs_host_contiguous_pages(void)
328 {
329 static struct kvm_ppc_smmu_info smmu_info;
330
331 if (!kvm_enabled()) {
332 return false;
333 }
334
335 kvm_get_smmu_info(&smmu_info, &error_fatal);
336 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
337 }
338
339 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
340 {
341 struct kvm_ppc_smmu_info smmu_info;
342 int iq, ik, jq, jk;
343 Error *local_err = NULL;
344
345 /* For now, we only have anything to check on hash64 MMUs */
346 if (!cpu->hash64_opts || !kvm_enabled()) {
347 return;
348 }
349
350 kvm_get_smmu_info(&smmu_info, &local_err);
351 if (local_err) {
352 error_propagate(errp, local_err);
353 return;
354 }
355
356 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
357 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
358 error_setg(errp,
359 "KVM does not support 1TiB segments which guest expects");
360 return;
361 }
362
363 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
364 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
365 smmu_info.slb_size, cpu->hash64_opts->slb_size);
366 return;
367 }
368
369 /*
370 * Verify that every pagesize supported by the cpu model is
371 * supported by KVM with the same encodings
372 */
373 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
374 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
375 struct kvm_ppc_one_seg_page_size *ksps;
376
377 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
378 if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
379 break;
380 }
381 }
382 if (ik >= ARRAY_SIZE(smmu_info.sps)) {
383 error_setg(errp, "KVM doesn't support for base page shift %u",
384 qsps->page_shift);
385 return;
386 }
387
388 ksps = &smmu_info.sps[ik];
389 if (ksps->slb_enc != qsps->slb_enc) {
390 error_setg(errp,
391 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
392 ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
393 return;
394 }
395
396 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
397 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
398 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
399 break;
400 }
401 }
402
403 if (jk >= ARRAY_SIZE(ksps->enc)) {
404 error_setg(errp, "KVM doesn't support page shift %u/%u",
405 qsps->enc[jq].page_shift, qsps->page_shift);
406 return;
407 }
408 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
409 error_setg(errp,
410 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
411 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
412 qsps->page_shift, qsps->enc[jq].pte_enc);
413 return;
414 }
415 }
416 }
417
418 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
419 /* Mostly what guest pagesizes we can use are related to the
420 * host pages used to map guest RAM, which is handled in the
421 * platform code. Cache-Inhibited largepages (64k) however are
422 * used for I/O, so if they're mapped to the host at all it
423 * will be a normal mapping, not a special hugepage one used
424 * for RAM. */
425 if (getpagesize() < 0x10000) {
426 error_setg(errp,
427 "KVM can't supply 64kiB CI pages, which guest expects");
428 }
429 }
430 }
431 #endif /* !defined (TARGET_PPC64) */
432
433 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
434 {
435 return POWERPC_CPU(cpu)->vcpu_id;
436 }
437
438 /* e500 supports 2 h/w breakpoint and 2 watchpoint.
439 * book3s supports only 1 watchpoint, so array size
440 * of 4 is sufficient for now.
441 */
442 #define MAX_HW_BKPTS 4
443
444 static struct HWBreakpoint {
445 target_ulong addr;
446 int type;
447 } hw_debug_points[MAX_HW_BKPTS];
448
449 static CPUWatchpoint hw_watchpoint;
450
451 /* Default there is no breakpoint and watchpoint supported */
452 static int max_hw_breakpoint;
453 static int max_hw_watchpoint;
454 static int nb_hw_breakpoint;
455 static int nb_hw_watchpoint;
456
457 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
458 {
459 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
460 max_hw_breakpoint = 2;
461 max_hw_watchpoint = 2;
462 }
463
464 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
465 fprintf(stderr, "Error initializing h/w breakpoints\n");
466 return;
467 }
468 }
469
470 int kvm_arch_init_vcpu(CPUState *cs)
471 {
472 PowerPCCPU *cpu = POWERPC_CPU(cs);
473 CPUPPCState *cenv = &cpu->env;
474 int ret;
475
476 /* Synchronize sregs with kvm */
477 ret = kvm_arch_sync_sregs(cpu);
478 if (ret) {
479 if (ret == -EINVAL) {
480 error_report("Register sync failed... If you're using kvm-hv.ko,"
481 " only \"-cpu host\" is possible");
482 }
483 return ret;
484 }
485
486 idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
487
488 switch (cenv->mmu_model) {
489 case POWERPC_MMU_BOOKE206:
490 /* This target supports access to KVM's guest TLB */
491 ret = kvm_booke206_tlb_init(cpu);
492 break;
493 case POWERPC_MMU_2_07:
494 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
495 /* KVM-HV has transactional memory on POWER8 also without the
496 * KVM_CAP_PPC_HTM extension, so enable it here instead as
497 * long as it's availble to userspace on the host. */
498 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
499 cap_htm = true;
500 }
501 }
502 break;
503 default:
504 break;
505 }
506
507 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
508 kvmppc_hw_debug_points_init(cenv);
509
510 return ret;
511 }
512
513 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
514 {
515 CPUPPCState *env = &cpu->env;
516 CPUState *cs = CPU(cpu);
517 struct kvm_dirty_tlb dirty_tlb;
518 unsigned char *bitmap;
519 int ret;
520
521 if (!env->kvm_sw_tlb) {
522 return;
523 }
524
525 bitmap = g_malloc((env->nb_tlb + 7) / 8);
526 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
527
528 dirty_tlb.bitmap = (uintptr_t)bitmap;
529 dirty_tlb.num_dirty = env->nb_tlb;
530
531 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
532 if (ret) {
533 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
534 __func__, strerror(-ret));
535 }
536
537 g_free(bitmap);
538 }
539
540 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
541 {
542 PowerPCCPU *cpu = POWERPC_CPU(cs);
543 CPUPPCState *env = &cpu->env;
544 union {
545 uint32_t u32;
546 uint64_t u64;
547 } val;
548 struct kvm_one_reg reg = {
549 .id = id,
550 .addr = (uintptr_t) &val,
551 };
552 int ret;
553
554 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
555 if (ret != 0) {
556 trace_kvm_failed_spr_get(spr, strerror(errno));
557 } else {
558 switch (id & KVM_REG_SIZE_MASK) {
559 case KVM_REG_SIZE_U32:
560 env->spr[spr] = val.u32;
561 break;
562
563 case KVM_REG_SIZE_U64:
564 env->spr[spr] = val.u64;
565 break;
566
567 default:
568 /* Don't handle this size yet */
569 abort();
570 }
571 }
572 }
573
574 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
575 {
576 PowerPCCPU *cpu = POWERPC_CPU(cs);
577 CPUPPCState *env = &cpu->env;
578 union {
579 uint32_t u32;
580 uint64_t u64;
581 } val;
582 struct kvm_one_reg reg = {
583 .id = id,
584 .addr = (uintptr_t) &val,
585 };
586 int ret;
587
588 switch (id & KVM_REG_SIZE_MASK) {
589 case KVM_REG_SIZE_U32:
590 val.u32 = env->spr[spr];
591 break;
592
593 case KVM_REG_SIZE_U64:
594 val.u64 = env->spr[spr];
595 break;
596
597 default:
598 /* Don't handle this size yet */
599 abort();
600 }
601
602 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
603 if (ret != 0) {
604 trace_kvm_failed_spr_set(spr, strerror(errno));
605 }
606 }
607
608 static int kvm_put_fp(CPUState *cs)
609 {
610 PowerPCCPU *cpu = POWERPC_CPU(cs);
611 CPUPPCState *env = &cpu->env;
612 struct kvm_one_reg reg;
613 int i;
614 int ret;
615
616 if (env->insns_flags & PPC_FLOAT) {
617 uint64_t fpscr = env->fpscr;
618 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
619
620 reg.id = KVM_REG_PPC_FPSCR;
621 reg.addr = (uintptr_t)&fpscr;
622 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
623 if (ret < 0) {
624 DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
625 return ret;
626 }
627
628 for (i = 0; i < 32; i++) {
629 uint64_t vsr[2];
630
631 #ifdef HOST_WORDS_BIGENDIAN
632 vsr[0] = float64_val(env->fpr[i]);
633 vsr[1] = env->vsr[i];
634 #else
635 vsr[0] = env->vsr[i];
636 vsr[1] = float64_val(env->fpr[i]);
637 #endif
638 reg.addr = (uintptr_t) &vsr;
639 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
640
641 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
642 if (ret < 0) {
643 DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
644 i, strerror(errno));
645 return ret;
646 }
647 }
648 }
649
650 if (env->insns_flags & PPC_ALTIVEC) {
651 reg.id = KVM_REG_PPC_VSCR;
652 reg.addr = (uintptr_t)&env->vscr;
653 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
654 if (ret < 0) {
655 DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
656 return ret;
657 }
658
659 for (i = 0; i < 32; i++) {
660 reg.id = KVM_REG_PPC_VR(i);
661 reg.addr = (uintptr_t)&env->avr[i];
662 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
663 if (ret < 0) {
664 DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
665 return ret;
666 }
667 }
668 }
669
670 return 0;
671 }
672
673 static int kvm_get_fp(CPUState *cs)
674 {
675 PowerPCCPU *cpu = POWERPC_CPU(cs);
676 CPUPPCState *env = &cpu->env;
677 struct kvm_one_reg reg;
678 int i;
679 int ret;
680
681 if (env->insns_flags & PPC_FLOAT) {
682 uint64_t fpscr;
683 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
684
685 reg.id = KVM_REG_PPC_FPSCR;
686 reg.addr = (uintptr_t)&fpscr;
687 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
688 if (ret < 0) {
689 DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
690 return ret;
691 } else {
692 env->fpscr = fpscr;
693 }
694
695 for (i = 0; i < 32; i++) {
696 uint64_t vsr[2];
697
698 reg.addr = (uintptr_t) &vsr;
699 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
700
701 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
702 if (ret < 0) {
703 DPRINTF("Unable to get %s%d from KVM: %s\n",
704 vsx ? "VSR" : "FPR", i, strerror(errno));
705 return ret;
706 } else {
707 #ifdef HOST_WORDS_BIGENDIAN
708 env->fpr[i] = vsr[0];
709 if (vsx) {
710 env->vsr[i] = vsr[1];
711 }
712 #else
713 env->fpr[i] = vsr[1];
714 if (vsx) {
715 env->vsr[i] = vsr[0];
716 }
717 #endif
718 }
719 }
720 }
721
722 if (env->insns_flags & PPC_ALTIVEC) {
723 reg.id = KVM_REG_PPC_VSCR;
724 reg.addr = (uintptr_t)&env->vscr;
725 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
726 if (ret < 0) {
727 DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
728 return ret;
729 }
730
731 for (i = 0; i < 32; i++) {
732 reg.id = KVM_REG_PPC_VR(i);
733 reg.addr = (uintptr_t)&env->avr[i];
734 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
735 if (ret < 0) {
736 DPRINTF("Unable to get VR%d from KVM: %s\n",
737 i, strerror(errno));
738 return ret;
739 }
740 }
741 }
742
743 return 0;
744 }
745
746 #if defined(TARGET_PPC64)
747 static int kvm_get_vpa(CPUState *cs)
748 {
749 PowerPCCPU *cpu = POWERPC_CPU(cs);
750 sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
751 struct kvm_one_reg reg;
752 int ret;
753
754 reg.id = KVM_REG_PPC_VPA_ADDR;
755 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
756 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
757 if (ret < 0) {
758 DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
759 return ret;
760 }
761
762 assert((uintptr_t)&spapr_cpu->slb_shadow_size
763 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
764 reg.id = KVM_REG_PPC_VPA_SLB;
765 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
766 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
767 if (ret < 0) {
768 DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
769 strerror(errno));
770 return ret;
771 }
772
773 assert((uintptr_t)&spapr_cpu->dtl_size
774 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
775 reg.id = KVM_REG_PPC_VPA_DTL;
776 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
777 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
778 if (ret < 0) {
779 DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
780 strerror(errno));
781 return ret;
782 }
783
784 return 0;
785 }
786
787 static int kvm_put_vpa(CPUState *cs)
788 {
789 PowerPCCPU *cpu = POWERPC_CPU(cs);
790 sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
791 struct kvm_one_reg reg;
792 int ret;
793
794 /* SLB shadow or DTL can't be registered unless a master VPA is
795 * registered. That means when restoring state, if a VPA *is*
796 * registered, we need to set that up first. If not, we need to
797 * deregister the others before deregistering the master VPA */
798 assert(spapr_cpu->vpa_addr
799 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
800
801 if (spapr_cpu->vpa_addr) {
802 reg.id = KVM_REG_PPC_VPA_ADDR;
803 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
804 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
805 if (ret < 0) {
806 DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
807 return ret;
808 }
809 }
810
811 assert((uintptr_t)&spapr_cpu->slb_shadow_size
812 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
813 reg.id = KVM_REG_PPC_VPA_SLB;
814 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
815 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
816 if (ret < 0) {
817 DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
818 return ret;
819 }
820
821 assert((uintptr_t)&spapr_cpu->dtl_size
822 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
823 reg.id = KVM_REG_PPC_VPA_DTL;
824 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
825 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
826 if (ret < 0) {
827 DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
828 strerror(errno));
829 return ret;
830 }
831
832 if (!spapr_cpu->vpa_addr) {
833 reg.id = KVM_REG_PPC_VPA_ADDR;
834 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
835 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
836 if (ret < 0) {
837 DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
838 return ret;
839 }
840 }
841
842 return 0;
843 }
844 #endif /* TARGET_PPC64 */
845
846 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
847 {
848 CPUPPCState *env = &cpu->env;
849 struct kvm_sregs sregs;
850 int i;
851
852 sregs.pvr = env->spr[SPR_PVR];
853
854 if (cpu->vhyp) {
855 PPCVirtualHypervisorClass *vhc =
856 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
857 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
858 } else {
859 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
860 }
861
862 /* Sync SLB */
863 #ifdef TARGET_PPC64
864 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
865 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
866 if (env->slb[i].esid & SLB_ESID_V) {
867 sregs.u.s.ppc64.slb[i].slbe |= i;
868 }
869 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
870 }
871 #endif
872
873 /* Sync SRs */
874 for (i = 0; i < 16; i++) {
875 sregs.u.s.ppc32.sr[i] = env->sr[i];
876 }
877
878 /* Sync BATs */
879 for (i = 0; i < 8; i++) {
880 /* Beware. We have to swap upper and lower bits here */
881 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
882 | env->DBAT[1][i];
883 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
884 | env->IBAT[1][i];
885 }
886
887 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
888 }
889
890 int kvm_arch_put_registers(CPUState *cs, int level)
891 {
892 PowerPCCPU *cpu = POWERPC_CPU(cs);
893 CPUPPCState *env = &cpu->env;
894 struct kvm_regs regs;
895 int ret;
896 int i;
897
898 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
899 if (ret < 0) {
900 return ret;
901 }
902
903 regs.ctr = env->ctr;
904 regs.lr = env->lr;
905 regs.xer = cpu_read_xer(env);
906 regs.msr = env->msr;
907 regs.pc = env->nip;
908
909 regs.srr0 = env->spr[SPR_SRR0];
910 regs.srr1 = env->spr[SPR_SRR1];
911
912 regs.sprg0 = env->spr[SPR_SPRG0];
913 regs.sprg1 = env->spr[SPR_SPRG1];
914 regs.sprg2 = env->spr[SPR_SPRG2];
915 regs.sprg3 = env->spr[SPR_SPRG3];
916 regs.sprg4 = env->spr[SPR_SPRG4];
917 regs.sprg5 = env->spr[SPR_SPRG5];
918 regs.sprg6 = env->spr[SPR_SPRG6];
919 regs.sprg7 = env->spr[SPR_SPRG7];
920
921 regs.pid = env->spr[SPR_BOOKE_PID];
922
923 for (i = 0;i < 32; i++)
924 regs.gpr[i] = env->gpr[i];
925
926 regs.cr = 0;
927 for (i = 0; i < 8; i++) {
928 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
929 }
930
931 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
932 if (ret < 0)
933 return ret;
934
935 kvm_put_fp(cs);
936
937 if (env->tlb_dirty) {
938 kvm_sw_tlb_put(cpu);
939 env->tlb_dirty = false;
940 }
941
942 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
943 ret = kvmppc_put_books_sregs(cpu);
944 if (ret < 0) {
945 return ret;
946 }
947 }
948
949 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
950 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
951 }
952
953 if (cap_one_reg) {
954 int i;
955
956 /* We deliberately ignore errors here, for kernels which have
957 * the ONE_REG calls, but don't support the specific
958 * registers, there's a reasonable chance things will still
959 * work, at least until we try to migrate. */
960 for (i = 0; i < 1024; i++) {
961 uint64_t id = env->spr_cb[i].one_reg_id;
962
963 if (id != 0) {
964 kvm_put_one_spr(cs, id, i);
965 }
966 }
967
968 #ifdef TARGET_PPC64
969 if (msr_ts) {
970 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
971 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
972 }
973 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
974 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
975 }
976 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
977 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
978 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
979 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
980 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
981 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
982 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
983 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
984 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
985 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
986 }
987
988 if (cap_papr) {
989 if (kvm_put_vpa(cs) < 0) {
990 DPRINTF("Warning: Unable to set VPA information to KVM\n");
991 }
992 }
993
994 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
995 #endif /* TARGET_PPC64 */
996 }
997
998 return ret;
999 }
1000
1001 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1002 {
1003 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1004 }
1005
1006 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1007 {
1008 CPUPPCState *env = &cpu->env;
1009 struct kvm_sregs sregs;
1010 int ret;
1011
1012 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1013 if (ret < 0) {
1014 return ret;
1015 }
1016
1017 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1018 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1019 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1020 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1021 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1022 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1023 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1024 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1025 env->spr[SPR_DECR] = sregs.u.e.dec;
1026 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1027 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1028 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1029 }
1030
1031 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1032 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1033 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1034 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1035 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1036 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1037 }
1038
1039 if (sregs.u.e.features & KVM_SREGS_E_64) {
1040 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1041 }
1042
1043 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1044 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1045 }
1046
1047 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1048 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1049 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1050 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1051 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1052 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1053 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1054 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1055 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1056 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1057 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1058 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1059 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1060 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1061 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1062 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1063 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1064 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1065 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1066 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1067 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1068 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1069 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1070 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1071 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1072 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1073 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1074 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1075 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1076 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1077 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1078 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1079 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1080
1081 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1082 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1083 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1084 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1085 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1086 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1087 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1088 }
1089
1090 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1091 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1092 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1093 }
1094
1095 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1096 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1097 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1098 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1099 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1100 }
1101 }
1102
1103 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1104 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1105 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1106 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1107 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1108 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1109 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1110 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1111 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1112 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1113 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1114 }
1115
1116 if (sregs.u.e.features & KVM_SREGS_EXP) {
1117 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1118 }
1119
1120 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1121 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1122 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1123 }
1124
1125 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1126 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1127 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1128 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1129
1130 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1131 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1132 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1133 }
1134 }
1135
1136 return 0;
1137 }
1138
1139 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1140 {
1141 CPUPPCState *env = &cpu->env;
1142 struct kvm_sregs sregs;
1143 int ret;
1144 int i;
1145
1146 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1147 if (ret < 0) {
1148 return ret;
1149 }
1150
1151 if (!cpu->vhyp) {
1152 ppc_store_sdr1(env, sregs.u.s.sdr1);
1153 }
1154
1155 /* Sync SLB */
1156 #ifdef TARGET_PPC64
1157 /*
1158 * The packed SLB array we get from KVM_GET_SREGS only contains
1159 * information about valid entries. So we flush our internal copy
1160 * to get rid of stale ones, then put all valid SLB entries back
1161 * in.
1162 */
1163 memset(env->slb, 0, sizeof(env->slb));
1164 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1165 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1166 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1167 /*
1168 * Only restore valid entries
1169 */
1170 if (rb & SLB_ESID_V) {
1171 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1172 }
1173 }
1174 #endif
1175
1176 /* Sync SRs */
1177 for (i = 0; i < 16; i++) {
1178 env->sr[i] = sregs.u.s.ppc32.sr[i];
1179 }
1180
1181 /* Sync BATs */
1182 for (i = 0; i < 8; i++) {
1183 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1184 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1185 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1186 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1187 }
1188
1189 return 0;
1190 }
1191
1192 int kvm_arch_get_registers(CPUState *cs)
1193 {
1194 PowerPCCPU *cpu = POWERPC_CPU(cs);
1195 CPUPPCState *env = &cpu->env;
1196 struct kvm_regs regs;
1197 uint32_t cr;
1198 int i, ret;
1199
1200 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1201 if (ret < 0)
1202 return ret;
1203
1204 cr = regs.cr;
1205 for (i = 7; i >= 0; i--) {
1206 env->crf[i] = cr & 15;
1207 cr >>= 4;
1208 }
1209
1210 env->ctr = regs.ctr;
1211 env->lr = regs.lr;
1212 cpu_write_xer(env, regs.xer);
1213 env->msr = regs.msr;
1214 env->nip = regs.pc;
1215
1216 env->spr[SPR_SRR0] = regs.srr0;
1217 env->spr[SPR_SRR1] = regs.srr1;
1218
1219 env->spr[SPR_SPRG0] = regs.sprg0;
1220 env->spr[SPR_SPRG1] = regs.sprg1;
1221 env->spr[SPR_SPRG2] = regs.sprg2;
1222 env->spr[SPR_SPRG3] = regs.sprg3;
1223 env->spr[SPR_SPRG4] = regs.sprg4;
1224 env->spr[SPR_SPRG5] = regs.sprg5;
1225 env->spr[SPR_SPRG6] = regs.sprg6;
1226 env->spr[SPR_SPRG7] = regs.sprg7;
1227
1228 env->spr[SPR_BOOKE_PID] = regs.pid;
1229
1230 for (i = 0;i < 32; i++)
1231 env->gpr[i] = regs.gpr[i];
1232
1233 kvm_get_fp(cs);
1234
1235 if (cap_booke_sregs) {
1236 ret = kvmppc_get_booke_sregs(cpu);
1237 if (ret < 0) {
1238 return ret;
1239 }
1240 }
1241
1242 if (cap_segstate) {
1243 ret = kvmppc_get_books_sregs(cpu);
1244 if (ret < 0) {
1245 return ret;
1246 }
1247 }
1248
1249 if (cap_hior) {
1250 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1251 }
1252
1253 if (cap_one_reg) {
1254 int i;
1255
1256 /* We deliberately ignore errors here, for kernels which have
1257 * the ONE_REG calls, but don't support the specific
1258 * registers, there's a reasonable chance things will still
1259 * work, at least until we try to migrate. */
1260 for (i = 0; i < 1024; i++) {
1261 uint64_t id = env->spr_cb[i].one_reg_id;
1262
1263 if (id != 0) {
1264 kvm_get_one_spr(cs, id, i);
1265 }
1266 }
1267
1268 #ifdef TARGET_PPC64
1269 if (msr_ts) {
1270 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1271 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1272 }
1273 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1274 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1275 }
1276 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1277 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1278 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1279 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1280 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1281 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1282 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1283 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1284 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1285 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1286 }
1287
1288 if (cap_papr) {
1289 if (kvm_get_vpa(cs) < 0) {
1290 DPRINTF("Warning: Unable to get VPA information from KVM\n");
1291 }
1292 }
1293
1294 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1295 #endif
1296 }
1297
1298 return 0;
1299 }
1300
1301 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1302 {
1303 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1304
1305 if (irq != PPC_INTERRUPT_EXT) {
1306 return 0;
1307 }
1308
1309 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
1310 return 0;
1311 }
1312
1313 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1314
1315 return 0;
1316 }
1317
1318 #if defined(TARGET_PPC64)
1319 #define PPC_INPUT_INT PPC970_INPUT_INT
1320 #else
1321 #define PPC_INPUT_INT PPC6xx_INPUT_INT
1322 #endif
1323
1324 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1325 {
1326 PowerPCCPU *cpu = POWERPC_CPU(cs);
1327 CPUPPCState *env = &cpu->env;
1328 int r;
1329 unsigned irq;
1330
1331 qemu_mutex_lock_iothread();
1332
1333 /* PowerPC QEMU tracks the various core input pins (interrupt, critical
1334 * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
1335 if (!cap_interrupt_level &&
1336 run->ready_for_interrupt_injection &&
1337 (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1338 (env->irq_input_state & (1<<PPC_INPUT_INT)))
1339 {
1340 /* For now KVM disregards the 'irq' argument. However, in the
1341 * future KVM could cache it in-kernel to avoid a heavyweight exit
1342 * when reading the UIC.
1343 */
1344 irq = KVM_INTERRUPT_SET;
1345
1346 DPRINTF("injected interrupt %d\n", irq);
1347 r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
1348 if (r < 0) {
1349 printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
1350 }
1351
1352 /* Always wake up soon in case the interrupt was level based */
1353 timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1354 (NANOSECONDS_PER_SECOND / 50));
1355 }
1356
1357 /* We don't know if there are more interrupts pending after this. However,
1358 * the guest will return to userspace in the course of handling this one
1359 * anyways, so we will get a chance to deliver the rest. */
1360
1361 qemu_mutex_unlock_iothread();
1362 }
1363
1364 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1365 {
1366 return MEMTXATTRS_UNSPECIFIED;
1367 }
1368
1369 int kvm_arch_process_async_events(CPUState *cs)
1370 {
1371 return cs->halted;
1372 }
1373
1374 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1375 {
1376 CPUState *cs = CPU(cpu);
1377 CPUPPCState *env = &cpu->env;
1378
1379 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1380 cs->halted = 1;
1381 cs->exception_index = EXCP_HLT;
1382 }
1383
1384 return 0;
1385 }
1386
1387 /* map dcr access to existing qemu dcr emulation */
1388 static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
1389 {
1390 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
1391 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1392
1393 return 0;
1394 }
1395
1396 static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
1397 {
1398 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
1399 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1400
1401 return 0;
1402 }
1403
1404 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1405 {
1406 /* Mixed endian case is not handled */
1407 uint32_t sc = debug_inst_opcode;
1408
1409 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1410 sizeof(sc), 0) ||
1411 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1412 return -EINVAL;
1413 }
1414
1415 return 0;
1416 }
1417
1418 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1419 {
1420 uint32_t sc;
1421
1422 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1423 sc != debug_inst_opcode ||
1424 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1425 sizeof(sc), 1)) {
1426 return -EINVAL;
1427 }
1428
1429 return 0;
1430 }
1431
1432 static int find_hw_breakpoint(target_ulong addr, int type)
1433 {
1434 int n;
1435
1436 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1437 <= ARRAY_SIZE(hw_debug_points));
1438
1439 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1440 if (hw_debug_points[n].addr == addr &&
1441 hw_debug_points[n].type == type) {
1442 return n;
1443 }
1444 }
1445
1446 return -1;
1447 }
1448
1449 static int find_hw_watchpoint(target_ulong addr, int *flag)
1450 {
1451 int n;
1452
1453 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1454 if (n >= 0) {
1455 *flag = BP_MEM_ACCESS;
1456 return n;
1457 }
1458
1459 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1460 if (n >= 0) {
1461 *flag = BP_MEM_WRITE;
1462 return n;
1463 }
1464
1465 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1466 if (n >= 0) {
1467 *flag = BP_MEM_READ;
1468 return n;
1469 }
1470
1471 return -1;
1472 }
1473
1474 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1475 target_ulong len, int type)
1476 {
1477 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1478 return -ENOBUFS;
1479 }
1480
1481 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1482 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1483
1484 switch (type) {
1485 case GDB_BREAKPOINT_HW:
1486 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1487 return -ENOBUFS;
1488 }
1489
1490 if (find_hw_breakpoint(addr, type) >= 0) {
1491 return -EEXIST;
1492 }
1493
1494 nb_hw_breakpoint++;
1495 break;
1496
1497 case GDB_WATCHPOINT_WRITE:
1498 case GDB_WATCHPOINT_READ:
1499 case GDB_WATCHPOINT_ACCESS:
1500 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1501 return -ENOBUFS;
1502 }
1503
1504 if (find_hw_breakpoint(addr, type) >= 0) {
1505 return -EEXIST;
1506 }
1507
1508 nb_hw_watchpoint++;
1509 break;
1510
1511 default:
1512 return -ENOSYS;
1513 }
1514
1515 return 0;
1516 }
1517
1518 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1519 target_ulong len, int type)
1520 {
1521 int n;
1522
1523 n = find_hw_breakpoint(addr, type);
1524 if (n < 0) {
1525 return -ENOENT;
1526 }
1527
1528 switch (type) {
1529 case GDB_BREAKPOINT_HW:
1530 nb_hw_breakpoint--;
1531 break;
1532
1533 case GDB_WATCHPOINT_WRITE:
1534 case GDB_WATCHPOINT_READ:
1535 case GDB_WATCHPOINT_ACCESS:
1536 nb_hw_watchpoint--;
1537 break;
1538
1539 default:
1540 return -ENOSYS;
1541 }
1542 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1543
1544 return 0;
1545 }
1546
1547 void kvm_arch_remove_all_hw_breakpoints(void)
1548 {
1549 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1550 }
1551
1552 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1553 {
1554 int n;
1555
1556 /* Software Breakpoint updates */
1557 if (kvm_sw_breakpoints_active(cs)) {
1558 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1559 }
1560
1561 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1562 <= ARRAY_SIZE(hw_debug_points));
1563 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1564
1565 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1566 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1567 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1568 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1569 switch (hw_debug_points[n].type) {
1570 case GDB_BREAKPOINT_HW:
1571 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1572 break;
1573 case GDB_WATCHPOINT_WRITE:
1574 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1575 break;
1576 case GDB_WATCHPOINT_READ:
1577 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1578 break;
1579 case GDB_WATCHPOINT_ACCESS:
1580 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1581 KVMPPC_DEBUG_WATCH_READ;
1582 break;
1583 default:
1584 cpu_abort(cs, "Unsupported breakpoint type\n");
1585 }
1586 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1587 }
1588 }
1589 }
1590
1591 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1592 {
1593 CPUState *cs = CPU(cpu);
1594 CPUPPCState *env = &cpu->env;
1595 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1596 int handle = 0;
1597 int n;
1598 int flag = 0;
1599
1600 if (cs->singlestep_enabled) {
1601 handle = 1;
1602 } else if (arch_info->status) {
1603 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1604 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1605 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1606 if (n >= 0) {
1607 handle = 1;
1608 }
1609 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1610 KVMPPC_DEBUG_WATCH_WRITE)) {
1611 n = find_hw_watchpoint(arch_info->address, &flag);
1612 if (n >= 0) {
1613 handle = 1;
1614 cs->watchpoint_hit = &hw_watchpoint;
1615 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1616 hw_watchpoint.flags = flag;
1617 }
1618 }
1619 }
1620 } else if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1621 handle = 1;
1622 } else {
1623 /* QEMU is not able to handle debug exception, so inject
1624 * program exception to guest;
1625 * Yes program exception NOT debug exception !!
1626 * When QEMU is using debug resources then debug exception must
1627 * be always set. To achieve this we set MSR_DE and also set
1628 * MSRP_DEP so guest cannot change MSR_DE.
1629 * When emulating debug resource for guest we want guest
1630 * to control MSR_DE (enable/disable debug interrupt on need).
1631 * Supporting both configurations are NOT possible.
1632 * So the result is that we cannot share debug resources
1633 * between QEMU and Guest on BOOKE architecture.
1634 * In the current design QEMU gets the priority over guest,
1635 * this means that if QEMU is using debug resources then guest
1636 * cannot use them;
1637 * For software breakpoint QEMU uses a privileged instruction;
1638 * So there cannot be any reason that we are here for guest
1639 * set debug exception, only possibility is guest executed a
1640 * privileged / illegal instruction and that's why we are
1641 * injecting a program interrupt.
1642 */
1643
1644 cpu_synchronize_state(cs);
1645 /* env->nip is PC, so increment this by 4 to use
1646 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1647 */
1648 env->nip += 4;
1649 cs->exception_index = POWERPC_EXCP_PROGRAM;
1650 env->error_code = POWERPC_EXCP_INVAL;
1651 ppc_cpu_do_interrupt(cs);
1652 }
1653
1654 return handle;
1655 }
1656
1657 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1658 {
1659 PowerPCCPU *cpu = POWERPC_CPU(cs);
1660 CPUPPCState *env = &cpu->env;
1661 int ret;
1662
1663 qemu_mutex_lock_iothread();
1664
1665 switch (run->exit_reason) {
1666 case KVM_EXIT_DCR:
1667 if (run->dcr.is_write) {
1668 DPRINTF("handle dcr write\n");
1669 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1670 } else {
1671 DPRINTF("handle dcr read\n");
1672 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1673 }
1674 break;
1675 case KVM_EXIT_HLT:
1676 DPRINTF("handle halt\n");
1677 ret = kvmppc_handle_halt(cpu);
1678 break;
1679 #if defined(TARGET_PPC64)
1680 case KVM_EXIT_PAPR_HCALL:
1681 DPRINTF("handle PAPR hypercall\n");
1682 run->papr_hcall.ret = spapr_hypercall(cpu,
1683 run->papr_hcall.nr,
1684 run->papr_hcall.args);
1685 ret = 0;
1686 break;
1687 #endif
1688 case KVM_EXIT_EPR:
1689 DPRINTF("handle epr\n");
1690 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1691 ret = 0;
1692 break;
1693 case KVM_EXIT_WATCHDOG:
1694 DPRINTF("handle watchdog expiry\n");
1695 watchdog_perform_action();
1696 ret = 0;
1697 break;
1698
1699 case KVM_EXIT_DEBUG:
1700 DPRINTF("handle debug exception\n");
1701 if (kvm_handle_debug(cpu, run)) {
1702 ret = EXCP_DEBUG;
1703 break;
1704 }
1705 /* re-enter, this exception was guest-internal */
1706 ret = 0;
1707 break;
1708
1709 default:
1710 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1711 ret = -1;
1712 break;
1713 }
1714
1715 qemu_mutex_unlock_iothread();
1716 return ret;
1717 }
1718
1719 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1720 {
1721 CPUState *cs = CPU(cpu);
1722 uint32_t bits = tsr_bits;
1723 struct kvm_one_reg reg = {
1724 .id = KVM_REG_PPC_OR_TSR,
1725 .addr = (uintptr_t) &bits,
1726 };
1727
1728 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1729 }
1730
1731 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1732 {
1733
1734 CPUState *cs = CPU(cpu);
1735 uint32_t bits = tsr_bits;
1736 struct kvm_one_reg reg = {
1737 .id = KVM_REG_PPC_CLEAR_TSR,
1738 .addr = (uintptr_t) &bits,
1739 };
1740
1741 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1742 }
1743
1744 int kvmppc_set_tcr(PowerPCCPU *cpu)
1745 {
1746 CPUState *cs = CPU(cpu);
1747 CPUPPCState *env = &cpu->env;
1748 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1749
1750 struct kvm_one_reg reg = {
1751 .id = KVM_REG_PPC_TCR,
1752 .addr = (uintptr_t) &tcr,
1753 };
1754
1755 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1756 }
1757
1758 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1759 {
1760 CPUState *cs = CPU(cpu);
1761 int ret;
1762
1763 if (!kvm_enabled()) {
1764 return -1;
1765 }
1766
1767 if (!cap_ppc_watchdog) {
1768 printf("warning: KVM does not support watchdog");
1769 return -1;
1770 }
1771
1772 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1773 if (ret < 0) {
1774 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1775 __func__, strerror(-ret));
1776 return ret;
1777 }
1778
1779 return ret;
1780 }
1781
1782 static int read_cpuinfo(const char *field, char *value, int len)
1783 {
1784 FILE *f;
1785 int ret = -1;
1786 int field_len = strlen(field);
1787 char line[512];
1788
1789 f = fopen("/proc/cpuinfo", "r");
1790 if (!f) {
1791 return -1;
1792 }
1793
1794 do {
1795 if (!fgets(line, sizeof(line), f)) {
1796 break;
1797 }
1798 if (!strncmp(line, field, field_len)) {
1799 pstrcpy(value, len, line);
1800 ret = 0;
1801 break;
1802 }
1803 } while(*line);
1804
1805 fclose(f);
1806
1807 return ret;
1808 }
1809
1810 uint32_t kvmppc_get_tbfreq(void)
1811 {
1812 char line[512];
1813 char *ns;
1814 uint32_t retval = NANOSECONDS_PER_SECOND;
1815
1816 if (read_cpuinfo("timebase", line, sizeof(line))) {
1817 return retval;
1818 }
1819
1820 if (!(ns = strchr(line, ':'))) {
1821 return retval;
1822 }
1823
1824 ns++;
1825
1826 return atoi(ns);
1827 }
1828
1829 bool kvmppc_get_host_serial(char **value)
1830 {
1831 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1832 NULL);
1833 }
1834
1835 bool kvmppc_get_host_model(char **value)
1836 {
1837 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1838 }
1839
1840 /* Try to find a device tree node for a CPU with clock-frequency property */
1841 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1842 {
1843 struct dirent *dirp;
1844 DIR *dp;
1845
1846 if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
1847 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1848 return -1;
1849 }
1850
1851 buf[0] = '\0';
1852 while ((dirp = readdir(dp)) != NULL) {
1853 FILE *f;
1854 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1855 dirp->d_name);
1856 f = fopen(buf, "r");
1857 if (f) {
1858 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1859 fclose(f);
1860 break;
1861 }
1862 buf[0] = '\0';
1863 }
1864 closedir(dp);
1865 if (buf[0] == '\0') {
1866 printf("Unknown host!\n");
1867 return -1;
1868 }
1869
1870 return 0;
1871 }
1872
1873 static uint64_t kvmppc_read_int_dt(const char *filename)
1874 {
1875 union {
1876 uint32_t v32;
1877 uint64_t v64;
1878 } u;
1879 FILE *f;
1880 int len;
1881
1882 f = fopen(filename, "rb");
1883 if (!f) {
1884 return -1;
1885 }
1886
1887 len = fread(&u, 1, sizeof(u), f);
1888 fclose(f);
1889 switch (len) {
1890 case 4:
1891 /* property is a 32-bit quantity */
1892 return be32_to_cpu(u.v32);
1893 case 8:
1894 return be64_to_cpu(u.v64);
1895 }
1896
1897 return 0;
1898 }
1899
1900 /* Read a CPU node property from the host device tree that's a single
1901 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1902 * (can't find or open the property, or doesn't understand the
1903 * format) */
1904 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1905 {
1906 char buf[PATH_MAX], *tmp;
1907 uint64_t val;
1908
1909 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1910 return -1;
1911 }
1912
1913 tmp = g_strdup_printf("%s/%s", buf, propname);
1914 val = kvmppc_read_int_dt(tmp);
1915 g_free(tmp);
1916
1917 return val;
1918 }
1919
1920 uint64_t kvmppc_get_clockfreq(void)
1921 {
1922 return kvmppc_read_int_cpu_dt("clock-frequency");
1923 }
1924
1925 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1926 {
1927 PowerPCCPU *cpu = ppc_env_get_cpu(env);
1928 CPUState *cs = CPU(cpu);
1929
1930 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1931 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1932 return 0;
1933 }
1934
1935 return 1;
1936 }
1937
1938 int kvmppc_get_hasidle(CPUPPCState *env)
1939 {
1940 struct kvm_ppc_pvinfo pvinfo;
1941
1942 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1943 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1944 return 1;
1945 }
1946
1947 return 0;
1948 }
1949
1950 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1951 {
1952 uint32_t *hc = (uint32_t*)buf;
1953 struct kvm_ppc_pvinfo pvinfo;
1954
1955 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1956 memcpy(buf, pvinfo.hcall, buf_len);
1957 return 0;
1958 }
1959
1960 /*
1961 * Fallback to always fail hypercalls regardless of endianness:
1962 *
1963 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
1964 * li r3, -1
1965 * b .+8 (becomes nop in wrong endian)
1966 * bswap32(li r3, -1)
1967 */
1968
1969 hc[0] = cpu_to_be32(0x08000048);
1970 hc[1] = cpu_to_be32(0x3860ffff);
1971 hc[2] = cpu_to_be32(0x48000008);
1972 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
1973
1974 return 1;
1975 }
1976
1977 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
1978 {
1979 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
1980 }
1981
1982 void kvmppc_enable_logical_ci_hcalls(void)
1983 {
1984 /*
1985 * FIXME: it would be nice if we could detect the cases where
1986 * we're using a device which requires the in kernel
1987 * implementation of these hcalls, but the kernel lacks them and
1988 * produce a warning.
1989 */
1990 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
1991 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
1992 }
1993
1994 void kvmppc_enable_set_mode_hcall(void)
1995 {
1996 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
1997 }
1998
1999 void kvmppc_enable_clear_ref_mod_hcalls(void)
2000 {
2001 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2002 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2003 }
2004
2005 void kvmppc_set_papr(PowerPCCPU *cpu)
2006 {
2007 CPUState *cs = CPU(cpu);
2008 int ret;
2009
2010 if (!kvm_enabled()) {
2011 return;
2012 }
2013
2014 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2015 if (ret) {
2016 error_report("This vCPU type or KVM version does not support PAPR");
2017 exit(1);
2018 }
2019
2020 /* Update the capability flag so we sync the right information
2021 * with kvm */
2022 cap_papr = 1;
2023 }
2024
2025 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2026 {
2027 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2028 }
2029
2030 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2031 {
2032 CPUState *cs = CPU(cpu);
2033 int ret;
2034
2035 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2036 if (ret && mpic_proxy) {
2037 error_report("This KVM version does not support EPR");
2038 exit(1);
2039 }
2040 }
2041
2042 int kvmppc_smt_threads(void)
2043 {
2044 return cap_ppc_smt ? cap_ppc_smt : 1;
2045 }
2046
2047 int kvmppc_set_smt_threads(int smt)
2048 {
2049 int ret;
2050
2051 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2052 if (!ret) {
2053 cap_ppc_smt = smt;
2054 }
2055 return ret;
2056 }
2057
2058 void kvmppc_hint_smt_possible(Error **errp)
2059 {
2060 int i;
2061 GString *g;
2062 char *s;
2063
2064 assert(kvm_enabled());
2065 if (cap_ppc_smt_possible) {
2066 g = g_string_new("Available VSMT modes:");
2067 for (i = 63; i >= 0; i--) {
2068 if ((1UL << i) & cap_ppc_smt_possible) {
2069 g_string_append_printf(g, " %lu", (1UL << i));
2070 }
2071 }
2072 s = g_string_free(g, false);
2073 error_append_hint(errp, "%s.\n", s);
2074 g_free(s);
2075 } else {
2076 error_append_hint(errp,
2077 "This KVM seems to be too old to support VSMT.\n");
2078 }
2079 }
2080
2081
2082 #ifdef TARGET_PPC64
2083 uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
2084 {
2085 struct kvm_ppc_smmu_info info;
2086 long rampagesize, best_page_shift;
2087 int i;
2088
2089 /* Find the largest hardware supported page size that's less than
2090 * or equal to the (logical) backing page size of guest RAM */
2091 kvm_get_smmu_info(&info, &error_fatal);
2092 rampagesize = qemu_getrampagesize();
2093 best_page_shift = 0;
2094
2095 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2096 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2097
2098 if (!sps->page_shift) {
2099 continue;
2100 }
2101
2102 if ((sps->page_shift > best_page_shift)
2103 && ((1UL << sps->page_shift) <= rampagesize)) {
2104 best_page_shift = sps->page_shift;
2105 }
2106 }
2107
2108 return MIN(current_size,
2109 1ULL << (best_page_shift + hash_shift - 7));
2110 }
2111 #endif
2112
2113 bool kvmppc_spapr_use_multitce(void)
2114 {
2115 return cap_spapr_multitce;
2116 }
2117
2118 int kvmppc_spapr_enable_inkernel_multitce(void)
2119 {
2120 int ret;
2121
2122 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2123 H_PUT_TCE_INDIRECT, 1);
2124 if (!ret) {
2125 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2126 H_STUFF_TCE, 1);
2127 }
2128
2129 return ret;
2130 }
2131
2132 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2133 uint64_t bus_offset, uint32_t nb_table,
2134 int *pfd, bool need_vfio)
2135 {
2136 long len;
2137 int fd;
2138 void *table;
2139
2140 /* Must set fd to -1 so we don't try to munmap when called for
2141 * destroying the table, which the upper layers -will- do
2142 */
2143 *pfd = -1;
2144 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2145 return NULL;
2146 }
2147
2148 if (cap_spapr_tce_64) {
2149 struct kvm_create_spapr_tce_64 args = {
2150 .liobn = liobn,
2151 .page_shift = page_shift,
2152 .offset = bus_offset >> page_shift,
2153 .size = nb_table,
2154 .flags = 0
2155 };
2156 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2157 if (fd < 0) {
2158 fprintf(stderr,
2159 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2160 liobn);
2161 return NULL;
2162 }
2163 } else if (cap_spapr_tce) {
2164 uint64_t window_size = (uint64_t) nb_table << page_shift;
2165 struct kvm_create_spapr_tce args = {
2166 .liobn = liobn,
2167 .window_size = window_size,
2168 };
2169 if ((window_size != args.window_size) || bus_offset) {
2170 return NULL;
2171 }
2172 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2173 if (fd < 0) {
2174 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2175 liobn);
2176 return NULL;
2177 }
2178 } else {
2179 return NULL;
2180 }
2181
2182 len = nb_table * sizeof(uint64_t);
2183 /* FIXME: round this up to page size */
2184
2185 table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
2186 if (table == MAP_FAILED) {
2187 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2188 liobn);
2189 close(fd);
2190 return NULL;
2191 }
2192
2193 *pfd = fd;
2194 return table;
2195 }
2196
2197 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2198 {
2199 long len;
2200
2201 if (fd < 0) {
2202 return -1;
2203 }
2204
2205 len = nb_table * sizeof(uint64_t);
2206 if ((munmap(table, len) < 0) ||
2207 (close(fd) < 0)) {
2208 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2209 strerror(errno));
2210 /* Leak the table */
2211 }
2212
2213 return 0;
2214 }
2215
2216 int kvmppc_reset_htab(int shift_hint)
2217 {
2218 uint32_t shift = shift_hint;
2219
2220 if (!kvm_enabled()) {
2221 /* Full emulation, tell caller to allocate htab itself */
2222 return 0;
2223 }
2224 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2225 int ret;
2226 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2227 if (ret == -ENOTTY) {
2228 /* At least some versions of PR KVM advertise the
2229 * capability, but don't implement the ioctl(). Oops.
2230 * Return 0 so that we allocate the htab in qemu, as is
2231 * correct for PR. */
2232 return 0;
2233 } else if (ret < 0) {
2234 return ret;
2235 }
2236 return shift;
2237 }
2238
2239 /* We have a kernel that predates the htab reset calls. For PR
2240 * KVM, we need to allocate the htab ourselves, for an HV KVM of
2241 * this era, it has allocated a 16MB fixed size hash table already. */
2242 if (kvmppc_is_pr(kvm_state)) {
2243 /* PR - tell caller to allocate htab */
2244 return 0;
2245 } else {
2246 /* HV - assume 16MB kernel allocated htab */
2247 return 24;
2248 }
2249 }
2250
2251 static inline uint32_t mfpvr(void)
2252 {
2253 uint32_t pvr;
2254
2255 asm ("mfpvr %0"
2256 : "=r"(pvr));
2257 return pvr;
2258 }
2259
2260 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2261 {
2262 if (on) {
2263 *word |= flags;
2264 } else {
2265 *word &= ~flags;
2266 }
2267 }
2268
2269 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2270 {
2271 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2272 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2273 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2274
2275 /* Now fix up the class with information we can query from the host */
2276 pcc->pvr = mfpvr();
2277
2278 alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2279 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2280 alter_insns(&pcc->insns_flags2, PPC2_VSX,
2281 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2282 alter_insns(&pcc->insns_flags2, PPC2_DFP,
2283 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2284
2285 if (dcache_size != -1) {
2286 pcc->l1_dcache_size = dcache_size;
2287 }
2288
2289 if (icache_size != -1) {
2290 pcc->l1_icache_size = icache_size;
2291 }
2292
2293 #if defined(TARGET_PPC64)
2294 pcc->radix_page_info = kvm_get_radix_page_info();
2295
2296 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2297 /*
2298 * POWER9 DD1 has some bugs which make it not really ISA 3.00
2299 * compliant. More importantly, advertising ISA 3.00
2300 * architected mode may prevent guests from activating
2301 * necessary DD1 workarounds.
2302 */
2303 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2304 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2305 }
2306 #endif /* defined(TARGET_PPC64) */
2307 }
2308
2309 bool kvmppc_has_cap_epr(void)
2310 {
2311 return cap_epr;
2312 }
2313
2314 bool kvmppc_has_cap_fixup_hcalls(void)
2315 {
2316 return cap_fixup_hcalls;
2317 }
2318
2319 bool kvmppc_has_cap_htm(void)
2320 {
2321 return cap_htm;
2322 }
2323
2324 bool kvmppc_has_cap_mmu_radix(void)
2325 {
2326 return cap_mmu_radix;
2327 }
2328
2329 bool kvmppc_has_cap_mmu_hash_v3(void)
2330 {
2331 return cap_mmu_hash_v3;
2332 }
2333
2334 static bool kvmppc_power8_host(void)
2335 {
2336 bool ret = false;
2337 #ifdef TARGET_PPC64
2338 {
2339 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2340 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2341 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2342 (base_pvr == CPU_POWERPC_POWER8_BASE);
2343 }
2344 #endif /* TARGET_PPC64 */
2345 return ret;
2346 }
2347
2348 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2349 {
2350 bool l1d_thread_priv_req = !kvmppc_power8_host();
2351
2352 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2353 return 2;
2354 } else if ((!l1d_thread_priv_req ||
2355 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2356 (c.character & c.character_mask
2357 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2358 return 1;
2359 }
2360
2361 return 0;
2362 }
2363
2364 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2365 {
2366 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2367 return 2;
2368 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2369 return 1;
2370 }
2371
2372 return 0;
2373 }
2374
2375 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2376 {
2377 if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2378 return SPAPR_CAP_FIXED_CCD;
2379 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2380 return SPAPR_CAP_FIXED_IBS;
2381 }
2382
2383 return 0;
2384 }
2385
2386 static void kvmppc_get_cpu_characteristics(KVMState *s)
2387 {
2388 struct kvm_ppc_cpu_char c;
2389 int ret;
2390
2391 /* Assume broken */
2392 cap_ppc_safe_cache = 0;
2393 cap_ppc_safe_bounds_check = 0;
2394 cap_ppc_safe_indirect_branch = 0;
2395
2396 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2397 if (!ret) {
2398 return;
2399 }
2400 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2401 if (ret < 0) {
2402 return;
2403 }
2404
2405 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2406 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2407 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2408 }
2409
2410 int kvmppc_get_cap_safe_cache(void)
2411 {
2412 return cap_ppc_safe_cache;
2413 }
2414
2415 int kvmppc_get_cap_safe_bounds_check(void)
2416 {
2417 return cap_ppc_safe_bounds_check;
2418 }
2419
2420 int kvmppc_get_cap_safe_indirect_branch(void)
2421 {
2422 return cap_ppc_safe_indirect_branch;
2423 }
2424
2425 bool kvmppc_has_cap_spapr_vfio(void)
2426 {
2427 return cap_spapr_vfio;
2428 }
2429
2430 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2431 {
2432 uint32_t host_pvr = mfpvr();
2433 PowerPCCPUClass *pvr_pcc;
2434
2435 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2436 if (pvr_pcc == NULL) {
2437 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2438 }
2439
2440 return pvr_pcc;
2441 }
2442
2443 static int kvm_ppc_register_host_cpu_type(MachineState *ms)
2444 {
2445 TypeInfo type_info = {
2446 .name = TYPE_HOST_POWERPC_CPU,
2447 .class_init = kvmppc_host_cpu_class_init,
2448 };
2449 MachineClass *mc = MACHINE_GET_CLASS(ms);
2450 PowerPCCPUClass *pvr_pcc;
2451 ObjectClass *oc;
2452 DeviceClass *dc;
2453 int i;
2454
2455 pvr_pcc = kvm_ppc_get_host_cpu_class();
2456 if (pvr_pcc == NULL) {
2457 return -1;
2458 }
2459 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2460 type_register(&type_info);
2461 if (object_dynamic_cast(OBJECT(ms), TYPE_SPAPR_MACHINE)) {
2462 /* override TCG default cpu type with 'host' cpu model */
2463 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2464 }
2465
2466 oc = object_class_by_name(type_info.name);
2467 g_assert(oc);
2468
2469 /*
2470 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2471 * we want "POWER8" to be a "family" alias that points to the current
2472 * host CPU type, too)
2473 */
2474 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2475 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2476 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2477 char *suffix;
2478
2479 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2480 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2481 if (suffix) {
2482 *suffix = 0;
2483 }
2484 break;
2485 }
2486 }
2487
2488 return 0;
2489 }
2490
2491 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2492 {
2493 struct kvm_rtas_token_args args = {
2494 .token = token,
2495 };
2496
2497 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2498 return -ENOENT;
2499 }
2500
2501 strncpy(args.name, function, sizeof(args.name));
2502
2503 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2504 }
2505
2506 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2507 {
2508 struct kvm_get_htab_fd s = {
2509 .flags = write ? KVM_GET_HTAB_WRITE : 0,
2510 .start_index = index,
2511 };
2512 int ret;
2513
2514 if (!cap_htab_fd) {
2515 error_setg(errp, "KVM version doesn't support %s the HPT",
2516 write ? "writing" : "reading");
2517 return -ENOTSUP;
2518 }
2519
2520 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2521 if (ret < 0) {
2522 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2523 write ? "writing" : "reading", write ? "to" : "from",
2524 strerror(errno));
2525 return -errno;
2526 }
2527
2528 return ret;
2529 }
2530
2531 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2532 {
2533 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2534 uint8_t buf[bufsize];
2535 ssize_t rc;
2536
2537 do {
2538 rc = read(fd, buf, bufsize);
2539 if (rc < 0) {
2540 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2541 strerror(errno));
2542 return rc;
2543 } else if (rc) {
2544 uint8_t *buffer = buf;
2545 ssize_t n = rc;
2546 while (n) {
2547 struct kvm_get_htab_header *head =
2548 (struct kvm_get_htab_header *) buffer;
2549 size_t chunksize = sizeof(*head) +
2550 HASH_PTE_SIZE_64 * head->n_valid;
2551
2552 qemu_put_be32(f, head->index);
2553 qemu_put_be16(f, head->n_valid);
2554 qemu_put_be16(f, head->n_invalid);
2555 qemu_put_buffer(f, (void *)(head + 1),
2556 HASH_PTE_SIZE_64 * head->n_valid);
2557
2558 buffer += chunksize;
2559 n -= chunksize;
2560 }
2561 }
2562 } while ((rc != 0)
2563 && ((max_ns < 0)
2564 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2565
2566 return (rc == 0) ? 1 : 0;
2567 }
2568
2569 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2570 uint16_t n_valid, uint16_t n_invalid)
2571 {
2572 struct kvm_get_htab_header *buf;
2573 size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
2574 ssize_t rc;
2575
2576 buf = alloca(chunksize);
2577 buf->index = index;
2578 buf->n_valid = n_valid;
2579 buf->n_invalid = n_invalid;
2580
2581 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);
2582
2583 rc = write(fd, buf, chunksize);
2584 if (rc < 0) {
2585 fprintf(stderr, "Error writing KVM hash table: %s\n",
2586 strerror(errno));
2587 return rc;
2588 }
2589 if (rc != chunksize) {
2590 /* We should never get a short write on a single chunk */
2591 fprintf(stderr, "Short write, restoring KVM hash table\n");
2592 return -1;
2593 }
2594 return 0;
2595 }
2596
2597 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2598 {
2599 return true;
2600 }
2601
2602 void kvm_arch_init_irq_routing(KVMState *s)
2603 {
2604 }
2605
2606 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2607 {
2608 int fd, rc;
2609 int i;
2610
2611 fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2612
2613 i = 0;
2614 while (i < n) {
2615 struct kvm_get_htab_header *hdr;
2616 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2617 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2618
2619 rc = read(fd, buf, sizeof(buf));
2620 if (rc < 0) {
2621 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2622 }
2623
2624 hdr = (struct kvm_get_htab_header *)buf;
2625 while ((i < n) && ((char *)hdr < (buf + rc))) {
2626 int invalid = hdr->n_invalid, valid = hdr->n_valid;
2627
2628 if (hdr->index != (ptex + i)) {
2629 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2630 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2631 }
2632
2633 if (n - i < valid) {
2634 valid = n - i;
2635 }
2636 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2637 i += valid;
2638
2639 if ((n - i) < invalid) {
2640 invalid = n - i;
2641 }
2642 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2643 i += invalid;
2644
2645 hdr = (struct kvm_get_htab_header *)
2646 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2647 }
2648 }
2649
2650 close(fd);
2651 }
2652
2653 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2654 {
2655 int fd, rc;
2656 struct {
2657 struct kvm_get_htab_header hdr;
2658 uint64_t pte0;
2659 uint64_t pte1;
2660 } buf;
2661
2662 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2663
2664 buf.hdr.n_valid = 1;
2665 buf.hdr.n_invalid = 0;
2666 buf.hdr.index = ptex;
2667 buf.pte0 = cpu_to_be64(pte0);
2668 buf.pte1 = cpu_to_be64(pte1);
2669
2670 rc = write(fd, &buf, sizeof(buf));
2671 if (rc != sizeof(buf)) {
2672 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2673 }
2674 close(fd);
2675 }
2676
2677 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2678 uint64_t address, uint32_t data, PCIDevice *dev)
2679 {
2680 return 0;
2681 }
2682
2683 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2684 int vector, PCIDevice *dev)
2685 {
2686 return 0;
2687 }
2688
2689 int kvm_arch_release_virq_post(int virq)
2690 {
2691 return 0;
2692 }
2693
2694 int kvm_arch_msi_data_to_gsi(uint32_t data)
2695 {
2696 return data & 0xffff;
2697 }
2698
2699 int kvmppc_enable_hwrng(void)
2700 {
2701 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2702 return -1;
2703 }
2704
2705 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2706 }
2707
2708 void kvmppc_check_papr_resize_hpt(Error **errp)
2709 {
2710 if (!kvm_enabled()) {
2711 return; /* No KVM, we're good */
2712 }
2713
2714 if (cap_resize_hpt) {
2715 return; /* Kernel has explicit support, we're good */
2716 }
2717
2718 /* Otherwise fallback on looking for PR KVM */
2719 if (kvmppc_is_pr(kvm_state)) {
2720 return;
2721 }
2722
2723 error_setg(errp,
2724 "Hash page table resizing not available with this KVM version");
2725 }
2726
2727 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2728 {
2729 CPUState *cs = CPU(cpu);
2730 struct kvm_ppc_resize_hpt rhpt = {
2731 .flags = flags,
2732 .shift = shift,
2733 };
2734
2735 if (!cap_resize_hpt) {
2736 return -ENOSYS;
2737 }
2738
2739 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2740 }
2741
2742 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2743 {
2744 CPUState *cs = CPU(cpu);
2745 struct kvm_ppc_resize_hpt rhpt = {
2746 .flags = flags,
2747 .shift = shift,
2748 };
2749
2750 if (!cap_resize_hpt) {
2751 return -ENOSYS;
2752 }
2753
2754 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2755 }
2756
2757 /*
2758 * This is a helper function to detect a post migration scenario
2759 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2760 * the guest kernel can't handle a PVR value other than the actual host
2761 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2762 *
2763 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2764 * (so, we're HV), return true. The workaround itself is done in
2765 * cpu_post_load.
2766 *
2767 * The order here is important: we'll only check for KVM PR as a
2768 * fallback if the guest kernel can't handle the situation itself.
2769 * We need to avoid as much as possible querying the running KVM type
2770 * in QEMU level.
2771 */
2772 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2773 {
2774 CPUState *cs = CPU(cpu);
2775
2776 if (!kvm_enabled()) {
2777 return false;
2778 }
2779
2780 if (cap_ppc_pvr_compat) {
2781 return false;
2782 }
2783
2784 return !kvmppc_is_pr(cs->kvm_state);
2785 }
2786
2787 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2788 {
2789 CPUState *cs = CPU(cpu);
2790
2791 if (kvm_enabled()) {
2792 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2793 }
2794 }