]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/kvm.c
ppc: spapr: Introduce FWNMI capability
[mirror_qemu.git] / target / ppc / kvm.c
1 /*
2 * PowerPC implementation of KVM hooks
3 *
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
6 *
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
14 *
15 */
16
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
21
22 #include <linux/kvm.h>
23
24 #include "qemu-common.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "cpu.h"
28 #include "cpu-models.h"
29 #include "qemu/timer.h"
30 #include "sysemu/hw_accel.h"
31 #include "kvm_ppc.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/device_tree.h"
34 #include "mmu-hash64.h"
35
36 #include "hw/sysbus.h"
37 #include "hw/ppc/spapr.h"
38 #include "hw/ppc/spapr_cpu_core.h"
39 #include "hw/hw.h"
40 #include "hw/ppc/ppc.h"
41 #include "migration/qemu-file-types.h"
42 #include "sysemu/watchdog.h"
43 #include "trace.h"
44 #include "exec/gdbstub.h"
45 #include "exec/memattrs.h"
46 #include "exec/ram_addr.h"
47 #include "sysemu/hostmem.h"
48 #include "qemu/cutils.h"
49 #include "qemu/main-loop.h"
50 #include "qemu/mmap-alloc.h"
51 #include "elf.h"
52 #include "sysemu/kvm_int.h"
53
54 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
55
56 #define DEBUG_RETURN_GUEST 0
57 #define DEBUG_RETURN_GDB 1
58
59 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
60 KVM_CAP_LAST_INFO
61 };
62
63 static int cap_interrupt_unset;
64 static int cap_segstate;
65 static int cap_booke_sregs;
66 static int cap_ppc_smt;
67 static int cap_ppc_smt_possible;
68 static int cap_spapr_tce;
69 static int cap_spapr_tce_64;
70 static int cap_spapr_multitce;
71 static int cap_spapr_vfio;
72 static int cap_hior;
73 static int cap_one_reg;
74 static int cap_epr;
75 static int cap_ppc_watchdog;
76 static int cap_papr;
77 static int cap_htab_fd;
78 static int cap_fixup_hcalls;
79 static int cap_htm; /* Hardware transactional memory support */
80 static int cap_mmu_radix;
81 static int cap_mmu_hash_v3;
82 static int cap_xive;
83 static int cap_resize_hpt;
84 static int cap_ppc_pvr_compat;
85 static int cap_ppc_safe_cache;
86 static int cap_ppc_safe_bounds_check;
87 static int cap_ppc_safe_indirect_branch;
88 static int cap_ppc_count_cache_flush_assist;
89 static int cap_ppc_nested_kvm_hv;
90 static int cap_large_decr;
91
92 static uint32_t debug_inst_opcode;
93
94 /*
95 * Check whether we are running with KVM-PR (instead of KVM-HV). This
96 * should only be used for fallback tests - generally we should use
97 * explicit capabilities for the features we want, rather than
98 * assuming what is/isn't available depending on the KVM variant.
99 */
100 static bool kvmppc_is_pr(KVMState *ks)
101 {
102 /* Assume KVM-PR if the GET_PVINFO capability is available */
103 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
104 }
105
106 static int kvm_ppc_register_host_cpu_type(void);
107 static void kvmppc_get_cpu_characteristics(KVMState *s);
108 static int kvmppc_get_dec_bits(void);
109
110 int kvm_arch_init(MachineState *ms, KVMState *s)
111 {
112 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
113 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
114 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
115 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
116 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
117 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
118 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
119 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
120 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
121 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
122 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
123 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
124 /*
125 * Note: we don't set cap_papr here, because this capability is
126 * only activated after this by kvmppc_set_papr()
127 */
128 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
129 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
130 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
131 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
132 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
133 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
134 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
135 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
136 kvmppc_get_cpu_characteristics(s);
137 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
138 cap_large_decr = kvmppc_get_dec_bits();
139 /*
140 * Note: setting it to false because there is not such capability
141 * in KVM at this moment.
142 *
143 * TODO: call kvm_vm_check_extension() with the right capability
144 * after the kernel starts implementing it.
145 */
146 cap_ppc_pvr_compat = false;
147
148 if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
149 error_report("KVM: Host kernel doesn't have level irq capability");
150 exit(1);
151 }
152
153 kvm_ppc_register_host_cpu_type();
154
155 return 0;
156 }
157
158 int kvm_arch_irqchip_create(KVMState *s)
159 {
160 return 0;
161 }
162
163 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
164 {
165 CPUPPCState *cenv = &cpu->env;
166 CPUState *cs = CPU(cpu);
167 struct kvm_sregs sregs;
168 int ret;
169
170 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
171 /*
172 * What we're really trying to say is "if we're on BookE, we
173 * use the native PVR for now". This is the only sane way to
174 * check it though, so we potentially confuse users that they
175 * can run BookE guests on BookS. Let's hope nobody dares
176 * enough :)
177 */
178 return 0;
179 } else {
180 if (!cap_segstate) {
181 fprintf(stderr, "kvm error: missing PVR setting capability\n");
182 return -ENOSYS;
183 }
184 }
185
186 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
187 if (ret) {
188 return ret;
189 }
190
191 sregs.pvr = cenv->spr[SPR_PVR];
192 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
193 }
194
195 /* Set up a shared TLB array with KVM */
196 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
197 {
198 CPUPPCState *env = &cpu->env;
199 CPUState *cs = CPU(cpu);
200 struct kvm_book3e_206_tlb_params params = {};
201 struct kvm_config_tlb cfg = {};
202 unsigned int entries = 0;
203 int ret, i;
204
205 if (!kvm_enabled() ||
206 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
207 return 0;
208 }
209
210 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
211
212 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
213 params.tlb_sizes[i] = booke206_tlb_size(env, i);
214 params.tlb_ways[i] = booke206_tlb_ways(env, i);
215 entries += params.tlb_sizes[i];
216 }
217
218 assert(entries == env->nb_tlb);
219 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
220
221 env->tlb_dirty = true;
222
223 cfg.array = (uintptr_t)env->tlb.tlbm;
224 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
225 cfg.params = (uintptr_t)&params;
226 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
227
228 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
229 if (ret < 0) {
230 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
231 __func__, strerror(-ret));
232 return ret;
233 }
234
235 env->kvm_sw_tlb = true;
236 return 0;
237 }
238
239
240 #if defined(TARGET_PPC64)
241 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
242 {
243 int ret;
244
245 assert(kvm_state != NULL);
246
247 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
248 error_setg(errp, "KVM doesn't expose the MMU features it supports");
249 error_append_hint(errp, "Consider switching to a newer KVM\n");
250 return;
251 }
252
253 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
254 if (ret == 0) {
255 return;
256 }
257
258 error_setg_errno(errp, -ret,
259 "KVM failed to provide the MMU features it supports");
260 }
261
262 struct ppc_radix_page_info *kvm_get_radix_page_info(void)
263 {
264 KVMState *s = KVM_STATE(current_accel());
265 struct ppc_radix_page_info *radix_page_info;
266 struct kvm_ppc_rmmu_info rmmu_info;
267 int i;
268
269 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
270 return NULL;
271 }
272 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
273 return NULL;
274 }
275 radix_page_info = g_malloc0(sizeof(*radix_page_info));
276 radix_page_info->count = 0;
277 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
278 if (rmmu_info.ap_encodings[i]) {
279 radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
280 radix_page_info->count++;
281 }
282 }
283 return radix_page_info;
284 }
285
286 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
287 bool radix, bool gtse,
288 uint64_t proc_tbl)
289 {
290 CPUState *cs = CPU(cpu);
291 int ret;
292 uint64_t flags = 0;
293 struct kvm_ppc_mmuv3_cfg cfg = {
294 .process_table = proc_tbl,
295 };
296
297 if (radix) {
298 flags |= KVM_PPC_MMUV3_RADIX;
299 }
300 if (gtse) {
301 flags |= KVM_PPC_MMUV3_GTSE;
302 }
303 cfg.flags = flags;
304 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
305 switch (ret) {
306 case 0:
307 return H_SUCCESS;
308 case -EINVAL:
309 return H_PARAMETER;
310 case -ENODEV:
311 return H_NOT_AVAILABLE;
312 default:
313 return H_HARDWARE;
314 }
315 }
316
317 bool kvmppc_hpt_needs_host_contiguous_pages(void)
318 {
319 static struct kvm_ppc_smmu_info smmu_info;
320
321 if (!kvm_enabled()) {
322 return false;
323 }
324
325 kvm_get_smmu_info(&smmu_info, &error_fatal);
326 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
327 }
328
329 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
330 {
331 struct kvm_ppc_smmu_info smmu_info;
332 int iq, ik, jq, jk;
333 Error *local_err = NULL;
334
335 /* For now, we only have anything to check on hash64 MMUs */
336 if (!cpu->hash64_opts || !kvm_enabled()) {
337 return;
338 }
339
340 kvm_get_smmu_info(&smmu_info, &local_err);
341 if (local_err) {
342 error_propagate(errp, local_err);
343 return;
344 }
345
346 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
347 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
348 error_setg(errp,
349 "KVM does not support 1TiB segments which guest expects");
350 return;
351 }
352
353 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
354 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
355 smmu_info.slb_size, cpu->hash64_opts->slb_size);
356 return;
357 }
358
359 /*
360 * Verify that every pagesize supported by the cpu model is
361 * supported by KVM with the same encodings
362 */
363 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
364 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
365 struct kvm_ppc_one_seg_page_size *ksps;
366
367 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
368 if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
369 break;
370 }
371 }
372 if (ik >= ARRAY_SIZE(smmu_info.sps)) {
373 error_setg(errp, "KVM doesn't support for base page shift %u",
374 qsps->page_shift);
375 return;
376 }
377
378 ksps = &smmu_info.sps[ik];
379 if (ksps->slb_enc != qsps->slb_enc) {
380 error_setg(errp,
381 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
382 ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
383 return;
384 }
385
386 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
387 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
388 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
389 break;
390 }
391 }
392
393 if (jk >= ARRAY_SIZE(ksps->enc)) {
394 error_setg(errp, "KVM doesn't support page shift %u/%u",
395 qsps->enc[jq].page_shift, qsps->page_shift);
396 return;
397 }
398 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
399 error_setg(errp,
400 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
401 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
402 qsps->page_shift, qsps->enc[jq].pte_enc);
403 return;
404 }
405 }
406 }
407
408 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
409 /*
410 * Mostly what guest pagesizes we can use are related to the
411 * host pages used to map guest RAM, which is handled in the
412 * platform code. Cache-Inhibited largepages (64k) however are
413 * used for I/O, so if they're mapped to the host at all it
414 * will be a normal mapping, not a special hugepage one used
415 * for RAM.
416 */
417 if (qemu_real_host_page_size < 0x10000) {
418 error_setg(errp,
419 "KVM can't supply 64kiB CI pages, which guest expects");
420 }
421 }
422 }
423 #endif /* !defined (TARGET_PPC64) */
424
425 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
426 {
427 return POWERPC_CPU(cpu)->vcpu_id;
428 }
429
430 /*
431 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
432 * only 1 watchpoint, so array size of 4 is sufficient for now.
433 */
434 #define MAX_HW_BKPTS 4
435
436 static struct HWBreakpoint {
437 target_ulong addr;
438 int type;
439 } hw_debug_points[MAX_HW_BKPTS];
440
441 static CPUWatchpoint hw_watchpoint;
442
443 /* Default there is no breakpoint and watchpoint supported */
444 static int max_hw_breakpoint;
445 static int max_hw_watchpoint;
446 static int nb_hw_breakpoint;
447 static int nb_hw_watchpoint;
448
449 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
450 {
451 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
452 max_hw_breakpoint = 2;
453 max_hw_watchpoint = 2;
454 }
455
456 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
457 fprintf(stderr, "Error initializing h/w breakpoints\n");
458 return;
459 }
460 }
461
462 int kvm_arch_init_vcpu(CPUState *cs)
463 {
464 PowerPCCPU *cpu = POWERPC_CPU(cs);
465 CPUPPCState *cenv = &cpu->env;
466 int ret;
467
468 /* Synchronize sregs with kvm */
469 ret = kvm_arch_sync_sregs(cpu);
470 if (ret) {
471 if (ret == -EINVAL) {
472 error_report("Register sync failed... If you're using kvm-hv.ko,"
473 " only \"-cpu host\" is possible");
474 }
475 return ret;
476 }
477
478 switch (cenv->mmu_model) {
479 case POWERPC_MMU_BOOKE206:
480 /* This target supports access to KVM's guest TLB */
481 ret = kvm_booke206_tlb_init(cpu);
482 break;
483 case POWERPC_MMU_2_07:
484 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
485 /*
486 * KVM-HV has transactional memory on POWER8 also without
487 * the KVM_CAP_PPC_HTM extension, so enable it here
488 * instead as long as it's availble to userspace on the
489 * host.
490 */
491 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
492 cap_htm = true;
493 }
494 }
495 break;
496 default:
497 break;
498 }
499
500 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
501 kvmppc_hw_debug_points_init(cenv);
502
503 return ret;
504 }
505
506 int kvm_arch_destroy_vcpu(CPUState *cs)
507 {
508 return 0;
509 }
510
511 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
512 {
513 CPUPPCState *env = &cpu->env;
514 CPUState *cs = CPU(cpu);
515 struct kvm_dirty_tlb dirty_tlb;
516 unsigned char *bitmap;
517 int ret;
518
519 if (!env->kvm_sw_tlb) {
520 return;
521 }
522
523 bitmap = g_malloc((env->nb_tlb + 7) / 8);
524 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
525
526 dirty_tlb.bitmap = (uintptr_t)bitmap;
527 dirty_tlb.num_dirty = env->nb_tlb;
528
529 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
530 if (ret) {
531 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
532 __func__, strerror(-ret));
533 }
534
535 g_free(bitmap);
536 }
537
538 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
539 {
540 PowerPCCPU *cpu = POWERPC_CPU(cs);
541 CPUPPCState *env = &cpu->env;
542 union {
543 uint32_t u32;
544 uint64_t u64;
545 } val;
546 struct kvm_one_reg reg = {
547 .id = id,
548 .addr = (uintptr_t) &val,
549 };
550 int ret;
551
552 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
553 if (ret != 0) {
554 trace_kvm_failed_spr_get(spr, strerror(errno));
555 } else {
556 switch (id & KVM_REG_SIZE_MASK) {
557 case KVM_REG_SIZE_U32:
558 env->spr[spr] = val.u32;
559 break;
560
561 case KVM_REG_SIZE_U64:
562 env->spr[spr] = val.u64;
563 break;
564
565 default:
566 /* Don't handle this size yet */
567 abort();
568 }
569 }
570 }
571
572 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
573 {
574 PowerPCCPU *cpu = POWERPC_CPU(cs);
575 CPUPPCState *env = &cpu->env;
576 union {
577 uint32_t u32;
578 uint64_t u64;
579 } val;
580 struct kvm_one_reg reg = {
581 .id = id,
582 .addr = (uintptr_t) &val,
583 };
584 int ret;
585
586 switch (id & KVM_REG_SIZE_MASK) {
587 case KVM_REG_SIZE_U32:
588 val.u32 = env->spr[spr];
589 break;
590
591 case KVM_REG_SIZE_U64:
592 val.u64 = env->spr[spr];
593 break;
594
595 default:
596 /* Don't handle this size yet */
597 abort();
598 }
599
600 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
601 if (ret != 0) {
602 trace_kvm_failed_spr_set(spr, strerror(errno));
603 }
604 }
605
606 static int kvm_put_fp(CPUState *cs)
607 {
608 PowerPCCPU *cpu = POWERPC_CPU(cs);
609 CPUPPCState *env = &cpu->env;
610 struct kvm_one_reg reg;
611 int i;
612 int ret;
613
614 if (env->insns_flags & PPC_FLOAT) {
615 uint64_t fpscr = env->fpscr;
616 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
617
618 reg.id = KVM_REG_PPC_FPSCR;
619 reg.addr = (uintptr_t)&fpscr;
620 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
621 if (ret < 0) {
622 trace_kvm_failed_fpscr_set(strerror(errno));
623 return ret;
624 }
625
626 for (i = 0; i < 32; i++) {
627 uint64_t vsr[2];
628 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
629 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
630
631 #ifdef HOST_WORDS_BIGENDIAN
632 vsr[0] = float64_val(*fpr);
633 vsr[1] = *vsrl;
634 #else
635 vsr[0] = *vsrl;
636 vsr[1] = float64_val(*fpr);
637 #endif
638 reg.addr = (uintptr_t) &vsr;
639 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
640
641 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
642 if (ret < 0) {
643 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
644 strerror(errno));
645 return ret;
646 }
647 }
648 }
649
650 if (env->insns_flags & PPC_ALTIVEC) {
651 reg.id = KVM_REG_PPC_VSCR;
652 reg.addr = (uintptr_t)&env->vscr;
653 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
654 if (ret < 0) {
655 trace_kvm_failed_vscr_set(strerror(errno));
656 return ret;
657 }
658
659 for (i = 0; i < 32; i++) {
660 reg.id = KVM_REG_PPC_VR(i);
661 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
662 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
663 if (ret < 0) {
664 trace_kvm_failed_vr_set(i, strerror(errno));
665 return ret;
666 }
667 }
668 }
669
670 return 0;
671 }
672
673 static int kvm_get_fp(CPUState *cs)
674 {
675 PowerPCCPU *cpu = POWERPC_CPU(cs);
676 CPUPPCState *env = &cpu->env;
677 struct kvm_one_reg reg;
678 int i;
679 int ret;
680
681 if (env->insns_flags & PPC_FLOAT) {
682 uint64_t fpscr;
683 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
684
685 reg.id = KVM_REG_PPC_FPSCR;
686 reg.addr = (uintptr_t)&fpscr;
687 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
688 if (ret < 0) {
689 trace_kvm_failed_fpscr_get(strerror(errno));
690 return ret;
691 } else {
692 env->fpscr = fpscr;
693 }
694
695 for (i = 0; i < 32; i++) {
696 uint64_t vsr[2];
697 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
698 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
699
700 reg.addr = (uintptr_t) &vsr;
701 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
702
703 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
704 if (ret < 0) {
705 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
706 strerror(errno));
707 return ret;
708 } else {
709 #ifdef HOST_WORDS_BIGENDIAN
710 *fpr = vsr[0];
711 if (vsx) {
712 *vsrl = vsr[1];
713 }
714 #else
715 *fpr = vsr[1];
716 if (vsx) {
717 *vsrl = vsr[0];
718 }
719 #endif
720 }
721 }
722 }
723
724 if (env->insns_flags & PPC_ALTIVEC) {
725 reg.id = KVM_REG_PPC_VSCR;
726 reg.addr = (uintptr_t)&env->vscr;
727 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
728 if (ret < 0) {
729 trace_kvm_failed_vscr_get(strerror(errno));
730 return ret;
731 }
732
733 for (i = 0; i < 32; i++) {
734 reg.id = KVM_REG_PPC_VR(i);
735 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
736 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
737 if (ret < 0) {
738 trace_kvm_failed_vr_get(i, strerror(errno));
739 return ret;
740 }
741 }
742 }
743
744 return 0;
745 }
746
747 #if defined(TARGET_PPC64)
748 static int kvm_get_vpa(CPUState *cs)
749 {
750 PowerPCCPU *cpu = POWERPC_CPU(cs);
751 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
752 struct kvm_one_reg reg;
753 int ret;
754
755 reg.id = KVM_REG_PPC_VPA_ADDR;
756 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
757 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
758 if (ret < 0) {
759 trace_kvm_failed_vpa_addr_get(strerror(errno));
760 return ret;
761 }
762
763 assert((uintptr_t)&spapr_cpu->slb_shadow_size
764 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
765 reg.id = KVM_REG_PPC_VPA_SLB;
766 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
767 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
768 if (ret < 0) {
769 trace_kvm_failed_slb_get(strerror(errno));
770 return ret;
771 }
772
773 assert((uintptr_t)&spapr_cpu->dtl_size
774 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
775 reg.id = KVM_REG_PPC_VPA_DTL;
776 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
777 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
778 if (ret < 0) {
779 trace_kvm_failed_dtl_get(strerror(errno));
780 return ret;
781 }
782
783 return 0;
784 }
785
786 static int kvm_put_vpa(CPUState *cs)
787 {
788 PowerPCCPU *cpu = POWERPC_CPU(cs);
789 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
790 struct kvm_one_reg reg;
791 int ret;
792
793 /*
794 * SLB shadow or DTL can't be registered unless a master VPA is
795 * registered. That means when restoring state, if a VPA *is*
796 * registered, we need to set that up first. If not, we need to
797 * deregister the others before deregistering the master VPA
798 */
799 assert(spapr_cpu->vpa_addr
800 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
801
802 if (spapr_cpu->vpa_addr) {
803 reg.id = KVM_REG_PPC_VPA_ADDR;
804 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
805 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
806 if (ret < 0) {
807 trace_kvm_failed_vpa_addr_set(strerror(errno));
808 return ret;
809 }
810 }
811
812 assert((uintptr_t)&spapr_cpu->slb_shadow_size
813 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
814 reg.id = KVM_REG_PPC_VPA_SLB;
815 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
816 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
817 if (ret < 0) {
818 trace_kvm_failed_slb_set(strerror(errno));
819 return ret;
820 }
821
822 assert((uintptr_t)&spapr_cpu->dtl_size
823 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
824 reg.id = KVM_REG_PPC_VPA_DTL;
825 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
826 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
827 if (ret < 0) {
828 trace_kvm_failed_dtl_set(strerror(errno));
829 return ret;
830 }
831
832 if (!spapr_cpu->vpa_addr) {
833 reg.id = KVM_REG_PPC_VPA_ADDR;
834 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
835 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
836 if (ret < 0) {
837 trace_kvm_failed_null_vpa_addr_set(strerror(errno));
838 return ret;
839 }
840 }
841
842 return 0;
843 }
844 #endif /* TARGET_PPC64 */
845
846 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
847 {
848 CPUPPCState *env = &cpu->env;
849 struct kvm_sregs sregs;
850 int i;
851
852 sregs.pvr = env->spr[SPR_PVR];
853
854 if (cpu->vhyp) {
855 PPCVirtualHypervisorClass *vhc =
856 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
857 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
858 } else {
859 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
860 }
861
862 /* Sync SLB */
863 #ifdef TARGET_PPC64
864 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
865 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
866 if (env->slb[i].esid & SLB_ESID_V) {
867 sregs.u.s.ppc64.slb[i].slbe |= i;
868 }
869 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
870 }
871 #endif
872
873 /* Sync SRs */
874 for (i = 0; i < 16; i++) {
875 sregs.u.s.ppc32.sr[i] = env->sr[i];
876 }
877
878 /* Sync BATs */
879 for (i = 0; i < 8; i++) {
880 /* Beware. We have to swap upper and lower bits here */
881 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
882 | env->DBAT[1][i];
883 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
884 | env->IBAT[1][i];
885 }
886
887 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
888 }
889
890 int kvm_arch_put_registers(CPUState *cs, int level)
891 {
892 PowerPCCPU *cpu = POWERPC_CPU(cs);
893 CPUPPCState *env = &cpu->env;
894 struct kvm_regs regs;
895 int ret;
896 int i;
897
898 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
899 if (ret < 0) {
900 return ret;
901 }
902
903 regs.ctr = env->ctr;
904 regs.lr = env->lr;
905 regs.xer = cpu_read_xer(env);
906 regs.msr = env->msr;
907 regs.pc = env->nip;
908
909 regs.srr0 = env->spr[SPR_SRR0];
910 regs.srr1 = env->spr[SPR_SRR1];
911
912 regs.sprg0 = env->spr[SPR_SPRG0];
913 regs.sprg1 = env->spr[SPR_SPRG1];
914 regs.sprg2 = env->spr[SPR_SPRG2];
915 regs.sprg3 = env->spr[SPR_SPRG3];
916 regs.sprg4 = env->spr[SPR_SPRG4];
917 regs.sprg5 = env->spr[SPR_SPRG5];
918 regs.sprg6 = env->spr[SPR_SPRG6];
919 regs.sprg7 = env->spr[SPR_SPRG7];
920
921 regs.pid = env->spr[SPR_BOOKE_PID];
922
923 for (i = 0; i < 32; i++) {
924 regs.gpr[i] = env->gpr[i];
925 }
926
927 regs.cr = 0;
928 for (i = 0; i < 8; i++) {
929 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
930 }
931
932 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
933 if (ret < 0) {
934 return ret;
935 }
936
937 kvm_put_fp(cs);
938
939 if (env->tlb_dirty) {
940 kvm_sw_tlb_put(cpu);
941 env->tlb_dirty = false;
942 }
943
944 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
945 ret = kvmppc_put_books_sregs(cpu);
946 if (ret < 0) {
947 return ret;
948 }
949 }
950
951 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
952 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
953 }
954
955 if (cap_one_reg) {
956 int i;
957
958 /*
959 * We deliberately ignore errors here, for kernels which have
960 * the ONE_REG calls, but don't support the specific
961 * registers, there's a reasonable chance things will still
962 * work, at least until we try to migrate.
963 */
964 for (i = 0; i < 1024; i++) {
965 uint64_t id = env->spr_cb[i].one_reg_id;
966
967 if (id != 0) {
968 kvm_put_one_spr(cs, id, i);
969 }
970 }
971
972 #ifdef TARGET_PPC64
973 if (msr_ts) {
974 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
975 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
976 }
977 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
978 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
979 }
980 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
981 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
982 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
983 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
984 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
985 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
986 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
987 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
988 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
989 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
990 }
991
992 if (cap_papr) {
993 if (kvm_put_vpa(cs) < 0) {
994 trace_kvm_failed_put_vpa();
995 }
996 }
997
998 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
999
1000 if (level > KVM_PUT_RUNTIME_STATE) {
1001 kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1002 }
1003 #endif /* TARGET_PPC64 */
1004 }
1005
1006 return ret;
1007 }
1008
1009 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1010 {
1011 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1012 }
1013
1014 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1015 {
1016 CPUPPCState *env = &cpu->env;
1017 struct kvm_sregs sregs;
1018 int ret;
1019
1020 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1021 if (ret < 0) {
1022 return ret;
1023 }
1024
1025 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1026 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1027 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1028 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1029 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1030 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1031 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1032 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1033 env->spr[SPR_DECR] = sregs.u.e.dec;
1034 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1035 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1036 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1037 }
1038
1039 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1040 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1041 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1042 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1043 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1044 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1045 }
1046
1047 if (sregs.u.e.features & KVM_SREGS_E_64) {
1048 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1049 }
1050
1051 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1052 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1053 }
1054
1055 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1056 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1057 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1058 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1059 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1060 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1061 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1062 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1063 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1064 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1065 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1066 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1067 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1068 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1069 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1070 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1071 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1072 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1073 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1074 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1075 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1076 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1077 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1078 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1079 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1080 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1081 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1082 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1083 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1084 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1085 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1086 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1087 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1088
1089 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1090 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1091 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1092 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1093 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1094 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1095 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1096 }
1097
1098 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1099 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1100 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1101 }
1102
1103 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1104 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1105 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1106 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1107 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1108 }
1109 }
1110
1111 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1112 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1113 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1114 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1115 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1116 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1117 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1118 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1119 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1120 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1121 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1122 }
1123
1124 if (sregs.u.e.features & KVM_SREGS_EXP) {
1125 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1126 }
1127
1128 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1129 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1130 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1131 }
1132
1133 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1134 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1135 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1136 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1137
1138 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1139 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1140 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1141 }
1142 }
1143
1144 return 0;
1145 }
1146
1147 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1148 {
1149 CPUPPCState *env = &cpu->env;
1150 struct kvm_sregs sregs;
1151 int ret;
1152 int i;
1153
1154 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1155 if (ret < 0) {
1156 return ret;
1157 }
1158
1159 if (!cpu->vhyp) {
1160 ppc_store_sdr1(env, sregs.u.s.sdr1);
1161 }
1162
1163 /* Sync SLB */
1164 #ifdef TARGET_PPC64
1165 /*
1166 * The packed SLB array we get from KVM_GET_SREGS only contains
1167 * information about valid entries. So we flush our internal copy
1168 * to get rid of stale ones, then put all valid SLB entries back
1169 * in.
1170 */
1171 memset(env->slb, 0, sizeof(env->slb));
1172 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1173 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1174 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1175 /*
1176 * Only restore valid entries
1177 */
1178 if (rb & SLB_ESID_V) {
1179 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1180 }
1181 }
1182 #endif
1183
1184 /* Sync SRs */
1185 for (i = 0; i < 16; i++) {
1186 env->sr[i] = sregs.u.s.ppc32.sr[i];
1187 }
1188
1189 /* Sync BATs */
1190 for (i = 0; i < 8; i++) {
1191 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1192 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1193 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1194 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1195 }
1196
1197 return 0;
1198 }
1199
1200 int kvm_arch_get_registers(CPUState *cs)
1201 {
1202 PowerPCCPU *cpu = POWERPC_CPU(cs);
1203 CPUPPCState *env = &cpu->env;
1204 struct kvm_regs regs;
1205 uint32_t cr;
1206 int i, ret;
1207
1208 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1209 if (ret < 0) {
1210 return ret;
1211 }
1212
1213 cr = regs.cr;
1214 for (i = 7; i >= 0; i--) {
1215 env->crf[i] = cr & 15;
1216 cr >>= 4;
1217 }
1218
1219 env->ctr = regs.ctr;
1220 env->lr = regs.lr;
1221 cpu_write_xer(env, regs.xer);
1222 env->msr = regs.msr;
1223 env->nip = regs.pc;
1224
1225 env->spr[SPR_SRR0] = regs.srr0;
1226 env->spr[SPR_SRR1] = regs.srr1;
1227
1228 env->spr[SPR_SPRG0] = regs.sprg0;
1229 env->spr[SPR_SPRG1] = regs.sprg1;
1230 env->spr[SPR_SPRG2] = regs.sprg2;
1231 env->spr[SPR_SPRG3] = regs.sprg3;
1232 env->spr[SPR_SPRG4] = regs.sprg4;
1233 env->spr[SPR_SPRG5] = regs.sprg5;
1234 env->spr[SPR_SPRG6] = regs.sprg6;
1235 env->spr[SPR_SPRG7] = regs.sprg7;
1236
1237 env->spr[SPR_BOOKE_PID] = regs.pid;
1238
1239 for (i = 0; i < 32; i++) {
1240 env->gpr[i] = regs.gpr[i];
1241 }
1242
1243 kvm_get_fp(cs);
1244
1245 if (cap_booke_sregs) {
1246 ret = kvmppc_get_booke_sregs(cpu);
1247 if (ret < 0) {
1248 return ret;
1249 }
1250 }
1251
1252 if (cap_segstate) {
1253 ret = kvmppc_get_books_sregs(cpu);
1254 if (ret < 0) {
1255 return ret;
1256 }
1257 }
1258
1259 if (cap_hior) {
1260 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1261 }
1262
1263 if (cap_one_reg) {
1264 int i;
1265
1266 /*
1267 * We deliberately ignore errors here, for kernels which have
1268 * the ONE_REG calls, but don't support the specific
1269 * registers, there's a reasonable chance things will still
1270 * work, at least until we try to migrate.
1271 */
1272 for (i = 0; i < 1024; i++) {
1273 uint64_t id = env->spr_cb[i].one_reg_id;
1274
1275 if (id != 0) {
1276 kvm_get_one_spr(cs, id, i);
1277 }
1278 }
1279
1280 #ifdef TARGET_PPC64
1281 if (msr_ts) {
1282 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1283 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1284 }
1285 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1286 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1287 }
1288 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1289 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1290 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1291 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1292 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1293 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1294 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1295 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1296 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1297 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1298 }
1299
1300 if (cap_papr) {
1301 if (kvm_get_vpa(cs) < 0) {
1302 trace_kvm_failed_get_vpa();
1303 }
1304 }
1305
1306 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1307 kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1308 #endif
1309 }
1310
1311 return 0;
1312 }
1313
1314 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1315 {
1316 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1317
1318 if (irq != PPC_INTERRUPT_EXT) {
1319 return 0;
1320 }
1321
1322 if (!kvm_enabled() || !cap_interrupt_unset) {
1323 return 0;
1324 }
1325
1326 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1327
1328 return 0;
1329 }
1330
1331 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1332 {
1333 return;
1334 }
1335
1336 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1337 {
1338 return MEMTXATTRS_UNSPECIFIED;
1339 }
1340
1341 int kvm_arch_process_async_events(CPUState *cs)
1342 {
1343 return cs->halted;
1344 }
1345
1346 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1347 {
1348 CPUState *cs = CPU(cpu);
1349 CPUPPCState *env = &cpu->env;
1350
1351 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1352 cs->halted = 1;
1353 cs->exception_index = EXCP_HLT;
1354 }
1355
1356 return 0;
1357 }
1358
1359 /* map dcr access to existing qemu dcr emulation */
1360 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1361 uint32_t dcrn, uint32_t *data)
1362 {
1363 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1364 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1365 }
1366
1367 return 0;
1368 }
1369
1370 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1371 uint32_t dcrn, uint32_t data)
1372 {
1373 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1374 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1375 }
1376
1377 return 0;
1378 }
1379
1380 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1381 {
1382 /* Mixed endian case is not handled */
1383 uint32_t sc = debug_inst_opcode;
1384
1385 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1386 sizeof(sc), 0) ||
1387 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1388 return -EINVAL;
1389 }
1390
1391 return 0;
1392 }
1393
1394 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1395 {
1396 uint32_t sc;
1397
1398 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1399 sc != debug_inst_opcode ||
1400 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1401 sizeof(sc), 1)) {
1402 return -EINVAL;
1403 }
1404
1405 return 0;
1406 }
1407
1408 static int find_hw_breakpoint(target_ulong addr, int type)
1409 {
1410 int n;
1411
1412 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1413 <= ARRAY_SIZE(hw_debug_points));
1414
1415 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1416 if (hw_debug_points[n].addr == addr &&
1417 hw_debug_points[n].type == type) {
1418 return n;
1419 }
1420 }
1421
1422 return -1;
1423 }
1424
1425 static int find_hw_watchpoint(target_ulong addr, int *flag)
1426 {
1427 int n;
1428
1429 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1430 if (n >= 0) {
1431 *flag = BP_MEM_ACCESS;
1432 return n;
1433 }
1434
1435 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1436 if (n >= 0) {
1437 *flag = BP_MEM_WRITE;
1438 return n;
1439 }
1440
1441 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1442 if (n >= 0) {
1443 *flag = BP_MEM_READ;
1444 return n;
1445 }
1446
1447 return -1;
1448 }
1449
1450 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1451 target_ulong len, int type)
1452 {
1453 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1454 return -ENOBUFS;
1455 }
1456
1457 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1458 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1459
1460 switch (type) {
1461 case GDB_BREAKPOINT_HW:
1462 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1463 return -ENOBUFS;
1464 }
1465
1466 if (find_hw_breakpoint(addr, type) >= 0) {
1467 return -EEXIST;
1468 }
1469
1470 nb_hw_breakpoint++;
1471 break;
1472
1473 case GDB_WATCHPOINT_WRITE:
1474 case GDB_WATCHPOINT_READ:
1475 case GDB_WATCHPOINT_ACCESS:
1476 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1477 return -ENOBUFS;
1478 }
1479
1480 if (find_hw_breakpoint(addr, type) >= 0) {
1481 return -EEXIST;
1482 }
1483
1484 nb_hw_watchpoint++;
1485 break;
1486
1487 default:
1488 return -ENOSYS;
1489 }
1490
1491 return 0;
1492 }
1493
1494 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1495 target_ulong len, int type)
1496 {
1497 int n;
1498
1499 n = find_hw_breakpoint(addr, type);
1500 if (n < 0) {
1501 return -ENOENT;
1502 }
1503
1504 switch (type) {
1505 case GDB_BREAKPOINT_HW:
1506 nb_hw_breakpoint--;
1507 break;
1508
1509 case GDB_WATCHPOINT_WRITE:
1510 case GDB_WATCHPOINT_READ:
1511 case GDB_WATCHPOINT_ACCESS:
1512 nb_hw_watchpoint--;
1513 break;
1514
1515 default:
1516 return -ENOSYS;
1517 }
1518 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1519
1520 return 0;
1521 }
1522
1523 void kvm_arch_remove_all_hw_breakpoints(void)
1524 {
1525 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1526 }
1527
1528 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1529 {
1530 int n;
1531
1532 /* Software Breakpoint updates */
1533 if (kvm_sw_breakpoints_active(cs)) {
1534 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1535 }
1536
1537 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1538 <= ARRAY_SIZE(hw_debug_points));
1539 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1540
1541 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1542 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1543 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1544 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1545 switch (hw_debug_points[n].type) {
1546 case GDB_BREAKPOINT_HW:
1547 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1548 break;
1549 case GDB_WATCHPOINT_WRITE:
1550 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1551 break;
1552 case GDB_WATCHPOINT_READ:
1553 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1554 break;
1555 case GDB_WATCHPOINT_ACCESS:
1556 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1557 KVMPPC_DEBUG_WATCH_READ;
1558 break;
1559 default:
1560 cpu_abort(cs, "Unsupported breakpoint type\n");
1561 }
1562 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1563 }
1564 }
1565 }
1566
1567 static int kvm_handle_hw_breakpoint(CPUState *cs,
1568 struct kvm_debug_exit_arch *arch_info)
1569 {
1570 int handle = DEBUG_RETURN_GUEST;
1571 int n;
1572 int flag = 0;
1573
1574 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1575 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1576 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1577 if (n >= 0) {
1578 handle = DEBUG_RETURN_GDB;
1579 }
1580 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1581 KVMPPC_DEBUG_WATCH_WRITE)) {
1582 n = find_hw_watchpoint(arch_info->address, &flag);
1583 if (n >= 0) {
1584 handle = DEBUG_RETURN_GDB;
1585 cs->watchpoint_hit = &hw_watchpoint;
1586 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1587 hw_watchpoint.flags = flag;
1588 }
1589 }
1590 }
1591 return handle;
1592 }
1593
1594 static int kvm_handle_singlestep(void)
1595 {
1596 return DEBUG_RETURN_GDB;
1597 }
1598
1599 static int kvm_handle_sw_breakpoint(void)
1600 {
1601 return DEBUG_RETURN_GDB;
1602 }
1603
1604 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1605 {
1606 CPUState *cs = CPU(cpu);
1607 CPUPPCState *env = &cpu->env;
1608 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1609
1610 if (cs->singlestep_enabled) {
1611 return kvm_handle_singlestep();
1612 }
1613
1614 if (arch_info->status) {
1615 return kvm_handle_hw_breakpoint(cs, arch_info);
1616 }
1617
1618 if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1619 return kvm_handle_sw_breakpoint();
1620 }
1621
1622 /*
1623 * QEMU is not able to handle debug exception, so inject
1624 * program exception to guest;
1625 * Yes program exception NOT debug exception !!
1626 * When QEMU is using debug resources then debug exception must
1627 * be always set. To achieve this we set MSR_DE and also set
1628 * MSRP_DEP so guest cannot change MSR_DE.
1629 * When emulating debug resource for guest we want guest
1630 * to control MSR_DE (enable/disable debug interrupt on need).
1631 * Supporting both configurations are NOT possible.
1632 * So the result is that we cannot share debug resources
1633 * between QEMU and Guest on BOOKE architecture.
1634 * In the current design QEMU gets the priority over guest,
1635 * this means that if QEMU is using debug resources then guest
1636 * cannot use them;
1637 * For software breakpoint QEMU uses a privileged instruction;
1638 * So there cannot be any reason that we are here for guest
1639 * set debug exception, only possibility is guest executed a
1640 * privileged / illegal instruction and that's why we are
1641 * injecting a program interrupt.
1642 */
1643 cpu_synchronize_state(cs);
1644 /*
1645 * env->nip is PC, so increment this by 4 to use
1646 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1647 */
1648 env->nip += 4;
1649 cs->exception_index = POWERPC_EXCP_PROGRAM;
1650 env->error_code = POWERPC_EXCP_INVAL;
1651 ppc_cpu_do_interrupt(cs);
1652
1653 return DEBUG_RETURN_GUEST;
1654 }
1655
1656 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1657 {
1658 PowerPCCPU *cpu = POWERPC_CPU(cs);
1659 CPUPPCState *env = &cpu->env;
1660 int ret;
1661
1662 qemu_mutex_lock_iothread();
1663
1664 switch (run->exit_reason) {
1665 case KVM_EXIT_DCR:
1666 if (run->dcr.is_write) {
1667 trace_kvm_handle_dcr_write();
1668 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1669 } else {
1670 trace_kvm_handle_dcr_read();
1671 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1672 }
1673 break;
1674 case KVM_EXIT_HLT:
1675 trace_kvm_handle_halt();
1676 ret = kvmppc_handle_halt(cpu);
1677 break;
1678 #if defined(TARGET_PPC64)
1679 case KVM_EXIT_PAPR_HCALL:
1680 trace_kvm_handle_papr_hcall();
1681 run->papr_hcall.ret = spapr_hypercall(cpu,
1682 run->papr_hcall.nr,
1683 run->papr_hcall.args);
1684 ret = 0;
1685 break;
1686 #endif
1687 case KVM_EXIT_EPR:
1688 trace_kvm_handle_epr();
1689 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1690 ret = 0;
1691 break;
1692 case KVM_EXIT_WATCHDOG:
1693 trace_kvm_handle_watchdog_expiry();
1694 watchdog_perform_action();
1695 ret = 0;
1696 break;
1697
1698 case KVM_EXIT_DEBUG:
1699 trace_kvm_handle_debug_exception();
1700 if (kvm_handle_debug(cpu, run)) {
1701 ret = EXCP_DEBUG;
1702 break;
1703 }
1704 /* re-enter, this exception was guest-internal */
1705 ret = 0;
1706 break;
1707
1708 default:
1709 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1710 ret = -1;
1711 break;
1712 }
1713
1714 qemu_mutex_unlock_iothread();
1715 return ret;
1716 }
1717
1718 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1719 {
1720 CPUState *cs = CPU(cpu);
1721 uint32_t bits = tsr_bits;
1722 struct kvm_one_reg reg = {
1723 .id = KVM_REG_PPC_OR_TSR,
1724 .addr = (uintptr_t) &bits,
1725 };
1726
1727 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1728 }
1729
1730 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1731 {
1732
1733 CPUState *cs = CPU(cpu);
1734 uint32_t bits = tsr_bits;
1735 struct kvm_one_reg reg = {
1736 .id = KVM_REG_PPC_CLEAR_TSR,
1737 .addr = (uintptr_t) &bits,
1738 };
1739
1740 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1741 }
1742
1743 int kvmppc_set_tcr(PowerPCCPU *cpu)
1744 {
1745 CPUState *cs = CPU(cpu);
1746 CPUPPCState *env = &cpu->env;
1747 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1748
1749 struct kvm_one_reg reg = {
1750 .id = KVM_REG_PPC_TCR,
1751 .addr = (uintptr_t) &tcr,
1752 };
1753
1754 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1755 }
1756
1757 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1758 {
1759 CPUState *cs = CPU(cpu);
1760 int ret;
1761
1762 if (!kvm_enabled()) {
1763 return -1;
1764 }
1765
1766 if (!cap_ppc_watchdog) {
1767 printf("warning: KVM does not support watchdog");
1768 return -1;
1769 }
1770
1771 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1772 if (ret < 0) {
1773 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1774 __func__, strerror(-ret));
1775 return ret;
1776 }
1777
1778 return ret;
1779 }
1780
1781 static int read_cpuinfo(const char *field, char *value, int len)
1782 {
1783 FILE *f;
1784 int ret = -1;
1785 int field_len = strlen(field);
1786 char line[512];
1787
1788 f = fopen("/proc/cpuinfo", "r");
1789 if (!f) {
1790 return -1;
1791 }
1792
1793 do {
1794 if (!fgets(line, sizeof(line), f)) {
1795 break;
1796 }
1797 if (!strncmp(line, field, field_len)) {
1798 pstrcpy(value, len, line);
1799 ret = 0;
1800 break;
1801 }
1802 } while (*line);
1803
1804 fclose(f);
1805
1806 return ret;
1807 }
1808
1809 uint32_t kvmppc_get_tbfreq(void)
1810 {
1811 char line[512];
1812 char *ns;
1813 uint32_t retval = NANOSECONDS_PER_SECOND;
1814
1815 if (read_cpuinfo("timebase", line, sizeof(line))) {
1816 return retval;
1817 }
1818
1819 ns = strchr(line, ':');
1820 if (!ns) {
1821 return retval;
1822 }
1823
1824 ns++;
1825
1826 return atoi(ns);
1827 }
1828
1829 bool kvmppc_get_host_serial(char **value)
1830 {
1831 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1832 NULL);
1833 }
1834
1835 bool kvmppc_get_host_model(char **value)
1836 {
1837 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1838 }
1839
1840 /* Try to find a device tree node for a CPU with clock-frequency property */
1841 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1842 {
1843 struct dirent *dirp;
1844 DIR *dp;
1845
1846 dp = opendir(PROC_DEVTREE_CPU);
1847 if (!dp) {
1848 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1849 return -1;
1850 }
1851
1852 buf[0] = '\0';
1853 while ((dirp = readdir(dp)) != NULL) {
1854 FILE *f;
1855 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1856 dirp->d_name);
1857 f = fopen(buf, "r");
1858 if (f) {
1859 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1860 fclose(f);
1861 break;
1862 }
1863 buf[0] = '\0';
1864 }
1865 closedir(dp);
1866 if (buf[0] == '\0') {
1867 printf("Unknown host!\n");
1868 return -1;
1869 }
1870
1871 return 0;
1872 }
1873
1874 static uint64_t kvmppc_read_int_dt(const char *filename)
1875 {
1876 union {
1877 uint32_t v32;
1878 uint64_t v64;
1879 } u;
1880 FILE *f;
1881 int len;
1882
1883 f = fopen(filename, "rb");
1884 if (!f) {
1885 return -1;
1886 }
1887
1888 len = fread(&u, 1, sizeof(u), f);
1889 fclose(f);
1890 switch (len) {
1891 case 4:
1892 /* property is a 32-bit quantity */
1893 return be32_to_cpu(u.v32);
1894 case 8:
1895 return be64_to_cpu(u.v64);
1896 }
1897
1898 return 0;
1899 }
1900
1901 /*
1902 * Read a CPU node property from the host device tree that's a single
1903 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1904 * (can't find or open the property, or doesn't understand the format)
1905 */
1906 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1907 {
1908 char buf[PATH_MAX], *tmp;
1909 uint64_t val;
1910
1911 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1912 return -1;
1913 }
1914
1915 tmp = g_strdup_printf("%s/%s", buf, propname);
1916 val = kvmppc_read_int_dt(tmp);
1917 g_free(tmp);
1918
1919 return val;
1920 }
1921
1922 uint64_t kvmppc_get_clockfreq(void)
1923 {
1924 return kvmppc_read_int_cpu_dt("clock-frequency");
1925 }
1926
1927 static int kvmppc_get_dec_bits(void)
1928 {
1929 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1930
1931 if (nr_bits > 0) {
1932 return nr_bits;
1933 }
1934 return 0;
1935 }
1936
1937 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1938 {
1939 CPUState *cs = env_cpu(env);
1940
1941 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1942 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1943 return 0;
1944 }
1945
1946 return 1;
1947 }
1948
1949 int kvmppc_get_hasidle(CPUPPCState *env)
1950 {
1951 struct kvm_ppc_pvinfo pvinfo;
1952
1953 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1954 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1955 return 1;
1956 }
1957
1958 return 0;
1959 }
1960
1961 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1962 {
1963 uint32_t *hc = (uint32_t *)buf;
1964 struct kvm_ppc_pvinfo pvinfo;
1965
1966 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1967 memcpy(buf, pvinfo.hcall, buf_len);
1968 return 0;
1969 }
1970
1971 /*
1972 * Fallback to always fail hypercalls regardless of endianness:
1973 *
1974 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
1975 * li r3, -1
1976 * b .+8 (becomes nop in wrong endian)
1977 * bswap32(li r3, -1)
1978 */
1979
1980 hc[0] = cpu_to_be32(0x08000048);
1981 hc[1] = cpu_to_be32(0x3860ffff);
1982 hc[2] = cpu_to_be32(0x48000008);
1983 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
1984
1985 return 1;
1986 }
1987
1988 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
1989 {
1990 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
1991 }
1992
1993 void kvmppc_enable_logical_ci_hcalls(void)
1994 {
1995 /*
1996 * FIXME: it would be nice if we could detect the cases where
1997 * we're using a device which requires the in kernel
1998 * implementation of these hcalls, but the kernel lacks them and
1999 * produce a warning.
2000 */
2001 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2002 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2003 }
2004
2005 void kvmppc_enable_set_mode_hcall(void)
2006 {
2007 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2008 }
2009
2010 void kvmppc_enable_clear_ref_mod_hcalls(void)
2011 {
2012 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2013 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2014 }
2015
2016 void kvmppc_enable_h_page_init(void)
2017 {
2018 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2019 }
2020
2021 void kvmppc_set_papr(PowerPCCPU *cpu)
2022 {
2023 CPUState *cs = CPU(cpu);
2024 int ret;
2025
2026 if (!kvm_enabled()) {
2027 return;
2028 }
2029
2030 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2031 if (ret) {
2032 error_report("This vCPU type or KVM version does not support PAPR");
2033 exit(1);
2034 }
2035
2036 /*
2037 * Update the capability flag so we sync the right information
2038 * with kvm
2039 */
2040 cap_papr = 1;
2041 }
2042
2043 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2044 {
2045 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2046 }
2047
2048 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2049 {
2050 CPUState *cs = CPU(cpu);
2051 int ret;
2052
2053 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2054 if (ret && mpic_proxy) {
2055 error_report("This KVM version does not support EPR");
2056 exit(1);
2057 }
2058 }
2059
2060 int kvmppc_set_fwnmi(void)
2061 {
2062 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
2063 CPUState *cs = CPU(cpu);
2064
2065 return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2066 }
2067
2068 int kvmppc_smt_threads(void)
2069 {
2070 return cap_ppc_smt ? cap_ppc_smt : 1;
2071 }
2072
2073 int kvmppc_set_smt_threads(int smt)
2074 {
2075 int ret;
2076
2077 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2078 if (!ret) {
2079 cap_ppc_smt = smt;
2080 }
2081 return ret;
2082 }
2083
2084 void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2085 {
2086 int i;
2087 GString *g;
2088 char *s;
2089
2090 assert(kvm_enabled());
2091 if (cap_ppc_smt_possible) {
2092 g = g_string_new("Available VSMT modes:");
2093 for (i = 63; i >= 0; i--) {
2094 if ((1UL << i) & cap_ppc_smt_possible) {
2095 g_string_append_printf(g, " %lu", (1UL << i));
2096 }
2097 }
2098 s = g_string_free(g, false);
2099 error_append_hint(errp, "%s.\n", s);
2100 g_free(s);
2101 } else {
2102 error_append_hint(errp,
2103 "This KVM seems to be too old to support VSMT.\n");
2104 }
2105 }
2106
2107
2108 #ifdef TARGET_PPC64
2109 uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
2110 {
2111 struct kvm_ppc_smmu_info info;
2112 long rampagesize, best_page_shift;
2113 int i;
2114
2115 /*
2116 * Find the largest hardware supported page size that's less than
2117 * or equal to the (logical) backing page size of guest RAM
2118 */
2119 kvm_get_smmu_info(&info, &error_fatal);
2120 rampagesize = qemu_minrampagesize();
2121 best_page_shift = 0;
2122
2123 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2124 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2125
2126 if (!sps->page_shift) {
2127 continue;
2128 }
2129
2130 if ((sps->page_shift > best_page_shift)
2131 && ((1UL << sps->page_shift) <= rampagesize)) {
2132 best_page_shift = sps->page_shift;
2133 }
2134 }
2135
2136 return MIN(current_size,
2137 1ULL << (best_page_shift + hash_shift - 7));
2138 }
2139 #endif
2140
2141 bool kvmppc_spapr_use_multitce(void)
2142 {
2143 return cap_spapr_multitce;
2144 }
2145
2146 int kvmppc_spapr_enable_inkernel_multitce(void)
2147 {
2148 int ret;
2149
2150 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2151 H_PUT_TCE_INDIRECT, 1);
2152 if (!ret) {
2153 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2154 H_STUFF_TCE, 1);
2155 }
2156
2157 return ret;
2158 }
2159
2160 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2161 uint64_t bus_offset, uint32_t nb_table,
2162 int *pfd, bool need_vfio)
2163 {
2164 long len;
2165 int fd;
2166 void *table;
2167
2168 /*
2169 * Must set fd to -1 so we don't try to munmap when called for
2170 * destroying the table, which the upper layers -will- do
2171 */
2172 *pfd = -1;
2173 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2174 return NULL;
2175 }
2176
2177 if (cap_spapr_tce_64) {
2178 struct kvm_create_spapr_tce_64 args = {
2179 .liobn = liobn,
2180 .page_shift = page_shift,
2181 .offset = bus_offset >> page_shift,
2182 .size = nb_table,
2183 .flags = 0
2184 };
2185 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2186 if (fd < 0) {
2187 fprintf(stderr,
2188 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2189 liobn);
2190 return NULL;
2191 }
2192 } else if (cap_spapr_tce) {
2193 uint64_t window_size = (uint64_t) nb_table << page_shift;
2194 struct kvm_create_spapr_tce args = {
2195 .liobn = liobn,
2196 .window_size = window_size,
2197 };
2198 if ((window_size != args.window_size) || bus_offset) {
2199 return NULL;
2200 }
2201 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2202 if (fd < 0) {
2203 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2204 liobn);
2205 return NULL;
2206 }
2207 } else {
2208 return NULL;
2209 }
2210
2211 len = nb_table * sizeof(uint64_t);
2212 /* FIXME: round this up to page size */
2213
2214 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2215 if (table == MAP_FAILED) {
2216 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2217 liobn);
2218 close(fd);
2219 return NULL;
2220 }
2221
2222 *pfd = fd;
2223 return table;
2224 }
2225
2226 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2227 {
2228 long len;
2229
2230 if (fd < 0) {
2231 return -1;
2232 }
2233
2234 len = nb_table * sizeof(uint64_t);
2235 if ((munmap(table, len) < 0) ||
2236 (close(fd) < 0)) {
2237 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2238 strerror(errno));
2239 /* Leak the table */
2240 }
2241
2242 return 0;
2243 }
2244
2245 int kvmppc_reset_htab(int shift_hint)
2246 {
2247 uint32_t shift = shift_hint;
2248
2249 if (!kvm_enabled()) {
2250 /* Full emulation, tell caller to allocate htab itself */
2251 return 0;
2252 }
2253 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2254 int ret;
2255 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2256 if (ret == -ENOTTY) {
2257 /*
2258 * At least some versions of PR KVM advertise the
2259 * capability, but don't implement the ioctl(). Oops.
2260 * Return 0 so that we allocate the htab in qemu, as is
2261 * correct for PR.
2262 */
2263 return 0;
2264 } else if (ret < 0) {
2265 return ret;
2266 }
2267 return shift;
2268 }
2269
2270 /*
2271 * We have a kernel that predates the htab reset calls. For PR
2272 * KVM, we need to allocate the htab ourselves, for an HV KVM of
2273 * this era, it has allocated a 16MB fixed size hash table
2274 * already.
2275 */
2276 if (kvmppc_is_pr(kvm_state)) {
2277 /* PR - tell caller to allocate htab */
2278 return 0;
2279 } else {
2280 /* HV - assume 16MB kernel allocated htab */
2281 return 24;
2282 }
2283 }
2284
2285 static inline uint32_t mfpvr(void)
2286 {
2287 uint32_t pvr;
2288
2289 asm ("mfpvr %0"
2290 : "=r"(pvr));
2291 return pvr;
2292 }
2293
2294 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2295 {
2296 if (on) {
2297 *word |= flags;
2298 } else {
2299 *word &= ~flags;
2300 }
2301 }
2302
2303 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2304 {
2305 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2306 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2307 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2308
2309 /* Now fix up the class with information we can query from the host */
2310 pcc->pvr = mfpvr();
2311
2312 alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2313 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2314 alter_insns(&pcc->insns_flags2, PPC2_VSX,
2315 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2316 alter_insns(&pcc->insns_flags2, PPC2_DFP,
2317 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2318
2319 if (dcache_size != -1) {
2320 pcc->l1_dcache_size = dcache_size;
2321 }
2322
2323 if (icache_size != -1) {
2324 pcc->l1_icache_size = icache_size;
2325 }
2326
2327 #if defined(TARGET_PPC64)
2328 pcc->radix_page_info = kvm_get_radix_page_info();
2329
2330 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2331 /*
2332 * POWER9 DD1 has some bugs which make it not really ISA 3.00
2333 * compliant. More importantly, advertising ISA 3.00
2334 * architected mode may prevent guests from activating
2335 * necessary DD1 workarounds.
2336 */
2337 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2338 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2339 }
2340 #endif /* defined(TARGET_PPC64) */
2341 }
2342
2343 bool kvmppc_has_cap_epr(void)
2344 {
2345 return cap_epr;
2346 }
2347
2348 bool kvmppc_has_cap_fixup_hcalls(void)
2349 {
2350 return cap_fixup_hcalls;
2351 }
2352
2353 bool kvmppc_has_cap_htm(void)
2354 {
2355 return cap_htm;
2356 }
2357
2358 bool kvmppc_has_cap_mmu_radix(void)
2359 {
2360 return cap_mmu_radix;
2361 }
2362
2363 bool kvmppc_has_cap_mmu_hash_v3(void)
2364 {
2365 return cap_mmu_hash_v3;
2366 }
2367
2368 static bool kvmppc_power8_host(void)
2369 {
2370 bool ret = false;
2371 #ifdef TARGET_PPC64
2372 {
2373 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2374 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2375 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2376 (base_pvr == CPU_POWERPC_POWER8_BASE);
2377 }
2378 #endif /* TARGET_PPC64 */
2379 return ret;
2380 }
2381
2382 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2383 {
2384 bool l1d_thread_priv_req = !kvmppc_power8_host();
2385
2386 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2387 return 2;
2388 } else if ((!l1d_thread_priv_req ||
2389 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2390 (c.character & c.character_mask
2391 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2392 return 1;
2393 }
2394
2395 return 0;
2396 }
2397
2398 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2399 {
2400 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2401 return 2;
2402 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2403 return 1;
2404 }
2405
2406 return 0;
2407 }
2408
2409 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2410 {
2411 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2412 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2413 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2414 return SPAPR_CAP_FIXED_NA;
2415 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2416 return SPAPR_CAP_WORKAROUND;
2417 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2418 return SPAPR_CAP_FIXED_CCD;
2419 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2420 return SPAPR_CAP_FIXED_IBS;
2421 }
2422
2423 return 0;
2424 }
2425
2426 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2427 {
2428 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2429 return 1;
2430 }
2431 return 0;
2432 }
2433
2434 bool kvmppc_has_cap_xive(void)
2435 {
2436 return cap_xive;
2437 }
2438
2439 static void kvmppc_get_cpu_characteristics(KVMState *s)
2440 {
2441 struct kvm_ppc_cpu_char c;
2442 int ret;
2443
2444 /* Assume broken */
2445 cap_ppc_safe_cache = 0;
2446 cap_ppc_safe_bounds_check = 0;
2447 cap_ppc_safe_indirect_branch = 0;
2448
2449 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2450 if (!ret) {
2451 return;
2452 }
2453 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2454 if (ret < 0) {
2455 return;
2456 }
2457
2458 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2459 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2460 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2461 cap_ppc_count_cache_flush_assist =
2462 parse_cap_ppc_count_cache_flush_assist(c);
2463 }
2464
2465 int kvmppc_get_cap_safe_cache(void)
2466 {
2467 return cap_ppc_safe_cache;
2468 }
2469
2470 int kvmppc_get_cap_safe_bounds_check(void)
2471 {
2472 return cap_ppc_safe_bounds_check;
2473 }
2474
2475 int kvmppc_get_cap_safe_indirect_branch(void)
2476 {
2477 return cap_ppc_safe_indirect_branch;
2478 }
2479
2480 int kvmppc_get_cap_count_cache_flush_assist(void)
2481 {
2482 return cap_ppc_count_cache_flush_assist;
2483 }
2484
2485 bool kvmppc_has_cap_nested_kvm_hv(void)
2486 {
2487 return !!cap_ppc_nested_kvm_hv;
2488 }
2489
2490 int kvmppc_set_cap_nested_kvm_hv(int enable)
2491 {
2492 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2493 }
2494
2495 bool kvmppc_has_cap_spapr_vfio(void)
2496 {
2497 return cap_spapr_vfio;
2498 }
2499
2500 int kvmppc_get_cap_large_decr(void)
2501 {
2502 return cap_large_decr;
2503 }
2504
2505 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2506 {
2507 CPUState *cs = CPU(cpu);
2508 uint64_t lpcr;
2509
2510 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2511 /* Do we need to modify the LPCR? */
2512 if (!!(lpcr & LPCR_LD) != !!enable) {
2513 if (enable) {
2514 lpcr |= LPCR_LD;
2515 } else {
2516 lpcr &= ~LPCR_LD;
2517 }
2518 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2519 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2520
2521 if (!!(lpcr & LPCR_LD) != !!enable) {
2522 return -1;
2523 }
2524 }
2525
2526 return 0;
2527 }
2528
2529 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2530 {
2531 uint32_t host_pvr = mfpvr();
2532 PowerPCCPUClass *pvr_pcc;
2533
2534 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2535 if (pvr_pcc == NULL) {
2536 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2537 }
2538
2539 return pvr_pcc;
2540 }
2541
2542 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2543 {
2544 MachineClass *mc = MACHINE_CLASS(oc);
2545
2546 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2547 }
2548
2549 static int kvm_ppc_register_host_cpu_type(void)
2550 {
2551 TypeInfo type_info = {
2552 .name = TYPE_HOST_POWERPC_CPU,
2553 .class_init = kvmppc_host_cpu_class_init,
2554 };
2555 PowerPCCPUClass *pvr_pcc;
2556 ObjectClass *oc;
2557 DeviceClass *dc;
2558 int i;
2559
2560 pvr_pcc = kvm_ppc_get_host_cpu_class();
2561 if (pvr_pcc == NULL) {
2562 return -1;
2563 }
2564 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2565 type_register(&type_info);
2566 /* override TCG default cpu type with 'host' cpu model */
2567 object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2568 false, NULL);
2569
2570 oc = object_class_by_name(type_info.name);
2571 g_assert(oc);
2572
2573 /*
2574 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2575 * we want "POWER8" to be a "family" alias that points to the current
2576 * host CPU type, too)
2577 */
2578 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2579 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2580 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2581 char *suffix;
2582
2583 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2584 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2585 if (suffix) {
2586 *suffix = 0;
2587 }
2588 break;
2589 }
2590 }
2591
2592 return 0;
2593 }
2594
2595 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2596 {
2597 struct kvm_rtas_token_args args = {
2598 .token = token,
2599 };
2600
2601 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2602 return -ENOENT;
2603 }
2604
2605 strncpy(args.name, function, sizeof(args.name) - 1);
2606
2607 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2608 }
2609
2610 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2611 {
2612 struct kvm_get_htab_fd s = {
2613 .flags = write ? KVM_GET_HTAB_WRITE : 0,
2614 .start_index = index,
2615 };
2616 int ret;
2617
2618 if (!cap_htab_fd) {
2619 error_setg(errp, "KVM version doesn't support %s the HPT",
2620 write ? "writing" : "reading");
2621 return -ENOTSUP;
2622 }
2623
2624 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2625 if (ret < 0) {
2626 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2627 write ? "writing" : "reading", write ? "to" : "from",
2628 strerror(errno));
2629 return -errno;
2630 }
2631
2632 return ret;
2633 }
2634
2635 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2636 {
2637 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2638 uint8_t buf[bufsize];
2639 ssize_t rc;
2640
2641 do {
2642 rc = read(fd, buf, bufsize);
2643 if (rc < 0) {
2644 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2645 strerror(errno));
2646 return rc;
2647 } else if (rc) {
2648 uint8_t *buffer = buf;
2649 ssize_t n = rc;
2650 while (n) {
2651 struct kvm_get_htab_header *head =
2652 (struct kvm_get_htab_header *) buffer;
2653 size_t chunksize = sizeof(*head) +
2654 HASH_PTE_SIZE_64 * head->n_valid;
2655
2656 qemu_put_be32(f, head->index);
2657 qemu_put_be16(f, head->n_valid);
2658 qemu_put_be16(f, head->n_invalid);
2659 qemu_put_buffer(f, (void *)(head + 1),
2660 HASH_PTE_SIZE_64 * head->n_valid);
2661
2662 buffer += chunksize;
2663 n -= chunksize;
2664 }
2665 }
2666 } while ((rc != 0)
2667 && ((max_ns < 0) ||
2668 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2669
2670 return (rc == 0) ? 1 : 0;
2671 }
2672
2673 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2674 uint16_t n_valid, uint16_t n_invalid)
2675 {
2676 struct kvm_get_htab_header *buf;
2677 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2678 ssize_t rc;
2679
2680 buf = alloca(chunksize);
2681 buf->index = index;
2682 buf->n_valid = n_valid;
2683 buf->n_invalid = n_invalid;
2684
2685 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2686
2687 rc = write(fd, buf, chunksize);
2688 if (rc < 0) {
2689 fprintf(stderr, "Error writing KVM hash table: %s\n",
2690 strerror(errno));
2691 return rc;
2692 }
2693 if (rc != chunksize) {
2694 /* We should never get a short write on a single chunk */
2695 fprintf(stderr, "Short write, restoring KVM hash table\n");
2696 return -1;
2697 }
2698 return 0;
2699 }
2700
2701 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2702 {
2703 return true;
2704 }
2705
2706 void kvm_arch_init_irq_routing(KVMState *s)
2707 {
2708 }
2709
2710 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2711 {
2712 int fd, rc;
2713 int i;
2714
2715 fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2716
2717 i = 0;
2718 while (i < n) {
2719 struct kvm_get_htab_header *hdr;
2720 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2721 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2722
2723 rc = read(fd, buf, sizeof(buf));
2724 if (rc < 0) {
2725 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2726 }
2727
2728 hdr = (struct kvm_get_htab_header *)buf;
2729 while ((i < n) && ((char *)hdr < (buf + rc))) {
2730 int invalid = hdr->n_invalid, valid = hdr->n_valid;
2731
2732 if (hdr->index != (ptex + i)) {
2733 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2734 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2735 }
2736
2737 if (n - i < valid) {
2738 valid = n - i;
2739 }
2740 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2741 i += valid;
2742
2743 if ((n - i) < invalid) {
2744 invalid = n - i;
2745 }
2746 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2747 i += invalid;
2748
2749 hdr = (struct kvm_get_htab_header *)
2750 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2751 }
2752 }
2753
2754 close(fd);
2755 }
2756
2757 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2758 {
2759 int fd, rc;
2760 struct {
2761 struct kvm_get_htab_header hdr;
2762 uint64_t pte0;
2763 uint64_t pte1;
2764 } buf;
2765
2766 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2767
2768 buf.hdr.n_valid = 1;
2769 buf.hdr.n_invalid = 0;
2770 buf.hdr.index = ptex;
2771 buf.pte0 = cpu_to_be64(pte0);
2772 buf.pte1 = cpu_to_be64(pte1);
2773
2774 rc = write(fd, &buf, sizeof(buf));
2775 if (rc != sizeof(buf)) {
2776 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2777 }
2778 close(fd);
2779 }
2780
2781 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2782 uint64_t address, uint32_t data, PCIDevice *dev)
2783 {
2784 return 0;
2785 }
2786
2787 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2788 int vector, PCIDevice *dev)
2789 {
2790 return 0;
2791 }
2792
2793 int kvm_arch_release_virq_post(int virq)
2794 {
2795 return 0;
2796 }
2797
2798 int kvm_arch_msi_data_to_gsi(uint32_t data)
2799 {
2800 return data & 0xffff;
2801 }
2802
2803 int kvmppc_enable_hwrng(void)
2804 {
2805 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2806 return -1;
2807 }
2808
2809 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2810 }
2811
2812 void kvmppc_check_papr_resize_hpt(Error **errp)
2813 {
2814 if (!kvm_enabled()) {
2815 return; /* No KVM, we're good */
2816 }
2817
2818 if (cap_resize_hpt) {
2819 return; /* Kernel has explicit support, we're good */
2820 }
2821
2822 /* Otherwise fallback on looking for PR KVM */
2823 if (kvmppc_is_pr(kvm_state)) {
2824 return;
2825 }
2826
2827 error_setg(errp,
2828 "Hash page table resizing not available with this KVM version");
2829 }
2830
2831 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2832 {
2833 CPUState *cs = CPU(cpu);
2834 struct kvm_ppc_resize_hpt rhpt = {
2835 .flags = flags,
2836 .shift = shift,
2837 };
2838
2839 if (!cap_resize_hpt) {
2840 return -ENOSYS;
2841 }
2842
2843 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2844 }
2845
2846 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2847 {
2848 CPUState *cs = CPU(cpu);
2849 struct kvm_ppc_resize_hpt rhpt = {
2850 .flags = flags,
2851 .shift = shift,
2852 };
2853
2854 if (!cap_resize_hpt) {
2855 return -ENOSYS;
2856 }
2857
2858 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2859 }
2860
2861 /*
2862 * This is a helper function to detect a post migration scenario
2863 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2864 * the guest kernel can't handle a PVR value other than the actual host
2865 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2866 *
2867 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2868 * (so, we're HV), return true. The workaround itself is done in
2869 * cpu_post_load.
2870 *
2871 * The order here is important: we'll only check for KVM PR as a
2872 * fallback if the guest kernel can't handle the situation itself.
2873 * We need to avoid as much as possible querying the running KVM type
2874 * in QEMU level.
2875 */
2876 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2877 {
2878 CPUState *cs = CPU(cpu);
2879
2880 if (!kvm_enabled()) {
2881 return false;
2882 }
2883
2884 if (cap_ppc_pvr_compat) {
2885 return false;
2886 }
2887
2888 return !kvmppc_is_pr(cs->kvm_state);
2889 }
2890
2891 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2892 {
2893 CPUState *cs = CPU(cpu);
2894
2895 if (kvm_enabled()) {
2896 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2897 }
2898 }
2899
2900 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2901 {
2902 CPUState *cs = CPU(cpu);
2903
2904 if (kvm_enabled()) {
2905 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2906 }
2907 }
2908
2909 /*
2910 * Don't set error if KVM_PPC_SVM_OFF ioctl is invoked on kernels
2911 * that don't support this ioctl.
2912 */
2913 void kvmppc_svm_off(Error **errp)
2914 {
2915 int rc;
2916
2917 if (!kvm_enabled()) {
2918 return;
2919 }
2920
2921 rc = kvm_vm_ioctl(KVM_STATE(current_accel()), KVM_PPC_SVM_OFF);
2922 if (rc && rc != -ENOTTY) {
2923 error_setg_errno(errp, -rc, "KVM_PPC_SVM_OFF ioctl failed");
2924 }
2925 }