]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/machine.c
Include qemu-common.h exactly where needed
[mirror_qemu.git] / target / ppc / machine.c
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "hw/hw.h"
5 #include "hw/boards.h"
6 #include "sysemu/kvm.h"
7 #include "helper_regs.h"
8 #include "mmu-hash64.h"
9 #include "migration/cpu.h"
10 #include "qapi/error.h"
11 #include "kvm_ppc.h"
12 #include "exec/helper-proto.h"
13
14 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
15 {
16 PowerPCCPU *cpu = opaque;
17 CPUPPCState *env = &cpu->env;
18 unsigned int i, j;
19 target_ulong sdr1;
20 uint32_t fpscr, vscr;
21 #if defined(TARGET_PPC64)
22 int32_t slb_nr;
23 #endif
24 target_ulong xer;
25
26 for (i = 0; i < 32; i++) {
27 qemu_get_betls(f, &env->gpr[i]);
28 }
29 #if !defined(TARGET_PPC64)
30 for (i = 0; i < 32; i++) {
31 qemu_get_betls(f, &env->gprh[i]);
32 }
33 #endif
34 qemu_get_betls(f, &env->lr);
35 qemu_get_betls(f, &env->ctr);
36 for (i = 0; i < 8; i++) {
37 qemu_get_be32s(f, &env->crf[i]);
38 }
39 qemu_get_betls(f, &xer);
40 cpu_write_xer(env, xer);
41 qemu_get_betls(f, &env->reserve_addr);
42 qemu_get_betls(f, &env->msr);
43 for (i = 0; i < 4; i++) {
44 qemu_get_betls(f, &env->tgpr[i]);
45 }
46 for (i = 0; i < 32; i++) {
47 union {
48 float64 d;
49 uint64_t l;
50 } u;
51 u.l = qemu_get_be64(f);
52 *cpu_fpr_ptr(env, i) = u.d;
53 }
54 qemu_get_be32s(f, &fpscr);
55 env->fpscr = fpscr;
56 qemu_get_sbe32s(f, &env->access_type);
57 #if defined(TARGET_PPC64)
58 qemu_get_betls(f, &env->spr[SPR_ASR]);
59 qemu_get_sbe32s(f, &slb_nr);
60 #endif
61 qemu_get_betls(f, &sdr1);
62 for (i = 0; i < 32; i++) {
63 qemu_get_betls(f, &env->sr[i]);
64 }
65 for (i = 0; i < 2; i++) {
66 for (j = 0; j < 8; j++) {
67 qemu_get_betls(f, &env->DBAT[i][j]);
68 }
69 }
70 for (i = 0; i < 2; i++) {
71 for (j = 0; j < 8; j++) {
72 qemu_get_betls(f, &env->IBAT[i][j]);
73 }
74 }
75 qemu_get_sbe32s(f, &env->nb_tlb);
76 qemu_get_sbe32s(f, &env->tlb_per_way);
77 qemu_get_sbe32s(f, &env->nb_ways);
78 qemu_get_sbe32s(f, &env->last_way);
79 qemu_get_sbe32s(f, &env->id_tlbs);
80 qemu_get_sbe32s(f, &env->nb_pids);
81 if (env->tlb.tlb6) {
82 /* XXX assumes 6xx */
83 for (i = 0; i < env->nb_tlb; i++) {
84 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
85 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
86 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
87 }
88 }
89 for (i = 0; i < 4; i++) {
90 qemu_get_betls(f, &env->pb[i]);
91 }
92 for (i = 0; i < 1024; i++) {
93 qemu_get_betls(f, &env->spr[i]);
94 }
95 if (!cpu->vhyp) {
96 ppc_store_sdr1(env, sdr1);
97 }
98 qemu_get_be32s(f, &vscr);
99 helper_mtvscr(env, vscr);
100 qemu_get_be64s(f, &env->spe_acc);
101 qemu_get_be32s(f, &env->spe_fscr);
102 qemu_get_betls(f, &env->msr_mask);
103 qemu_get_be32s(f, &env->flags);
104 qemu_get_sbe32s(f, &env->error_code);
105 qemu_get_be32s(f, &env->pending_interrupts);
106 qemu_get_be32s(f, &env->irq_input_state);
107 for (i = 0; i < POWERPC_EXCP_NB; i++) {
108 qemu_get_betls(f, &env->excp_vectors[i]);
109 }
110 qemu_get_betls(f, &env->excp_prefix);
111 qemu_get_betls(f, &env->ivor_mask);
112 qemu_get_betls(f, &env->ivpr_mask);
113 qemu_get_betls(f, &env->hreset_vector);
114 qemu_get_betls(f, &env->nip);
115 qemu_get_betls(f, &env->hflags);
116 qemu_get_betls(f, &env->hflags_nmsr);
117 qemu_get_sbe32(f); /* Discard unused mmu_idx */
118 qemu_get_sbe32(f); /* Discard unused power_mode */
119
120 /* Recompute mmu indices */
121 hreg_compute_mem_idx(env);
122
123 return 0;
124 }
125
126 static int get_avr(QEMUFile *f, void *pv, size_t size,
127 const VMStateField *field)
128 {
129 ppc_avr_t *v = pv;
130
131 v->u64[0] = qemu_get_be64(f);
132 v->u64[1] = qemu_get_be64(f);
133
134 return 0;
135 }
136
137 static int put_avr(QEMUFile *f, void *pv, size_t size,
138 const VMStateField *field, QJSON *vmdesc)
139 {
140 ppc_avr_t *v = pv;
141
142 qemu_put_be64(f, v->u64[0]);
143 qemu_put_be64(f, v->u64[1]);
144 return 0;
145 }
146
147 static const VMStateInfo vmstate_info_avr = {
148 .name = "avr",
149 .get = get_avr,
150 .put = put_avr,
151 };
152
153 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
154 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
155
156 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
157 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
158
159 static int get_fpr(QEMUFile *f, void *pv, size_t size,
160 const VMStateField *field)
161 {
162 ppc_vsr_t *v = pv;
163
164 v->VsrD(0) = qemu_get_be64(f);
165
166 return 0;
167 }
168
169 static int put_fpr(QEMUFile *f, void *pv, size_t size,
170 const VMStateField *field, QJSON *vmdesc)
171 {
172 ppc_vsr_t *v = pv;
173
174 qemu_put_be64(f, v->VsrD(0));
175 return 0;
176 }
177
178 static const VMStateInfo vmstate_info_fpr = {
179 .name = "fpr",
180 .get = get_fpr,
181 .put = put_fpr,
182 };
183
184 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
185 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
186
187 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \
188 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
189
190 static int get_vsr(QEMUFile *f, void *pv, size_t size,
191 const VMStateField *field)
192 {
193 ppc_vsr_t *v = pv;
194
195 v->VsrD(1) = qemu_get_be64(f);
196
197 return 0;
198 }
199
200 static int put_vsr(QEMUFile *f, void *pv, size_t size,
201 const VMStateField *field, QJSON *vmdesc)
202 {
203 ppc_vsr_t *v = pv;
204
205 qemu_put_be64(f, v->VsrD(1));
206 return 0;
207 }
208
209 static const VMStateInfo vmstate_info_vsr = {
210 .name = "vsr",
211 .get = get_vsr,
212 .put = put_vsr,
213 };
214
215 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
216 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
217
218 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \
219 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
220
221 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
222 {
223 PowerPCCPU *cpu = opaque;
224
225 return cpu->pre_2_8_migration;
226 }
227
228 #if defined(TARGET_PPC64)
229 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
230 {
231 PowerPCCPU *cpu = opaque;
232
233 return cpu->pre_3_0_migration;
234 }
235 #endif
236
237 static int cpu_pre_save(void *opaque)
238 {
239 PowerPCCPU *cpu = opaque;
240 CPUPPCState *env = &cpu->env;
241 int i;
242 uint64_t insns_compat_mask =
243 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
244 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
245 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
246 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
247 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
248 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
249 | PPC_64B | PPC_64BX | PPC_ALTIVEC
250 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
251 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
252 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
253 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
254 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
255 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
256 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
257
258 env->spr[SPR_LR] = env->lr;
259 env->spr[SPR_CTR] = env->ctr;
260 env->spr[SPR_XER] = cpu_read_xer(env);
261 #if defined(TARGET_PPC64)
262 env->spr[SPR_CFAR] = env->cfar;
263 #endif
264 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
265
266 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
267 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
268 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
269 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
270 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
271 }
272 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
273 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
274 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
275 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
276 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
277 }
278
279 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
280 if (cpu->pre_2_8_migration) {
281 /*
282 * Mask out bits that got added to msr_mask since the versions
283 * which stupidly included it in the migration stream.
284 */
285 target_ulong metamask = 0
286 #if defined(TARGET_PPC64)
287 | (1ULL << MSR_TS0)
288 | (1ULL << MSR_TS1)
289 #endif
290 ;
291 cpu->mig_msr_mask = env->msr_mask & ~metamask;
292 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
293 /*
294 * CPU models supported by old machines all have
295 * PPC_MEM_TLBIE, so we set it unconditionally to allow
296 * backward migration from a POWER9 host to a POWER8 host.
297 */
298 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
299 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
300 cpu->mig_nb_BATs = env->nb_BATs;
301 }
302 if (cpu->pre_3_0_migration) {
303 if (cpu->hash64_opts) {
304 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
305 }
306 }
307
308 return 0;
309 }
310
311 /*
312 * Determine if a given PVR is a "close enough" match to the CPU
313 * object. For TCG and KVM PR it would probably be sufficient to
314 * require an exact PVR match. However for KVM HV the user is
315 * restricted to a PVR exactly matching the host CPU. The correct way
316 * to handle this is to put the guest into an architected
317 * compatibility mode. However, to allow a more forgiving transition
318 * and migration from before this was widely done, we allow migration
319 * between sufficiently similar PVRs, as determined by the CPU class's
320 * pvr_match() hook.
321 */
322 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
323 {
324 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
325
326 if (pvr == pcc->pvr) {
327 return true;
328 }
329 return pcc->pvr_match(pcc, pvr);
330 }
331
332 static int cpu_post_load(void *opaque, int version_id)
333 {
334 PowerPCCPU *cpu = opaque;
335 CPUPPCState *env = &cpu->env;
336 int i;
337 target_ulong msr;
338
339 /*
340 * If we're operating in compat mode, we should be ok as long as
341 * the destination supports the same compatiblity mode.
342 *
343 * Otherwise, however, we require that the destination has exactly
344 * the same CPU model as the source.
345 */
346
347 #if defined(TARGET_PPC64)
348 if (cpu->compat_pvr) {
349 uint32_t compat_pvr = cpu->compat_pvr;
350 Error *local_err = NULL;
351
352 cpu->compat_pvr = 0;
353 ppc_set_compat(cpu, compat_pvr, &local_err);
354 if (local_err) {
355 error_report_err(local_err);
356 return -1;
357 }
358 } else
359 #endif
360 {
361 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
362 return -1;
363 }
364 }
365
366 /*
367 * If we're running with KVM HV, there is a chance that the guest
368 * is running with KVM HV and its kernel does not have the
369 * capability of dealing with a different PVR other than this
370 * exact host PVR in KVM_SET_SREGS. If that happens, the
371 * guest freezes after migration.
372 *
373 * The function kvmppc_pvr_workaround_required does this verification
374 * by first checking if the kernel has the cap, returning true immediately
375 * if that is the case. Otherwise, it checks if we're running in KVM PR.
376 * If the guest kernel does not have the cap and we're not running KVM-PR
377 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
378 * receive the PVR it expects as a workaround.
379 *
380 */
381 #if defined(CONFIG_KVM)
382 if (kvmppc_pvr_workaround_required(cpu)) {
383 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
384 }
385 #endif
386
387 env->lr = env->spr[SPR_LR];
388 env->ctr = env->spr[SPR_CTR];
389 cpu_write_xer(env, env->spr[SPR_XER]);
390 #if defined(TARGET_PPC64)
391 env->cfar = env->spr[SPR_CFAR];
392 #endif
393 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
394
395 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
396 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
397 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
398 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
399 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
400 }
401 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
402 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
403 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
404 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
405 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
406 }
407
408 if (!cpu->vhyp) {
409 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
410 }
411
412 /*
413 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
414 * before restoring
415 */
416 msr = env->msr;
417 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
418 ppc_store_msr(env, msr);
419
420 hreg_compute_mem_idx(env);
421
422 return 0;
423 }
424
425 static bool fpu_needed(void *opaque)
426 {
427 PowerPCCPU *cpu = opaque;
428
429 return cpu->env.insns_flags & PPC_FLOAT;
430 }
431
432 static const VMStateDescription vmstate_fpu = {
433 .name = "cpu/fpu",
434 .version_id = 1,
435 .minimum_version_id = 1,
436 .needed = fpu_needed,
437 .fields = (VMStateField[]) {
438 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
439 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
440 VMSTATE_END_OF_LIST()
441 },
442 };
443
444 static bool altivec_needed(void *opaque)
445 {
446 PowerPCCPU *cpu = opaque;
447
448 return cpu->env.insns_flags & PPC_ALTIVEC;
449 }
450
451 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
452 const VMStateField *field)
453 {
454 PowerPCCPU *cpu = opaque;
455 helper_mtvscr(&cpu->env, qemu_get_be32(f));
456 return 0;
457 }
458
459 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
460 const VMStateField *field, QJSON *vmdesc)
461 {
462 PowerPCCPU *cpu = opaque;
463 qemu_put_be32(f, helper_mfvscr(&cpu->env));
464 return 0;
465 }
466
467 static const VMStateInfo vmstate_vscr = {
468 .name = "cpu/altivec/vscr",
469 .get = get_vscr,
470 .put = put_vscr,
471 };
472
473 static const VMStateDescription vmstate_altivec = {
474 .name = "cpu/altivec",
475 .version_id = 1,
476 .minimum_version_id = 1,
477 .needed = altivec_needed,
478 .fields = (VMStateField[]) {
479 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
480 /*
481 * Save the architecture value of the vscr, not the internally
482 * expanded version. Since this architecture value does not
483 * exist in memory to be stored, this requires a but of hoop
484 * jumping. We want OFFSET=0 so that we effectively pass CPU
485 * to the helper functions.
486 */
487 {
488 .name = "vscr",
489 .version_id = 0,
490 .size = sizeof(uint32_t),
491 .info = &vmstate_vscr,
492 .flags = VMS_SINGLE,
493 .offset = 0
494 },
495 VMSTATE_END_OF_LIST()
496 },
497 };
498
499 static bool vsx_needed(void *opaque)
500 {
501 PowerPCCPU *cpu = opaque;
502
503 return cpu->env.insns_flags2 & PPC2_VSX;
504 }
505
506 static const VMStateDescription vmstate_vsx = {
507 .name = "cpu/vsx",
508 .version_id = 1,
509 .minimum_version_id = 1,
510 .needed = vsx_needed,
511 .fields = (VMStateField[]) {
512 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
513 VMSTATE_END_OF_LIST()
514 },
515 };
516
517 #ifdef TARGET_PPC64
518 /* Transactional memory state */
519 static bool tm_needed(void *opaque)
520 {
521 PowerPCCPU *cpu = opaque;
522 CPUPPCState *env = &cpu->env;
523 return msr_ts;
524 }
525
526 static const VMStateDescription vmstate_tm = {
527 .name = "cpu/tm",
528 .version_id = 1,
529 .minimum_version_id = 1,
530 .minimum_version_id_old = 1,
531 .needed = tm_needed,
532 .fields = (VMStateField []) {
533 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
534 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
535 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
536 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
537 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
538 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
539 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
540 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
541 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
542 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
543 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
544 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
545 VMSTATE_END_OF_LIST()
546 },
547 };
548 #endif
549
550 static bool sr_needed(void *opaque)
551 {
552 #ifdef TARGET_PPC64
553 PowerPCCPU *cpu = opaque;
554
555 return !(cpu->env.mmu_model & POWERPC_MMU_64);
556 #else
557 return true;
558 #endif
559 }
560
561 static const VMStateDescription vmstate_sr = {
562 .name = "cpu/sr",
563 .version_id = 1,
564 .minimum_version_id = 1,
565 .needed = sr_needed,
566 .fields = (VMStateField[]) {
567 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
568 VMSTATE_END_OF_LIST()
569 },
570 };
571
572 #ifdef TARGET_PPC64
573 static int get_slbe(QEMUFile *f, void *pv, size_t size,
574 const VMStateField *field)
575 {
576 ppc_slb_t *v = pv;
577
578 v->esid = qemu_get_be64(f);
579 v->vsid = qemu_get_be64(f);
580
581 return 0;
582 }
583
584 static int put_slbe(QEMUFile *f, void *pv, size_t size,
585 const VMStateField *field, QJSON *vmdesc)
586 {
587 ppc_slb_t *v = pv;
588
589 qemu_put_be64(f, v->esid);
590 qemu_put_be64(f, v->vsid);
591 return 0;
592 }
593
594 static const VMStateInfo vmstate_info_slbe = {
595 .name = "slbe",
596 .get = get_slbe,
597 .put = put_slbe,
598 };
599
600 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
601 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
602
603 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
604 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
605
606 static bool slb_needed(void *opaque)
607 {
608 PowerPCCPU *cpu = opaque;
609
610 /* We don't support any of the old segment table based 64-bit CPUs */
611 return cpu->env.mmu_model & POWERPC_MMU_64;
612 }
613
614 static int slb_post_load(void *opaque, int version_id)
615 {
616 PowerPCCPU *cpu = opaque;
617 CPUPPCState *env = &cpu->env;
618 int i;
619
620 /*
621 * We've pulled in the raw esid and vsid values from the migration
622 * stream, but we need to recompute the page size pointers
623 */
624 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
625 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
626 /* Migration source had bad values in its SLB */
627 return -1;
628 }
629 }
630
631 return 0;
632 }
633
634 static const VMStateDescription vmstate_slb = {
635 .name = "cpu/slb",
636 .version_id = 1,
637 .minimum_version_id = 1,
638 .needed = slb_needed,
639 .post_load = slb_post_load,
640 .fields = (VMStateField[]) {
641 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
642 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
643 VMSTATE_END_OF_LIST()
644 }
645 };
646 #endif /* TARGET_PPC64 */
647
648 static const VMStateDescription vmstate_tlb6xx_entry = {
649 .name = "cpu/tlb6xx_entry",
650 .version_id = 1,
651 .minimum_version_id = 1,
652 .fields = (VMStateField[]) {
653 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
654 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
655 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
656 VMSTATE_END_OF_LIST()
657 },
658 };
659
660 static bool tlb6xx_needed(void *opaque)
661 {
662 PowerPCCPU *cpu = opaque;
663 CPUPPCState *env = &cpu->env;
664
665 return env->nb_tlb && (env->tlb_type == TLB_6XX);
666 }
667
668 static const VMStateDescription vmstate_tlb6xx = {
669 .name = "cpu/tlb6xx",
670 .version_id = 1,
671 .minimum_version_id = 1,
672 .needed = tlb6xx_needed,
673 .fields = (VMStateField[]) {
674 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
675 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
676 env.nb_tlb,
677 vmstate_tlb6xx_entry,
678 ppc6xx_tlb_t),
679 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
680 VMSTATE_END_OF_LIST()
681 }
682 };
683
684 static const VMStateDescription vmstate_tlbemb_entry = {
685 .name = "cpu/tlbemb_entry",
686 .version_id = 1,
687 .minimum_version_id = 1,
688 .fields = (VMStateField[]) {
689 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
690 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
691 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
692 VMSTATE_UINTTL(size, ppcemb_tlb_t),
693 VMSTATE_UINT32(prot, ppcemb_tlb_t),
694 VMSTATE_UINT32(attr, ppcemb_tlb_t),
695 VMSTATE_END_OF_LIST()
696 },
697 };
698
699 static bool tlbemb_needed(void *opaque)
700 {
701 PowerPCCPU *cpu = opaque;
702 CPUPPCState *env = &cpu->env;
703
704 return env->nb_tlb && (env->tlb_type == TLB_EMB);
705 }
706
707 static bool pbr403_needed(void *opaque)
708 {
709 PowerPCCPU *cpu = opaque;
710 uint32_t pvr = cpu->env.spr[SPR_PVR];
711
712 return (pvr & 0xffff0000) == 0x00200000;
713 }
714
715 static const VMStateDescription vmstate_pbr403 = {
716 .name = "cpu/pbr403",
717 .version_id = 1,
718 .minimum_version_id = 1,
719 .needed = pbr403_needed,
720 .fields = (VMStateField[]) {
721 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
722 VMSTATE_END_OF_LIST()
723 },
724 };
725
726 static const VMStateDescription vmstate_tlbemb = {
727 .name = "cpu/tlb6xx",
728 .version_id = 1,
729 .minimum_version_id = 1,
730 .needed = tlbemb_needed,
731 .fields = (VMStateField[]) {
732 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
733 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
734 env.nb_tlb,
735 vmstate_tlbemb_entry,
736 ppcemb_tlb_t),
737 /* 403 protection registers */
738 VMSTATE_END_OF_LIST()
739 },
740 .subsections = (const VMStateDescription*[]) {
741 &vmstate_pbr403,
742 NULL
743 }
744 };
745
746 static const VMStateDescription vmstate_tlbmas_entry = {
747 .name = "cpu/tlbmas_entry",
748 .version_id = 1,
749 .minimum_version_id = 1,
750 .fields = (VMStateField[]) {
751 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
752 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
753 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
754 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
755 VMSTATE_END_OF_LIST()
756 },
757 };
758
759 static bool tlbmas_needed(void *opaque)
760 {
761 PowerPCCPU *cpu = opaque;
762 CPUPPCState *env = &cpu->env;
763
764 return env->nb_tlb && (env->tlb_type == TLB_MAS);
765 }
766
767 static const VMStateDescription vmstate_tlbmas = {
768 .name = "cpu/tlbmas",
769 .version_id = 1,
770 .minimum_version_id = 1,
771 .needed = tlbmas_needed,
772 .fields = (VMStateField[]) {
773 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
774 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
775 env.nb_tlb,
776 vmstate_tlbmas_entry,
777 ppcmas_tlb_t),
778 VMSTATE_END_OF_LIST()
779 }
780 };
781
782 static bool compat_needed(void *opaque)
783 {
784 PowerPCCPU *cpu = opaque;
785
786 assert(!(cpu->compat_pvr && !cpu->vhyp));
787 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
788 }
789
790 static const VMStateDescription vmstate_compat = {
791 .name = "cpu/compat",
792 .version_id = 1,
793 .minimum_version_id = 1,
794 .needed = compat_needed,
795 .fields = (VMStateField[]) {
796 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
797 VMSTATE_END_OF_LIST()
798 }
799 };
800
801 const VMStateDescription vmstate_ppc_cpu = {
802 .name = "cpu",
803 .version_id = 5,
804 .minimum_version_id = 5,
805 .minimum_version_id_old = 4,
806 .load_state_old = cpu_load_old,
807 .pre_save = cpu_pre_save,
808 .post_load = cpu_post_load,
809 .fields = (VMStateField[]) {
810 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
811
812 /* User mode architected state */
813 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
814 #if !defined(TARGET_PPC64)
815 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
816 #endif
817 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
818 VMSTATE_UINTTL(env.nip, PowerPCCPU),
819
820 /* SPRs */
821 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
822 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
823
824 /* Reservation */
825 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
826
827 /* Supervisor mode architected state */
828 VMSTATE_UINTTL(env.msr, PowerPCCPU),
829
830 /* Internal state */
831 VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
832 /* FIXME: access_type? */
833
834 /* Sanity checking */
835 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
836 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
837 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
838 cpu_pre_2_8_migration),
839 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
840 VMSTATE_END_OF_LIST()
841 },
842 .subsections = (const VMStateDescription*[]) {
843 &vmstate_fpu,
844 &vmstate_altivec,
845 &vmstate_vsx,
846 &vmstate_sr,
847 #ifdef TARGET_PPC64
848 &vmstate_tm,
849 &vmstate_slb,
850 #endif /* TARGET_PPC64 */
851 &vmstate_tlb6xx,
852 &vmstate_tlbemb,
853 &vmstate_tlbmas,
854 &vmstate_compat,
855 NULL
856 }
857 };