]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/machine.c
Merge remote-tracking branch 'remotes/hdeller/tags/hppa-updates-pull-request' into...
[mirror_qemu.git] / target / ppc / machine.c
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "helper_regs.h"
6 #include "mmu-hash64.h"
7 #include "migration/cpu.h"
8 #include "qapi/error.h"
9 #include "qemu/main-loop.h"
10 #include "kvm_ppc.h"
11 #include "power8-pmu.h"
12
13 static void post_load_update_msr(CPUPPCState *env)
14 {
15 target_ulong msr = env->msr;
16
17 /*
18 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
19 * before restoring. Note that this recomputes hflags.
20 */
21 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
22 ppc_store_msr(env, msr);
23 pmu_update_summaries(env);
24 }
25
26 static int get_avr(QEMUFile *f, void *pv, size_t size,
27 const VMStateField *field)
28 {
29 ppc_avr_t *v = pv;
30
31 v->u64[0] = qemu_get_be64(f);
32 v->u64[1] = qemu_get_be64(f);
33
34 return 0;
35 }
36
37 static int put_avr(QEMUFile *f, void *pv, size_t size,
38 const VMStateField *field, JSONWriter *vmdesc)
39 {
40 ppc_avr_t *v = pv;
41
42 qemu_put_be64(f, v->u64[0]);
43 qemu_put_be64(f, v->u64[1]);
44 return 0;
45 }
46
47 static const VMStateInfo vmstate_info_avr = {
48 .name = "avr",
49 .get = get_avr,
50 .put = put_avr,
51 };
52
53 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
54 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
55
56 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
57 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
58
59 static int get_fpr(QEMUFile *f, void *pv, size_t size,
60 const VMStateField *field)
61 {
62 ppc_vsr_t *v = pv;
63
64 v->VsrD(0) = qemu_get_be64(f);
65
66 return 0;
67 }
68
69 static int put_fpr(QEMUFile *f, void *pv, size_t size,
70 const VMStateField *field, JSONWriter *vmdesc)
71 {
72 ppc_vsr_t *v = pv;
73
74 qemu_put_be64(f, v->VsrD(0));
75 return 0;
76 }
77
78 static const VMStateInfo vmstate_info_fpr = {
79 .name = "fpr",
80 .get = get_fpr,
81 .put = put_fpr,
82 };
83
84 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
85 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
86
87 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \
88 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
89
90 static int get_vsr(QEMUFile *f, void *pv, size_t size,
91 const VMStateField *field)
92 {
93 ppc_vsr_t *v = pv;
94
95 v->VsrD(1) = qemu_get_be64(f);
96
97 return 0;
98 }
99
100 static int put_vsr(QEMUFile *f, void *pv, size_t size,
101 const VMStateField *field, JSONWriter *vmdesc)
102 {
103 ppc_vsr_t *v = pv;
104
105 qemu_put_be64(f, v->VsrD(1));
106 return 0;
107 }
108
109 static const VMStateInfo vmstate_info_vsr = {
110 .name = "vsr",
111 .get = get_vsr,
112 .put = put_vsr,
113 };
114
115 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
116 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
117
118 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \
119 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
120
121 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
122 {
123 PowerPCCPU *cpu = opaque;
124
125 return cpu->pre_2_8_migration;
126 }
127
128 #if defined(TARGET_PPC64)
129 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
130 {
131 PowerPCCPU *cpu = opaque;
132
133 return cpu->pre_3_0_migration;
134 }
135 #endif
136
137 static int cpu_pre_save(void *opaque)
138 {
139 PowerPCCPU *cpu = opaque;
140 CPUPPCState *env = &cpu->env;
141 int i;
142 uint64_t insns_compat_mask =
143 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
144 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
145 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
146 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
147 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
148 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
149 | PPC_64B | PPC_64BX | PPC_ALTIVEC
150 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
151 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
152 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
153 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
154 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
155 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
156 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
157
158 env->spr[SPR_LR] = env->lr;
159 env->spr[SPR_CTR] = env->ctr;
160 env->spr[SPR_XER] = cpu_read_xer(env);
161 #if defined(TARGET_PPC64)
162 env->spr[SPR_CFAR] = env->cfar;
163 #endif
164 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
165
166 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
167 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
168 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
169 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
170 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
171 }
172 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
173 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
174 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
175 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
176 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
177 }
178
179 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
180 if (cpu->pre_2_8_migration) {
181 /*
182 * Mask out bits that got added to msr_mask since the versions
183 * which stupidly included it in the migration stream.
184 */
185 target_ulong metamask = 0
186 #if defined(TARGET_PPC64)
187 | (1ULL << MSR_TS0)
188 | (1ULL << MSR_TS1)
189 #endif
190 ;
191 cpu->mig_msr_mask = env->msr_mask & ~metamask;
192 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
193 /*
194 * CPU models supported by old machines all have
195 * PPC_MEM_TLBIE, so we set it unconditionally to allow
196 * backward migration from a POWER9 host to a POWER8 host.
197 */
198 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
199 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
200 cpu->mig_nb_BATs = env->nb_BATs;
201 }
202 if (cpu->pre_3_0_migration) {
203 if (cpu->hash64_opts) {
204 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
205 }
206 }
207
208 /* Retain migration compatibility for pre 6.0 for 601 machines. */
209 env->hflags_compat_nmsr = (env->flags & POWERPC_FLAG_HID0_LE
210 ? env->hflags & MSR_LE : 0);
211
212 return 0;
213 }
214
215 /*
216 * Determine if a given PVR is a "close enough" match to the CPU
217 * object. For TCG and KVM PR it would probably be sufficient to
218 * require an exact PVR match. However for KVM HV the user is
219 * restricted to a PVR exactly matching the host CPU. The correct way
220 * to handle this is to put the guest into an architected
221 * compatibility mode. However, to allow a more forgiving transition
222 * and migration from before this was widely done, we allow migration
223 * between sufficiently similar PVRs, as determined by the CPU class's
224 * pvr_match() hook.
225 */
226 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
227 {
228 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
229
230 if (pvr == pcc->pvr) {
231 return true;
232 }
233 return pcc->pvr_match(pcc, pvr);
234 }
235
236 static int cpu_post_load(void *opaque, int version_id)
237 {
238 PowerPCCPU *cpu = opaque;
239 CPUPPCState *env = &cpu->env;
240 int i;
241
242 /*
243 * If we're operating in compat mode, we should be ok as long as
244 * the destination supports the same compatibility mode.
245 *
246 * Otherwise, however, we require that the destination has exactly
247 * the same CPU model as the source.
248 */
249
250 #if defined(TARGET_PPC64)
251 if (cpu->compat_pvr) {
252 uint32_t compat_pvr = cpu->compat_pvr;
253 Error *local_err = NULL;
254 int ret;
255
256 cpu->compat_pvr = 0;
257 ret = ppc_set_compat(cpu, compat_pvr, &local_err);
258 if (ret < 0) {
259 error_report_err(local_err);
260 return ret;
261 }
262 } else
263 #endif
264 {
265 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
266 return -EINVAL;
267 }
268 }
269
270 /*
271 * If we're running with KVM HV, there is a chance that the guest
272 * is running with KVM HV and its kernel does not have the
273 * capability of dealing with a different PVR other than this
274 * exact host PVR in KVM_SET_SREGS. If that happens, the
275 * guest freezes after migration.
276 *
277 * The function kvmppc_pvr_workaround_required does this verification
278 * by first checking if the kernel has the cap, returning true immediately
279 * if that is the case. Otherwise, it checks if we're running in KVM PR.
280 * If the guest kernel does not have the cap and we're not running KVM-PR
281 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
282 * receive the PVR it expects as a workaround.
283 *
284 */
285 if (kvmppc_pvr_workaround_required(cpu)) {
286 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
287 }
288
289 env->lr = env->spr[SPR_LR];
290 env->ctr = env->spr[SPR_CTR];
291 cpu_write_xer(env, env->spr[SPR_XER]);
292 #if defined(TARGET_PPC64)
293 env->cfar = env->spr[SPR_CFAR];
294 #endif
295 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
296
297 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
298 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
299 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
300 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
301 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
302 }
303 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
304 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
305 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
306 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
307 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
308 }
309
310 if (!cpu->vhyp) {
311 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
312 }
313
314 post_load_update_msr(env);
315
316 return 0;
317 }
318
319 static bool fpu_needed(void *opaque)
320 {
321 PowerPCCPU *cpu = opaque;
322
323 return cpu->env.insns_flags & PPC_FLOAT;
324 }
325
326 static const VMStateDescription vmstate_fpu = {
327 .name = "cpu/fpu",
328 .version_id = 1,
329 .minimum_version_id = 1,
330 .needed = fpu_needed,
331 .fields = (VMStateField[]) {
332 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
333 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
334 VMSTATE_END_OF_LIST()
335 },
336 };
337
338 static bool altivec_needed(void *opaque)
339 {
340 PowerPCCPU *cpu = opaque;
341
342 return cpu->env.insns_flags & PPC_ALTIVEC;
343 }
344
345 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
346 const VMStateField *field)
347 {
348 PowerPCCPU *cpu = opaque;
349 ppc_store_vscr(&cpu->env, qemu_get_be32(f));
350 return 0;
351 }
352
353 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
354 const VMStateField *field, JSONWriter *vmdesc)
355 {
356 PowerPCCPU *cpu = opaque;
357 qemu_put_be32(f, ppc_get_vscr(&cpu->env));
358 return 0;
359 }
360
361 static const VMStateInfo vmstate_vscr = {
362 .name = "cpu/altivec/vscr",
363 .get = get_vscr,
364 .put = put_vscr,
365 };
366
367 static const VMStateDescription vmstate_altivec = {
368 .name = "cpu/altivec",
369 .version_id = 1,
370 .minimum_version_id = 1,
371 .needed = altivec_needed,
372 .fields = (VMStateField[]) {
373 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
374 /*
375 * Save the architecture value of the vscr, not the internally
376 * expanded version. Since this architecture value does not
377 * exist in memory to be stored, this requires a but of hoop
378 * jumping. We want OFFSET=0 so that we effectively pass CPU
379 * to the helper functions.
380 */
381 {
382 .name = "vscr",
383 .version_id = 0,
384 .size = sizeof(uint32_t),
385 .info = &vmstate_vscr,
386 .flags = VMS_SINGLE,
387 .offset = 0
388 },
389 VMSTATE_END_OF_LIST()
390 },
391 };
392
393 static bool vsx_needed(void *opaque)
394 {
395 PowerPCCPU *cpu = opaque;
396
397 return cpu->env.insns_flags2 & PPC2_VSX;
398 }
399
400 static const VMStateDescription vmstate_vsx = {
401 .name = "cpu/vsx",
402 .version_id = 1,
403 .minimum_version_id = 1,
404 .needed = vsx_needed,
405 .fields = (VMStateField[]) {
406 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
407 VMSTATE_END_OF_LIST()
408 },
409 };
410
411 #ifdef TARGET_PPC64
412 /* Transactional memory state */
413 static bool tm_needed(void *opaque)
414 {
415 PowerPCCPU *cpu = opaque;
416 CPUPPCState *env = &cpu->env;
417 return msr_ts;
418 }
419
420 static const VMStateDescription vmstate_tm = {
421 .name = "cpu/tm",
422 .version_id = 1,
423 .minimum_version_id = 1,
424 .needed = tm_needed,
425 .fields = (VMStateField []) {
426 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
427 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
428 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
429 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
430 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
431 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
432 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
433 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
434 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
435 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
436 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
437 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
438 VMSTATE_END_OF_LIST()
439 },
440 };
441 #endif
442
443 static bool sr_needed(void *opaque)
444 {
445 #ifdef TARGET_PPC64
446 PowerPCCPU *cpu = opaque;
447
448 return !mmu_is_64bit(cpu->env.mmu_model);
449 #else
450 return true;
451 #endif
452 }
453
454 static const VMStateDescription vmstate_sr = {
455 .name = "cpu/sr",
456 .version_id = 1,
457 .minimum_version_id = 1,
458 .needed = sr_needed,
459 .fields = (VMStateField[]) {
460 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
461 VMSTATE_END_OF_LIST()
462 },
463 };
464
465 #ifdef TARGET_PPC64
466 static int get_slbe(QEMUFile *f, void *pv, size_t size,
467 const VMStateField *field)
468 {
469 ppc_slb_t *v = pv;
470
471 v->esid = qemu_get_be64(f);
472 v->vsid = qemu_get_be64(f);
473
474 return 0;
475 }
476
477 static int put_slbe(QEMUFile *f, void *pv, size_t size,
478 const VMStateField *field, JSONWriter *vmdesc)
479 {
480 ppc_slb_t *v = pv;
481
482 qemu_put_be64(f, v->esid);
483 qemu_put_be64(f, v->vsid);
484 return 0;
485 }
486
487 static const VMStateInfo vmstate_info_slbe = {
488 .name = "slbe",
489 .get = get_slbe,
490 .put = put_slbe,
491 };
492
493 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
494 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
495
496 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
497 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
498
499 static bool slb_needed(void *opaque)
500 {
501 PowerPCCPU *cpu = opaque;
502
503 /* We don't support any of the old segment table based 64-bit CPUs */
504 return mmu_is_64bit(cpu->env.mmu_model);
505 }
506
507 static int slb_post_load(void *opaque, int version_id)
508 {
509 PowerPCCPU *cpu = opaque;
510 CPUPPCState *env = &cpu->env;
511 int i;
512
513 /*
514 * We've pulled in the raw esid and vsid values from the migration
515 * stream, but we need to recompute the page size pointers
516 */
517 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
518 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
519 /* Migration source had bad values in its SLB */
520 return -1;
521 }
522 }
523
524 return 0;
525 }
526
527 static const VMStateDescription vmstate_slb = {
528 .name = "cpu/slb",
529 .version_id = 1,
530 .minimum_version_id = 1,
531 .needed = slb_needed,
532 .post_load = slb_post_load,
533 .fields = (VMStateField[]) {
534 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
535 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
536 VMSTATE_END_OF_LIST()
537 }
538 };
539 #endif /* TARGET_PPC64 */
540
541 static const VMStateDescription vmstate_tlb6xx_entry = {
542 .name = "cpu/tlb6xx_entry",
543 .version_id = 1,
544 .minimum_version_id = 1,
545 .fields = (VMStateField[]) {
546 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
547 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
548 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
549 VMSTATE_END_OF_LIST()
550 },
551 };
552
553 static bool tlb6xx_needed(void *opaque)
554 {
555 PowerPCCPU *cpu = opaque;
556 CPUPPCState *env = &cpu->env;
557
558 return env->nb_tlb && (env->tlb_type == TLB_6XX);
559 }
560
561 static const VMStateDescription vmstate_tlb6xx = {
562 .name = "cpu/tlb6xx",
563 .version_id = 1,
564 .minimum_version_id = 1,
565 .needed = tlb6xx_needed,
566 .fields = (VMStateField[]) {
567 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
568 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
569 env.nb_tlb,
570 vmstate_tlb6xx_entry,
571 ppc6xx_tlb_t),
572 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
573 VMSTATE_END_OF_LIST()
574 }
575 };
576
577 static const VMStateDescription vmstate_tlbemb_entry = {
578 .name = "cpu/tlbemb_entry",
579 .version_id = 1,
580 .minimum_version_id = 1,
581 .fields = (VMStateField[]) {
582 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
583 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
584 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
585 VMSTATE_UINTTL(size, ppcemb_tlb_t),
586 VMSTATE_UINT32(prot, ppcemb_tlb_t),
587 VMSTATE_UINT32(attr, ppcemb_tlb_t),
588 VMSTATE_END_OF_LIST()
589 },
590 };
591
592 static bool tlbemb_needed(void *opaque)
593 {
594 PowerPCCPU *cpu = opaque;
595 CPUPPCState *env = &cpu->env;
596
597 return env->nb_tlb && (env->tlb_type == TLB_EMB);
598 }
599
600 static const VMStateDescription vmstate_tlbemb = {
601 .name = "cpu/tlb6xx",
602 .version_id = 1,
603 .minimum_version_id = 1,
604 .needed = tlbemb_needed,
605 .fields = (VMStateField[]) {
606 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
607 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
608 env.nb_tlb,
609 vmstate_tlbemb_entry,
610 ppcemb_tlb_t),
611 VMSTATE_END_OF_LIST()
612 },
613 };
614
615 static const VMStateDescription vmstate_tlbmas_entry = {
616 .name = "cpu/tlbmas_entry",
617 .version_id = 1,
618 .minimum_version_id = 1,
619 .fields = (VMStateField[]) {
620 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
621 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
622 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
623 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
624 VMSTATE_END_OF_LIST()
625 },
626 };
627
628 static bool tlbmas_needed(void *opaque)
629 {
630 PowerPCCPU *cpu = opaque;
631 CPUPPCState *env = &cpu->env;
632
633 return env->nb_tlb && (env->tlb_type == TLB_MAS);
634 }
635
636 static const VMStateDescription vmstate_tlbmas = {
637 .name = "cpu/tlbmas",
638 .version_id = 1,
639 .minimum_version_id = 1,
640 .needed = tlbmas_needed,
641 .fields = (VMStateField[]) {
642 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
643 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
644 env.nb_tlb,
645 vmstate_tlbmas_entry,
646 ppcmas_tlb_t),
647 VMSTATE_END_OF_LIST()
648 }
649 };
650
651 static bool compat_needed(void *opaque)
652 {
653 PowerPCCPU *cpu = opaque;
654
655 assert(!(cpu->compat_pvr && !cpu->vhyp));
656 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
657 }
658
659 static const VMStateDescription vmstate_compat = {
660 .name = "cpu/compat",
661 .version_id = 1,
662 .minimum_version_id = 1,
663 .needed = compat_needed,
664 .fields = (VMStateField[]) {
665 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
666 VMSTATE_END_OF_LIST()
667 }
668 };
669
670 const VMStateDescription vmstate_ppc_cpu = {
671 .name = "cpu",
672 .version_id = 5,
673 .minimum_version_id = 5,
674 .pre_save = cpu_pre_save,
675 .post_load = cpu_post_load,
676 .fields = (VMStateField[]) {
677 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
678
679 /* User mode architected state */
680 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
681 #if !defined(TARGET_PPC64)
682 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
683 #endif
684 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
685 VMSTATE_UINTTL(env.nip, PowerPCCPU),
686
687 /* SPRs */
688 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
689 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
690
691 /* Reservation */
692 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
693
694 /* Supervisor mode architected state */
695 VMSTATE_UINTTL(env.msr, PowerPCCPU),
696
697 /* Backward compatible internal state */
698 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
699
700 /* Sanity checking */
701 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
702 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
703 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
704 cpu_pre_2_8_migration),
705 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
706 VMSTATE_END_OF_LIST()
707 },
708 .subsections = (const VMStateDescription*[]) {
709 &vmstate_fpu,
710 &vmstate_altivec,
711 &vmstate_vsx,
712 &vmstate_sr,
713 #ifdef TARGET_PPC64
714 &vmstate_tm,
715 &vmstate_slb,
716 #endif /* TARGET_PPC64 */
717 &vmstate_tlb6xx,
718 &vmstate_tlbemb,
719 &vmstate_tlbmas,
720 &vmstate_compat,
721 NULL
722 }
723 };