]> git.proxmox.com Git - mirror_qemu.git/blob - target/ppc/machine.c
e7b3725273546f0e971086caa21d4131b4d332a3
[mirror_qemu.git] / target / ppc / machine.c
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 #include "kvm_ppc.h"
13
14 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
15 {
16 PowerPCCPU *cpu = opaque;
17 CPUPPCState *env = &cpu->env;
18 unsigned int i, j;
19 target_ulong sdr1;
20 uint32_t fpscr;
21 #if defined(TARGET_PPC64)
22 int32_t slb_nr;
23 #endif
24 target_ulong xer;
25
26 for (i = 0; i < 32; i++)
27 qemu_get_betls(f, &env->gpr[i]);
28 #if !defined(TARGET_PPC64)
29 for (i = 0; i < 32; i++)
30 qemu_get_betls(f, &env->gprh[i]);
31 #endif
32 qemu_get_betls(f, &env->lr);
33 qemu_get_betls(f, &env->ctr);
34 for (i = 0; i < 8; i++)
35 qemu_get_be32s(f, &env->crf[i]);
36 qemu_get_betls(f, &xer);
37 cpu_write_xer(env, xer);
38 qemu_get_betls(f, &env->reserve_addr);
39 qemu_get_betls(f, &env->msr);
40 for (i = 0; i < 4; i++)
41 qemu_get_betls(f, &env->tgpr[i]);
42 for (i = 0; i < 32; i++) {
43 union {
44 float64 d;
45 uint64_t l;
46 } u;
47 u.l = qemu_get_be64(f);
48 env->fpr[i] = u.d;
49 }
50 qemu_get_be32s(f, &fpscr);
51 env->fpscr = fpscr;
52 qemu_get_sbe32s(f, &env->access_type);
53 #if defined(TARGET_PPC64)
54 qemu_get_betls(f, &env->spr[SPR_ASR]);
55 qemu_get_sbe32s(f, &slb_nr);
56 #endif
57 qemu_get_betls(f, &sdr1);
58 for (i = 0; i < 32; i++)
59 qemu_get_betls(f, &env->sr[i]);
60 for (i = 0; i < 2; i++)
61 for (j = 0; j < 8; j++)
62 qemu_get_betls(f, &env->DBAT[i][j]);
63 for (i = 0; i < 2; i++)
64 for (j = 0; j < 8; j++)
65 qemu_get_betls(f, &env->IBAT[i][j]);
66 qemu_get_sbe32s(f, &env->nb_tlb);
67 qemu_get_sbe32s(f, &env->tlb_per_way);
68 qemu_get_sbe32s(f, &env->nb_ways);
69 qemu_get_sbe32s(f, &env->last_way);
70 qemu_get_sbe32s(f, &env->id_tlbs);
71 qemu_get_sbe32s(f, &env->nb_pids);
72 if (env->tlb.tlb6) {
73 // XXX assumes 6xx
74 for (i = 0; i < env->nb_tlb; i++) {
75 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
76 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
77 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
78 }
79 }
80 for (i = 0; i < 4; i++)
81 qemu_get_betls(f, &env->pb[i]);
82 for (i = 0; i < 1024; i++)
83 qemu_get_betls(f, &env->spr[i]);
84 if (!cpu->vhyp) {
85 ppc_store_sdr1(env, sdr1);
86 }
87 qemu_get_be32s(f, &env->vscr);
88 qemu_get_be64s(f, &env->spe_acc);
89 qemu_get_be32s(f, &env->spe_fscr);
90 qemu_get_betls(f, &env->msr_mask);
91 qemu_get_be32s(f, &env->flags);
92 qemu_get_sbe32s(f, &env->error_code);
93 qemu_get_be32s(f, &env->pending_interrupts);
94 qemu_get_be32s(f, &env->irq_input_state);
95 for (i = 0; i < POWERPC_EXCP_NB; i++)
96 qemu_get_betls(f, &env->excp_vectors[i]);
97 qemu_get_betls(f, &env->excp_prefix);
98 qemu_get_betls(f, &env->ivor_mask);
99 qemu_get_betls(f, &env->ivpr_mask);
100 qemu_get_betls(f, &env->hreset_vector);
101 qemu_get_betls(f, &env->nip);
102 qemu_get_betls(f, &env->hflags);
103 qemu_get_betls(f, &env->hflags_nmsr);
104 qemu_get_sbe32(f); /* Discard unused mmu_idx */
105 qemu_get_sbe32(f); /* Discard unused power_mode */
106
107 /* Recompute mmu indices */
108 hreg_compute_mem_idx(env);
109
110 return 0;
111 }
112
113 static int get_avr(QEMUFile *f, void *pv, size_t size,
114 const VMStateField *field)
115 {
116 ppc_avr_t *v = pv;
117
118 v->u64[0] = qemu_get_be64(f);
119 v->u64[1] = qemu_get_be64(f);
120
121 return 0;
122 }
123
124 static int put_avr(QEMUFile *f, void *pv, size_t size,
125 const VMStateField *field, QJSON *vmdesc)
126 {
127 ppc_avr_t *v = pv;
128
129 qemu_put_be64(f, v->u64[0]);
130 qemu_put_be64(f, v->u64[1]);
131 return 0;
132 }
133
134 static const VMStateInfo vmstate_info_avr = {
135 .name = "avr",
136 .get = get_avr,
137 .put = put_avr,
138 };
139
140 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
141 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
142
143 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
144 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
145
146 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
147 {
148 PowerPCCPU *cpu = opaque;
149
150 return cpu->pre_2_8_migration;
151 }
152
153 #if defined(TARGET_PPC64)
154 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
155 {
156 PowerPCCPU *cpu = opaque;
157
158 return cpu->pre_3_0_migration;
159 }
160 #endif
161
162 static int cpu_pre_save(void *opaque)
163 {
164 PowerPCCPU *cpu = opaque;
165 CPUPPCState *env = &cpu->env;
166 int i;
167 uint64_t insns_compat_mask =
168 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
169 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
170 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
171 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
172 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
173 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
174 | PPC_64B | PPC_64BX | PPC_ALTIVEC
175 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
176 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
177 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
178 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
179 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
180 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
181 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
182
183 env->spr[SPR_LR] = env->lr;
184 env->spr[SPR_CTR] = env->ctr;
185 env->spr[SPR_XER] = cpu_read_xer(env);
186 #if defined(TARGET_PPC64)
187 env->spr[SPR_CFAR] = env->cfar;
188 #endif
189 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
190
191 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
192 env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
193 env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
194 env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
195 env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
196 }
197 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
198 env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
199 env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
200 env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
201 env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
202 }
203
204 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
205 if (cpu->pre_2_8_migration) {
206 /* Mask out bits that got added to msr_mask since the versions
207 * which stupidly included it in the migration stream. */
208 target_ulong metamask = 0
209 #if defined(TARGET_PPC64)
210 | (1ULL << MSR_TS0)
211 | (1ULL << MSR_TS1)
212 #endif
213 ;
214 cpu->mig_msr_mask = env->msr_mask & ~metamask;
215 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
216 /* CPU models supported by old machines all have PPC_MEM_TLBIE,
217 * so we set it unconditionally to allow backward migration from
218 * a POWER9 host to a POWER8 host.
219 */
220 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
221 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
222 cpu->mig_nb_BATs = env->nb_BATs;
223 }
224 if (cpu->pre_3_0_migration) {
225 if (cpu->hash64_opts) {
226 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
227 }
228 }
229
230 return 0;
231 }
232
233 /*
234 * Determine if a given PVR is a "close enough" match to the CPU
235 * object. For TCG and KVM PR it would probably be sufficient to
236 * require an exact PVR match. However for KVM HV the user is
237 * restricted to a PVR exactly matching the host CPU. The correct way
238 * to handle this is to put the guest into an architected
239 * compatibility mode. However, to allow a more forgiving transition
240 * and migration from before this was widely done, we allow migration
241 * between sufficiently similar PVRs, as determined by the CPU class's
242 * pvr_match() hook.
243 */
244 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
245 {
246 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
247
248 if (pvr == pcc->pvr) {
249 return true;
250 }
251 return pcc->pvr_match(pcc, pvr);
252 }
253
254 static int cpu_post_load(void *opaque, int version_id)
255 {
256 PowerPCCPU *cpu = opaque;
257 CPUPPCState *env = &cpu->env;
258 int i;
259 target_ulong msr;
260
261 /*
262 * If we're operating in compat mode, we should be ok as long as
263 * the destination supports the same compatiblity mode.
264 *
265 * Otherwise, however, we require that the destination has exactly
266 * the same CPU model as the source.
267 */
268
269 #if defined(TARGET_PPC64)
270 if (cpu->compat_pvr) {
271 uint32_t compat_pvr = cpu->compat_pvr;
272 Error *local_err = NULL;
273
274 cpu->compat_pvr = 0;
275 ppc_set_compat(cpu, compat_pvr, &local_err);
276 if (local_err) {
277 error_report_err(local_err);
278 return -1;
279 }
280 } else
281 #endif
282 {
283 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
284 return -1;
285 }
286 }
287
288 /*
289 * If we're running with KVM HV, there is a chance that the guest
290 * is running with KVM HV and its kernel does not have the
291 * capability of dealing with a different PVR other than this
292 * exact host PVR in KVM_SET_SREGS. If that happens, the
293 * guest freezes after migration.
294 *
295 * The function kvmppc_pvr_workaround_required does this verification
296 * by first checking if the kernel has the cap, returning true immediately
297 * if that is the case. Otherwise, it checks if we're running in KVM PR.
298 * If the guest kernel does not have the cap and we're not running KVM-PR
299 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
300 * receive the PVR it expects as a workaround.
301 *
302 */
303 #if defined(CONFIG_KVM)
304 if (kvmppc_pvr_workaround_required(cpu)) {
305 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
306 }
307 #endif
308
309 env->lr = env->spr[SPR_LR];
310 env->ctr = env->spr[SPR_CTR];
311 cpu_write_xer(env, env->spr[SPR_XER]);
312 #if defined(TARGET_PPC64)
313 env->cfar = env->spr[SPR_CFAR];
314 #endif
315 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
316
317 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
318 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
319 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
320 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
321 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
322 }
323 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
324 env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
325 env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
326 env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
327 env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
328 }
329
330 if (!cpu->vhyp) {
331 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
332 }
333
334 /* Invalidate all supported msr bits except MSR_TGPR/MSR_HVB before restoring */
335 msr = env->msr;
336 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
337 ppc_store_msr(env, msr);
338
339 hreg_compute_mem_idx(env);
340
341 return 0;
342 }
343
344 static bool fpu_needed(void *opaque)
345 {
346 PowerPCCPU *cpu = opaque;
347
348 return (cpu->env.insns_flags & PPC_FLOAT);
349 }
350
351 static const VMStateDescription vmstate_fpu = {
352 .name = "cpu/fpu",
353 .version_id = 1,
354 .minimum_version_id = 1,
355 .needed = fpu_needed,
356 .fields = (VMStateField[]) {
357 VMSTATE_FLOAT64_ARRAY(env.fpr, PowerPCCPU, 32),
358 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
359 VMSTATE_END_OF_LIST()
360 },
361 };
362
363 static bool altivec_needed(void *opaque)
364 {
365 PowerPCCPU *cpu = opaque;
366
367 return (cpu->env.insns_flags & PPC_ALTIVEC);
368 }
369
370 static const VMStateDescription vmstate_altivec = {
371 .name = "cpu/altivec",
372 .version_id = 1,
373 .minimum_version_id = 1,
374 .needed = altivec_needed,
375 .fields = (VMStateField[]) {
376 VMSTATE_AVR_ARRAY(env.avr, PowerPCCPU, 32),
377 VMSTATE_UINT32(env.vscr, PowerPCCPU),
378 VMSTATE_END_OF_LIST()
379 },
380 };
381
382 static bool vsx_needed(void *opaque)
383 {
384 PowerPCCPU *cpu = opaque;
385
386 return (cpu->env.insns_flags2 & PPC2_VSX);
387 }
388
389 static const VMStateDescription vmstate_vsx = {
390 .name = "cpu/vsx",
391 .version_id = 1,
392 .minimum_version_id = 1,
393 .needed = vsx_needed,
394 .fields = (VMStateField[]) {
395 VMSTATE_UINT64_ARRAY(env.vsr, PowerPCCPU, 32),
396 VMSTATE_END_OF_LIST()
397 },
398 };
399
400 #ifdef TARGET_PPC64
401 /* Transactional memory state */
402 static bool tm_needed(void *opaque)
403 {
404 PowerPCCPU *cpu = opaque;
405 CPUPPCState *env = &cpu->env;
406 return msr_ts;
407 }
408
409 static const VMStateDescription vmstate_tm = {
410 .name = "cpu/tm",
411 .version_id = 1,
412 .minimum_version_id = 1,
413 .minimum_version_id_old = 1,
414 .needed = tm_needed,
415 .fields = (VMStateField []) {
416 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
417 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
418 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
419 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
420 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
421 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
422 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
423 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
424 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
425 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
426 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
427 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
428 VMSTATE_END_OF_LIST()
429 },
430 };
431 #endif
432
433 static bool sr_needed(void *opaque)
434 {
435 #ifdef TARGET_PPC64
436 PowerPCCPU *cpu = opaque;
437
438 return !(cpu->env.mmu_model & POWERPC_MMU_64);
439 #else
440 return true;
441 #endif
442 }
443
444 static const VMStateDescription vmstate_sr = {
445 .name = "cpu/sr",
446 .version_id = 1,
447 .minimum_version_id = 1,
448 .needed = sr_needed,
449 .fields = (VMStateField[]) {
450 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
451 VMSTATE_END_OF_LIST()
452 },
453 };
454
455 #ifdef TARGET_PPC64
456 static int get_slbe(QEMUFile *f, void *pv, size_t size,
457 const VMStateField *field)
458 {
459 ppc_slb_t *v = pv;
460
461 v->esid = qemu_get_be64(f);
462 v->vsid = qemu_get_be64(f);
463
464 return 0;
465 }
466
467 static int put_slbe(QEMUFile *f, void *pv, size_t size,
468 const VMStateField *field, QJSON *vmdesc)
469 {
470 ppc_slb_t *v = pv;
471
472 qemu_put_be64(f, v->esid);
473 qemu_put_be64(f, v->vsid);
474 return 0;
475 }
476
477 static const VMStateInfo vmstate_info_slbe = {
478 .name = "slbe",
479 .get = get_slbe,
480 .put = put_slbe,
481 };
482
483 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
484 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
485
486 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
487 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
488
489 static bool slb_needed(void *opaque)
490 {
491 PowerPCCPU *cpu = opaque;
492
493 /* We don't support any of the old segment table based 64-bit CPUs */
494 return (cpu->env.mmu_model & POWERPC_MMU_64);
495 }
496
497 static int slb_post_load(void *opaque, int version_id)
498 {
499 PowerPCCPU *cpu = opaque;
500 CPUPPCState *env = &cpu->env;
501 int i;
502
503 /* We've pulled in the raw esid and vsid values from the migration
504 * stream, but we need to recompute the page size pointers */
505 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
506 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
507 /* Migration source had bad values in its SLB */
508 return -1;
509 }
510 }
511
512 return 0;
513 }
514
515 static const VMStateDescription vmstate_slb = {
516 .name = "cpu/slb",
517 .version_id = 1,
518 .minimum_version_id = 1,
519 .needed = slb_needed,
520 .post_load = slb_post_load,
521 .fields = (VMStateField[]) {
522 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
523 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
524 VMSTATE_END_OF_LIST()
525 }
526 };
527 #endif /* TARGET_PPC64 */
528
529 static const VMStateDescription vmstate_tlb6xx_entry = {
530 .name = "cpu/tlb6xx_entry",
531 .version_id = 1,
532 .minimum_version_id = 1,
533 .fields = (VMStateField[]) {
534 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
535 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
536 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
537 VMSTATE_END_OF_LIST()
538 },
539 };
540
541 static bool tlb6xx_needed(void *opaque)
542 {
543 PowerPCCPU *cpu = opaque;
544 CPUPPCState *env = &cpu->env;
545
546 return env->nb_tlb && (env->tlb_type == TLB_6XX);
547 }
548
549 static const VMStateDescription vmstate_tlb6xx = {
550 .name = "cpu/tlb6xx",
551 .version_id = 1,
552 .minimum_version_id = 1,
553 .needed = tlb6xx_needed,
554 .fields = (VMStateField[]) {
555 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
556 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
557 env.nb_tlb,
558 vmstate_tlb6xx_entry,
559 ppc6xx_tlb_t),
560 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
561 VMSTATE_END_OF_LIST()
562 }
563 };
564
565 static const VMStateDescription vmstate_tlbemb_entry = {
566 .name = "cpu/tlbemb_entry",
567 .version_id = 1,
568 .minimum_version_id = 1,
569 .fields = (VMStateField[]) {
570 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
571 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
572 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
573 VMSTATE_UINTTL(size, ppcemb_tlb_t),
574 VMSTATE_UINT32(prot, ppcemb_tlb_t),
575 VMSTATE_UINT32(attr, ppcemb_tlb_t),
576 VMSTATE_END_OF_LIST()
577 },
578 };
579
580 static bool tlbemb_needed(void *opaque)
581 {
582 PowerPCCPU *cpu = opaque;
583 CPUPPCState *env = &cpu->env;
584
585 return env->nb_tlb && (env->tlb_type == TLB_EMB);
586 }
587
588 static bool pbr403_needed(void *opaque)
589 {
590 PowerPCCPU *cpu = opaque;
591 uint32_t pvr = cpu->env.spr[SPR_PVR];
592
593 return (pvr & 0xffff0000) == 0x00200000;
594 }
595
596 static const VMStateDescription vmstate_pbr403 = {
597 .name = "cpu/pbr403",
598 .version_id = 1,
599 .minimum_version_id = 1,
600 .needed = pbr403_needed,
601 .fields = (VMStateField[]) {
602 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
603 VMSTATE_END_OF_LIST()
604 },
605 };
606
607 static const VMStateDescription vmstate_tlbemb = {
608 .name = "cpu/tlb6xx",
609 .version_id = 1,
610 .minimum_version_id = 1,
611 .needed = tlbemb_needed,
612 .fields = (VMStateField[]) {
613 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
614 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
615 env.nb_tlb,
616 vmstate_tlbemb_entry,
617 ppcemb_tlb_t),
618 /* 403 protection registers */
619 VMSTATE_END_OF_LIST()
620 },
621 .subsections = (const VMStateDescription*[]) {
622 &vmstate_pbr403,
623 NULL
624 }
625 };
626
627 static const VMStateDescription vmstate_tlbmas_entry = {
628 .name = "cpu/tlbmas_entry",
629 .version_id = 1,
630 .minimum_version_id = 1,
631 .fields = (VMStateField[]) {
632 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
633 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
634 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
635 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
636 VMSTATE_END_OF_LIST()
637 },
638 };
639
640 static bool tlbmas_needed(void *opaque)
641 {
642 PowerPCCPU *cpu = opaque;
643 CPUPPCState *env = &cpu->env;
644
645 return env->nb_tlb && (env->tlb_type == TLB_MAS);
646 }
647
648 static const VMStateDescription vmstate_tlbmas = {
649 .name = "cpu/tlbmas",
650 .version_id = 1,
651 .minimum_version_id = 1,
652 .needed = tlbmas_needed,
653 .fields = (VMStateField[]) {
654 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
655 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
656 env.nb_tlb,
657 vmstate_tlbmas_entry,
658 ppcmas_tlb_t),
659 VMSTATE_END_OF_LIST()
660 }
661 };
662
663 static bool compat_needed(void *opaque)
664 {
665 PowerPCCPU *cpu = opaque;
666
667 assert(!(cpu->compat_pvr && !cpu->vhyp));
668 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
669 }
670
671 static const VMStateDescription vmstate_compat = {
672 .name = "cpu/compat",
673 .version_id = 1,
674 .minimum_version_id = 1,
675 .needed = compat_needed,
676 .fields = (VMStateField[]) {
677 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
678 VMSTATE_END_OF_LIST()
679 }
680 };
681
682 const VMStateDescription vmstate_ppc_cpu = {
683 .name = "cpu",
684 .version_id = 5,
685 .minimum_version_id = 5,
686 .minimum_version_id_old = 4,
687 .load_state_old = cpu_load_old,
688 .pre_save = cpu_pre_save,
689 .post_load = cpu_post_load,
690 .fields = (VMStateField[]) {
691 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
692
693 /* User mode architected state */
694 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
695 #if !defined(TARGET_PPC64)
696 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
697 #endif
698 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
699 VMSTATE_UINTTL(env.nip, PowerPCCPU),
700
701 /* SPRs */
702 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
703 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
704
705 /* Reservation */
706 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
707
708 /* Supervisor mode architected state */
709 VMSTATE_UINTTL(env.msr, PowerPCCPU),
710
711 /* Internal state */
712 VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
713 /* FIXME: access_type? */
714
715 /* Sanity checking */
716 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
717 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
718 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
719 cpu_pre_2_8_migration),
720 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
721 VMSTATE_END_OF_LIST()
722 },
723 .subsections = (const VMStateDescription*[]) {
724 &vmstate_fpu,
725 &vmstate_altivec,
726 &vmstate_vsx,
727 &vmstate_sr,
728 #ifdef TARGET_PPC64
729 &vmstate_tm,
730 &vmstate_slb,
731 #endif /* TARGET_PPC64 */
732 &vmstate_tlb6xx,
733 &vmstate_tlbemb,
734 &vmstate_tlbmas,
735 &vmstate_compat,
736 NULL
737 }
738 };